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Abstract. The semantics distributed over large-scale knowledge bases
can be used to intermediate heterogeneous users’ activity logs created in
services; such information can be used to improve applications that can
help users to decide the next activities/services. Since user activities can
be represented in terms of relationships involving three or more things
(e.g. a user tags movie items on a webpage), tensors are an attractive
approach to represent them. The recently introduced Semantic Sensitive
Tensor Factorization (SSTF) is promising as it achieves high accuracy
in predicting users’ activities by basing tensor factorization on the se-
mantics behind objects (e.g. item categories). However, SSTF currently
focuses on the factorization of a tensor for a single service and thus has
two problems: (1) the balance problem occurs when handling heteroge-
neous datasets simultaneously, and (2) the sparsity problem triggered by
insufficient observations within a single service. Our solution, Semantic
Sensitive Simultaneous Tensor Factorization (S3TF), tackles the prob-
lems by: (1) Creating tensors for individual services and factorizing them
simultaneously; it does not force the creation of a tensor from multiple
services and factorize the single tensor. This avoids the low prediction
accuracy caused by the balance problem. (2) Utilizing shared semantics
behind distributed activity logs and assigning semantic bias to each ten-
sor factorization. This avoids the sparsity problem by sharing semantics
among services. Experiments using real-world datasets show that S3TF
achieves higher accuracy in rating prediction than the current best ten-
sor method. It also extracts implicit relationships across services in the
feature spaces by simultaneous factorization with shared semantics.

1 Introduction

Recently, many large-scale knowledge bases (KBs) have been constructed, in-
cluding academic projects such as YAGO [8], DBpedia [2], and Elementary/
Deep-Dive [15], and commercial projects, such as those by Google [6] and Wal-
mart [4]. These knowledge repositories hold millions of facts about the world,
such as information about people, places, and things. Such information is deemed
essential for improving AI applications that require machines to recognize and
understand queries and their semantics in search or question answering systems.
The applications include Google search and IBM’s Watson, as well as smart
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Fig. 1. Creating tensors for individual services whose objects are linked by semantics.

mobile assistants such as Apple’s Siri and NTT docomo’s Shabette-Concier [5].
They now assist users to acquire meaningful knowledge in their daily activities;
e.g. looking up an actor’s birthday by question-answering systems or searching
restaurants near the user’s current location by smart mobile assistants.

The KBs can also be used to provide background knowledge that is shared by
the different services [2]. Thus, beyond the above described usages of facts stored
in the KBs, the semantics in those bases can be effectively used for mediating
distributed users’ activity logs in different services. Thus they have the potential
to let AI applications assist users to decide next activities across services by
analyzing heterogeneous users’ logs distributed across services. In this paper, we
assume services are different with each other if they do not share any objects, e.g.
users, venues, or reviews. For example, in Fig. 1, US restaurant review service,
Yelp1, and French one, linternaute2, are quite different services.

Tensor factorization methods have become popular for analyzing users’ activ-
ities, since users’ activities can be represented in terms of relationships involving
three or more things (e.g. when a user tags venues on a webpage) [9,11,13,17,20].
Among the proposals made to date, Bayesian Probabilistic Tensor Factoriza-
tion (BPTF) [20] is promising because of its efficient sampling of large-scale
datasets and simple parameter settings. Semantic Sensitive Tensor Factoriza-
tion (SSTF) [11,13] extends BPTF and applies semantic knowledge in the form
of vocabularies/taxonomies extracted from Linked Open Data (LOD) to tensor
factorization to solve the sparsity problem caused by sparse observation of ob-
jects. By incorporating the semantics behind objects, SSTF achieves the best
rating prediction accuracy among the existing tensor factorization methods [13].

However, SSTF can not enhance prediction accuracy across services for two
reasons: (1) SSTF suffers from the balance problem that arises when handling
heterogeneous datasets, e.g. the predictions for the smaller services are greatly
biased by the predictions for the larger services [10]. Even if we merge user

1 http://www.yelp.com
2 http://www.linternaute.com/restaurant/
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activity logs across services based on objects that appear across services, SSTF
prediction results are poor when faced with merged logs. (2) SSTF focuses on
only the factorization of a tensor representing users’ activities within a single
service and cannot solve the sparsity problem. Even if the logs in different services
share some semantic relationships, SSTF can not make use of them.

We think that a tensor factorization method that uses the semantics in the
KBs to intermediate different services is needed since LOD project aims to me-
diate distributed data in different services [1]. Thus, this is an important goal
for the Semantic Web community. For example, we can simultaneously analyze
logs in an American restaurant review service and those in an equivalent Japan
service by using semantics even if they share no users, restaurant venues, and
review descriptions. As a result, we can improve the prediction accuracy of the
individual services, extract the implicit relationships across services, and recom-
mend good Japanese restaurants to users in the United States (and vice verse).
So, this paper enhances SSTF and proposes Semantic Sensitive Simultaneous
Tensor Factorization (S3TF) that simultaneously factorizes tensors created for
different services by relying on the semantics shared among services. It overcomes
the above mentioned problems by taking the following two ideas:

(1) It creates tensors for individual services whose objects are linked by se-
mantics. This means that S3TF does not force a tensor to be created from
multiple services and then factorize that single tensor to make predictions. Be-
low, for ease of understanding, this paper uses the scenario in which there are
two different restaurant review services in different countries, (they share no
users, restaurants, or food reviews); e.g. Yelp and linternaute in Fig. 1. Fig.
1-(a) presents an example of users’ activities involving three objects: a user
who assigned tags about impressive foods served by restaurants with ratings
on those relationships. The restaurants and foods are linked by the semantics
from the KB. In the figure, say American user u1 assigned tag “Banana cream
pie” to restaurant “Lady M”. French user u2 assigned tag “Tarte aux pommes”
to restaurant “Les Deux Gamins”. In Fig. 1-(b), S3TF creates tensors for two
different services while sharing semantic classes; e.g. Food “Banana cream pie”
is linked with food class “Sweet pies” and restaurant “Lady M” is linked with
restaurant class “Bars” in a tensor for “America East Coast”. Food “Tarte aux
pommes” is linked with the food class “Sweet pies” and restaurant “Les Deux
Gamins” is linked with the restaurant class “Bars” in a tensor for “French”. As a
result, S3TF can factorize those individual tensors “individually” while sharing
semantics across tensors. This solves the balance problem.

(2) It uses the shared semantics present in distributed services and uses the
semantics to bias the latent features learned in each service’s tensor factorization.
Thus, it can avoid the sparsity problem of tensor factorization, by using not only
the semantics shared within a service but also those shared among services. This
has another effect: the semantic biases are shared in latent features for the tensors
of individual services and thus S3TF can extract the implicit relationships among
services present in the latent features. For example, in Fig. 1-(a), user u1 and u2

share no foods and no restaurants with each other, though they may share almost
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the same tendencies in food choice (e.g. they both tend to eat “Sweet pies” at
“Bars” and “Cuts of beef” at nice restaurants). If such multi-object relationships
are sparsely observed in each country, they can not be well predicted by current
tensor factorization methods because of the sparsity problem. S3TF solves this
by using the shared semantics among services. It propagates observations for
“Banana cream pie” and “Tarte aux pommes” to the class “Sweet pie” as well
as the observations for “Lady M” and “Les Deux Gamins” to the class “Bar”. It
then applies the semantic biases from food class “Sweet pie” to “Banana cream
pie” as well as those from restaurant class “Bars” to restaurant “Lady M” when
the tensor for United States is factorized. It also applies semantic biases from
food class “Sweet pie” to “Tarte aux pommes” as well as those from restaurant
class “Bars” to restaurant “Les Deux Gamins” when the tensor for France is
factorized. In this way, S3TF solves the sparsity problem by using the semantics
shared across services. It also can find the implicit relationships from the latent
features (e.g. the relationships shared by users u1 and u2 described above) by
the mediation provided by the shared semantics.

We evaluated S3TF using restaurant review datasets across countries. The
reviews do not share any users, restaurant venues, or review descriptions as the
languages are different. Thus, they are considered to be different services. The
results show that S3TF outperforms the previous methods including SSTF by
sharing the semantics behind venues and review descriptions across services.

The paper is organized as follows: Section 2 describes related works while
Section 3 introduces the background of this paper. Section 4 explains our method
and Section 5 evaluates it. Finally, Section 6 concludes the paper.

2 Related work

Tensor factorization methods have recently been used in various applications
such as recommendation systems [11, 17] and LOD analyses [7, 14]. For exam-
ple, [14] proposed methods that use tensor factorization to analyze huge volumes
of LOD datasets in a reasonable amount of time. They, however, did not use the
simultaneous tensor factorization approach and thus could not explicitly incorpo-
rate the semantic relationships behind multi-object relationships into the tensor
factorization; in particular, they failed to use taxonomical relationships behind
multi-object relationships such as “subClassOf” and “subGenreOf”, which are
often seen in LOD datasets. A recent proposal, SSTF [11, 13], solves the spar-
sity problem by providing semantic bias from KBs to the feature vectors for
sparse objects in multi-object relationships. SSTF was, however, not designed
to perform cross-domain analysis even though LOD can be effectively used for
mediating distributed objects in different services [2]. Generalized Coupled Ten-
sor Factorization (GCTF) methods [22] and recent Non-negative Multiple Ten-
sor Factorization (NMTF) [19] try to incorporate extra information into tensor
factorization by simultaneously factorizing observed tensors and matrices repre-
senting extra information. They, however, do not focus on handling semantics
behind objects while factorizing tensors created for different services. Further-
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more, according to the evaluations in [13], they have much worse performance
than SSTF.

Other than tensor methods, [23] applies embedding models including het-
erogeneous network embedding and deep learning embedding to automatically
extract semantic representations from the KB. Then it jointly learns the latent
representations in collaborative filtering as well as items’ semantic representa-
tions from the KB. There are, however, no embedding methods that analyze
different services by using shared KBs.

