
Optimizing Aggregate SPARQL Queries using
Materialized RDF Views

Dilshod Ibragimov1,2, Katja Hose2, Torben Bach Pedersen2, and Esteban Zimányi1

1 Université Libre de Bruxelles, Brussels, Belgium
{dibragim|ezimanyi}@ulb.ac.be
2 Aalborg University, Aalborg, Denmark
{diib|khose|tbp}@cs.aau.dk

Abstract. During recent years, more and more data has been published as na-
tive RDF datasets. In this setup, both the size of the datasets and the need to
process aggregate queries represent challenges for standard SPARQL query pro-
cessing techniques. To overcome these limitations, materialized views can be cre-
ated and used as a source of precomputed partial results during query processing.
However, materialized view techniques as proposed for relational databases do
not support RDF specifics, such as incompleteness and the need to support im-
plicit (derived) information. To overcome these challenges, this paper proposes
MARVEL (MAterialized Rdf Views with Entailment and incompLetness). The
approach consists of a view selection algorithm based on an associated RDF-
specific cost model, a view definition syntax, and an algorithm for rewriting
SPARQL queries using materialized RDF views. The experimental evaluation
shows that MARVEL can improve query response time by more than an order of
magnitude while effectively handling RDF specifics.

1 Introduction
The growing popularity of the Semantic Web encourages data providers to publish RDF
data as Linked Open Data, freely accessible, and queryable via SPARQL endpoints [25].
Some of these datasets consist of billions of triples. In a business use case, the data pro-
vided by these sources can be applied in the context of On-Line Analytical Processing
(OLAP) on RDF data [5] or provide valuable insight when combined with internal (pro-
duction) data and help facilitate well-informed decisions by non-expert users [1].

In this context, new requirements and challenges for RDF analytics emerge. Tra-
ditionally, OLAP on RDF data was done by extracting multidimensional data from the
Semantic Web and inserting it into relational data warehouses [19]. This approach, how-
ever, is not applicable to autonomous and highly volatile data on the Web, since changes
in the sources may lead to changes in the structure of the data warehouse (new tables
or columns might have to be created) and will impact the entire Extract-Transform-
Load process that needs to reflect the changes. In comparison to relational systems,
native RDF systems are better at handling the graph-structured RDF model and other
RDF specifics. For example, RDF systems support triples with blank nodes (triples with
unknown components) whereas relational systems require all attributes to either have
some value or null. Additionally, RDF systems support entailment, i.e., new information
can be derived from the data using RDF semantics while standard relational databases
are limited to explicit data.

Processing analytical queries in the context of Linked Data and federations of
SPARQL endpoints has been studied in [15,16]. However, performing aggregate queries
on large graphs in SPARQL endpoints is costly, especially if RDF specifics need to be
taken into account. Thus, triple stores need to employ special techniques to speed up ag-
gregate query execution. One of these techniques is to use materialized views – named
queries whose results are physically stored in the system. These aggregated query re-
sults can then be used for answering subsequent analytical queries. Materialized views
are typically much smaller in size than the original data and can be processed faster.

In this paper, we consider the problem of using materialized views in the form of
RDF graphs to speed up analytical SPARQL queries. Our approach (MARVEL) fo-
cuses on the issues of selecting RDF views for materialization and rewriting SPARQL
aggregate queries using these views. In particular, the contributions of this paper are:

– A cost model and an algorithm for selecting an appropriate set of views to materi-
alize in consideration of RDF specifics

– A SPARQL syntax for defining aggregate views
– An algorithm for rewriting SPARQL queries using materialized RDF views

Our experimental evaluation shows that our techniques lead to gains in performance of
up to an order of magnitude.

The remainder of this paper is structured as follows. Section 2 discusses related
work. Section 3 introduces the used RDF and SPARQL notation and describes the rep-
resentation of multidimensional data in RDF. Section 4 specifies the cost model for
view selection, and Section 5 describes query rewriting. We then evaluate MARVEL in
Section 6, and Section 7 concludes the paper with an outlook to future work.

2 Related Work
Answering queries using views is a complex problem that has been extensively studied
in the context of relational databases [13]. However, as discussed in [13, 22], aggregate
queries add additional complexity to the problem.

In relational systems, the literature proposes semantic approaches for rewriting
queries [22] as well as syntactic transformations [11]. However, SPARQL query rewrit-
ing is more complex. The results for views defined as SELECT queries represent solu-
tions in tabular form, so that the solutions need to be converted afterwards into triples
for further storage, thus making a view definition in SPARQL more complex and pre-
cluding view expansion (replacing the view by its definition).

Another problem in this context is to decide which views to materialize in order
to minimize the average response time for a query. [14] addresses this problem in rela-
tional systems by proposing a cost model leading to a trade-off between space consump-
tion and query response time for an arbitrary set of queries. [23] provides a method to
generate views for a given set of select-project-join queries in a data warehouse by de-
tecting and exploiting common sub-expressions in a set of queries. [2] further optimizes
the view selection by automatically selecting an appropriate set of views based on the
query workload and view materialization costs. However, these approaches have been
developed in the context of relational systems and, therefore, do not take into account
RDF specifics such as entailment, the different data organization (triples vs. tuples), the
graph-like structure of the stored data, etc.

The literature proposes some approaches for answering SPARQL queries using
views. [4] proposes a system that analyzes whether query execution can be sped up
by using precomputed partial results for conjunctive queries. The system also reduces
the number of joins between tables of a back-end relational database system. While [4]
examines core system improvements, [18] considers SPARQL query rewriting algo-
rithms over a number of virtual SPARQL views. The algorithm proposed in [18] also
removes redundant triple patterns coming from the same view and eliminates rewrit-
ings with empty results. Unlike [18], [9] examines materialized views. Based on a cost
model and a set of user defined queries, [9] proposes an algorithm to identify a set of
candidate views for materialization that also account for implicit triples. However, these
approaches [4, 9, 18] focus on conjunctive queries only. The complexity of loosing the
multiplicity on grouping attributes (by grouping on attribute X, we loose the multiplic-
ity of X in data) and aggregating other attributes is not addressed by these solutions.

