
Ontologies for Knowledge Graphs: Breaking the Rules

Markus Krötzsch and Veronika Thost

Center for Advancing Electronics Dresden (cfaed), TU Dresden
{markus.kroetzsch,veronika.thost}@tu-dresden

Abstract. Large-scale knowledge graphs (KGs) are widely used in industry and
academia, and provide excellent use-cases for ontologies. We find, however, that
popular ontology languages, such as OWL and Datalog, cannot express even the
most basic relationships on the normalised data format of KGs. Existential rules
are more powerful, but may make reasoning undecidable. Normalising them to
suit KGs often also destroys syntactic restrictions that ensure decidability and low
complexity. We study this issue for several classes of existential rules and derive
new syntactic criteria to recognise well-behaved rule-based ontologies over KGs.

1 Introduction

Graph-based representations are playing a major role in modern knowledge manage-
ment. Their simple, highly normalised data models can accommodate a huge variety of
different information sources, and led to large-scale knowledge graphs (KGs) in indus-
try (e.g., at Google and Facebook); on the Web (e.g., Freebase [6] and Wikidata [26]);
and in research (e.g., YAGO2 [16] and Bio2RDF [5]).
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Fig. 1. Tuple as Graph

Not all data is graph-shaped, but it is usually easy to
translate into this format using well-known methods. For
example, the W3C RDB to RDF Mapping Language pro-
vides mappings from relational databases to RDF graphs
[13]. Relational tuples with three or more values are rep-
resented by introducing new graph nodes, to which the
individual values of the tuple are then connected directly.
For example, the tuple spouse(ann, jo, 2013), stating that
Ann married Jo in 2013, may be represented by the graph in Figure 1, where c is a fresh
element introduced for this tuple, and s1 to s3 are binary edge labels used for all tuples
of the spouse relation.

In this way, KGs unify data formats, so that many heterogeneous datasets can be
managed in a single system. Unfortunately, however, syntactic alignment is not the
same as semantic integration. The KG’s flexibility and lack of schematic constraints
lead to conceptual heterogeneity, which reduces the KG’s utility. This is a traditional
data integration problem, and ontologies promise to solve it in an interoperable and
declarative fashion [19]. Indeed, ontologies can be used to model semantic relationships
between different structures, so that a coherent global view can be obtained.

It therefore comes as a surprise that ontologies are so rarely used with KGs. A
closer look reveals why: modern ontology languages cannot express even the simplest
relationships on KG models. In our example, a natural relationship to model would be



that marriage is symmetric, so that we can infer spouse(jo, ann, 2013). In a KG, this fact
would again be represented by a structure as in Figure 1, but with Ann and Jo switched,
and – importantly – using a fresh auxiliary node in place of c. This entailment could be
expressed by the following logical axiom:

∀x, y1, y2, y3. s1(x, y1)∧s2(x, y2)∧s3(x, y3) → ∃v. s1(v, y2)∧s2(v, y1)∧s3(v, y3). (1)

Two ontology languages proposed for information integration in databases are global-
as-view and local-as-view mappings [19]. Neither can express (1), since they support
only single atoms on the source and on the target side, respectively. Datalog, a popular
language for defining recursive views, cannot express (1) either, since it lacks existen-
tial quantification in conclusions of rules. Another very popular ontology language is
OWL [22], which was specifically built for use with RDF graphs. However, even OWL
cannot express (1): it supports rules with existential quantifiers, but only with exactly
one universally quantified variable occurring in both premise and conclusion.

This problem is not specific to our particular example. KGs occur in many for-
mats, which are rarely as simple as RDF. It is, e.g., common to associate additional
information with edges. Examples are validity times in YAGO2, statement qualifiers in
Wikidata, and arbitrary edge attributes in Property Graphs (a very popular data model
in graph databases). If we want to represent such data in a simple relational form that is
compatible with first-order predicate logic, we arrive at encodings as in Figure 1.

So how can we realise ontology-based information integration on KGs? Formula (1)
is in fact what is called a tuple-generating dependency in databases [1] and an existential
rule in AI [2]. While query answering over such rules is undecidable, many decidable
fragments have been proposed (see overviews [2], [8], and [11]). These rules use a rela-
tional model, and they can be translated to a KG setting just like facts. For example, rule
(1) could be the result of translating ∀y1, y2, y3.spouse(y1, y2, y3) → spouse(y2, y1, y3).
However, this changes the rules’ syntax and semantics, and it destroys known criteria
that guarantee decidability or complexity.

We therefore ask to which extent known decidable fragments of existential rules are
applicable to KGs, and we propose alternative definitions where necessary, to recover
desirable properties. Our main results are:

– We show that acyclicity criteria and related complexities are generally preserved
when transforming rules to KGs, and we identify a restricted class of acyclic rules
that comprises transformed Datalog and retains its complexity.

– We show that the transformation destroys other basic syntactic criteria such as lin-
earity and guardedness, though it preserves the underlying semantic notions (FO-
rewritability and tree-like model property).

– We propose a new way of denormalising KG rules, based on the intuition that
several edges can be grouped into “objects”, and we exhibit cases for which this
approach succeeds in producing rule sets that fall into known decidable classes.

– We introduce a notion of incidental functional dependency, which we use to extend
our denormalisation to wider classes of rules, and we exhibit a sound procedure for
computing such dependencies.

In all cases, we develop criteria that significantly generalise the motivating scenario of
translating relational ontologies to KGs. In practice, it is more realistic to assume that



ontologies are constructed over KGs directly. In this case, one cannot expect rules to
have a regular structure as obtained by a rigid syntactic transformation, but patterns
guaranteeing decidability and complexity bounds might still be identifiable.

Full proofs are available in an extended technical report [18].