Recent semantic web studies try to find missing links between entities [21] or
find an explanation on a pair of entities in KBs [16]. [12,18] incorporate semantic
categories of items into the model and improve the recommendation accuracies.
They, however, do not focus on the analysis of users’ activities across services
and find implicit relationships between entities by the above mentioned analysis.

3 Preliminary

Here, we explain Bayesian Probabilistic Tensor Factorization (BPTF) since S3TF
was implemented within the BPTF framework due to its efficiency with simple
parameter settings.

This paper deals with the relationships formed by user um, venue vn, and tag
tk. A third-order tensor R is used to model the relationships among objects from
sets of users, venues, and tags. Here, the (m,n, k)-th element rm,n,k indicates the
m-th user’s rating of the n-th venue with the k-th tag. Tensor factorization as-
signs a D-dimensional latent feature vector to each user, venue, and tag, denoted
as um, vn, and tk, respectively. Here, um is an M -length, vn is an N -length,
and tk is a K-length “column” vector. Accordingly, each element rm,n,k in R
can be approximated as the inner-product of the three vectors as follows:

rm,n,k ≈ ⟨um,vn, tk⟩ ≡
D∑

d=1

um,d · vn,d · tk,d (1)

where index d represents the d-th “row” element of each vector.
BPTF [20] models tensor factorization over a generative probabilistic model

for ratings with Gaussian/Wishart priors over parameters. The Wishart distri-
bution is most commonly used as the conjugate prior for the precision matrix of
a Gaussian distribution.

We denote the matrix representations of um, vn, and tk asU ≡ [u1,u2, ··,uM ],
V ≡ [v1,v2, ··,vN ], andT ≡ [t1, t2, ··, tK ]. To account for randomness in ratings,
BPTF uses the following probabilistic model for generating ratings:

R|U,V,T ∼
M∏

m=1

N∏

n=1

K∏

k=1

N (⟨um,vn, tk⟩,α−1).

This represents the conditional distribution of R given U, V, and T in terms
of Gaussian distributions, each with means of ⟨um,vn, tk⟩ and precision α.
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The generative process of BPTF requires parameters µ0, β0, W0, ν0, W̃0, Λ̃,
and ν̃0 in the hyper-priors, which should reflect prior knowledge about a specific
problem and are treated as constants during training. The process is as follows:

1. Generate ΛU, ΛV, and ΛT ∼ W(Λ|W0, ν0), where ΛU, ΛV, and ΛT are
the precision matrices (a precision matrix is the inverse of a covariance ma-
trix) for Gaussians. W(Λ|W0, ν0) is the Wishart distribution of a D × D
random matrix Λ with ν0 degrees of freedom and a D × D scale matrix

W0:W(Λ|W0, ν0) =
|Λ|(ν0−D−1)/2

c exp(−Tr(W0
−1Λ)

2 ), where C is a constant.

2. Generate µU ∼ N (µ0, (β0ΛU)−1), where µU is used as the mean vector
for a Gaussian. Similarly, generate µV ∼ N (µ0, (β0 ΛV)−1) and µT ∼
N (µ0, (β0ΛT)−1), where µV and µT are mean vectors for Gaussians.

3. Generate α ∼ W(Λ̃|W̃0, ν̃0).

4. For each m ∈ (1 . . .M), generate um ∼ N (µU,ΛU
−1).

5. For each n ∈ (1 . . . N), generate vn ∼ N (µV,ΛV
−1).

6. For each k ∈ (1 . . .K), generate tk ∼ N (µT,ΛT
−1).

7. For each non-missing entry (m,n, k), generate rm,n,k ∼N (⟨um,vn, tk⟩,α−1).

Parameters µ0, β0, W0, ν0, W̃0, Λ̃, and ν̃0 should be set properly according to
the objective dataset; fortunately, varying their values, has little impact on the
final prediction [20].

BPTF views the hyper-parameters α, ΘU ≡ {µU,ΛU}, ΘV ≡ {µV,ΛV},
and ΘT ≡ {µT,ΛT} as random variables, yielding a predictive distribution for
unobserved ratings R̂, which, for observable tensor R, is given by:

p(R̂|R) =

∫
p(R̂|U,V,T,α)

p(U,V,T,α,ΘU,ΘV,ΘT|R)d{U,V,T,α,ΘU,ΘV,ΘT}. (2)

BPTF computes the expectation of p(R̂|U,V,T,α) over the posterior dis-
tribution p(U,V,T,α,ΘU,ΘV,ΘT|R); it approximates the expectation by av-
eraging samples drawn from the posterior distribution. Since the posterior is
too complex to be directly sampled, it applies the Markov Chain Monte Carlo
(MCMC) indirect sampling technique to infer the predictive distribution for un-
observed ratings R̂ (see [20] for details on the inference algorithm of BPTF).

The time and space complexities of BPTF are O(#nz×D2+(M+N+K)×D3).
#nz is the number of observation entries, and M , N , and K are all much greater
than D. BPTF can also compute feature vectors in parallel while avoiding fine
parameter tuning during factorization.

4 Method

We now explain S3TF. We first explain how to create augmented tensors, which
share semantics among services, from individual services’ tensors. Table 1 sum-
marizes the notations used by our method.
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Table 1. Definition of main symbols.

