
OntoBench: Generating Custom OWL 2
Benchmark Ontologies

Vincent Link1, Steffen Lohmann2, and Florian Haag1

1 Institute for Visualization and Interactive Systems, University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany

2 Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS)
Schloss Birlinghoven, 53757 Sankt Augustin, Germany

Abstract. A variety of tools for visualizing, editing, validating, and document-
ing OWL ontologies have been developed in the last couple of years. The OWL
coverage and conformance of these tools usually needs to be tested during devel-
opment for evaluation and comparison purposes. However, in particular for the
testing of special OWL concepts and concept combinations, it can be tedious to
find suitable ontologies and test cases. We have developed OntoBench, a gener-
ator for OWL benchmark ontologies that can be used to test and compare ontol-
ogy tools. In contrast to existing OWL benchmarks, OntoBench does not focus
on scalability and performance but OWL coverage and concept combinations.
Consistent benchmark ontologies are dynamically generated based on any com-
bination of OWL 2 language constructs selected in a graphical user interface.
OntoBench is available on GitHub and as a public service, making it easy to use
the tool to generate custom benchmark ontologies and ontology fragments.

Keywords: Ontology, benchmark, generator, OWL 2, coverage, conformance.

1 Introduction

A large number of tools that support the visualization, editing, validation, and docu-
mentation of OWL ontologies have been developed in the last couple of years. During
the development of such tools, it is important to test them with ontologies represent-
ing different test cases (henceforth called benchmark ontologies) in order to ensure that
the language constructs of OWL are adequately represented. Benchmark ontologies are
also useful to support the comparison and evaluation of existing tools in order to as-
sess the features of the tools and to check whether they provide adequate support for a
certain use case.

In our previous work [7,8], we developed a static benchmark ontology for the pur-
pose of testing feature completeness of ontology visualization tools. With OntoBench,
we took this idea one step further and made it generally applicable in different use
cases. Many ontology tools do not aim for a complete coverage of OWL but focus on
specific aspects, or are designed to cover only some of the OWL profiles. To overcome
the inflexibility and overhead caused by a static benchmark ontology, we developed
a systematic approach to dynamically generate benchmark ontologies tailored to the
OWL coverage and feature set that a tool intends to support.

2 Vincent Link, Steffen Lohmann, Florian Haag

As opposed to most other ontology benchmarks, OntoBench is not meant for test-
ing the scalability or performance in terms of the number of elements contained in an
ontology, but it rather aims to test the scope of ontology tools in terms of supported fea-
tures and OWL constructs. Accordingly, it focuses on the representation of the TBox of
ontologies (i.e., the classes, properties, datatypes, and a few key individuals), while it
does not support the testing of ABox information (i.e., larger collections of individuals
and data values), which is the focus of most of the related work.

2 Related Work

One well-known ontology benchmark is the Lehigh University Benchmark (LUBM) [6],
a test suite for ontology-based systems. LUBM extends benchmarks for databases with
a focus on the Semantic Web. It contains an ontology describing the university do-
main, a tool that generates instance data for the university ontology, and test queries
for the data whose performance can be evaluated by using a couple of metrics provided
by LUBM. Wang et al. extended the LUBM benchmark by implementing a domain-
agnostic generator for instance data [18]. It uses a probabilistic model to generate a
user-given number of instances based on representative data from the domain in fo-
cus. This enables testing a broader range of possible topics and, consequently, different
kinds of ontology structures. As an example, they created the Lehigh BibTeX Bench-
mark (LBBM) on the basis of a BibTeX ontology.

Another extension of LUBM has been proposed by Ma et al. with the University On-
tology Benchmark (UOBM) [12]. UOBM aims to contain the complete set of OWL 1
language constructs and defines two ontologies, one being compliant with OWL 1 Lite
and the other with OWL 1 DL. In addition, several links were added between the gen-
erated instances in order to create more realistic data.

The W3C Ontology Working Group also published a number of small ontologies
and ontology fragments together with the specifications of OWL 1 and 2, providing
normative test cases [5,16]. These test cases are intended for validating applications
in terms of conformance to the respective OWL version and to demonstrate the correct
usage of OWL. The majority of these test cases aim at testing different syntaxes, specific
combinations of OWL constructs, or reasoners.