The performance gain of RDF aggregate views has been empirically evaluated
in [17], where views are constructed manually and fully match the predefined set of
queries. Hence, the paper empirically evaluates the performance gain of RDF views but
does not propose any algorithm for query rewriting and view selection.

Algorithms that use the materialized result of an RDF analytical query to compute
the answer to a subsequent query are proposed in [3]. The answer is computed based
on the intermediate results of the original analytical query. However, the approach does
not propose any algorithm for view selection. It is applicable for the subsequent queries
and not to an arbitrary set of queries.

Although several approaches consider answering queries over RDF views [4,9,18],
none of them considers analytical queries and aggregation. In this paper, we address
this problem in consideration of RDF specifics such as entailment and data organization
in the form of triples, and taking into account the graph structure of the stored data. In
particular, this paper proposes techniques for cost-based selection of materialized views
for aggregate queries, query rewriting techniques, and a syntax for defining such views.

3 RDF Graphs and Aggregate Queries
The notation we use in this paper follows [21, 25] and is based on three disjoint sets:
blank nodes B, literals L, and IRIs I (together BLI). An RDF triple (s, p, o) ∈ BI ×
I × BLI connects a subject s through property p to object o. An RDF dataset (G)
consists of a finite set of triples and is often represented as a graph. Queries are based
on graph patterns that are matched against G. A Basic Graph Pattern (BGP) consists of
a set of triple patterns of the form (IV) × (IV) × (LIV), where V (V ∩ BLI = ∅)
is a set of query variables. Variable names begin with a question mark symbol, e.g., ?x.
In graph notation, a BGP can be represented as a directed labeled multi-graph whose
nodes N correspond to subjects and objects in the triple patterns. The set of edges E
contains one edge for each triple pattern and the property as its label. In data analytics,
graph patterns have a special, rooted pattern [5]. A BGP is rooted in node n ∈ N iff
any node x ∈ N is reachable from n following directed edges in the graph.

The most common SPARQL [25] aggregate queries conform to the form SELECT
RD WHERE GP GROUP BY GRP, where RD is the result description based on a subset
of variables in the graph pattern GP. GP defines a BGP and optionally uses functions,
such as assignment (e.g., BIND) and constraints (e.g., FILTER). GRP defines a set of

grouping variables, whereas RD contains selection description variables as well as ag-
gregation variables with corresponding aggregate functions. In this paper, we consider
the standard aggregate functions COUNT, SUM, AVG, MIN, and MAX.

Data that SPARQL analytical queries are typically evaluated on can be represented
in an n-dimensional space, called a data cube. The data cube is defined by dimensions
(perspectives used to analyze the data) and observations (facts). Dimensions are struc-
tured in hierarchies to allow analyses at different aggregation levels. Hierarchy level
instances are called members. Observations (cells of a data cube) have associated val-
ues called measures, which can be aggregated.

Building Locality Region
vc:locality vc:region

Report
Date Month Year

skos:narrower

Observation Data 658.9
qb:observation gol:utilityConsumption

gol:report
DateTime

gol:refBuilding

skos:narrower

Fig. 1: Representing observations in RDF

An example of data with hierarchi-
cal dimensions is the utilities consump-
tion data from electricity and gas meters
for Scottish Government buildings3 en-
hanced in the Date dimension. The data
is available as energy usage over a daily
period. Figure 1 sketches the data with
two hierarchical dimensions: Building,
Locality, and Region are hierarchy levels in the Geography dimension, Report Date,
Month, and Year are hierarchy levels in the Date dimension, and Data represents an
observation with the utility consumption measure. A dataset with such observations is
stored in a SPARQL endpoint to enable analytical querying with grouping on different
hierarchy levels. For example, the following query computes the daily consumption of
electricity in each city in September 2015:
SELECT ?dt ?plc (SUM(?v) as ?value) WHERE {
?slc gol:refBuilding ?bld ; gol:reportDateTime ?tm ; qb:observation ?ob .
?ob gol:utilityConsumption ?v . ?bld org:siteAddress/vc:adr/vc:locality ?plc .
?mn skos:narrower ?tm . ?mn gol:value ?mVal . FILTER (?mVal = 'September 2015')

} GROUP BY ?tm ?plc

Listing 1.1: Example query with grouping and aggregation

Based on the multidimensional data model, we can define traditional OLAP opera-
tions over the data such as roll-up, drill-down, slicing, and dicing. Intuitively, the slice
operator fixes a single value for a level of a dimension to define a subcube with one di-
mension less. Dice uses a Boolean condition and returns a new cube containing only the
cells satisfying the condition. Roll-up aggregates measure values at a coarser granular-
ity for a given dimension while drill-down disaggregates previously summarized data to
a child level in order to obtain measure values at a finer granularity. In SPARQL, slice
and dice can be achieved by adding a constraint function (like FILTER) to the graph
pattern, while roll-up and drill-down can be achieved by removing/adding connected
triple patterns to the existing graph pattern of the query.

4 View Materialization in MARVEL
A high number of triples needs to be processed for evaluating OLAP queries on a
dataset. This imposes high execution costs, especially when the amount of data in-
creases. To enable scalable processing, we propose RDF-specific techniques to select
a set of materialized views that can be used to evaluate queries more efficiently. We

3 http://cofog01.data.scotland.gov.uk/id/dataset/golspie/utilities

define a materialized view as a named graph described by a query whose results are
physically stored in a triple store. Given a query, the system checks whether the query
can be answered based on the available materialized views. As materialized views are
typically smaller than the original/raw data, this can yield a significant performance
boost. Precalculating all possible aggregations over all dimension levels is usually in-
feasible as it requires much more space than the raw data [24]. Thus, it is important to
find an appropriate set of materialized views to minimize the total query response time.

4.1 Creating Materialized RDF Views
Views used for rewriting conjunctive queries can be defined by CONSTRUCT queries
with WHERE clauses [18]. Views defining queries for aggregate views are more com-
plex since these views group and aggregate the original data. Grouping and aggregation
are achieved by using SELECT queries. However, SELECT queries return data in a
tabular format, not triples. Thus, the CONSTRUCT clause needs to define a new graph
structure and triples for the obtained results. As only the combination of values for vari-
ables in the GROUP BY clause of a SELECT query is unique, we can use these values
to construct the new triples.

