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Abstract: The Semantic Web Community has invested significant research ef-
forts in developing systems for Semantic Web search and exploration. But 
while it has been easy to assess the systems' computational efficiency, it has 
been much harder to assess how well different semantic systems’ user interfac-
es help their users. In this article, we propose and demonstrate the use of a 
benchmark for evaluating such user interfaces, similar to the TREC benchmark 
for evaluating traditional search engines. Our benchmark includes a set of typi-
cal user tasks and a well-defined procedure for assigning a measure of perfor-
mance on those tasks to a semantic system. We demonstrate its application to 
two such system, Virtuoso and Rhizomer. We intend for this work to initiate a 
community conversation that will lead to a generally accepted framework for 
comparing systems and for measuring, and thus encouraging, progress towards 
better semantic search and exploration tools.    
Keywords: benchmark, user experience, usability, semantic data, exploration, 
relational data. 

1   Introduction 

One of the main barriers alleged when justifying the lack of the uptake of the Seman-
tic Web is that it has not reached end-users [1]. The amount of semantic data is grow-
ing, through open data initiatives like the Linked Open Data Cloud [2] or motivated 
by SEO benefits like those provided by major search engines for web pages annotated 
using schema.org [3]. However, this has not noticeably impacted user applications, 
for instance by the long sought Killer App for the Semantic Web [4]. 

It might be argued that this is in fact the desired outcome, that client applications 
should hide the complexities of semantic technologies and that the benefits should 
just be evident server side. For instance, search engines like Google provide better 



results thanks to semantic annotations that users never see. This, in fact, should usual-
ly be the desired outcome when trying to satisfy specific user needs: the user should 
be provided the simplest user experience possible [5]. 

For known tasks, such as managing a music collection or an address book, the sim-
plest possible experience is often provided by a task-specific application with a task-
specific interface.  In this case, any Semantic Web nature of the underlying data will 
be hidden behind the familiar interface.  But there will be other cases where no famil-
iar application exists to camouflage the underlying semantic web data.  A user may 
need to explore a data collection that is too rarely used to have motivated an applica-
tion---perhaps because they are the only ones managing data in that particular schema.  
Or they may be seeking to learn something by combining multiple data collections 
that are not often combined.   

A general example of this is semantic search, where a user is presented with some 
arbitrary semantic web data and seeks to find resources that fit some query.  Semantic 
search tools that must work with arbitrary schema cannot hard-code any particular 
schema into their interfaces. For this task, tech-savvy users can rely on standards like 
SPARQL to query available data.  But this is beyond the capabilities of most users.  
And even SPARQL-aware developers have trouble querying unfamiliar data collec-
tions because it is hard to get a clear idea about what is available from a semantic 
dataset [6]. Consequently, we focus on more user-friendly visual query tools.  

All kinds of users can benefit from tools that make it possible to visually explore 
semantic data, showing all its richness while provided a smooth user experience. In 
this particular scenario we might find the Semantic Web killer app that makes all the 
power of Web-wide connected data available to common users, so they can discover 
unforeseen connections in it. 

Proposals are very disparate [7], ranging from Linked Data browsers [8] to Con-
trolled Natural Language query engines [9] or faceted browsers [10]. This makes 
them difficult to compare, especially from the user perspective, for instance what 
ways of exploring the data they provide and how efficient they are from a Quality in 
Use perspective [11, 12]. 

To enable comparing proposals in this domain, a reference framework for bench-
marking is clearly required, as discussions in this research domain have already high-
lighted [13]. Moreover, it has also been shown that benchmarks help organizing and 
strengthening research efforts in a particular research area [14]. An example is the 
Text REtrieval Conference (TREC) benchmarks [15] which have become the de facto 
standard for evaluating any text document retrieval system.  

In the context of semantic data exploration there have been already some efforts in 
specific areas. These include the Intelligent Exploration of Semantic Data Challenge1 
and the Biomedical Semantic Indexing and Question Answering one2. However, none 
of them target the general user task of semantic data exploration, nor provide a com-
plete benchmark that facilitates comparability and competition in this research topic. 