2 Preliminaries

We briefly introduce essential notation and define the important notion of graph normal-
isation. We consider a standard language of first-order predicate logic, using predicates
p of arity ar(p), variables, and constants. A term is a constant or variable. Finite lists
of variables etc. are denoted in bold, e.g., x. We use the standard predicate logic defi-
nitions of atom and formula. An existential rule (or simply rule) is a formula of form
∀x, y.ϕ[x, y] → ∃v.ψ[x, v] where ϕ and ψ are conjunctions of atoms, called the body
and head of the rule, respectively. Rules without existentially qualified variables are
Datalog rules. We usually omit the universal quantifiers when writing rules.

We separate input relations (EDB) from derived relations (IDB). Formally, for a
set of rules P, the predicate symbols that occur in the head of some rule are called
intensional (or IDB); other predicates are called extensional (or EDB). A fact is an
atom that contains no variables. A database D is a set of facts over EDB predicates. A
conjunctive query (CQ) is a formula ∃y.ϕ[x, y], where ϕ is a conjunction of atoms. A
Boolean CQ (BCQ) is a CQ without free variables.

We only consider rules without constants. They can be simulated as usual, by re-
placing every constant a in a rule by a new variable xa, adding the atom Oa(xa) to the
body, and extending the database to include a single fact Oa(a).

Rules and databases can be evaluated under a first-order logic semantics, and we
use |= to denote the usual first-order entailment relation between (sets) of formulae. CQ
answering over existential rules can be reduced to BCQ entailment, i.e., the problem of
deciding if D,P |= ∃y.ϕ holds for a given BCQ ∃y.ϕ, database D, and set of rules P [1].
This is undecidable in general, but many special classes of rule sets have been identified
where decidability is recovered; we will see several examples later.

We now formalise the standard transformation of n-ary facts into directed graphs
that was given in the introduction, and extend it to rules over n-ary predicates.

Definition 1. For every predicate p, let p1, . . . , par(p) be fresh binary predicates. Given
an atom p(t) and a term s, the graph normalisation GN(s, p(t)) is the set {p1(s, t1), . . . ,
par(p)(s, tn)} of binary atoms. For a database D, define GN(D) to be the union of the sets
GN(cA, A) for all facts A ∈ D where cA is a fresh constant for A. For a rule ρ = B1∧ . . .∧
Bm → ∃v.H1∧. . .∧H`, let GN(ρ) be the rule

∧m
i=1 GN(zi, Bi)→ ∃v.∃w.

∧`
j=1 GN(w j,H j)

using fresh variables z and w. For a set of rules P, let GN(P) B
⋃
ρ∈P GN(ρ).

Example 1. Consider a database about PhD graduates and theses with facts of the form
sup(person, supervisor) and phd(person, thesis title, date). We can express that every
supervisor of a PhD graduate also has a PhD, using P for inferred (IDB) PhD relations:

phd(x, y1, y2)→ P(x, y1, y2) (2)
P(x1, y1, y2) ∧ sup(x1, x2)→ ∃v1, v2.P(x2, v1, v2) (3)



The graph normalisation of this rule set is as follows:

phd1(z, x)∧phd2(z, y1)∧phd3(z, y2)→ ∃v.P1(v, x)∧P2(v, y1)∧P3(v, y2) (4)
P1(z1, x1)∧P2(z1, y1)∧P3(z1, y2)∧sup1(z2, x1)∧sup2(z2, x2) (5)

→ ∃v, v1, v2.P1(v, x2)∧P2(v, v1)∧P3(v, v2)

3 Acyclicity

Sets of existential rules may require models to be infinite. An immediate approach for
ensuring decidability is to consider criteria that guarantee the existence of a finite uni-
versal model, which can be fully computed and used to answer queries. This led to many
so-called acyclicity criteria [11]. We review one of the simplest cases, weak acyclicity.

Definition 2. A position in a predicate p is a pair 〈p, i〉, where i ∈ {1, . . . , ar(p)}. The
dependency graph G of a rule set P is defined as follows. The vertices of G are all
positions of predicates in P. For every rule ϕ[x, y]→ ∃v.ψ[x, v] ∈ P: (1) G has an edge
from 〈p, i〉 to 〈q, j〉 if x ∈ x occurs at position 〈p, i〉 in ϕ and at 〈q, j〉 in ψ; (2) G has
a special edge from 〈p, i〉 to 〈q, j〉 if x ∈ x occurs at position 〈p, i〉 in ϕ and there is an
existentially quantified variable v ∈ v at 〈q, j〉 in ψ.
P is weakly acyclic if its dependency graph does not contain a directed cycle that

involves a special edge.

Theorem 1. If P is weakly acyclic, then so is GN(P). Analogous preservation properties
hold for rule sets that are jointly acyclic, super-weakly acyclic, model-faithful acyclic,
or that have an acyclic graph of rule dependencies.

While most acyclicity notions are thus preserved, this is not a general rule: model-
summarising acyclicity (MSA) might be destroyed by graph normalisation [18].

BCQ entailment for acyclic rule sets is 2ExpTime-complete [11]. Datalog, however,
enjoys a lower ExpTime-complete complexity [12], so Theorem 1 does not yield tight
complexity estimates there. ExpTime complexity bounds for acyclic rules were given for
rule sets where the maximal length of paths in a (slightly different) type of dependency
graph is bounded [17, Theorem 5]. This condition is implied by the following property:

Theorem 2. If P is a set of Datalog rules, then the dependency graph of GN(P) is such
that every path contains at most one special edge.

The number of special edges on paths can therefore be used to recognise (generali-
sations of) graph-normalised Datalog for which CQ answering is in ExpTime.