Listing 1.2 gives an example of such a query, where the SELECT query aggregates
utility consumptions by City and Date. We use the IRI and STRAFTER functions to
create a resource identifier id based on the unique combination of City and Date. The
CONSTRUCT clause then creates triples by connecting the id to the resulting aggregate
and grouping values. The algorithm for constructing such view queries is similar to the
algorithm described in [17].
CONSTRUCT { ?id gol:reportDate ?date ; gol:reportLocality ?vCity ;

gol:utilityConsumption ?value . } WHERE {
SELECT ?id ?date ?vCity (SUM(?cons) as ?value)
WHERE { ?fact gol:refBuilding ?bld ; gol:reportDateTime ?date ;
qb:observation ?data . ?data gol:utilityConsumption ?cons .
?bld org:siteAddress/vc:adr/vc:locality ?vCity .
BIND(IRI('http://ex.org/id#', CONCAT(STRAFTER(STR(?dt), 'http://'),
STRAFTER(STR(?vCity), 'http://'))) AS ?id). } GROUP BY ?id ?date ?vCity }

Listing 1.2: Query to construct materialized view

4.2 Data Cube Lattice
To represent dependencies between views, we use the notion of a data cube lattice. The
data cube lattice is, essentially, a schema of a data cube with connected nodes, where a
node represents an aggregation by a given combination of dimensions. Nodes are con-
nected if a node j can be computed from another node i and the number of grouping
attributes of i corresponds to the number of attributes of j plus one. A view is defined by
a query with the same grouping as in the corresponding node. For example, in case of 3
dimensions, Part (P), Customer (C) and Date (D), possible nodes (grouping combina-
tions) are PCD, PC, PD, CD, P, C, D and All (all values are grouped into one group). In
our example, the view corresponding to node PC can be computed from the view corre-
sponding to node PCD. We denote this dependence relation as PC � PCD and refer
to view PCD as the ancestor of view PC. In the presence of dimension hierarchies, the
total number of different lattice nodes is

∏k
i=1(hi+1), where hi represents the number

of hierarchy levels in dimension i and (hi + 1) accounts for the top level All.

We use the data cube lattice since it formalizes which views (nodes) can be used
to evaluate a particular query. Given a query grouping (GROUP BY), the lattice node
with the exact same grouping (and its ancestors) can be used. Since these views are
smaller in size than the raw data, calculating the answer from the views will be cheaper
than calculating it from the raw data. Thus, to answer user queries we need to find an
appropriate set of views so that the multidimensional queries posed against the data can
be mapped to one of these views.

The data cube lattice has originally been proposed for selecting aggregate views in a
relational framework [14]. This framework considers data that is complete and complies
with a predefined schema, and therefore cannot be directly applied to RDF graphs that
lack these characteristics. Additionally, RDF data may be incomplete. For instance, the
canonicalized Ontology Infobox dataset from the DBpedia Download 3.8 contains birth
place information for 266,205 persons (either as a country, a city or village, or both).
However, out of 266,205 records, 16,351 records contain information only about the
country of birth. Thus, the information available in the source may not contain the
information that holds in the world (Open World Assumption) and, therefore, should
ideally be present in the source. Accordingly, an incomplete data source is defined as
a pair Ω = (Ga, Gi) of two graphs, where Ga ⊆ Gi. Ga corresponds to the available
graph andGi is the ideal graph [6]. Thus, a view is incomplete if its defining query over
the available graph does not produce the same results as the defining query over the
ideal graph: [qv]Ga

6= [qv]Gi
.

Such incomplete views may not be used to answer queries involving the grouping
over a higher hierarchy level than in the view. In the above example, the aggregation
over the city of birth is incomplete and the city level view, due to incompleteness, cannot
be used to roll-up to the country level even though the relationship City → Country
between the levels holds. Instead, the aggregation over the country level needs to be
computed from the raw data taking into account the derived information that connects
cities of birth to the countries.

In summary, we need to account for the graph-like structure of the stored data,
presence of implicit knowledge in data, and incompleteness of views for RDF data
cubes. Therefore, we propose MARVEL – a novel aggregate view selection approach
that, unlike earlier approaches, supports RDF-specific requirements.

4.3 MARVEL Cost Model

MARVEL assumes that RDF data are stored as triples. Thus, the cost of answering an
aggregate SPARQL query in a generic RDF store is defined as the number of triples
contained in the materialized view used to answer the query. This cost model is simple
and works for the general case. More complex models that account for algorithms and
auxiliary structures of a particular triple store are certainly possible.

The number of triples to represent an observation in an RDF view is (n + m) where
n is the number of dimensions and m is the number of measures. Thus, the size of a
view w is equal to Size(w) = (n +m) ∗ N , where N is the number of observations.
This number is used to calculate the benefit of materializing the view. Note that the size
of w serves as the cost of v if v is computed from w: Cost(v) = Size(w). View sizes can
be estimated using VoID statistics and cardinality estimation techniques [12], using a
small representative subset and, in some cases, with COUNT queries.

Let Bw be the benefit of view w. For every view v such that v � w the benefit
of view w relative to v is calculated as Bw,v = (Cost(v) − Size(w)) if Cost(v) >
Size(w) and Bw,v = 0 otherwise. The difference between the current cost of view
v and the possible cost of v (if the materialized view w is used to compute view v)
contributes to the benefit of view w. We sum up the benefits for all appropriate views
to receive the full benefit of view w: Bw =

∑
Bw,vi for all i such that vi � w. Note

that this value of benefit is absolute. If the storage space is limited, the benefit of each
view per unit space can be considered instead. In this case, the value of the benefit is
calculated by dividing the absolute benefit of the view by its size: B

′

w = Bw

Size(w) .
In addition, our cost model needs to account for RDF specifics, such as incom-

plete views and complex and indirect hierarchies. We use an annotated QB4OLAP
schema [7] to describe the dataset and extend it with information about the complete-
ness of levels, the patterns for defining hierarchy steps (which predicates are used),
the types of hierarchy levels, etc. This schema reflects the source data structure and
does not require adding any triples to the graph. The schema is also used to define
aggregate queries for the view selection process (Section 4.5). We chose QB4OLAP
since unlike alternatives, such as AnS [5] and QB (http://www.w3.org/TR/
vocab-data-cube/), QB4OLAP allows to define multidimensional concepts such
as dimensions, levels, members, roll-up relations, complex hierarchies (e.g., ragged,
recursive), etc.