                                                             
 1 IESD Challenge, https://iesd2015.wordpress.com/iesd-challenge-2015 
 2 BioASQ, http://www.bioasq.org 



On the other hand, there are many benchmarks for performance evaluation from a 
system perspective, like the Berlin SPARQL Benchmark (BSBM) [16] to evaluate 
SPARQL query engines, but they do not take into account the end-user perspective. 

In this paper, we present a benchmark for semantic data (graphical) user interfaces 
with a set of user tasks to be completed and metrics to measure the performance of the 
analyzed interfaces at different levels of granularity.  We provide a benchmark not 
just for semantic-web data exploration, but for structured data more generally. This 
makes it possible to also compare tools available in more mature domains like rela-
tional databases [17].  It is well known that semantic web data can be squeezed into a 
traditional relational (SQL) database, and vice versa.  Since the GUI systems we con-
sider are aimed at end users, they generally isolate the user from details of the under-
lying storage mechanism or query engine.  Thus, these interfaces can in theory oper-
ate over either type of data (modulo some simple-matter-of-programming data trans-
formations).  We also hope to further motivate research in semantic data exploration 
that goes beyond what is possible with other less rich data models. 

In Section 2, we present our approach to providing a benchmark for structured data 
exploration. Then, in Section 3, we present the benchmark, which is then put into 
practice with a couple of faceted browsers in Section 4. Finally, the conclusions are 
presented in Section 5 and future work in Section 6. 

2   Approach 

Defining a benchmark requires two main decisions.  First, we need to choose the tasks 
that will be benchmarked.  Second, we need to decide what to measure about the sys-
tems as they are used for the chosen tasks.  In both parts, our choices influence the 
fidelity of our benchmark.  First, our chosen tasks should be representative of the 
tasks we expect users to perform.  They should cover the common cases, and be nei-
ther too hard nor too easy.  Second, our performance metrics should provide some 
suggestion of what real users will experience using the system.  At the same time they 
will be easier to adopt if at least some measurement can be done analytically, without 
actual expensive user studies.  These two choices are the “axioms” of our benchmark 
system; they cannot be proven correct but must instead be justified by experience and 
argumentation.   We will discuss both in detail in the following two sections.  For 
tasks we begin with (then augment) the Berlin SPARQL Benchmark, a set of queries 
initially intended to serve as a benchmark of computational performance.  Our per-
formance measure consider basic user operations such as mouse movements and key-
board clicks under the so-called Keystroke Level Model [18] of user interaction.   

In choosing tasks, we want to avoid introducing bias from an a priori conception of 
the problem or experience developing our own tools. Consequently, we have looked 
outward to find sets of typical end-user tasks related to structured data exploration.  

Although our main interest is semantic technologies, we prefer a benchmark that 
can also be applied to relational-database tools, so we can compare them with seman-
tic tools and highlight pros and cons between them.  As discussed in the introduction, 



visual query tools will insulate the user from details of the underlying storage repre-
sentation, meaning RDF or relational databases could equally be used as back-ends. 

From existing benchmarks with user tasks a clear candidate emerged: the Berlin 
SPARQL Benchmark (BSBM). Although this benchmark is intended for measuring 
the computational performance of semantic and relational database query engines, it 
is based on a set of realistic queries inspired by common information needs in these 
domains.   We can therefore leverage the same queries to measure the user-
interaction performance of visual query systems. Moreover, it is based on a synthetic 
dataset and a tool that facilitates its generation for a given target size, facilitating thus 
the distribution of the benchmark. And the data can be generated as SQL or RDF. 

All the user tasks are accompanied by both the SPARQL and SQL query to satisfy 
them. Though from the perspective of a user experience benchmark these queries are 
technological details that might not be relevant because users can satisfy the tasks by 
generating different queries, they might be helpful to verify the outcomes of users’ 
tasks and check they are actually getting the intended result.  