4 Beyond Acyclicity

Acyclicity is only one of several approaches for determining that reasoning is decidable
for a given set of existential rules. It turns out, however, that other syntactic criteria are
not as robust when applying graph normalisation to a set of rules, although one can
show that essential semantic properties are preserved.



Baget et al. have identified several general classes of rule sets for which reasoning
is decidable [2]. Acyclic rule sets are a typical form of finite expansion set (fes), which
have a finite universal model. Rule sets without this property may still have an infinite
universal model that is sufficiently “regular” to be presented finitely. This is the case
if there is a universal model of bounded treewidth, leading to bounded treewidth sets
(bts). A third general class of practical importance are finite unification sets (fus), cor-
responding to the class of first-order rewritable rule sets for which conjunctive queries
(CQs) can be rewritten into finite unions of CQs (UCQs).

All of these abstract properties are preserved during graph normalisation. For fes
and bts, this can be shown by noting that any (universal) model of P can be transformed
into a (universal) model of GN(P) by treating it like an (infinite) database and applying
GN(·). For fus, the result follows since we can apply graph normalisation to the UCQ
rewriting to obtain a valid rewriting for GN(P).

Theorem 3. If P is fes/bts/fus, then GN(P) is fes/bts/fus.

However, membership in these abstract classes is undecidable, so we need simpler
sufficient conditions in practice. We disregard fes here, since it is already covered in
Section 3. For bts, an easy-to-check criterion is (frontier) guardedness [2]:

Definition 3. A rule ϕ[x, y]→ ∃v.ψ[x, v] is frontier guarded if ϕ contains an atom that
contains all variables of x. A rule set P is frontier guarded if all of its rules are.

Frontier guarded rule sets are bts, and, by Theorem 3, so are their graph normali-
sations. Unfortunately, this is not easy to recognise, since frontier guardedness is often
destroyed when breaking apart body atoms during graph normalisation. For instance,
the original rules in Example 1 are frontier guarded, but the normalised rule (4) is not.
The only general criterion that could recognise bts in normalised rules is greedy bts
[4]; but a procedure for recognising this criterion has not been proposed yet, and the
problem is generally assumed to be of very high complexity.

The situation is similar for fus. One of the simplest syntactic conditions for this case
is linearity (a.k.a. atomic hypothesis [2]):

Definition 4. An existential rule is linear if its body consists of a single atom. A rule set
P is linear if all of its rules are.

Again, this condition is clearly not preserved by graph normalisation. For example,
rule (2) is linear while rule (4) is not.

Towards a way of recognising fus and bts rules even after graph normalisation, we
look for ways to undo this transformation, i.e., to denormalise the graph. A natural
approach of reversing the transformation from p(x) to p1(z, x1) ∧ . . . ∧ pn(z, xn) is to
group atoms by their first variable z. We may think of such groups of atoms as objects
(as in object-oriented programming), motivating the following terminology.

Definition 5. Consider a rule ϕ→ ∃v.ψ. An object in ϕ (or ψ) is a maximal conjunction
of atoms of the form p1(z, x1) ∧ . . . ∧ pn(z, xn) that occur in ϕ (or ψ), where neither
variables xi nor predicates pi need to be mutually distinct. We call z object variable,
p1, . . . , pn attributes, and x1, . . . , xn values of the object. The interface of the object is
the set of variables y ⊆ {x1, . . . , xn} occurring in atoms in ϕ→ ∃v.ψ that do not belong
to the object.



Note that each object is confined to either body or head, but cannot span both. In
general, several attributes of an object may share a value, and several objects may use
the same attributes. The definition therefore generalises the specific conjunctions of
binary attributes introduced in graph normalisation. Existential rules may be thought of
as “creating” new objects when using existential object variables. It is suggestive to use
objects for defining KG versions of the above criteria:

Definition 6. A rule ϕ[x, y] → ∃v.ψ[x, v] over binary predicates is pseudo KG linear
if ϕ consists of a single object. It is pseudo KG frontier guarded if ϕ contains an object
ξ where all variables of x occur in. A rule is KG linear (KG frontier guarded) if it is
pseudo KG linear (pseudo KG frontier guarded), and no object variable occurs as a
value in any object.

The “pseudo” versions of the above notions are not enough to obtain the desired
properties, as the following example illustrates.

Example 2. The following rules are pseudo KG frontier guarded:

p(z, x)→ P(z, x) (6)
P(z, x)→ ∃w1,w2.H(z,w1) ∧ V(z,w2) (7)

H(z, y1) ∧ V(z, y2)→ ∃v,w.P(v,w) ∧ H(y2, v) ∧ V(y1, v) (8)

where p is EDB and the other predicates are IDB. However, the rules are not bts, since
applying them to the database with fact p(a, b) leads to models in which V and H form
(possibly among other things) an infinite grid – a structure of unbounded treewidth.

5 Graph Denormalisation

To understand how and when our intuition of “objects” can be used to recognise rules
with good properties, we introduce a systematic process for denormalising rules. Its
goal is to replace objects p1(z, x1) ∧ . . . ∧ pn(z, xn) by single atoms of the form D(z, x′),
while preserving semantics. D is a new predicate for this specific object. Note that x′
can be limited to the interface of the object with its rule. For example, rule (5) contains
the object P1(z1, x1) ∧ P2(z1, y1) ∧ P3(z1, y2), but y1 and y2 do not occur in any other
object in body or head. One could therefore replace this object by DP(z1, x1), and add a
defining rule

P1(z1, x1) ∧ P2(z1, y1) ∧ P3(z1, y2)→ DP(z1, x1) (9)

to preserve semantics. We do not need the reverse implication, since D is used in the
body only. The defining rule is essential to ensure completeness, but it is still in a nor-
malised syntactic form that is usually not acceptable. To address this, we eliminate
defining rules by rewriting them using resolution (“backward chaining”). We define
this here for the special case of rewriting defining rules for single objects:

Definition 7. Consider rules ρ1 : ϕ1 ∧ ϕ̄1 → D(z, x) where ϕ1 ∧ ϕ̄1 is a single object,
and ρ2 : ϕ2 → ∃v.(ψ2 ∧ ψ̄2) ∧ ξ where ψ2 ∧ ψ̄2 is a single object, so that ρ1 and ρ2 do
not share variables. If there is a substitution θ that maps variables of ρ1 to variables



of ρ2 such that ϕ̄1θ = ψ̄2, and ϕ1θ does not contain any variables from v, then the rule
ϕ1θ∧ ϕ2 → ∃v.D(z, x)θ∧ ξ is a rewriting of ρ1 using ρ2. We also consider rewritings of
rules that share variables, assuming that variables are renamed apart before rewriting.

Notice that we do not require ϕ̄1 to be the maximal part of the body object for
which a rewriting is possible, as is common in (Boolean) conjunctive query rewriting
[2]. Doing so would be incomplete, since we need to derive all possible bindings for
D(x, y), which may require different parts to be unified with different rule heads. On
the other hand, it is sufficient for our purposes to weaken the result by omitting the
remaining head object parts ψ2.

Example 3. Rewriting rule (9) with rules (4) and (5) yields two rules

phd1(z, x)∧phd2(z, y1)∧phd3(z, y2)→ ∃v.DP(v, x) (10)
P1(z1, x1)∧P2(z1, y1)∧P3(z1, y2)∧sup1(z2, x1)∧sup2(z2, x2)→ ∃v.DP(v, x2). (11)

Since the Pi are IDB predicates that only follow from rules (4) and (5), this represents
all possible ways to infer new information using rule (9), and we can omit the latter. The
bodies of rules (10) and (11) can be denormalised by adding further auxiliary predicates:

Dphd(z, x, y1, y2)→ ∃v.DP(v, x) (12)
DP(z1, x1) ∧ Dsup(z2, x1, x2)→ ∃v.DP(v, x2) (13)

where Dphd and Dsup are EDB predicates that need to be defined by denormalising the
database, and D can be re-used. We have therefore found a way of expressing (9) in
terms of denormalised rules.

Our basic denormalisation algorithm needs to rewrite defining rules exhaustively,
and might require to rewrite the same rule several times using its own rewritings, with
variables renamed to avoid clashes. For a rule ρ1 and rule set P, we therefore define
rewrite(ρ1,P) to be the result (least fixed point) of the following recursive process:

– Initialise rewrite(ρ1,P) B P.
– Add to rewrite(ρ1,P) every rewriting of ρ1 using some rule in rewrite(ρ1,P).
– Repeat the previous step until no further changes occur.

This approach terminates and rewrite(ρ1,P) is finite since each new rewriting con-
tains fewer head objects than the rule used to obtain it. In particular, only rules with
more than a single head object may ever require multiple rewritings.1

Algorithm 1 shows the main part of our procedure, which makes use of some addi-
tional notation explained shortly. The algorithm recursively uses rewriting to eliminate
defining rules for all (body) objects that are to be denormalised. Todo and Done are sets
of defining rules that still need to be rewritten and that already have been rewritten, re-
spectively. Rules is a set of rules obtained from the rewriting. The defining rules needed
for the body objects that occur in Rules are always found in Todo ∪ Done.

1 For existential rules, replacing ϕ → ψ1 ∧ ψ2 by two rules ϕ → ψ1 and ϕ → ψ2 is only correct
if ψ1 and ψ2 do not share existential variables. Rules with multiple head objects are therefore
unavoidable in general. Inseparable parts of rule heads are called pieces [2].



Algorithm 1: Generic denormalisation algorithm
Input : rule set P; database D
Output: denormalised rule set ResultP and denormalised database ResultD

1 Todo B {ϕ→ Dϕ(z, x) | ϕ an object with object term z and interface x in a rule body of P}
2 Done B ∅
3 Rules B P
4 while there is some rule ρ ∈ Todo do
5 Todo B Todo \ {ρ}
6 Done B Done ∪ {ρ}
7 foreach (ϕ→ ∃v.ψ) ∈ rewrite(ρ,Rules) do
8 foreach body object ξ[z, x] with object term z and interface x in ϕ→ ∃v.ψ do
9 if there is ξ′[z′, x′]→ D(z′, x′) ∈ Done such that ξ[z, x] ≡ ξ′[z′, x′] then

10 replace ξ[z, x] in ϕ by ξ′[z, x]
11 else
12 Todo B Todo ∪ {ξ[z, x]→ D(z, x)} for a fresh predicate D
13 end
14 end
15 Rules B Rules ∪ {ϕ→ ∃v.ψ}
16 end
17 end
18 ResultP B Rules with each body object replaced by its predicate as defined in Done
19 ResultD B set of all facts D(c, d1, . . . , dn) for which D,Done |= D(c, d1, . . . , dn)
20 return 〈ResultP,ResultD〉

Initially, Rules are the input rules and Todo are the defining rules for their body
objects. For each rule in Todo (Line 4), we consider each rewriting using Rules (Line 7)
for being added to Rules (Line 15). First, however, we ensure that every body object of
newly rewritten rules is defined (Line 8): either we already defined an equivalent object
before (Line 9) that we can reuse, or we add a new object definition to Todo (Line 12).