Symbols Definitions

Ri Tensor that includes ratings by users of venues with tags for the i-th service.
αi Observation precision for Ri.
ui

m m-th user feature vector for i-th service.
vi
n n-th venue feature vector for i-th service.

tik k-th tag feature vector for i-th service.
Ui Matrix representation of ui

m for i-th service.
Vi Matrix representation of vi

n for i-th service.
Ti Matrix representation of tik for i-th service.
X Number of services.
Vi

s Set of the most sparse venues for the i-th service.
Ti
s Set of the most sparse tags for the i-th service.

Av The augmented tensor that includes the classes of sparse venues in all services.
At The augmented tensor that includes classes of sparse tags in all services.
cvj j-th semantically biased venue feature vector from Av.

ctj j-th semantically biased tag feature vector from At.
Cv Matrix representation of cvj .

Ct Matrix representation of ctj .
Sv Number of classes that include sparse venues in all services.
St Number of classes that include sparse tags in all services.
f(o) Function that returns the classes of object o.
δ Parameter that adjusts the number of the most sparsely observed objects in each service.
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Fig. 2. Examples of our factorization process.

4.1 Creating augmented tensors

Following SSTF, S3TF creates the augmented tensor Av that has all the obser-
vations across X services (those services do not share any object) as well as the
observations for sparsely observed venues lifted in the augmented venue classes.
The classes are chosen from shared KBs such as DBPedia and Freebase, and thus
they are shared among services; e.g. for restaurant review services, the types of
restaurants and the food categories are listed in DBPedia or Freebase in detail.

First, S3TF extracts the observations for sparsely observed venues. Here, the
set of sparse venues for the i-th service (1 ≤ i ≤ X), denoted as Vi

s, is defined as
the group of the most sparsely observed venues, viss, among all venues in the i-th
service. We set a 0/1 flag to indicate the existence of relationships composed of
user ui

m, venue vin, and tag tik as oim,n,k. Then, Vi
s is computed as follows:
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(1) S3TF first sorts the venues from the rarest to the most common in the i-th
service (1 ≤ i ≤ X) and creates a list of venues: {vis(1), vis(2), . . . , vis(Ni−1), v

i
s(Ni)}

where N i is the number of venues in the i-th service. For example, vis(2) is not

less sparsely observed than vis(1).

(2) It iterates the following step (3) from j = 1 to j = N i.
(3) If it satisfies the following equation, S3TF adds the j-th sparse venue

vis(j) to set Vi
s: (|Vi

s|/
∑

m,n,k o
i
m,n,k) < δ where Vi

s initially does not have any

venues and |Vi
s| is the number of venues in set Vi

s. If not, it stops the iterations
and returns the set Vi

s as the most sparsely observed venues in the i-th service.
Here, δ is a parameter used to determine the number of sparse venues in Vi

s.
Typically, we set δ to range from 0.05 to 0.20 in accordance with the long-tail
characteristic such that sparse venues account for 5-20% of all observations [13].

Second, S3TF constructs the augmented tensor Av as follows:.
(1) S3TF inserts the multi-object relationship composed of user ui

m, venue
vin, and tag tik, observed in the i-th service, into Av. Here, the rating rim,n,k

corresponding to the above relationship is inserted into the ((M i−1
1 +m), (N i−1

1 +
n), (Ki−1

1 +k))-th element inAv where we denoteM i−1
1 ,N i−1

1 , andKi−1
1 as the sum

of number of users, that of venues, and that of tags in services whose identifiers
are from 1 to (i−1), respectively. As a result, Av has all users, all venues, and
all tags in all services. In Fig. 2-(i), all observations in R1 and R2 are inserted
into Av.

(2) S3TF additionally inserts the multi-object relationships composed of user
ui
m, a class of sparse venue cvj , and tag tik into Av if vin is included in Vi

s and cvj is

one of the classes of vin. Thus, the rating rim,n,k is inserted into the ((M i−1
1 +m),

(NX
1 +j), (Ki−1

1 +k))-th element in Av. If sparse venue vin has several classes,
S3TF inserts the rating rim,n,k into all corresponding elements in Av. In Fig.
2-(i), observations for classes for sparse venues (“Lady M” in service 1 and “Les
Deux Gamins” in service 2) are added to Av (in the elements corresponding to
their class “Bars”). Here, the number of classes that have the sparse venues in
all services is denoted as Sv; it is computed as: Sv = |

⋃
Vi

s
f(vis)|(1≤i≤X) where

f(vis) is a function that returns the classes of sparse venue vis in the i-th service.
The set of sparse tags Ti

s is defined as the group of the most sparsely observed
tags in i-th service and is computed using the same procedure as it creates Vi

s.
The augmented tensor for tags At is also computed in the same way as it creates
Av. So we omit the explanations of the procedures for creating those here.

Tensor creation by S3TF has the following two benefits: (1) It solves the bal-
ance problem by creating individual tensors for services and so avoids strongly
biasing any particular service. (2) It overcomes the sparsity problem by propa-
gating observations in sparse objects to their classes shared among services in
the augmented tensor.