Therefore, we adopted the proposed user tasks that motivate the actual SPARQL 
and SQL queries that conform the Berlin SPARQL Benchmark. The tasks are contex-
tualized in an e-commerce scenario, where different vendors offer a set of products 
and different consumers have posted reviews about these products.    

In fact, there are three different sets of tasks in the BSBM depending on task types. 
The BSBM Explore set of tasks are directly connected to the proposed benchmark 
aim. There is a second set of Business Intelligence tasks, which are too complex to be 
considered in the context of data exploration tasks for the moment.  Finally, there are 
Update tasks, which in the future we hope to use to define a benchmark for users edit-
ing, rather than searching semantic data. 

Consequently, the data exploration tasks in BSBM have been used as the starting 
point for the proposed structured data exploration benchmark from a user experience 
perspective. These are 12 tasks that illustrate the user experience of a user looking for 
a product. The tasks are presented in the following subsection. 

Note that our goal is not to evaluate ecommerce tools specifically.  The intended 
targets are search tools for arbitrary structured data, so cannot have any e-commerce 
features hard coded into them.  Indeed, this domain is so common there are likely to 
be domain-specific interfaces for tasks in it.  However, ecommerce provides a con-
venient and intuitive domain in which to define queries we expect users to want to 
carry out.  We are interested in general operations, such as combining two constraints, 
but for concreteness we provide tasks in our benchmark in e-commerce language. 

Our benchmark does not aim to assess discoverability/learnability.  We posit a user 
who is already familiar with the tool being evaluated who knows where to access 
available operations and how to invoke them. To conclude this section, and before 
starting to describe each task in detail, it is important to note that the SPARQL and 
SQL queries associated to each task are not included in this paper due to space con-
straints but are available from the benchmark repository [19]. 



3   Structured Data Exploration Benchmark 

The proposed benchmark currently consists of 12 end-user tasks to be completed with 
the evaluated tool, listed in Section 3.1. For each task we detail the information need 
and provide some context. Then, we give a sample query based on the sample dataset 
accompanying the benchmark together with the expected outcome. 

The proposed benchmark also includes a set of metrics to measure the effective-
ness and efficiency of the evaluated tool when performing each of the proposed tasks. 
These metrics yield numbers that can be used to compare the performance of struc-
tured data exploration tools, as detailed in Section 3.2. 

3.1   End-User Tasks 

The following subsections describe each of the 12 end-user tasks. All but one of them 
are directly adopted from the Berlin SPARQL Benchmark (BSBM). One additional 
task, Task 2, has been added as a variation of Task 1 to cover a gap in the original 
benchmark (OR versus AND operations for combining subqueries. 

Although the BSBM presents a particular e-commerce schema, we hold that a true 
semantic web query tool cannot make assumptions about the schema of the data it is 
to query.  It should operate equally well on any data schema it encounters.  A tool that 
hard-wires the BSBM schema into its interface will be useless on a different data set 
and thus is not a true semantic web tool.  The BSBM instantiates one arbitrary schema 
to let us talk about our queries concretely, but the tool being analyzed should not be 
permitted advance knowledge of this particular instantiation.   

Task 1. Find products for a given set of combined features 
A consumer seeks a product that present a specific set of features. The corresponding 
information need for the benchmark dataset specifies a product type from the product 
hierarchy (one level above leaf level), two different product features that correspond 
to the chosen product type and that should be present simultaneously and a number 
between 1 and 500 for a numeric property. For instance:  

“Look for products of type sheeny with product features stroboscopes AND gadg-
eteers, and a productPropertyNumeric1 greater than 450”. 

For the previous query, and considering the sample BSBM 1000 Products dataset3, 
the product labels the user should obtain are: 

“auditoriums reducing pappies” and “driveled”. 