For example, for a birth place dimension we can specify that the roll-up to the
Country level should be calculated from both the City and the Person levels since for
some people we might only know the birth country, whereas for others we know the
city. When a hierarchy level is computed from several ancestor levels, we say that the
view corresponding to this level should be calculated from a set of views (to avoid
double-counting in such cases, MARVEL uses the MINUS statement). We denote this
dependence relation as w � {vi, . . . , vn}, where w is the current view and {vi, . . . , vn}
are the ancestor views. In general, we can distinguish the following roll-up cases:

– Single path roll-up: a view w can be derived from any of the views v1, . . . , vn, i.e.,
∃w, v1, . . . , vn such that w � vi and vi ⊀ vj for i, j = {1, . . . , n}

– Multiple path roll-up: a view w can be derived from the union of views v1∪· · ·∪vn
while deriving w from any single vi will be incomplete: ∃w, v1, . . . , vn such that
w � {vi, . . . , vn}, w ⊀ vi, and vi ⊀ vj for i, j = {1, . . . , n}

However, before selecting the views to materialize we should take into account implicit
triples since they are considered to be part of the graph.

4.4 RDF Entailment
Accounting for implicit triples in views is necessary for returning a complete answer.
The W3C RDF Recommendation (http://www.w3.org/RDF/) defines a number
of entailment patterns which lead to deriving implicit triples from RDF datasets. RDF
Schema (RDFS) entailment patterns are particularly interesting since RDFS encodes
the domain semantics.

Aggregate queries are designed to run only on available correct data; computing
the sum over a set of unknown values, for instance, would not yield any useful results.
Hence, in this paper we focus on deriving implicit information based on existing data
and specified semantics only. Deriving information unknown due to the Open World

Assumption or adding missing information using logical rules are orthogonal problems
that are difficult to solve in general [8] and therefore beyond the scope of this paper.

There are two main methods for processing queries when considering RDF entail-
ment. In the dataset saturation approach, all implicit triples are materialized and added
to the dataset. While requiring more space and complex maintenance, this method ben-
efits from applying plain query evaluation techniques to compute the answer. Query
reformulation, on the other hand, leaves the dataset unchanged but reformulates a query
to a union of queries and increases the overhead during query evaluation.

MARVEL uses the RDFS entailment regime during view materialization. The sys-
tem reformulates queries to materialize the complete answer of a view, which allows us
to leave a dataset unchanged but still account for implicit triples in query answers. Tak-
ing into account that the evaluation of the view query takes place once and the results
are reused for other queries, we believe that this overhead is justified.

4.5 MARVEL View Selection Algorithm
Given the open nature of SPARQL endpoints, we assume that all groupings in user
queries are equally likely. Algorithm 1 outlines the method for selecting materialized
views in MARVEL; the goal is to materialize N views with the maximum benefit, re-
gardless of their size.

Input: Set of views W , cube schema S, number of needed views N
Output: Selected views W

′

1 W
′
= ∅ -- set of selected views ;

2 while |W
′
| ≤ N do

3 RecalculateViewCosts(W) ;
4 {V ×B} = ∅ -- set of views together with the benefit ;
5 foreach view w ∈W do
6 {V ×B} = {V ×B}∪(w, CalculateBenefit(w)) ;

7 foreach {w1...wn} for which ∃v such that v � {w1...wn} (according to S) do
8 {V ×B} = {V ×B}∪ ({w1...wn}, CalculateBenefit({w1...wn})) ;

9 Select (set of) views w from {V ×B} for which Bw is MAX and |w| ≤ (N − |W
′
|);

10 W
′
=W

′
∪ w ; W =W \ w ;

11 return W
′

;

Algorithm 1: Algorithm for selecting views to materialize in MARVEL

Given all views as candidates, we start by assigning each view initial costs corre-
sponding to the size of the original dataset (line 3). View costs are recalculated in each
iteration to take previously selected view(s) into account. Then, we compute the benefit
of a candidate view for the cases when it is used to derive a full answer (single path
roll-up) to another view in the cube lattice (line 6). The benefit of the candidate view
is computed according to the cost model defined in Section 4.3. The same algorithm is
applied when a view should be computed from a set of views (multiple path roll-up –
line 8). In these cases, all the views in the set are considered together.

Having calculated the benefit of the views, the algorithm selects the view with the
maximum benefit and adds it to the set of views proposed for materialization. This
process is repeated until we have identified N views.

5 Query Rewriting in MARVEL
There are several aspects that complicate the problem of rewriting queries over SQL
aggregate views. First, in SPARQL a user query and a view definition may use different
variables to refer to the same entity. Thus, the query rewriting algorithms require vari-
able mapping to rewrite a query. A variable mapping maps elements of a triple pattern
in the BGP of the view to the same elements of a triple pattern in the BGP of the query.
Second, the algorithms need to match the new graph structure that is formed by the
CONSTRUCT query of the view to the graph patterns of the user query and possibly
aggregate and group these data anew. Third, complex and indirect hierarchies present
in RDF data complicate query rewriting and need to be taken into consideration.

The rewriting algorithms proposed in [9, 18] target conjunctive queries and do not
consider grouping and aggregation of data. Therefore, we built upon these algorithms
and developed an algorithm to rewrite aggregate queries that identifies the views which
may be used for query rewriting and selects the one with the least computational cost.