4.2 Simultaneously factorizing tensors across services

S3TF factorizes individual services’ tensors and augmented tensors simultane-
ously. We first explain our approach and then the algorithm.
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Approach S3TF takes the following three techniques in factorizing tensors.

(A) It factorizes individual service tensors Ris (1 ≤ i ≤ X), and augmented
tensors Av and At simultaneously. In particular, it creates feature vectors
for users, ui

ms, those for venues, vi
ns, and those for tags, ctjs, by factorizing

tensor Ri for each i-th service as well as feature vectors for their venue
classes cvj s by Av and those for their tag classes ctjs by At. As a result,
S3TF factorizes individual tensors while enabling the semantic biases from
cvj s and ctjs to be shared during the factorization process. This approach
to “simultaneously” factorizing individual service tensors solves the balance
problem. In the example shown in Fig. 2-(ii), R1, R2, and Av are factorized
simultaneously into D-dimensional “row” feature vectors.

(B) It shares feature vectors ui
m, vi

n, t
i
k which are computed by factorizing Ri,

in the factorization of augmented tensors Av and At. This means that it
computes the feature matrix for users for the augmented tensor Ua by join-
ing X numbers of service feature matrices for users, [U1, . . . ,Ui, . . . ,UX ].
Similarly, it computes the feature matrix for venues, Va, and that for tags,
Ta, for the augmented tensor. Then, it computes the feature matrix for
venue (or tag) classes by reusing the joined feature matrices Ua and Ta (or
Ua and Va). As a result, it can, during the factorization process, share the
tendencies of users’ activities across services via those shared parameters. In
Fig. 2-(ii), ua

m,d is computed as: [u1
m,d,u

2
m,d] and tak,d is as: [t1k,d, t

2
k,d].

(C) It updates latent feature vectors for sparse venues (or tags) in the i-th service,
vi
ss (or tiss), by incorporating semantic biases from cvj s (or ctjs) to vi

ss (or
tiss). Here, c

v
j s (or ctjs) are feature vectors for classes of the sparse venues

viss (or sparse tags tiss). This process incorporates the semantic tendencies
of users’ activities across services captured by idea (B) into each service’s
factorization; this is useful in solving the sparsity problem. In Fig. 2-(iii),
each row vector cv:,d has latent features for (N1+N2) venues and for Sv

classes. The features in cv:,d share semantic knowledge of sparse venues across
services. For example, the feature for “Bars” in cv:,d share semantic knowledge
of sparse venues “Lady M” and “Les Deux Gamins” across US restaurant
review service and French one (see also Fig. 1).

Algorithm Here we explain how to compute the predictive distribution for unob-
served ratings. Differently from the BPTF model (see Eq. (2)), S3TF considers
the tensors for individual services and augmented tensors in computing the dis-
tribution. Thus, the predictive distribution is computed as follows:

p(R̂|R,Av ,At) =

∫
p(R̂|U,V,T,Cv ,Ct,α,αa)

p(U,V,T,Cv,Ct,ΘU,ΘV,ΘCv ,ΘCt ,α,αa|R,Av,At)

d{U,V,T,Cv,Ct,ΘU,ΘV,ΘT,ΘCv ,ΘCt ,α,αa} (3)

where R ≡ {Ri}Xi=1, α ≡ {αi}Xi=1, U ≡ {Ui}Xi=1, V ≡ {Vi}Xi=1, T ≡ {Ti}Xi=1,
ΘU≡{ΘUi}Xi=1, ΘV≡{ΘVi}Xi=1, and ΘT≡{ΘTi}Xi=1.
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Eq. (3) involves a multi-dimensional integral that cannot be computed ana-
lytically. Thus, S3TF views Eq. (3) as the expectation of p(R̂|R,Av,At) over the
posterior distribution p(U,V,T,Cv ,Ct,ΘU,ΘV,ΘCv ,ΘCt ,α,αa|R,Av,At), and
approximates the expectation by MCMC with the Gibbs sampling paradigm. It
collects a number of samples, L, to approximate the integral in Eq. (3) as:

p(R̂|R,Av,At)≈
L∑

l=1

p(R̂|U[l],V[l],T[l],Cv[l],Ct[l],α[l],αa[l]) (4)

where l represents the l-th sample.
The MCMC procedure is as follows (detail is given in the supplemental ma-

terial3):

(1) Initialize Ui[1], Vi[1], and Ti[1] (1 ≤ i ≤ X) for each i-th service as well as
Cv[1] and Ct[1] for the augmented tensors by Gaussian distribution as per
BPTF. Cv[1] and Ct[1] are used for sharing the semantics across services
(see our approach (A)). Next, it repeats steps (2) to (8) L times.

(2) Samples the hyperparameters for each i-th service as per BPTF i.e.:

• αi[l+1] ∼ p(αi[l]|Ui[l],Vi[l],Ti[l],Ri)
• ΘUi [l+1] ∼ p(ΘUi [l]|Ui[l])
• ΘV i [l+1] ∼ p(ΘV i [l]|Vi[l])
• ΘT i [l+1] ∼ p(ΘT i [l]|Ti[l])

here, ΘX≡{µX,ΛX} and is computed in the same way as BPTF.