Task 2. Find products for a given set of alternative features 
A consumer is seeking a product with a general idea about some alternative features 
of what he wants. This task has been added beyond those provided by BSBM. It 

                                                             
3 https://github.com/rhizomik/BESDUI/blob/master/Datasets/bsbm-1000products.ttl.tgz 



makes Task 1 to less specific by considering feature alternatives; the user is interested 
in any product that presents at least one of them. This benchmarks how exploration 
tools lets users define OR operations. A sample query for this task might be: 

“List products of type sheeny with product features stroboscopes OR gadgeteers, 
and a productPropertyNumeric1 greater than 450”. 

For the previous query, and considering the sample dataset, the product labels the user 
should obtain if restricted to the first 5 ordered alphabetically are: 

“aliter tiredest”, “auditoriums reducing pappies”, “boozed”, “byplay”, “closely 
jerries”. 

Task 3. Retrieve basic information about a specific product for display purposes 
The consumer wants to view basic information about a specific product. For instance: 

“Get details about product boozed”. 
From the entry page, and considering the synthetic dataset generated using the BSMB 
tool, the response should include the following properties for the selected product 
with their corresponding values, which are omitted due to space restrictions but avail-
able from the benchmark repository4: 

“label”, “comment”, “producer”, “productFeature”, “propertyTextual1”, 
“propertyTextual2”, “propertyTextual3”, “propertyNumeric1”, “propertyNumer-
ic2”, “propertyTextual4”, “propertyTextual5”, “propertyNumeric4”. 

Task 4. Find products having some specific features and not having one feature 
After looking at information about some products, the consumer has a more specific 
idea what she wants, features the products should have and others that should not. The 
main feature of this task is the use of negation. A sample query for this task is: 

“Look for products of type sheeny with product features stroboscopes but NOT 
gadgeteers, and productPropertyNumeric1 value greater than 300 and 
productPropertyNumeric3 smaller than 400”. 

For this query and the BSBM 1000 dataset, the the user should obtain: 
“boozed”, “elatedly fidelis release” and “learnable onomatopoeically”. 

Task 5. Find products matching two different sets of features 
After looking at information about some products, the consumer has a more specific 
idea what he wants. Therefore, he asks for products matching either one set of fea-
tures or another set. The complexity in this case is the union of the sets of products 
selected by two different patterns. For instance: 

“Look for products of type sheeny with product features stroboscopes and gadge-
teers and a productPropertyNumeric1 value greater than 300 plus those of the 

                                                             
4 Task 2: https://github.com/rhizomik/BESDUI/blob/master/Benchmarks/3.md 



same product type with product features stroboscopes and rotifers and a 
productPropertyNumeric2 greater than 400”. 

For the previous query, and the sample dataset, the product labels the user should 
obtain if restricted to the first 5 ordered alphabetically are: 

“auditoriums reducing pappies”, “boozed”, “driveled”, “elatedly fidelis re-
lease”, “zellations”. 

Task 6. Find product that are similar to a given product 
The consumer has found a product that fulfills his requirements. She now wants to 
find products with similar features. The corresponding query starts from a product and 
looks for all other products with at least one common feature and a wider range of 
values for two of its numeric properties. For instance: 

“Look for products similar to boozed, with at least one feature in common, and a 
productPropertyNumeric1 value between 427 and 627 and a productProper-
tyNumeric2 value between 595 and 895 (150 more or less than its value for 
boozed, 745)”. 

For the previous query, and considering the sample dataset, the product labels the user 
should obtain if restricted to the first 5 ordered alphabetically are: 

“debouches orangs unethically”, “dirk professionalize”, “grappled”, “imposed”, 
“pepperiness gothically shiner”. 

Task 7. Find products having a name that contains some text 
The consumer remembers parts of a product name from former searches. She wants to 
find the product again by searching for the parts of the name that she remembers. The 
corresponding query is just one of the words from the list of words5 that were used 
during dataset generation by the BSBM Data Generator6. For instance:  

“Search products whose name contains ales”. 

For the previous query, and considering the sample dataset, the product labels the user 
should obtain if restricted to the first 5 ordered alphabetically are:  

“cogitations centralest recasting”, “overapprehensively dales ventless”, “ski-
dooed finales noisemaker” and “unwed convalescents”. 