Furthermore, there are benchmarks addressing certain aspects of ontology engineer-
ing. For instance, a number of datasets and test cases has been created in the context of
the Ontology Alignment Evaluation Initiative (OAEI) [1]. They are intended to evaluate
and compare the quality and performance of ontology matching methods in particular.
Finally, benchmarks for comparing the performance of SPARQL endpoints are avail-
able that feature RDF data generators and provide sets of benchmark queries [4,15].

To conclude, there is currently no benchmark—except for the static OntoViBe on-
tology we developed in our previous work [7,8]—that focuses on testing ontology tools
for feature-completeness with regard to OWL coverage, and which supports a major
part of the concepts specified in OWL 2. For generating custom ontologies, one could
use ontology editors like Protégé to manually create a benchmark ontology tailored to
one’s needs. However, despite the modeling support provided by ontology editors, reli-
ably covering all relevant test cases can still be very error-prone and tedious for users.

OntoBench: Generating Custom OWL 2 Benchmark Ontologies 3

3 Requirements and Design Considerations

To fill this gap, we developed OntoBench, a generator for benchmark ontologies with a
focus on testing the OWL 2 coverage of ontology tools. The OWL language constructs
contained in the generated ontologies are selected by the user. For this purpose, we
have defined abstract features that encompass one or more OWL language constructs
and thereby form a test case. The features can be individually enabled or disabled by
the user when generating the benchmark ontology.

3.1 Requirements

The features defined for OntoBench were drawn from two main considerations:

1. A complete (as far as possible) coverage of OWL 2 language constructs was to be
achieved, hence features were built around the list of language constructs.

2. OWL includes some concepts that cannot be represented by single language con-
structs but require combinations of constructs. Such combinations were also in-
cluded as test cases.

Each test case can be seen as a fragment of the ontology to be generated. In order
to optimally embed the fragments in the resulting ontology, we specified that the test
cases should satisfy a couple of requirements:

Compactness All test cases have to be designed compactly with regards to the amount
of OWL constructs they require. On the one hand, this reduces side effects due to lan-
guage constructs that are not in the focus of the test case. On the other hand, it improves
the readability of the test cases in the generated ontology.

Independence All test cases shall be defined as independently as possible in order
to avoid that they interfere with each other. However, this goes along with a larger
number of helper constructs in the ontology. For instance, properties can only reason-
ably be tested if classes are added that the properties are linked with. Since adding a
pair of classes for each property would result in a large number of additional ontol-
ogy elements, we used the same class as a domain for all properties in OntoViBe [8].
OntoBench builds upon this approach by reusing a domain class several times, but cre-
ating a new one once a given number of properties has been linked to that class.

Self-Descriptiveness The elements for all used OWL language constructs have to
be named in a way that eases the verification process. Like OntoViBe, OntoBench
names elements according to their role in the benchmark ontology. However, where
OntoViBe was static and could thus rely on the uniqueness of self-explanatory, yet non-
systematically assigned names, OntoBench introduces a uniform naming scheme that
ensures uniqueness of names despite the variation in generated ontologies. This is ac-
complished by prefixing all elements with the name of their corresponding test case.
The suffix of the name indicates the role in the test case. For example, the class that
serves as the range for the OWL construct owl:ReflexiveProperty is named
OwlReflexiveProperty Range.

4 Vincent Link, Steffen Lohmann, Florian Haag

3.2 OWL Profiles and Specific Test Cases

OWL 1 and 2 define multiple profiles of different expressiveness. These profiles restrict
the set of eligible language constructs and the way the constructs can be combined.
Some ontology tools do not support all elements defined by OWL but are limited by
design to one of the less powerful profiles. Accordingly, OntoBench is able to generate
ontologies that are conformant with the selected OWL profiles. It provides a preselec-
tion of test cases for OWL Lite and DL as defined in the OWL reference [3] as well as
OWL 2 EL, RL and QL from the OWL 2 profiles [17]. There is no separate profile for
OWL Full, since it does not contain new OWL constructs in comparison to OWL DL.

Since ontologies can make use of multilingualism, for instance in rdfs:label
annotations, there are also test cases for this aspect.