By ξ[z, x] ≡ ξ′[z′, x′] in Line 9, we express that the two conjunctions are equivalent
conjunctive queries, i.e., there is a bijection {z} ∪ x→ {z′} ∪ x′ that extends to a homo-
morphism from ξ to ξ′, and whose inverse extends to a homomorphism from ξ′ to ξ [1].
Checking this could be NP-hard in general, but is possible in subpolynomial time for
our special (star-shaped) object conjunctions. By ξ′[z, x] in Line 10, we mean ξ′ with
{z′} ∪ x′ replaced by {z} ∪ x according to the bijection that shows equivalence.

If the algorithm terminates, we return the rewritten rules Rules with all body objects
replaced using the newly defined D-atoms, and the set of all denormalised facts that fol-
low from the input database. Note that the heads of rules in Rules may already contain
denormalisation atoms D(z, x), while the bodies remain normalised during the rewrit-
ing. In Line 19, we do not need to consider rules in Done that contain IDB predicates
in their body, so this database denormalisation is simply conjunctive query answering.

Example 4. Applying Algorithm 1 to Example 1, Todo initially contains three defining
rules: rule (9), rule phd1(z, x)∧phd2(z, y1)∧phd3(z, y2) → Dphd(z, x, y1, y2), and rule
sup1(z2, x1)∧sup2(z2, x2) → Dsup(z2, x1, x2). The latter two rules contain only EDB



predicates in their bodies and therefore have no rewritings: they are moved to Done
without adding rules to Rules or Todo. Rule (9) has two rewritings (10) and (11), with
the same body objects as the original rule set: all of them are equivalent to objects in
Done and can be reused. The algorithm terminates to return four rules: (12) and (13),
and analogous denormalisations of the original rules (4) and (5).

Theorem 4. Consider a database D and a rule set P, such that Algorithm 1 terminates
and returns 〈ResultP,ResultD〉. For any Boolean conjunctive query ∃v.ϕ[v], we have
that D,P |= ∃v.ϕ[v] iff ResultD,ResultP |= ∃v.ϕ[v].

As usual, this result extends to non-Boolean CQ answering [1]. To prove Theorem 4,
one can show the following invariant to hold before and after every execution of the
while loop:D,P |= ∃v.ϕ[v] iffD,ResultD,ResultP |= ∃v.ϕ[v], where ResultP and ResultD
are obtained as in Lines 18 and 19 using the current Done. Showing this to hold when
the program terminates successfully shows the claim, since D can be omitted as the
rules in ResultP do not use any EDB predicates from D.

6 Termination of Denormalisation

Although the results of Algorithm 1 are correct, it may happen that the computation
does not terminate at all, even in cases where an acceptable rewriting would exist.

Example 5. Consider the rule

s(z1, x1) ∧ C(z1, x2) ∧ q(z2, x1) ∧ r(z2, x2)→ C(z1, x1) (14)

where s, q, and r are EDB predicates. There are two body objects in (14), where only
the first needs rewriting. Rewriting the rule s(z1, x1)∧C(z1, x2)→ D(z1, x1, x2) with (14)
leads to a new rule s(z1, x1)∧ s(z1, x2)∧C(z1, x3)∧ q(z2, x2)∧ r(z2, x3)→ D(z1, x1, x2).
This rule introduces a new object for object variable z1. Since the interface now contains
three variables {x1, x2, x3}, it cannot be equivalent to the previous object. A new defining
rule is added to Todo, which will subsequently be rewritten to s(z1, x1) ∧ s(z1, x2) ∧
s(z1, x3) ∧ C(z1, x4) ∧ q(z2, x3) ∧ r(z2, x4) → D′(z1, x1, x2, x3). The algorithm therefore
does not terminate, and indeed the generated rules are necessary to retain completeness.

As in this example, non-termination of Algorithm 1 is always associated with ob-
jects of growing interface. Indeed, for a fixed interface, there are only finitely many
non-equivalent objects, so termination is guaranteed. While general (query) rewriting
techniques in existential rules tend to have undecidable termination problems, our spe-
cific approach allows us to get a more favourable result:

Theorem 5. It is P-complete to decide if Algorithm 1 terminates on a given set of rules.
For rule sets that do not contain head atoms of the form p(x, v), where x is a universally
quantified variable and v is existentially quantified, the problem becomes NL-complete.

To see why this is the case, let us first observe that non-termination is only caused
by rules that use object variables in frontier positions:



Proposition 1. If object variables do not occur in the frontier of any rule in P, then
Algorithm 1 terminates on input P. In particular, this occurs if P is of the form GN(P′).

Indeed, consider a rewriting step as in Definition 7 where we rewrite ρ1 using ρ2. If
the object variable z in ρ1 is mapped to an existential variable in ρ2, i.e., zθ ∈ v, then
no atom of the object in ρ1 can occur in the body of the rewriting, i.e., ϕ1 is empty.
Otherwise, there would be an existential (object) variable in the body, which is not
allowed by Definition 7. Hence, the body of the rewriting is ϕ2, and no new objects are
introduced. If all rules are of this form, the overall number of objects that need to be
processed is finite and the algorithm must terminate.

Coming back to Theorem 5, we can therefore see that only rewritings using rules
with object variables in the frontier need to be considered (we call the associated objects
body frontier object and head frontier object). For investigating termination, we can
restrict to “minimal” rewritings that affect only one value y in the rewritten object, i.e.,
where ϕ̄1 from Definition 7 has the form p1(z, y) ∧ . . . ∧ pk(z, y).

In the (simpler) case that head frontier objects do not have any existentially quan-
tified values, it is even enough to rewrite single attribute-value pairs. A rule with body
frontier object p1(z, y1)∧ . . .∧ pn(z, yn) and head frontier object q1(z, x1)∧ . . .∧qm(z, xm)
thus gives rise to “replacement rules” of the form qi(z, xi) 7→ p j(z, y j) that specify how
objects might be rewritten using this rule. This defines a graph on attribute-value pairs
of P. Non-termination can be shown to occur exactly if this graph has a cycle along
which the interface of the object has increased.