Task 8. Retrieve in-depth information about a specific product including offers 
and reviews 
The consumer has found a product which fulfills his requirements. Now he wants in-
depth information about this product including offers from German vendors and 
product reviews if existent. The corresponding query refers to a selected product and 

                                                             
5 https://github.com/rhizomik/BESDUI/blob/master/Datasets/titlewords.txt 
6 http://wifo5-03.informatik.uni-

mannheim.de/bizer/berlinsparqlbenchmark/spec/BenchmarkRules/index.html#datagenerator 



defines a current date within the "valid from" and "valid to" range of the offers. Com-
pared to previous tasks, this one introduces being able to pose restrictions to different 
model entities that are interrelated, in this case vendors and reviews that are interre-
lated with products and offers. For instance: 

“For the product waterskiing sharpness horseshoes list details for all its offers by 
German vendors and still valid by 2008-05-28 plus details for all reviews for this 
product, including values for rating1 and rating2 if available”. 

Considering the benchmark sample dataset, the user should get access to the details 
about the following offers and reviews: 

 
“Offer10801”, “Offer5335”, “Offer10597”, “Review5481”, “Review7546”, 
“Review2669”, “Review5731”, “Review8494”. 

Task 9. Give me recent reviews in English for a specific product 
The consumer wants to read the 20 most recent English language reviews about a 
specific product. The corresponding query refers to a selected product. This task re-
quired being able to filter literals language and ordering by date. For instance: 

“For the product waterskiing sharpness horseshoes list the 20 more recent re-
views in English”. 

Given the sample dataset, the user should obtain the details for the following reviews 
in the order they are listed: 

“Review5481”, “Review8494” and “Review2669”. 

Task 10. Get Information about a reviewer 
In order to decide whether to trust a review, the consumer asks for any kind of infor-
mation that is available about the reviewer. The corresponding query refers to a se-
lected product. This tasks explore how easy it is to reach the information about a re-
source from a related one. For instance: 

“Get all available information about Reviewer11”. 

For the sample dataset, the user obtains all the details about the following reviewer: 
“Reviewer1”. 

Task 11. Get offers for a given product which fulfill specific requirements 
The consumer wants to buy from a vendor in the United States that is able to deliver 
within 3 days and is looking for the cheapest offer that fulfills these requirements. The 
corresponding query refers to a selected product and defines a current date within the 
"valid from" and "valid to" range of the offers. For instance: 

“Look for the cheapest and still valid by 2008-06-01 offer for the product water-
skiing sharpness horseshoes by a US vendor that is able to deliver within 3 
days”. 



Considering the sample dataset, the user interface should get as a response the follow-
ing offers: 

“Offer3499", "Offer11865" and "Offer15103”. 

Task 12. Export the chosen offer into another information system which uses a 
different schema 
After deciding on a specific offer, the consumer wants to save information about this 
offer on his local machine using a different schema. The corresponding query refers 
to a selected offer, or the one considered by the previous task. 

“Save in the local computer the information about the vendor for Offer3499, this 
is half the task. To complete it, restrict the output to just label, homepage and 
country and map them to schema.org terms: name, url and nationality”. 

3.2   Metrics 

Our benchmark gives a number of generic yet typical information-seeking tasks to be 
measured.  We now ask the following three increasingly detailed questions to measure 
the effectiveness and efficiency of the tool on these tasks: 

1.  Capability (effectiveness) Is performing the task possible with the given system? 
2.  Operation Count (efficiency) How many basic steps (mouse clicks, keyboard en-

try, scrolling) must be performed to carry out the given task? 
3.  Time (efficiency) How quickly can these steps be executed to carry out the task? 