(3) Samples the feature vectors the same way as is done in BPTF:

• ui
m[l+1] ∼ p(ui

m|Vi[l],Ti[l],αi[l+1],ΘUi [l+1],Ri)
• vi

n[l+1] ∼ p(vi
n|Ui[l+1],Ti[l],αi[l+1],ΘV i [l+1],Ri)

• tik[l+1] ∼ p(tik|Ui[l+1],Vi[l+1],αi[l+1],ΘT i [l+1],Ri)

(4) Joins the feature matrices in services in order to reuse them as the feature
matrices for the augmented tensors as (see our approach (B)):

• Ua[l+1] = [U1[l+1], · · · ,Ui[l+1], · · · ,UX [l+1]]
• Va[l+1] = [V1[l+1], · · · ,Vi[l+1], · · · ,VX [l+1]]
• Ta[l+1] = [T1[l+1], · · · ,Ti[l+1], · · · ,TX [l+1]]

(5) Samples the hyperparameters for the augmented tensors similarly:

• αa[l+1] ∼ p(αa[l]|Ua[l+1],Va[l+1],Ta[l+1],Ra)
• ΘCv [l+1] ∼ p(ΘCv [l]|Cv[l])
• ΘCt [l+1] ∼ p(ΘCt [l]|Ct[l])

(6) Samples the semantically-biased feature vectors by using αa[l+1], Ua[l+1],
Va[l+1], and Ta[l+1] as follows (see our approach (B)):

• cvj [l+1] ∼ p(cvj |Ua[l+1],Ta[l+1],αa[l+1],ΘCv [l+1],Av)
• ctj [l+1] ∼ p(ctj |Ua[l+1],Va[l+1],αa[l+1],ΘCt [l+1],At)

(7) Samples the unobserved ratings r̂im,n,k[l+1] by applying Ui[l+1], Vi[l+1],

Ti[l+1], Cv[l+1], Ct[l+1], αi[l+1] to equation (4).
3 Please see “https://sites.google.com/site/sapplementalfile/appendix-html”.
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(8) Updates vi
n[l+1] as follows and uses it in the next iteration (see our approach

(C)):

vi
n =

{
1
2

(
vi
n +

∑
cvj ∈f(vin) c

v
j

|f(vi
n)|

)
(vin ∈ Vi

s)

vi
n (otherwise)

(5)

Updates tik[l+1] similarly (we halt the explanation here).

The complexity of S3TF in each MCMC iteration is O(#nz×D2+(MX
1 +

NX
1 +KX

1 +SV +ST )×D3). Because the first term is much larger than the rest,
the computation time is almost the same as that of BPTF. Parameter δ and
parameters for factorization can be easily set based on the long-tail characteristic
and the full Bayesian treatment inherited by the BPTF framework, respectively.
S3TF is faster than SSTF when analyzing X numbers of services since S3TF
creates and factorizes only one set of augmented tensors (Av and At) for all
services while SSTF needs X sets of augmented tensors.

5 Evaluation

The method’s accuracy was confirmed by evaluations.

5.1 Dataset

We used the Yelp ratings/reviews4 together with DBPedia [2] food vocabularies.
Yelp datasets contain user-made ratings of restaurant venues and user reviews
of venues across four countries (United Kingdom (UK), United States (US)5,
Canada6, and Germany). The logs of users who are included in several countries
are excluded from the datasets. Thus we can consider the datasets of individual
countries are made from different services. Food vocabularies are extracted from
food ontology7 and categories are extracted from DBPedia article categories.
We first extracted English food entries and then translated them into French
or German by using BabelNet8, which is a multilingual encyclopedic dictionary
based on Wikipedia entries. Thus, the resulting food entries share the same
categories. We then extracted tags from the reviews that match the instances in
a DBPedia food vocabulary entry as was done in [13]. Consequently, we extracted
988, 1,100, 1,388, and 435 tags for UK, US, Canada, Germany, respectively. We
used the genre vocabulary provided by Yelp as the venue vocabulary, it has 179
venue classes. The tag vocabulary provided by DBPedia has 1,358 food classes.
4 Available at http://www.yelp.com/dataset challenge/
5 We focused on restauran reviews for Midwestern United States to efficiently perform
evaluations.

6 The Canada dataset includes venues located in the Quebec area, so the languages
used in the reviews are written in French or English.

7 http://dbpedia.org/ontology/Food/
8 http://babelnet.org
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The size of the user-venue-tag tensors in UK, US, Canada, and Germany were
2, 052×1, 398×988, 10, 736×1, 554×1, 100, 10, 700×3, 085×1, 388, and 286×332×435,
respectively. The numbers of ratings in those countries were 54,774, 118,012,
172,182, and 3,062, respectively. The ratings range from 1 to 5.

5.2 Comparison methods

We compared the accuracy of the following six methods:

1. NMTF [19], which utilizes the auxiliary information like GCTF. It factorizes
the target tensors (user-item-tag tensors created for each countries) and
auxiliary matrices (item-class matrix and tag-class matrix) simultaneously.