For the latter, we trace the size of the rewritten object’s interface during rewriting.
Every rewriting with a frontier object may increase or decrease the interface. An in-
crease may occur if the body frontier object contains at least two values in its interface
(one interface value preserves size: it is either the frontier value that was unified in
the rewriting, or there is no frontier value and the rewritten value was mapped to an
existential variable and thereby eliminated). Rule (14), for example, has two interface
values, x1 and x2, causing non-termination. We can keep track of the interface size in
logarithmic space. Cycle detection in the above graph is possible in NL. This shows
membership. Hardness is also shown by exploiting the relationship to cycle detection.

Using our understanding of interface-increasing rules as a cause for non-termination,
we can also generalise Proposition 1:

Theorem 6. If every body frontier object that occurs in some rule of P has an interface
of size ≤ 2, then Algorithm 1 terminates on P.

We have only shown the NL-part of Theorem 5 yet. The general case with existential
values is more complicated and we just give the key ideas of the proof in [18]. The prob-
lem is that existential values can only be used for rewriting if all attributes of the rewrit-
ten object value are found in the head. Hence, it is not enough to trace single attribute-
value pairs. P-hardness is shown by reduction from propositional Horn logic entailment,
where we encode propositional rules a∧b→ c as pa(x, y)∧ pb(x, y)→ pc(x, y) and true
propositions a as t(x, y)→ pa(x, y). Finally, we add a rule pc(x, y)∧pc(x, z)→ ∃v.t(x, v),
where c is a proposition. One can show that Algorithm 1 terminates on the resulting rule
set if and only if c is not entailed from the Horn rules. Membership can use a similar
cycle-detection approach, but the construction of the underlying graph now runs in P.



Even Theorem 6 does not guarantee termination for KG linear rules, and indeed our
approach may not terminate in this case. To fix this, we need to observe that we can
simplify rewriting if all rules contain only one object in their body: using the notation
of Definition 7, a linear rewriting of rule ρ1 using ρ2 is the rule ϕ1θ∧ϕ2 → ∃v.D(x, y)θ.
In words: we are reducing the head to contain only the denormalisation atom, and no
other atoms. It is easy to check that the procedure remains complete for KG linear rules.

Theorem 7. If P is KG linear, then Algorithm 1, modified to use linear rewriting of
rules, terminates and returns a rule set ResultP that is linear.

It is not hard to see that rewritings of KG linear rules must also be KG linear,
showing the second part of the claim. Termination follows since the interface of KG
linear rules as obtained during rewriting is bounded by the size of the frontier, which
cannot increase when using linear rewriting.

Finally, we remark that our denormalisation shares some similarities with CQ rewrit-
ing for existential rules, which is known to be semi-decidable: there is an algorithm that
terminates and returns a finite rewriting of a BCQ over a set of rules whenever such a
rewriting exists [2]. One may wonder if we could achieve a similar behaviour for Al-
gorithm 1, extending it so that termination is semi-decidable and the algorithm is guar-
anteed to produce a denormalisation for, e.g., all rule sets that are fus. However, under
our assumption that EDB and IDB predicates are separated, the rewritability of BCQs
is in fact no longer semi-decidable, not even for plain Datalog. Similar observations
have been made for the closely related problem of Datalog predicate boundedness [10].
Hence, there is no hope of finding an algorithm that will always compute a denormal-
isation whenever one exists, even if we cannot decide if this will eventually happen or
not. In exchange for this inconvenience, our algorithm also benefits from the separation
of IDB and EDB predicates, as it enables us to eliminate defining rules after rewrit-
ing them in all possible ways – since IDB predicates cannot occur in the database, this
preserves inferences, although it is not semantically equivalent in first-order logic.

7 Frontier Guardedness and Functional Attributes

Our denormalisation procedure can also be applied to KG frontier guarded rules.

Theorem 8. If P is KG frontier guarded and Algorithm 1 terminates on P, then the
denormalised rule set ResultP is frontier guarded.

This follows since a KG frontier guarded rule can only have one object variable in
its frontier, so that the object in this case must be the guard. Rewriting therefore can
only increase the size of the guard, preserving frontier guardedness.

Theorem 8 is still weaker than Theorem 7, since it does not guarantee termination as
in the case of KG linear rules. To compensate, we add another mechanism for making
termination more likely, following our intuition of viewing conjunctions as “objects”.
In typical objects, attributes often can have at most one value. This holds for all ob-
jects created when normalising rules. Making this restriction formal could also ensure
termination, since the size of each object would be bounded, and the number of possi-
ble objects finite. Example 5 shows how a non-terminating case might violate this. The
constraint that attributes have at most one value is captured by functional dependencies:



Definition 8. A functional dependency (FD) for attribute p is a rule p(z, x1)∧p(z, x2)→
x1 ≈ x2, where ≈ is a special predicate that is interpreted as identity relation in all mod-
els: ≈I= {〈δ, δ〉 | δ ∈ ∆I}. The functional dependency is an EDB-FD if p is an EDB
predicate, and an IDB-FD otherwise.

We use built-in equality in this definition, making FDs a special case of equality
generating dependencies (egds) [1]. Alternatively, ≈ could also be axiomatised using
Datalog, which turns FDs into regular Datalog rules and ≈ into a regular predicate.