Presumably, a system can be judged superior to another if it can be used to perform 
more of the tasks, with fewer basic steps that take less time. Our general target is 
graphical user interfaces for querying structured data.  For contrast, if we consider for 
example a SPARQL command line, a suitably trained user would be able to perform 
all benchmark tasks with just a single primitive operation (typing the SPARQL query) 
in a very small amount of time (leaving out designing and debugging the SPARQL 
query).  But most users don't have the training or understanding necessary to use such 
a tool.  Instead, some type of GUI is the norm, and it is such systems we aim to evalu-
ate. 

The first two questions, of capability and operation count, can be answered entirely 
analytically.  They simply require identifying and counting up a sequence of opera-
tions that complete each task. Ideally, the third question would be answered by a 
timed user study. However, conducing user studies is a very time consuming activity, 
especially because it involves recruiting users. To facilitate the application of the 
benchmark, our proposed metric relies on past HCI research that offers a way to an-
swer the time question analytically as well, by applying known, analytic timing mod-
els for primitive actions (keyboard and mouse operations) in the identified sequence. 

In particular, the Keystroke Level Model (KLM) [18] gave experimentally derived 
timings for basic operations such as typing a key, pointing on the screen with the 
mouse, moving hands back to the keyboard, and so forth.  Given a sequence of these 



basic operations, we can total up their timings to yield an overall predicted execution 
time for the task. 

Our proposal is to use the main interaction operators proposed by KLM and their 
mapping to time to define the Operation Count and Time metrics. The first one does 
not distinguish among operations so it is computed as the sum of the counts of all 
operations. The considered operators and their mappings to time in seconds to com-
pute the Time metric are shown in Table 1.  

Table 1. Mapping from KLM Operators to time  

KLM  Operator   Time    
(seconds)  

K: button press or keystroke, (keys not characters, so shift-C is two) 0.2  

P: pointing to a target on a display e.g. with a mouse. Time differs de-
pending on target distance and size, but is held constant for simplicity. 1.1  

H: homing the hand(s) on the keyboard or other device, this includes 
movement between any two devices. 0.4  

4   Benchmark evaluation with Rhizomer and Virtuoso 

To facilitate the adoption of the benchmark, and to evaluate its applicability, we have 
tested it with two of the most sophisticated faceted browsers for semantic data, which 
also feature pivoting: Rhizomer [10] and Virtuoso Facets [20]. This way we provide a 
couple of samples that illustrate how the benchmark works. Due to space restrictions, 
we provide the results for the first 3 tasks. 

Moreover, we have set a GitHub repository7 for the benchmark that can be forked 
to contribute results for additional tools, which can be then incorporated into the ref-
erence repository through a pull request. Additional details about how to contribute to 
the benchmark are available from the repository. The whole set of results for both 
Virtuoso and Rhizomer, and other tools, are available from the repository. For in-
stance, the benchmark has been already applied to SIEUFERD [21], a query construc-
tion tool through direct manipulation of nested relational results. 

Task 1 Results 
Rhizomer does not support this kind of query because when defining the values for a 
particular facet, like stroboscopes and gadgeteers for feature, it is not possible to 
specify that both should be available for the same product simultaneously. The Capa-
bility metric value is then 0%. 
Virtuoso, as it is shown in Fig. 1, can complete this task and the outcome is the ex-
pected considering the sample dataset, the products “driveled” and “auditoriums re-

                                                             
7 https://github.com/rhizomik/BESDUI 



ducing pappies”. To complete this task, the interaction steps and KLM Operators are 
listed in Table 2, while the Operator Count and Time metrics are shown in Table 4. 

Table 2. Interaction steps and corresponding KLM operators to complete Task 1 using Virtuoso 

1.   Type “sheeny” and “Enter”, then click “ProductType10”. 
2.   Click “Go” for “Start New Facet”, then click “Options”. 
3.   For “Interence Rule” Click and Select rules graph then “Apply”. 
4.   Click “Attributes”, then “productFeature” and “stroboscopes”. 
5.   Click “Attributes”, then “productFeature” and “gadgeteers”. 
6.   Click “Attributes” and “productPropertyNumeric1”. 
7.   Click “Add condition: None” and select “>”. 
8.   Type “450” and click “Set Condition”. 