4 Implementation as a Web Application

OntoBench is implemented as a web application to ease access and reuse [10].3 The
frontend implementation is based on HTML, CSS, and JavaScript in combination with
SemanticUI and jQuery. A REST interface is used for communication with the back-
end, which is implemented as a Java server using the Spring Framework. This server
contains the business logic for generating the customized ontologies by means of the
OWL API [9]. Additionally, it manages a database of previously generated benchmark
ontologies that can be restored via short URIs. These short URIs are provided for easy
reference of the generated ontologies, whereas their long URIs are more persistent and
transparent, as they include a list of the features contained in the ontology.

As an example, the main part of the ontology generated for the test case of the
OWL construct owl:AllDisjointClasses is depicted in Listing 1.1. The order
and indentation of all statements in the ontology is determined by the Turtle syntax
formatter of the OWL API.

Listing 1.1. Main part of the ontology generated for the test case of the OWL construct owl:
AllDisjointClasses formatted in Turtle syntax.

:AllDisjointClasses_Class1 rdf:type owl:Class .
:AllDisjointClasses_Class2 rdf:type owl:Class .
:AllDisjointClasses_Class3 rdf:type owl:Class .

[rdf:type owl:AllDisjointClasses ;
owl:members (:AllDisjointClasses_Class1

:AllDisjointClasses_Class2
:AllDisjointClasses_Class3

)
] .

3 OntoBench is released under the MIT license and available on GitHub at https://
github.com/VisualDataWeb/OntoBench A public OntoBench service is available
at http://ontobench.visualdataweb.org.

https://github.com/VisualDataWeb/OntoBench
https://github.com/VisualDataWeb/OntoBench
http://ontobench.visualdataweb.org

OntoBench: Generating Custom OWL 2 Benchmark Ontologies 5

4.1 Graphical User Interface

The graphical user interface (GUI) of OntoBench consists of two panels organized in
tabs, one allows to configure the benchmark ontology and the other displays the gener-
ated output. Figure 1 shows screenshots of parts of the two panels. The configuration
panel lists all eligible features grouped into categories, inspired by the grouping of the
OWL 2 quick reference guide [2]. The categories are organized into frames in the GUI,
while predefined buttons allow to immediately select certain presets, such as all ele-
ments of a category or all elements matching a particular OWL profile.

When the user hits the generate button or switches to the generator tab, the sec-
ond panel is opened which displays the generated ontology. The ontology is shown on
screen and can be downloaded as a file (cp. Figure 1). It is provided in Turtle syntax
by default, but the user can also chose other OWL serializations from a drop-down
menu. OntoBench provides all OWL serializations supported by the OWL API (which
are Turtle, Manchester, Functional, OWL/XML, and RDF/XML at the moment). The
generated output as well as the endings of the ontology URIs change accordingly, so
that a particular serialization can be directly accessed from remote via its URI.

OntoBench has been designed for a target group that is at least somehow familiar
with OWL and/or wants to use or learn OWL. In some informal user tests, the user
interface was praised for its ease of use. The test users liked that they could create OWL
ontologies with only a few clicks and found the user interface very self-explanatory.

Fig. 1. Screenshots of the user interface of OntoBench showing parts of the two main panels.

6 Vincent Link, Steffen Lohmann, Florian Haag

4.2 Extensibility

In the case that OntoBench does not provide a test case required in a certain situation,
users can manually edit and extend the generated ontologies according to their needs.
Alternatively, they can edit the source code of OntoBench and add the required test
cases to the generator. The source code has an object-oriented design: Each feature is
described by a class which is derived from a superclass containing helpers and providing
access to the ontology. The feature can either be modeled by directly accessing the OWL
API or by using the provided helper classes. Each feature has additionally a name and a
token (for the URI) and is assigned to a category for grouping in the user interface. The
user interface is automatically generated from the modeled features.

4.3 Limitations

Limitations in using and extending OntoBench result mainly from the OWL API that
OntoBench is using to create the OWL ontologies. For instance, the OWL API makes
use of the OWL functional syntax internally, which represents the OWL constructs
owl:AllDifferent and owl:differentFrom both by the functional concept
DifferentIndividuals. When having the OWL API output an ontology in Turtle
syntax, it will always use owl:AllDifferent and never owl:differentFrom,
both of which imply the same assertion with two individuals.