For ease of explanation, we split the algorithm used in MARVEL for aggregate
query rewriting using views into two parts: an algorithm for identifying the best view
for rewriting (Algorithm 2) and a query rewriting algorithm (Algorithm 3). In the
algorithms, we need to look for dimension roll-up paths (RUPs), i.e., path-shaped
joins of triple patterns of the form {(root, p1, o1), (s2, p2, o2), ..., (sn, pn, d)} where
root is the root of the BGP, px is a predicate from the set of hierarchy steps de-
fined for hierarchies in a cube schema, and triple patterns in the path are joined by
subject and object values, e.g., ox−1 = sx. We denote such a RUP as δpdim

(di)
where pdim is a predicate connecting the root variable to the first variable in the
roll-up path and di represents the last variable in the path. These algorithms use
γ(aggN) and γ(gN) to denote sets of triple patterns in the CONSTRUCT clause CnPtrn
{(s, pVC1, g1), . . . , (s, p

V
Cn, gn), (s, p

V
Cm, aggm), . . . , (s, pVCk, aggk)} describing the re-

sults of aggregation, e.g., (s, pVCx, aggx), and grouping, e.g., (s, pVCx, gx).
The first step in Algorithm 2 is to replace all literals and IRIs in the user

query with variables and corresponding FILTER statements (line 2): (?s, p,#o) →
(?s, p, ?o) . F ILTER(?o = #o). We do this to make graph patterns of views and
queries more compatible with each other, since the graph patterns in the aggregated
views should not contain literals. This may also potentially increase the number of can-
didate views since we may now use the views grouping by the hierarchy level of the
replaced literal and then apply restrictions imposed by the FILTER statement.

To make the user query and the view query more compatible, we rename all variable
names in the user query to the corresponding variable names in a view (line 4). We start
from the root variable and replace all occurrences of this variable name in the user query
with the name that is used in the view query. We then continue renaming variables that
are directly connected to the previously renamed variables. We continue until we have
renamed all corresponding variables in the user query.

Afterwards, for each dimension of the query graph pattern we define the appropriate
roll-up path that the candidate view should have (lines 5-6). This path depends on the
conditions (FILTER statements) and/or grouping related to the corresponding hierarchy
and is the minimum of both; we take the roll-up paths to variables in FILTER and
GROUP BY for the same dimension and keep only the triple patterns that are the same
in both – common RUP. For example, if the query groups by regions of a country but the

Input: Set of materialized views MV , query Q, data cube schema S
Output: Selected view w

1 W = ∅ -- Set of candidate views ;
2 Q = ReplaceLiteralsAndURI(Q) ;
3 foreach v ∈ MV do
4 Q = RenameV ariables(Q, v) ;
5 {dQ1 , . . . dQn } = FindMinimalRUP (Q) ;
6 {dv1 , . . . dvn} = FindMinimalRUP (v) ;
7 let {hlvl(d1)Q . . . hlvl(dn)Q} be a set of hierarchy levels of Q defined in S ;
8 let {hlvl(d1)v . . . hlvl(dm)v} be a set of hierarchy levels of v defined in S ;
9 aggQ = {ϕ(o1), ..., ϕ(on)} -- All aggregate expressions in Q ;

10 aggv = {ϕ(o1), ..., ϕ(om)} -- All aggregate expressions in v ;
11 if aggQ ⊆ aggv and ({hlvl(d1)Q . . . hlvl(dn)Q} � {hlvl(d1)v . . . hlvl(dm)v})

such that hlvl(di)Q � hlvl(di)v for all i then
12 W =W ∪ v;

13 return w ∈W with minimal costs ;

Algorithm 2: Algorithm for selecting a candidate view

FILTER statement restricts the returned values to only some cities (Region � City),
the required level of the hierarchy in the view should not be higher than the City level.

Then, we identify the hierarchy levels for all dimensions in the query and all dimen-
sions in a view and compare them. We check that the hierarchy levels of all dimensions
defined in the view do not exceed the needed hierarchy levels of the query and that the
set of aggregate expressions defined in a view may be used to compute the aggregations
defined in the query. The views complying with these conditions are added to the set
of candidate views (line 12). Out of these views we select one with the least cost for
answering the query (line 13).

Let us consider an example. Given the materialized view described in List-
ing 1.2 and the query of Listing 1.1, the system renames all variables in the
query to the corresponding variable names in the view (i.e. ?place → ?vCity;
?fact → ?obs; ?val → ?cons) and defines the roll-up paths for the dimensions
in the query (i.e. (?fact gol:refBuilding/org:siteAddress/vc:adr/vc:locality ?vCity)
and (?fact gol:reportDateTime ?date)). Note that the roll-up path in the Date di-
mension contains the Date level and not the Month level since the query groups
by dates. Then the system identifies the roll-up paths for the dimensions in the
view (i.e. (?fact gol:refBuilding/org:siteAddress/vc:adr/vc:locality ?vCity) and (?fact
gol:reportDateTime ?date)) and compares them. The system also identifies aggregation
expressions in the query and the view (?fact qb:observation/gol:utilityConsumption
?cons, (SUM(?cons) as ?value)). Since the view contains the same aggregate expres-
sion and all necessary dimensions and the hierarchy levels of the dimensions in the view
do not exceed those in the query, this view is added to the set of candidate views.

Given one of the collected views, MARVEL uses Algorithm 3 to rewrite a query.
For every dimension in the query we identify the common roll-up path in the query and
the view. In the rewritten query Q′, these triple patterns will be replaced by the triple
patterns from the CONSTRUCT clause of the view (γV (cV)). The remaining triple
patterns belonging to the dimensions (∆(dQ)) remain unchanged (lines 4-11).

Input: View v, query Q
Output: Rewritten query Q′

1 GP ′ = ∅; RD′ = ∅; GBD = varsQGRP ;
2 let ΦQ be assignment and constraint functions of Q ;
3 GBGP ′ = ∅; -- A graph pattern of GRAPH statement ;
4 qDims = {δp(dQ) . . . } -- Set of RUP in query Q ;
5 vDims = {δp(dv) . . . } -- Set of RUP in view v ;
6 foreach δp(dQ) ∈ qDims do
7 δp(c

Q) = δp(dQ) ∩ δp(dv) -- Common RUP in Q and v ;
8 ∆(dQ) = δp(d

Q) \ δp(cQ) -- Remaining part of a RUP (remaining triple patterns) in
Q after subtracting the part in common with v;