9K, 2P, 3H  
2K, 2P 
2K, 2P 
3K, 3P 
3K, 3P 
2K, 2P 
2K, 2P 
5K, 2P, 2H 

Task 2 Results 
Rhizomer, as shown in Fig. 2, supports this task because its facets can be used to 
select more than one of their values as alternatives. The interaction steps and KLM 
Operators are presented in Table 3 and the Operation Count and Time in Table 4. 

 

Fig. 1. Using Virtuoso Facets to complete Task 1. 



 

Fig. 2. Using Rhizomer to complete Task 2. 

Table 3. Interaction steps and KLM operators to complete Task 2 with Rhizomer 

1.   Click menu “ProductType” and then “Sheeny” submenu. 
2.   Click “Show values” for facet “Product Feature”. 
3.   Click facet value “stroboscopes”. 
4.   Type in input “Search Product Feature” “gad...”  
5.   Select “gadgeteers” from autocomplete 
6.   Set left side of “Product Property Numeric1”slider to “450”. 

2K, 2P, 1H  
1K, 1P 
1K, 1P 
4K, 1P, 1H 
1K, 1P, 1H 
1K, 2P 

 
Virtuoso also supports this task in a very similar way to Task 1, though in this case 
alternative feature values are defined using the “Add condition: IN” feature. The re-
sults are available from Table 4. 

Task 3 Results 
Rhizomer supports this task. The user clicks the “Quick search…” input field and 
types “boozed”, then selects the entry for the product from the autocomplete. 
Virtuoso also supports this task. The user types “boozed” in the entry page search box 
then clicks the entry for the requested product in the results listing to get the details. 

 
The outcomes for the rest of the tasks cannot be included in this paper due to space 
restrictions but are available from the benchmark repository7. From the operation 



count and their classification following the KLM model detailed in , it is possible to 
compute the numbers that measure their performance using the metrics presented in 
Section 3.2. These values constitute the benchmark evaluation results and are present-
ed in Table 4. 

Table 4. Summary of benchmark results for Rhizomer and Virtuoso for Tasks 1 to 3, more 
results available from the BESDUI Repository7 

   Rhizomer   Virtuoso  

Task   Capacity   Operation  
Count  

Time  
(seconds)   Capacity   Operation  

Count  
Time    

(seconds)  

1   0%   -   -   100%   51    
(28K,  18P,  5H)   27.4  

2   100%   21    
(10K,  8P,  3H)   12.0   100%   53    

(29K,  19P,  5H)   28.7  

3   100%   13    
(8K,  2P,  3H)   5.0   100%   14    

(9K,  2P,  3H)   5.2  

5   Conclusions 

As already shown in other research domains, the existence of a benchmarks that facil-
itate comparing contributions related to a specific research challenge helps foster 
efforts in that particular domain and clarify the scope of the contributions. In the do-
main of semantic data exploration and search, there are many proposed tools and 
surveys but there is not a benchmark to compare them from a user experience per-
spective. 

Our proposal is based on a set of user tasks, most of them borrowed from the Ber-
lin SPARQL Benchmark (BSBM), to be completed using the evaluated tools. Though 
this tasks are originally conceived to test SPARQL engines’ performance, they are 
very well contextualized in the e-commerce domain, cover a wide range of infor-
mation needs and are accompanied by a synthetic dataset generator that facilitates the 
distribution of the benchmark and its deployment, even for very big testing datasets. 

Though the dataset is synthetic and, for instance, many resources present funny 
names like “waterskiing sharpness horseshoes”, it is important to note that this does 
not introduce any significant effect from the user experience perspective when meas-
ured using the KLM-based metric. Moreover, it is also important to note that, as test-
ing with real users is very costly and time consuming, the benchmark is based on 
analytical methods and therefore require only the involvement of a researcher experi-
enced in semantic data exploration tools. 