5 Validation of the Generated Ontologies

It is not feasible to validate the correctness of the generated ontologies in all possible
combinations, but we systematically checked a representative subset using test classes
and manual inspection. However, to some extent, we have to trust the OWL API that
is used by OntoBench for generating the ontologies. Since it has “widespread usage
in a variety of tools” [9] and intends to be a “reference implementation for creating,
manipulating and serializing OWL Ontologies”4, it can be assumed that the generated
ontologies are mostly correct in terms of syntax and general structure.

Nevertheless, we applied syntax validators, such as the W3C RDF Validation Ser-
vice [14], to the representative subset of generated ontologies. The tests showed that all
ontologies were valid RDF documents. To validate whether the contents of the gener-
ated ontologies are correct, we tested the representative subset by loading the ontologies
into different tools, including ontology editors like Protégé and reasoners like Pellet.
These checks all showed that the generated ontologies are correct and contain the test
cases that were selected in the user interface.

The presets matching OWL profiles were evaluated with the validators built into
the OWL API and further refined by manual inspection and comparison with the OWL
profiles specifications [3,17]. Some issues with the OWL API were found during these
validations and reported to the issue tracker of that project on GitHub.5 They could be

4 http://owlapi.sourceforge.net
5 https://github.com/owlcs/owlapi/issues/435

http://owlapi.sourceforge.net
https://github.com/owlcs/owlapi/issues/435

OntoBench: Generating Custom OWL 2 Benchmark Ontologies 7

quickly fixed by the developers of the OWL API so that we could finally include the
corrected version of the API in OntoBench.

The scalability of OntoBench was tested by selecting different subsets of test cases
in the user interface and run the generator. The ontologies are not cached but gener-
ated at runtime, which takes less than two seconds on the public OntoBench instance
we provide, even if all elements or a large subset of them are selected. The resulting
ontology can consist of more than 2000 lines in Turtle syntax in those cases.

6 Application in a Visualization Use Case

During the development of the latest version of the ontology visualization tool Web-
VOWL [11], we regularly used OntoBench to check whether WebVOWL displays all
OWL language constructs according to the VOWL 2 specification [13]. Testing the gen-
erated ontologies with WebVOWL was very convenient, as we only had to append their
URIs to the URL of WebVOWL. Since we noticed that a visualization like VOWL can
help to better understand the generated ontologies, we integrated it into OntoBench by
adding a button to the generator panel that directly opens the WebVOWL visualization
of each ontology (cf. Figure 1).

In one of the test cases for WebVOWL, we generated an ontology with OntoBench
containing all OWL language constructs that are supported according to the VOWL 2
specification [13]. We could uncover two issues this way: 1) The VOWL 2 specification
states that owl:Nothing should either be visualized the same way as owl:Thing
or should not be visualized at all, the latter being recommended. However, when we
visualized the generated ontology with a beta version of WebVOWL, we discovered
that owl:Nothingwas incorrectly displayed as an external class. 2) While inspecting
the indicated cardinalities in the visualization, we realized that in contrast to owl:
minCardinality, owl:maxCardinality was not displayed at all in the beta
version of WebVOWL (cf. Figure 2). As can be seen in the figure, the generated names
help to spot the concepts in the visualization and to interpret them correctly.

OntoBench can be extended to also include cases for ABox testing, without af-
fecting the general approach. For instance, we added some specific test cases for the
WebVOWL tool, among others a test case generating 1000 instances for a class. How-
ever, there is a high variety of such ABox test cases and its systematic investigation
constitutes a considerable research effort that would warrant a separate project.

Fig. 2. Example issue found in the use case: while owl:minCardinality was shown in the
beta version of WebVOWL as expected, owl:maxCardinality was not shown at all.

8 Vincent Link, Steffen Lohmann, Florian Haag

7 Conclusion

The application example illustrates how easy it is to test ontology tools like WebVOWL
with OntoBench. Instead of creating suitable test cases from scratch with quite some ef-
fort, or searching for existing ontologies that contain those or similar cases, OntoBench
allows to quickly generate tailored and consistent ontologies with only a few clicks.