2. BPTF proposed by [20].
3. SSTF, which applies Semantic Sensitive Tensor Factorization proposed by

[13] to the observed relationships in each service.
4. SSTF all, which combines observed relationships in different services to cre-

ate a merged tensor and factorizes the merged tensor by SSTF.
5. S3TFT, which utilizes only the tag vocabulary.
6. S3TFV, which utilizes only the venue vocabulary.
7. S3TF, which is our proposal.

5.3 Methodology and parameter setup

We split each dataset into two halves; a training set that holds reviews entered in
the first half period of all logs and a test set consisting of the reviews entered in
the last half. We then performed evaluations for the two-joint combinations (total
6) of those sets to check the repeatability of results. Following the evaluation
methodology used in previous studies [3, 11, 13, 20], we computed Root Mean
Square Error (RMSE), which is computed by

√
(
∑n

i=1(Pi −Ri)2)/n, where n
is the number of entries in the test set, and Pi and Ri are the predicted and
actual ratings of the i-th entry, respectively. The RMSE is more appropriate to
represent model performance than the Mean Absolute Error (MAE) when the
error distribution is expected to be Gaussian. We varied D from 5 to 20 for each
method, and set the optimum value to 20 since it gave the highest accuracies
for all methods. We set the iteration count, L, to 100 since all methods could
converge with this setting. δ was set to 0.8 following [13].

5.4 Results

We first investigated the sparseness of objects observed. Fig. 3 plots the distri-
bution of venue frequencies observed in the UK dataset. From this figure, we
can confirm that venue observation frequencies exhibit the long-tail character-
istic. Thus, observations of multi-object relationships become very sparse with
respect to the possible combinations of observed objects. The distributions of
other datasets showed the same tendencies. Thus, a solution to the sparsity prob-
lem across services is required. Fig. 4 presents the accuracy of the UK dataset
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Table 2. Comparing RMSE values of the methods.

NMTF BPTF SSTF SSTF all S3TFT S3TFV S3TF
UK 1.7192 1.0063 0.9928 0.9960 0.9967 0.9594 0.9501
US 1.9011 1.2303 1.2176 1.2267 1.1939 1.1733 1.1727

Canada 1.8723 1.1853 1.1431 1.1655 1.1219 1.1331 1.1215
German 1.8923 1.3266 1.2789 1.2868 1.2744 1.2847 1.2527

on the simultaneous factorization on UK and US datasets when the number of
iterations, L, was changed. This confirms that the accuracy of S3TF saturated
before L=100. Results on other datasets showed similar tendencies.

We then compared the accuracy of the methods for the simultaneous fac-
torizations on the six datasets. The results shown in Table 2 are the average
RMSE values computed for each country. They show that SSFT has better ac-
curacy than BPFT. This is because SSFT uses the semantics shared within a
single service (e.g. within a service in US) and thus solves the sparsity problem.
SSTF has better accuracy by SSTF all though SSTF all uses the entire logs.
This is because SSTF all creates a tensor by mixing the heterogeneous datasets
in different countries and thus suffers from the balance problem. S3TFT and
S3TFV had better performance than BPTF or SSTF since S3TFT and S3TFV
can use the shared semantics on venues and those on tags across services, re-
spectively. Finally, S3TF, which utilizes the semantic knowledge across services
while performing coupled analysis of two tensors, yielded higher accuracy than
the current best method, SSTF, with the statistical significance of α<0.05.

The RMSEs of NMTF are much worse than those of S3TF. This is mainly be-
cause: (1) NMTF straightforwardly combines different relationships, i.e., rating
relationships among users, items, and tags, link relationships among items and
their classes, and link relationships among tags and their classes. Thus, it suffers
from the balance problem. (2) NMTF uses the KL divergence for optimizing the
predictions since its authors are interested in “discrete value observations such
as stars in product reviews”, as described in [19]. Our datasets are those they are
interested in; however, exponential family distributions like Poisson distribution
do not fit our rating datasets so well.

Table 3 presents the computation times of BPTF, SSTF, and S3TF when
simultaneously factorizing tensor for German and that for UK datasets as well
as simultaneously factorizing tensor for German and that for US datasets. All
experiments were conducted on a Linux 3.33 GHz Intel Xeon (24 cores) server
with 192 GB of main memory. All methods were implemented with Matlab and
GCC. We can see that the computation time of S3TF is shorter than that of
SSTF. Furthermore, we can set L smaller than 100 (see Fig. 4). Thus, we can
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Table 3. Computation time (seconds) when L=100.
German x UK German x US

BPTF SSTF S3TF BPTF SSTF S3TF
63 113 109 85 142 134

Table 4. Prediction examples for US (the upper row) and German (the lower row).

Training dataset Rating predictions by SSTF (S) and S3TF (S3)
Tag in review sentence Item/genre Rating Tag in review sentence Item/genre S S3 Actual
Berry streusel is tasty. A/Bakeries 5.0 Bratwurst was incredible. B/American 3.8 4.7 5.0
A enchilada is perfect. C/Tex-Mex 4.0 An amazing pretzel roll. D/Breakfast 3.8 4.8 5.0
Ich genoss Marzipan. E/Bakeries 5.0 Burrito war wirklich gut. F/Bars 3.1 3.7 4.0
nachos ist wertvoll. G/Bars 4.0 Schnitzel ist lecker. H/German 3.9 3.4 3.0

conclude that S3TF can compute more accurate predictions quickly; it works
better than SSTF and BPTF on real applications.