Intuitively, we want functional dependencies to apply to some attributes. However,
we cannot just introduce FDs as additional rules: query answering is undecidable for the
combination of (frontier) guarded existential rules and FDs [15]. Conversely, it is not
true that the given rule set entails any IDB-FDs, even if some EDB-FDs are guaranteed
to hold in the database. Indeed, any model of a set of rules can be extended by inter-
preting each IDB predicate as a maximal relation (i.e., as an arity-fold cross-product of
the domain), resulting in a model that refutes all possible IDB-FDs. Therefore, rather
than asserted or entailed FDs, we are interested in FDs that are incidental:

Definition 9. Consider a set P of rules and a set F of EDB-FDs. An IDB-FD for at-
tribute p is incidental to P and F if, for all databases D with D |= F and for all BCQs ϕ,
we have that D,P |= ϕ iff D,P ∪ {p(z, x1) ∧ p(z, x2)→ x1 ≈ x2} |= ϕ. The set of all FDs
incidental to P and F is denoted IDP(P,F).

In other words, an FD is incidental if we might as well assert it without affecting
the answer to any conjunctive query.

Given a set F of FDs and a conjunction ϕ of binary atoms of the form p(x, y), we
write F(ϕ) for the conjunction obtained by identifying variables in ϕ until all FDs in
F are satisfied. This is unique up to renaming of variables. Moreover, let θF(ϕ) denote
a corresponding substitution such that F(ϕ) = ϕθF(ϕ). For our simple attribute depen-
dencies, this can be computed in polynomial time. Using this notation, we can extend
Algorithm 1 to take a given set of FDs into account:

Definition 10. Let Algorithm 1F be the modification of Algorithm 1 that takes an addi-
tional set F of FDs as an input, and that replaces the rewriting ϕ → ∃v.ψ after Line 7
by F(ϕ) → ∃v.ψθF(ϕ), i.e., which factorises each rewriting using the given FDs before
continuing.

This may help to achieve termination, since the application of FDs may decrease
the size of objects to be rewritten next. Our approach shares some ideas with the use of
database constraints for optimising query rewriting [23], but the details are different.

Example 6. Consider again the rule of Example 5, and assume that we know that at-
tribute s is functional. Algorithm 1F will again obtain the rewriting s(z1, x1)∧s(z1, x2)∧
C(z1, x3) ∧ q(z2, x2) ∧ r(z2, x3) → D(z1, x1, x2). Denoting the body of this rewriting by
ϕ, we find that θF(ϕ) = {x2 7→ x1}, so that the rewriting becomes s(z1, x1) ∧ C(z1, x3) ∧
q(z2, x1) ∧ r(z2, x3) → D(z1, x1, x1). The object for variable z1 now is equivalent to the
object that has been rewritten in the first step, and so can be replaced by D(z1, x1, x3).
The algorithm terminates.



8 Obtaining Incidental FDs

The improved denormalisation of Definition 10 hinges upon the availability of a suit-
able set of functional dependencies. For EDB predicates, these might be obtained from
constraints that have been declared explicitly for the underlying database, or they might
even be determined to simply hold in the given data. Example 6 shows that this can
already help. In general, however, we would also like to use incidental IDB-FDs. This
section therefore asks how they can be computed.

Our first result is negative: it is impossible to determine all incidental FDs even for
very restricted subsets of Datalog. This can be shown by reducing from the undecidable
problem of deciding non-emptiness of the intersection of two context-free grammars.

Theorem 9. For a set P of Datalog rules containing only binary predicates and no
constants, a set F of EDB-FDs, and an IDB-FD σ, it is undecidable if σ ∈ IDP(P,F).

We therefore have to be content with a sound but incomplete algorithm for comput-
ing incidental FDs. We use a top-down approach that initially assumes all possible FDs
to hold, and then checks which of them might be violated when applying rules, until a
fixed point has been reached. This approach is closely related to a work of Sagiv [24,
Section IX] where the author checks if a given set of existential rules is preserved non-
recursively by a given Datalog program. We extend this idea from Datalog to existential
rules and from non-recursive to (a form of) recursive preservation. For simplicity, we
give the algorithm only for checking FD preservation, but it is not hard to extend it to
arbitrary rules. We also remark that Theorem 9 settles an open question of Sagiv [24].

Our algorithm tries to discover a violation of an FD by considering a situation where
the premise holds (expressed as a CQ p(z, x1)∧ p(z, x2)), and then checking all possible
ways to derive this situation in one step, using rewriting. If any of the rewritten queries
is such that the FD does not follow from the FDs assumed to far, the FD is eliminated.

To check functionality in the presence of existential quantifiers, we first replace ex-
istential variables by Skolem terms. The actual check then has to be based on a rewriting
of p(z, x1)∧ p(z, x2) where both atoms have been rewritten, which we ensure by renam-
ing the predicates. For the next definition, recall that rewriting conjunctive queries can
be achieved like rewriting rules in Definition 7 but dropping the head in all rewritings.

Definition 11. The Skolemisation of rule ϕ[x,y]→∃v.ψ[x,v] is the rule ϕ[x,y]→ψ′[x]
where ψ′ is obtained from ψ by replacing each v ∈ v by a term fv(x), where fv is a freshly
introduced function symbol. The Skolemisation of all rules in P is denoted skolem(P).

For a conjunction of atoms ϕ, let ϕ̂ be ϕ with all predicates p replaced by fresh
predicates p̂. For a rule set P, let P̂ be the set {ϕ → ∃v.ψ̂ | ϕ → ∃v.ψ ∈ P}. The one-
step rewriting os-rewrite(ϕ,P) is the set of all conjunctions obtained by exhaustively
rewriting ϕ̂ using rules in skolem(P̂), and where no predicate from ϕ̂ occurs.