References
1. Ontology Alignment Evaluation Initiative. http://oaei.ontologymatching.org
2. Bao, J., Kendall, E.F., McGuinness, D.L., Patel-Schneider, P.F.: OWL 2 web ontol-

ogy language quick reference guide (second edition). https://www.w3.org/TR/
owl2-quick-reference/ (2012)

3. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. W3C Recommen-
dation (2004), http://www.w3.org/TR/2004/REC-owl-ref-20040210/

4. Bizer, C., Schultz, A.: The berlin SPARQL benchmark. International Journal on Semantic
Web and Information Systems 5(2), 1–24 (2009)

5. Carroll, J.J., Roo, J.D.: OWL web ontology language test cases. http://www.w3.org/
TR/owl-test/ (2004)

6. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. Web
Semantics 3(2–3), 158–182 (2005)

7. Haag, F., Lohmann, S., Negru, S., Ertl, T.: OntoViBe: An ontology visualization benchmark.
In: International Workshop on Visualizations and User Interfaces for Knowledge Engineer-
ing and Linked Data Analytics (VISUAL ’14). CEUR-WS, vol. 1299, pp. 14–27 (2014)

8. Haag, F., Lohmann, S., Negru, S., Ertl, T.: OntoViBe 2: Advancing the ontology visualization
benchmark. In: EKAW 2014 Satellite Events. LNAI, vol. 8982, pp. 83–98. Springer (2015)

9. Horridge, M., Bechhofer, S.: The OWL API: A java API for OWL ontologies. Semantic Web
2(1), 11–21 (2011)

10. Link, V., Lohmann, S., Haag, F.: OntoBench: Ontology Benchmark Generator (2016),
http://visualdataweb.de/ontobench/

11. Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: Web-based visualization of
ontologies. In: EKAW 2014 Satellite Events. LNAI, vol. 8982, pp. 154–158. Springer (2015)

12. Ma, L., Yang, Y., Qiu, Z., Xie, G.T., Pan, Y., Liu, S.: Towards a complete OWL ontology
benchmark. In: 3rd European Semantic Web Semantic Web Conference (ESWC ’06). LNCS,
vol. 4011, pp. 125–139. Springer (2006)

13. Negru, S., Lohmann, S., Haag, F.: VOWL: Visual Notation for OWL Ontologies (2014),
http://vowl.visualdataweb.org/v2/

14. Prud’hommeaux, E., Lee, R.: W3C RDF Validation Service (2004), http://www.w3.
org/RDF/Validator

15. Schmidt, M., Hornung, T., Meier, M., Pinkel, C., Lausen, G.: Sp2bench: A SPARQL perfor-
mance benchmark. In: Virgilio, R.D., Giunchiglia, F., Tanca, L. (eds.) Semantic Web Infor-
mation Management - A Model-Based Perspective, pp. 371–393. Springer (2009)

16. Smith, M., Horrocks, I., Krötzsch, M., Glimm, B.: OWL 2 web ontology language confor-
mance (second edition). http://www.w3.org/TR/owl2-conformance/ (2012)

17. W3C OWL Working Group: OWL 2 web ontology language profiles (second edition).
https://www.w3.org/TR/owl2-profiles/ (2012)

18. Wang, S.Y., Guo, Y., Qasem, A., Heflin, J.: Rapid benchmarking for semantic web knowl-
edge base systems. In: 4th International Semantic Web Conference (ISWC ’05), LNCS, vol.
3729, pp. 758–772. Springer (2005)

http://oaei.ontologymatching.org
https://www.w3.org/TR/owl2-quick-reference/
https://www.w3.org/TR/owl2-quick-reference/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/owl-test/
http://www.w3.org/TR/owl-test/
http://visualdataweb.de/ontobench/
http://vowl.visualdataweb.org/v2/
http://www. w3. org/RDF/Validator
http://www. w3. org/RDF/Validator
http://www.w3.org/TR/owl2-conformance/
https://www.w3.org/TR/owl2-profiles/

	OntoBench: Generating Custom OWL 2 Benchmark Ontologies