9 let γv(cv) be a triple pattern ∈ CnPtrn such that γv(cv) represents δp(cv) ;
10 GP ′ = GP ′ ∪∆(dQ); GBGP ′ = GBGP ′ ∪ γv(cv);
11 RD′ = RD′ ∪ {dQ};
12 aggQ = {ϕ(o1), ..., ϕ(on)} -- Aggregate expressions in Q over variables {o1 . . . on} ;
13 aggv = {ϕ(o1), ..., ϕ(om)} -- Aggregate expressions in v over variables {o1 . . . om} ;
14 foreach ϕQ(x) ∈ aggQ do
15 let γv(x) be a triple pattern ∈ CnPtrn such that γv(x) represents ϕv(x) ∈ aggv

and ϕv = ϕQ ;
16 GBGP ′ = GBGP ′ ∪ γv(x) ;
17 RD′ = RD′ ∪ {f ′(γv(x))} where f ′ is a rewrite of the aggregate function ϕ ;

18 GP ′ = GBGP ′ ∪GP ′ ∪ ΦQ);
19 Q′ = SELECT RD′ WHERE GP ′ GROUP BY GBD ;
20 return Q′ ;

Algorithm 3: Algorithm for query rewriting using a view

Afterwards, the algorithm compares the aggregate functions of the query and the
SELECT clause of the view and identifies those that are needed for rewriting. We add
the corresponding triple pattern from the CONSTRUCT clause and rewrite the aggregate
functions to account for the type of the function (algebraic or distributive) (lines 12-17).
GROUP BY and ORDER BY clauses do not change. Additionally, the triple patterns of
the CONSTRUCT clause will be placed inside the GRAPH statement of the SPARQL
query to account for the different storage of the view triple patterns (lines 10, 16, 18).
SELECT ?date ?vCity (SUM(?value) as ?aggValue)
FROM <http://data.gov.uk> FROM NAMED <http://data.gov.uk/matview1>
WHERE { GRAPH <http://data.gov.uk/matview1> { ?id gol:reportDate ?date;

gol:reportLocality ?vCity; gol:utilityConsumption ?value. }
?month skos:narrower ?date . ?month gol:value ?mVal .
FILTER (?mVal = 'September 2015') } GROUP BY ?date ?vCity

Listing 1.3: Rewritten query

Listing 1.3 shows the result of rewriting the query from Listing 1.1 using the view
from Listing 1.2. The algorithm identifies common roll-up paths for the two dimensions
in the view and in the query: ?fact gol:refBuilding/org:siteAddress/vc:adr/vc:locality
?vCity and ?fact gol:reportDateTime ?date. The system replaces these triple patterns
with the triple pattern from the CONSTRUCT clause and puts these replaced triple pat-
terns inside the GRAPH statement. The remaining triple patterns in the Date dimension
(?month skos:narrower ?date . and ?month gol:value ?mVal .) are added to the query

graph pattern outside the GRAPH statement. The aggregate function is rewritten; since
SUM is a distributive function, it is rewritten using the same aggregation (SUM). All
assignment and constraint functions (e.g., FILTER) are copied to the rewritten query.

6 Evaluation
To evaluate the performance gain for queries executed over materialized views against
the queries over the raw data, we implemented MARVEL using the .NET Framework
4.0 and the dotNetRDF (http://dotnetrdf.org/) API with Virtuoso v07.10.3207 as triple
store. The times reported in this section represent total response time, i.e., they include
query rewriting and query execution. All queries were executed 5 times following a
single warm-up run. The average runtime is reported for all queries. The triple store was
installed on a machine running 64-bit Ubuntu 14.04 LTS with CPU Intel(R) Core(TM)
i7-950, 24GB RAM, 600GB HDD.

6.1 Datasets and Queries

Unfortunately, none of the benchmarks for SPARQL queries are applicable to our setup.
Data generators for benchmarks produce a complete set of data; they do not have an
option to withhold some data and generate instead the implicit data that can be used to
derive the missing information. Furthermore, existing benchmarks either do not define
analytical SPARQL queries or do not require RDFS entailment to answer these queries.
Therefore, we decided to test our approach on 2 different datasets and adapt the data
generators and queries to our needs. All queries, schemas, and datasets are available at
http://extbi.cs.aau.dk/aggview.

LUBM [10] uses an ontology in the university domain. We decided to build our
data cube and corresponding queries on the information related to courses. Inspired
by [3], we defined 6 analytical SPARQL queries (using COUNT) involving grouping
over several classification dimensions. These queries compute the number of courses
offered by departments, number of courses taught by professors in each department,
number of graduate courses in each department, etc. The data cube schema is defined
in QB4OLAP, specifying 3 dimensions (Student, Staff, and Course), hierarchy levels,
and steps between the levels. In total, the schema contains 183 triples.

Student
Course Professor

lubm:worksFor
Department

lubm:teacherOf
lubm:takesCourse

lubm:offeringDepartmentType rdf:type

Fig. 2: Excerpt of an altered LUBM schema

We changed the data generator
to omit some information that re-
lates staff to courses. Instead, we
introduced information about the de-
partment that offers these courses
(lubm:offeringDepartment). In this case,
the roll-up path Course → Staff →
Department needs to be complemented by the roll-up path Course→ Department and
the aggregation of courses by Department cannot be answered by the results of the
aggregation by Staff. A simplified schema of the data structure is presented in Fig. 2.
We generated 3 datasets containing 30, 100, and 300 universities (4, 13.5 and 40M
triples). We applied Algorithm 1 to select a set of views providing a good performance
gain for answering user queries. The execution of the algorithm on a data cube lattice
with 60 nodes and known view sizes took 213 ms.

To choose which views to materialize, we ran MARVEL’s view selection algorithm
and measured (i) the total query response time for all queries in the cube using mate-
rialized views whenever possible and (ii) the total space these views require. The unit
in which we measured both space and time consumption is the number of triples. The
results for the first 25 views sorted by their benefit are presented in Fig. 4a. Based on
these results we decided to materialize the first 5 views where the benefit in total re-
sponse time for the views is good compared to the growth in space consumption for
storing these views. Selecting more views substantially increases the used space while
the total query time does not decrease significantly. Generating the views took 2:49,
8:38, and 18:47 minutes with 5, 15, and 33M triples in all views.