The result of os-rewrite is finite, since heads and bodies of P̂ do not share predi-
cates. Our procedure is given in Algorithm 2. It proceeds as explained above checking,
given a pair of IDB atoms, every possible derivation for a potential violation of an FD.
A violation is detected if two values of an attribute are not necessarily equal based on
the current FDs (Line 6). Note that ϕ may not contain x1 and/or x2 since they may be



Algorithm 2: Algorithm for computing some incidental FDs
Input : rule set P; set F of EDB-FDs
Output: set FIDB of incidental IDB-FDs

1 FIDB B {p(z, x1) ∧ p(z, x2)→ x1 ≈ x2 | p an IDB predicate}

2 repeat
3 foreach p(z, x1) ∧ p(z, x2)→ x1 ≈ x2 ∈ FIDB do

4 foreach ϕ ∈ os-rewrite(p(z, x1) ∧ p(z, x2),P) do
5 yi B the variable that xi has been mapped to for the rewriting ϕ (i ∈ {1, 2})
6 if y1θ(F∪FIDB)(ϕ) , y2θ(F∪FIDB)(ϕ) then
7 FIDB B FIDB \ {p(z, x1) ∧ p(z, x2)→ x1 ≈ x2}

8 break // continue with next FD in Line 3
9 end

10 end
11 end
12 until FIDB has not changed in previous iteration

13 return FIDB

unified during rewriting. We therefore consider the values yi they have been mapped to
(Line 5). As a special case, yi can be Skolem terms, which typically causes the FD to
be violated, unless both x1 and x2 are rewritten together and replaced by the same term.

Note that the check in Line 5 uses the set FIDB, including the FD that is just checked.
Intuitively speaking, this is correct since the rewriting approach searches for the first
step (in a bottom-up derivation) where an FD would be violated. Initially, when all IDB
predicates are empty, all FDs hold.

Theorem 10. For inputs P and F, Algorithm 2 returns a set FIDB ⊆ IDP(P,F) after
polynomial time.

While the algorithm must be incomplete, and in particular cannot detect all FDs for
the rules used for our proof of Theorem 9, it can detect many cases of FDs.

Example 7. Consider the following rules, with EDB predicates p and s:

p(x, y) ∧ s(x, y)→ Q(x, y) (15)
s(x, y)→ ∃v,w.Q(v,w) ∧ R(x, v) ∧ R(x,w) (16)

Assume that p is functional. Algorithm 2 first checks the IDB-FD for Q by rewriting
Q̂(z, x1) ∧ Q̂(z, x2). We can rewrite the first atom using rule (15) (mapping z to x and
x1 to y) to obtain p(x, y) ∧ s(x, y) ∧ Q̂(x, x2). Rewriting Q̂(x, x2) using rule (15) with
variables renamed to x′ and y′, we get p(x, y)∧ s(x, y)∧ p(x, y′)∧ s(x, y′). Hence y1 = y
and y2 = y′ in Line 5, and these variables are identified since p is functional.

Rewriting Q̂(z, x1) ∧ Q̂(z, x2) using rule (16) for both atoms, we obtain s(x, y) ∧
s(x, y′), with original variables replaced by {z 7→ x, x1 7→ fw(x), x2 7→ fw(x)} where
fv(x) and fw(x) are Skolem terms. Again, the FD is preserved. As it is not possible to
rewrite one atom with rule (15) and the other with rule (16), we find that Q is functional.

In contrast, functionality for R is violated, since we cannot identify fv(x) and fw(x).



9 Discussion and Outlook

Our central observation is that support for ontological modelling and reasoning over
knowledge graphs (KGs) is severely lacking. Ontology language features needed for
KGs are not supported by mainstream approaches such as OWL and Datalog, and take
us outside of known decidable classes of existential rules. Practical tools and methods
for modelling and reasoning are even further away. A lot of research is still to be done.

Our work is a first step into this field, focussing on basic language definitions and
decidability properties. A core concept of our work is to view some conjunctive patterns
as objects with attributes and values, such that existential quantification plays the role
of object creation. This leads to a very natural view on existential rules, but it also
extends to the data, where objects correspond to groups of triples. We believe that such
grouping might also help to improve performance of reasoning with KG-based rules.

Each decidability criterion (acyclicity/fes, bts, rewritability/fus) calls for a different
reasoning procedure. For the types of acyclicity we mention, any bottom-up forward
chaining inference engine will terminate, even if rules are Skolemised. Rule engines in
RDF stores (e.g., Jena) or logic programming tools (e.g., DLV) could be used. Linear
rules (and fus in general) are supported by backward-chaining reasoners such as Graal
[3]. Interestingly, reasoners for fes and fus do not need to know if and why the rules meet
the criteria – it is enough if they do. In particular, rules do not have to be denormalised
for reasoning. Denormalisation is only needed to find out which tool to use.

Tools for guarded rules and bts seem to be missing today. They could be imple-
mented by augmenting bottom-up reasoners with additional blocking conditions to en-
sure termination. Similar ideas are used successfully in OWL reasoning, but generalis-
ing them to arbitrary rules will require further research and engineering. Our work may
motivate such research by identifying a wider class of rules that would benefit from this.

There are too many connections to other recent works to list, but we highlight some.
Ontologies for non-classical data models are currently also studied for key-value stores
[21] and for the object database MongoDB [7]. A rule language for declarative pro-
gramming on KGs was recently proposed in Google’s Yedalog [9], and several new
rule-based reasoners now support RDF graphs [20,25]. There are numerous works on
decidable classes of existential rules. We covered essential approaches, but there remain
many others, such as warded [14] or sticky rules [8], that deserve investigation for KGs.

This diversity of works witnesses a huge current interest in practical data models
and rule-based ontologies, but many further works will still be needed for bringing KG-
based ontologies to the level of maturity that past semantic technologies have acquired.
Acknowledgements This work is partly supported by the German Research Foundation
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