We then show the examples of the differences between the predictions out-
put by SSTF and S3TF in Table 4. The columns “S”, “S3”, and “Actual” list
prediction values by SSTF, those by S3TF, and actual ratings given by users
as found in the test dataset, respectively. In the US dataset, the combination
of tag “streusel” at Bakeries “A” and “enchilada” at Tex-Mex restaurant “C”
were highly rated in the training set. In the test set, the combination of tag
“bratwurst” at American restaurant “B” and “pretzel” at Breakfast restaurant
“D” were highly rated. The tags “streusel”, “bratwurst”, and “pretzel” (they are
included in “german cuisine” class) are sparsely observed in the US’s training
set. In the Germany dataset, the combination of tag “marzipan” at Bakeries “E”
and “nachos” at Bars “G” were highly rated in the training set. In the test set,
the combination of tag “burrito” at Bars “F” and “Schnitzel” at German restau-
rant “H” were highly rated. The tags “nachos” and “burrito” (they are included
in “mexican cuisine” class) are sparsely observed in the German’s training set.
S3TF accurately predicted those observations formed by sparse tags since it uses
knowledge that the tags “streusel” and “marzipan” both lie in tag class “german
cuisine”, as well as the knowledge that tags “enchilada” and “nachos” both lie in
tag class “mexican cuisine”. Thus, S3TF can use such knowledge that the com-
binations of “german cuisine” and “mexican cuisine” are often seen in datasets
across countries. SSTF predictions were inaccurate since they were not based on
the semantics behind the objects being rated across services.

We also show the implicit relationships extracted when we factorized three
datasets, UK, US, and Canada, simultaneously. The implicit relationships were
computed as: (1) The probability that the relationship composed by um, vn,
and tk is included in the i-th dimension is computed by ui,m · vi,n · ti,k where
1 ≤ i ≤ D. (2) Each observed relationship is classified into the dimension that
gives the highest probability value among allD dimensions. (3) The relationships
included in the same dimension are considered to form implicit relationships
across services. Fig. 5 presents examples as the extraction results. The first
line, the second line, and the third line in balloons in the figure indicate the
representative venues, venue classes, and foods, respectively. The relationships
in the same dimension are represented by the same marks; circles (1) or triangles
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Ale Asylum, Tipsy Cow
Burgers, Breweries,
Cheeseburger, India Pale Ale, Nachos

Ella's Deli, Graze
Coffee, Creperies
Hot Fudge, Latte, Sundae

Old Chicago, Destihl Restauran
American, Pizza, Salad
Beer, Chowder, Hamburger

�������������������� �������������������� �	��������������������
�

Royal Phoenix, Taverne Gaspar
French, Gastropubs, Seafood
Lobster roll, Poutine, White wine

Rockaberry, Sweet Lee's
Desserts, Gastropubs
Maple tart, Mousse, Sorbet

Boulangerie Roma
Bakeries, Farmers
Cappuccino, Croissant

Hotel Chocolat, Stockbridge Market
British, Farmers, Chocolatiers
Cheesecake, Pudding, Shortbread

Mums, Scotsman Hotel
Brasseries, British
Haggis, Salmon, Scotch whisky

The King's Wark
Breakfast, Pubs
Cheese, Mushroom, Risotto

Fig. 5. Examples of implicit relationships extracted by S3TF.

(2): (1) This dimension includes several local dishes with alchoholic content
across countries. e.g. People in UK who love “Haggis” and drink “Scotch whisky”
are implicitly related to those in US who love “Cheeseburger” and drink “Indian
pale ale” as well as those in Canada who love “Lobster roll” and drink “White
wine”. (2) This dimension includes several sweet dishes across countries. e.g.
People in UK who love “Shortbread” are implicitly related to those in US who
love “Sundae” as well as those in Canada who love “Maple tart”. Such implicit
relationships can be used to create recommendation lists for users across services.
BPTF and SSTF can not extract such implicit relationships since they can not
use shared semantics, and thus latent features, across services.

6 Conclusion

This is the first study to show how to include the semantics behind objects
into tensor factorization and thus analyze users’ activities across different ser-
vices. Semantic-Sensitive Simultaneous Tensor Factorization, S3TF, proposed
here, presents a new research direction to the use of shared semantics for the
cross service analysis of users’ activities. S3TF creates individual tensors for
different services and links the objects observed in each tensor to the shared
semantics. Then, it factorizes the tensors simultaneously while integrating se-
mantic biases into tensor factorization. Experiments using real-world datasets
showed that S3TF achieves much higher accuracy than the current best tensor
method and extracts implicit relationships across services during factorization.
One interesting future direction is to apply our idea to the recent embedding
models (e.g. [23]) and analyze different services simultaneously by using KBs.
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