DateCustomerPart Supplier

MonthCityBrand City

YearNationCategory Nation

RegionManuf. Region

skos:broader
ss
b:
p_
ca
te
go
ry

ss
b:
s_
na
tio
n

qb:Observation

DiscountRevenuePrice Quantity

ssb:part ssb:customer ssb:date ssb:supplier

ssb:quantity

skos:broader skos:broader

skos:broader skos:broader skos:broader skos:broader

skos:broader skos:broader skos:broader skos:broader

ssb:revenue ssb:discountssb:price

Fig. 3: SSB Dataset in QB4OLAP
format

In our experiments we also used the
Star Schema Benchmark (SSB) [20], originally
designed for aggregate queries in relational
database systems. This benchmark is well-known
in the database community and was chosen for its
well-defined testbed and its simple design.

The data in the SSB benchmark represent
sales in a retail company; each transaction is de-
fined as an observation described by 4 dimen-
sions (Parts, Customers, Suppliers, and Dates).
We translated the data into the RDF multidi-
mensional representation (QB4OLAP) introduc-
ing incompleteness to this dataset as well, as il-
lustrated in Fig. 3. An observation is connected to dimensions (objects) via certain pred-
icates. Every connected dimension object is in turn defined as a path-shaped subgraph.
Hierarchies in dimensions are connected via the skos:broader predicate. Measures (rep-
resented as rectangles in Fig. 3) are directly connected to observations. We changed the
data generator to omit some information that relates suppliers to their corresponding
cities in the Supplier dimension (and parts to their brands in the Part dimension). In-
stead, we connected suppliers with missing city information directly to their respective
nations (ssb:s nation) and parts with missing brand information directly to the cate-
gories (ssb:p category). Thus, in the roll-up path Supplier→ City→ Nation→ Region
the City level is incomplete. The Part dimension is affected in the level Brand (Part→
Brand→ Category→Manufacturer). We used scaling factors 1 to 3 to obtain datasets
of different sizes (122 to 365M triples).

0

50M

100M

 0 5 10 15 20 25

T
ot

al
 T

im
e

T
ot

al
 S

pa
ce

Number of Views

LUBM Time
LUBM Space

(a) LUBM Dataset

0

50M

100M

150M

 0 5 10 15 20 25

T
ot

al
 T

im
e

T
ot

al
 S

pa
ce

Number of Views

SSB Time
SSB Space

(b) SSB Dataset

Fig. 4: Time and space vs number of views

SSB defines 13 classic
data warehouse queries that
are typical in business intel-
ligence scenarios. We con-
verted all 13 queries into
SPARQL. Then we applied
Algorithm 1 to select a set
of materialized views. The
execution of the algorithm
on a cube lattice with 500 nodes and known view sizes took 11.8 seconds. We then
conducted the same time and space analysis as described above (Fig. 4b). We identified

and materialized 6 views with the maximum benefit and stored these views in named
graphs. Generating the views took 20:42, 43:21, and 59:48 minutes with 104, 191 and
277M triples in all views.

6.2 Query Evaluation
LUBM Figure 5 shows the results of executing the LUBM queries for 3 scale factors –
queries with similar runtimes are grouped into separate graphs for better visualization.
For queries over raw data we materialized the implicit triples and saved them to the
dataset to avoid the entailment during query execution. Note that the performance gain
for queries over materialized views becomes more evident with the growth in the vol-
ume of data, due to the growing difference in their sizes. For scale factor 3 the execution
of the queries over materialized views is on average 3 times faster.

 0

 1

 2

 3

 4

30 Uni 100 Uni 300 Uni

T
im

e
(s

ec
)

Q2 Raw Data
Q2 View
Q4 Raw Data
Q4 View
Q5 Raw Data
Q5 View

(a) Queries 2, 5 and 4

 0

 10

 20

 30

 40

30 Uni 100 Uni 300 Uni

T
im

e
(s

ec
)

Q1 Raw Data
Q1 View
Q3 Raw Data
Q3 View
Q6 Raw Data
Q6 View

(b) Queries 1, 3 and 6

 0

 10

 20

 30

 40

30 Uni 100 Uni 300 Uni

T
im

e
(s

ec
)

W/O Entailment
With Entailment
Raw Data

(c) Entailment in views

Fig. 5: Execution times of LUBM queries over raw data and views

We also compared the performance of the queries over views that take implicit
triples into account and those that do not. Query 3 requests information on the number
of courses taken by research assistants whose advisors are professors. We materialized
2 views: one takes into account that all professor ranks are subclasses of the more gen-
eral class Professor and the other view does not. The execution of Query 3 over the view
with implicit information for scale factor 3 was 1.7 times faster than the execution over
the other view (Fig. 5c).
SSB Given the set of materialized views, MARVEL was able to rewrite 10 out of the
13 queries. The other 3 benchmark queries (Q1, Q2, and Q3) apply restrictions on
measures. Since the views group by dimensions and only store aggregates over the
measures, these queries cannot be evaluated on any aggregate view.

 0

 20

 40

 60

 80

SF 1 SF 2 SF 3

T
im

e
(s

ec
)

Q4
Q8
Q11
Q12
Q13

(a) SSB queries

 2

 4

 6

 8

SF 1 SF 2 SF 3

T
im

e
(s

ec
)

Q5
Q6
Q7
Q9
Q10

(b) SSB queries

 0

 20

 40

 60

 80

0% 30% 50%

T
im

e
(s

ec
)

Smallest View
Largest View
Raw Data

(c) Various incompleteness

Fig. 6: Execution times of SSB queries over raw data and views

Figure 6 shows the runtime of the queries evaluated on the original datasets and on
the views (dashed lines of the same colors indicate the execution times over views). Our
results for scale factor 3 show that evaluating queries using views is on average 5 times
faster (up to 18 times faster for Query 10). This can be explained by the decreased size
of the data and the availability of partial results.

We also compared the performance gain for queries over views with different levels
of incompleteness. For scale factor 3, we generated datasets with 0%, 30%, and 50%
levels of incompleteness and identified a set of views for every dataset. In each case,
the set of materialized views is different due to the difference in the size and the benefit
of the views. We then evaluated the execution of Query 4 over the raw data and over
the largest and the smallest view. The slight increase in the query execution time over
the raw data for incomplete datasets is caused by a rewriting of the query into a more
complex query. The results show that in all cases the evaluation of queries over views
is far more beneficial (on average 11 times more beneficial – Fig. 6c).