The metrics are Capability, an effectiveness metric that measures if a task can be 
completed or not using an evaluated tool, Operation Count, an efficiency metric 
counting how many Keystroke Level Model Operators are required to complete the 



task, and Time, another efficiency metric that translates the KLM Operators required 
to complete the task into an approximate amount of time. 

Based on the 12 proposed tasks and the 3 metrics, the application of the benchmark 
consists of trying to complete each of the tasks using the evaluated tool. This can be 
done without having to recruit test users, an experienced user capable of using the tool 
is enough. The user record the interaction steps and then translates them to KLM Op-
erators: K for keystrokes or button press, P for pointing to a target with the mouse and 
H for homing the hands on the keyboard or other device. The amount of operators of 
each kind should be counted to be able to compute the efficiency metrics. Operator 
Count is just the total amount of operators needed while Time is the conversion of the 
operators to a time measure, where K amounts 0.2 seconds, P 1.1 and H 0.4s.  

The benchmark has been tested with two of the most sophisticate semantic data 
faceted browsers, Virtuoso Facets and Rhizomer. Just the results for the first three 
tasks including all the metrics are included in this paper, the rest are available from a 
GitHub repository intended for maintaining the benchmark, keeping track of evalua-
tions and organizing contributions. 

Another interesting effect of using BSBM is that it also provides the benchmark 
dataset in a format suitable for relational databases so it is possible to use the bench-
mark to compare semantic-based and relational-based structured data exploration 
tools. These benchmark results are also available online7. 

6   Future Work 

The main objective of this contribution is to foster the formation of a community 
around the evaluation and comparison of tools for structured data exploration. Conse-
quently, we have prepared a GitHub repository where all the required elements to 
conduct an evaluation are available. This includes a sample dataset, the descriptions 
of the tasks, reference SPARQL and SQL queries to test expected responses, descrip-
tions of the metrics and templates to report results. 

We plan to add contributing instructions based on common practice in GitHub that 
encourage forking the repository, making contributions like new evaluation results 
based on the templates and then doing a pull request to incorporate them in the refer-
ence repository. We also expect contributions like additional tasks or metrics, which 
will be also considered for inclusion. We plan to trigger this community building 
process by proposing the benchmark as the way to evaluate submission to the IESD 
Workshop Challenge1, which some of the authors co-organize. 

In addition to this expected community building efforts and results, our plans also 
include concrete tools to be evaluated, metrics and tasks to consider. First of all, we 
are currently exploring the tasks also proposed in the BSBM in the Business Intelli-
gence scenario. Though these tasks are much more complex than the Explore tasks, 
some of them might be interesting to test with tools featuring visualizations. 

We also plan to test many more tools using the benchmark, ranging from semantic 
data tools providing direct manipulation (SParallax, Explorator, Tabulator,…) to tools 



that facilitate building queries interactively (YASGUI, iSPARQL, AutoSPARQL,…) 
or relational data exploration tools (Cipher, BrioQuery,…). 

Our performance metrics currently emphasize low-level basic operations such as 
keystrokes and mouse clicks.  These can be refined.  For example, Fitts’s law has 
related the time to execute a mouse operation to the target regions size and from it’s 
the mouse starting point; this can be incorporated into our timing analysis.  At a high-
er level, our benchmark currently does not capture user effort.  An interface that re-
quires the user to think hard about which operation to perform next (and how to do it) 
will be more taxing and take more time.   As discussed above, and extreme model of 
this is the SPARQL command line, which is extremely efficient in the KLM because 
all the work is mental, figuring out what SPARQL query to time.  Similarly, our 
benchmark favors complicated UI layouts where all actions are “one click away”, 
neglecting the fact that Fitts’ Law indicates that actually selecting these actions be-
comes slower. The KLM model does not capture this, but there are so-called GOMS 
[22] models that begin to.   

To fully evaluate the usefulness of the proposed efficiency metrics, we will also 
test the systems using user experience evaluation techniques that involve end-users 
and include measuring the real time users need to complete the tasks. 
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