Additionally, we compared the performance gain of MARVEL to the approach in [3]
which materializes partial results of user queries to answer subsequent queries. We used
the original (non-modified) LUBM dataset containing approx. 100M triples, analytical
queries, and views introduced in the technical report of [3]. The execution times for the
queries over the original data and views are reported in Fig. 7. As shown in the figure,
MARVEL is on average more than twice as fast as partial result materialization [3].
This can be explained by the difference in the size of the data – partial results contain
identifiers for facts while our materialized views contain aggregated data only.

 0

 40

 80

 120

 160

Q
1 1

Q
1 2

Q
2 1

Q
2 2

Q
3 1

Q
3 2

Q
4 1

Q
4 2

Q
5 1

Q
5 2

Q
6 1

Q
6 2

T
im

e
(m

s)

View
Part.Res.
Raw Data

(a) Slice

 0

 50

 100

 150

Q1 Q2 Q3 Q4 Q5 Q6

T
im

e
(s

ec
)

View
Part.Res.
Raw Data

(b) Dice

 0

 50

 100

 150

 200

 250

Q1 Q2 Q3 Q4 Q5 Q6

T
im

e
(s

ec
)

View
Part.Res.
Raw Data

(c) Roll-up

Fig. 7: Comparison with results from [3]

In summary, the experimental results show that MARVEL accounts for RDF-
specific requirements and finds an appropriate set of views that provide a good balance
between the benefit of the views and their storage space. The rewriting algorithm of
MARVEL is able to rewrite analytical SPARQL queries based on a set of materialized
views. The experiments also show that evaluating queries over materialized views is on
average 3-11 times faster than evaluating the queries over raw data.

7 Conclusion and Future Work

In this paper, we have addressed the problem of selecting a set of aggregate RDF views
to materialize and proposed a cost model and techniques for choosing these views.
The selected materialized views account for implicit triples present in the dataset. The
paper also proposes a SPARQL syntax for defining RDF views and an algorithm for
rewriting user queries given a set of materialized RDF views. A comprehensive experi-
mental evaluation showed the efficiency and scalability of MARVEL resulting in 3-10
times speedup in query execution. In future work, we plan to investigate algorithms for
incrementally maintaining the materialized views in the presence of updates.

Acknowledgment This research is partially funded by the Erasmus Mundus Joint Doc-
torate in “Information Technologies for Business Intelligence – Doctoral College”.

References
1. A. Abelló, O. Romero, T.B. Pedersen, R. Berlanga, V. Nebot, M. Aramburu, and A. Simitsis.

Using semantic web technologies for exploratory OLAP: A survey. TKDE, 27(2):571–588,
2015.

2. S. Agrawal, S. Chaudhuri, and V.R. Narasayya. Automated selection of materialized views
and indexes in SQL databases. In VLDB, pages 496–505, 2000.

3. E. A. Azirani, F. Goasdoué, I. Manolescu, and A. Roatis. Efficient OLAP operations for
RDF analytics. In ICDE Workshops, pages 71–76, 2015.

4. R. Castillo, C. Rothe, and U. Leser. RDFMatView: Indexing RDF Data using Materialized
SPARQL queries. In SSWS, 2010.

5. D. Colazzo, F. Goasdoué, I. Manolescu, and A. Roatis. RDF analytics: lenses over semantic
graphs. In WWW, pages 467–478, 2014.

6. F. Darari, W. Nutt, G. Pirrò, and S. Razniewski. Completeness statements about RDF data
sources and their use for query answering. In ISWC, pages 66–83, 2013.

7. L. Etcheverry, A. Vaisman, and E. Zimányi. Modeling and querying data warehouses on the
semantic web using QB4OLAP. In DaWaK, pages 45–56, 2014.

8. L. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek. Fast rule mining in ontological knowl-
edge bases with AMIE+. VLDB J., 24(6):707–730, 2015.

9. F. Goasdoué, K. Karanasos, J. Leblay, and I. Manolescu. View selection in semantic web
databases. PVLDB, 5(2):97–108, 2011.

10. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base systems. J.
Web Sem., 3(2-3):158–182, 2005.

11. A. Gupta, V. Harinarayan, and D. Quass. Aggregate-Query Processing in Data Warehousing
Environments. In VLDB, pages 358–369, 1995.

12. S. Hagedorn, K. Hose, K-U. Sattler, and J. Umbrich. Resource Planning for SPARQL Query
Execution on Data Sharing Platforms. In COLD, 2014.

13. A. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–294, 2001.
14. V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes efficiently. In ACM

SIGMOD, volume 25, pages 205–216, 1996.
15. D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi. Towards exploratory OLAP over

linked open data - A case study. In BIRTE, pages 114–132, 2014.
16. D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi. Processing aggregate queries in a

federation of SPARQL endpoints. In ESWC, pages 269–285, 2015.
17. B. Kämpgen and A. Harth. No Size Fits All - Running the Star Schema Benchmark with

SPARQL and RDF Aggregate Views. In ESWC, pages 290–304, 2013.
18. W. Le, S. Duan, A. Kementsietsidis, F. Li, and M. Wang. Rewriting queries on SPARQL

views. In WWW, pages 655–664, 2011.
19. V. Nebot and R. Berlanga. Building data warehouses with semantic web data. DSS,

52(4):853–868, 2012.
20. P. O’Neil, E. J. O’Neil, and X. Chen. The star schema benchmark (SSB). Technical report,

UMass/Boston, June 2009.
21. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. In ISWC,

pages 30–43, 2006.
22. D. Srivastava, S. Dar, H. Jagadish, and A. Levy. Answering Queries with Aggregation Using

Views. In VLDB, pages 318–329, 1996.
23. D. Theodoratos, S. Ligoudistianos, and T.K. Sellis. View selection for designing the global

data warehouse. DKE, 39(3):219–240, 2001.
24. A. Vaisman and E. Zimányi. Data Warehouse Systems - Design and Implementation.

Springer, 2014.
25. WWW Consortium. SPARQL 1.1 Query Language (W3C Recommendation 21 March

2013). http://www.w3.org/TR/sparql11-query/.

