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Abstract. The process of classifying scholarly outputs is crucial to ensure 
timely access to knowledge. However, this process is typically carried out 
manually by expert editors, leading to high costs and slow throughput. In this 
paper we present Smart Topic Miner (STM), a novel solution which uses 
semantic web technologies to classify scholarly publications on the basis of a 
very large automatically generated ontology of research areas. STM was 
developed to support the Springer Nature Computer Science editorial team in 
classifying proceedings in the LNCS family. It analyses in real time a set of 
publications provided by an editor and produces a structured set of topics and a 
number of Springer Nature Classification tags, which best characterise the 
given input. In this paper we present the architecture of the system and report 
on an evaluation study conducted with a team of Springer Nature editors. The 
results of the evaluation, which showed that STM classifies publications with a 
high degree of accuracy, are very encouraging and as a result we are currently 
discussing the required next steps to ensure large-scale deployment within the 
company. 

Keywords: Scholarly Data, Ontology Learning, Bibliographic Data, Scholarly 
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1 Introduction 

The process of classifying and annotating scholarly publications is crucial to enable 
scholars, students, companies and other stakeholders to easily discover and access this 
knowledge. To facilitate this classification process, a number of scholarly ontologies 
(e.g., SWRC 1 , BIBO 2 , BiDO 3 , PROV-O 4 , AKT 5 , FABIO 6 ) and bibliographic 
repositories in the Linked Data Cloud [1, 2, 3] have been proposed in the past decade, 
while at the same time the major publishing companies are starting to adopt richer 
data models [4, 5]. 

                                                             
1 http://ontoware.org/swrc/ 
2 http://bibliontology.com 
3 http://purl.org/spar/bido 
4 https://www.w3.org/TR/prov-o/ 
5 http://www.aktors.org/publications/ontology 
6 http://purl.org/spar/fabio 



 

 

In this paper, we present Smart Topic Miner (STM), a novel application, developed 
in collaboration with Springer Nature (SN), which classifies scholarly publications 
according to an automatically generated ontology of research areas. 

STM analyses in real-time a collection of publications and returns a description of 
the given corpus in terms of i) a taxonomy of research topics drawn from a large 
scholarly ontology and ii) a set of Springer Nature Classification tags – see Figure 1. 
This information is then used for a variety of tasks such as: i) classifying proceedings 
in digital and physical libraries; ii) enhancing semantically the metadata associated 
with publications and consequently improving the discoverability of the proceedings 
in both the Springer digital library, SpringerLink, as well as third-party sites such as 
Amazon.com; iii) deciding where and when to market a specific book; and iv) 
detecting novel and promising research areas that may deserve more attention from 
the publisher.  

 

 
Figure 1. The STM interface.  

Traditionally, when classifying proceedings, editors choose a list of related terms 
and categories according to their own experience, a visual exploration of titles and 
abstracts, and, optionally, a list of keywords given by the curators or derived by calls 
for papers. However, this is a complex and time-consuming process and it is easy to 
miss the emergence of a new topic or assume that some topics are still popular when 
this is no longer the case. In addition, the keywords used in the call of papers are often 
a reflection of what a venue aspires to be, rather than the real contents of the 
proceedings. For these reasons, there is a real need for more objective and scalable 
methods for identifying the research areas relevant to a proceedings book.  

In this kind of scenario, it is critical for the editors to build confidence in the tool 
by being able to analyse the rationale behind the outcomes and understand why a 



 

 

certain research area or classification tag was chosen. Hence, we designed STM to 
produce intuitive explanations and to give the user full control over the granularity 
and nature of the topic characterization. Actually, one of the main advantages of 
adopting semantic web technologies is that they make it easier to generate a user-
friendly explanation, as discussed in section 2.3. Of course, the final decision of 
which topics and tags to associate with the proceedings still rests on SN editors. 

In this paper, we describe STM in terms of its knowledge bases, algorithm and user 
interface. We also report the outcome of an evaluation study performed with eight 
Springer Nature editors with expertise in a variety of different fields, as well as a 
coverage study on a set of 200 proceedings. Finally, we conclude by discussing the 
steps required for large-scale deployment of the technology within the company. 

2 Smart Topic Miner 

Smart Topic Miner (STM) was designed to automatically classify proceedings and 
more in general any collection of articles by tagging them with a number of research 
areas and SN classification labels. It can be used for supporting editors in classifying 
new books and for quickly annotating a large number of proceedings, thus creating a 
comprehensive knowledge base to assist the analysis of venues, journals and topic 
trends. In this paper, we focus on the classification/annotation task. 

STM can take as input either an XML file containing metadata about a publication 
or a ZIP including multiple XML files. Each XML file represents a paper in a 
proceedings volume published in the LNCS family of book series and contains title, 
abstract, the keywords provided by the authors, section title and book title. Springer 
books are thus usually represented as collections of XML files.  

STM analyses the publication metadata and returns: 
- A taxonomy (or optionally a plain list) of the most significant topics annotated 

with the number of relevant papers/chapters, structured according to an 
automatically generated ontology of research areas; 

- A taxonomy of Springer Nature Classification tags; 
- A number of analytics to allow the editors to further analyse the content of a 

proceedings volume, including the list of terms and topics associated to each 
paper; 

- Optionally, an explanation for each topic, in term of the keyword distributions 
that triggered the topic recognition. For instance, the Semantic Web may have 
been inferred as a research area for a book by recognizing terms such as 
“linked data”, “ontology matching”, and “semantic web services”.  

Figure 1 shows the main interface and how the tool classified the Springer Nature 
book “HCI International 2015 - Posters’ Extended Abstracts”. Figure 2 shows the 
STM architecture, which consists of four main components: 1) the user interface, 2) 
the parser, which elaborates the input files, 3) the back-end API, and 4) the 
knowledge bases. Every time the user uploads a file and submits it to the system using 
the GUI, the parser analyses the XML files and extracts the relevant metadata. This 
data are sent as a JSON file to the background API via a POST query. The API 
analyses the data and returns the results either as a JSON or HTML file, which is in 
turn visualized by the interface. The API and the parser are realized in PHP and save 



 

 

cached data in a MariaSQL 7  database, while the front-end uses HTML5 and 
Javascript. 
 

 
 

Figure 2. The STM architecture.  

In the next sections we will discuss the system in detail. In section 2.1 we will 
elaborate on the knowledge bases, in section 2.2 we will discuss the approach to infer 
research areas and Springer Nature Classification tags from the metadata and finally 
in section 2.3 we will describe the user interface and the options available to the users.  

2.1 Background data 

STM uses two knowledge sources: the Klink-2 Computer Science Ontology (CSO) 
and the Springer Nature Classification for Computer Science (SNC).  

CSO was created and subsequently updated every 6 months by applying the Klink-
2 algorithm [6] on the Rexplore dataset [7], which consists of about 16 million 
publications, mainly in the field of Computer Science. The Klink-2 algorithm 
combines semantic technologies, machine learning and knowledge from external 
sources (e.g., DBpedia, calls for papers, web pages) to automatically generate a fully 
populated ontology of research areas, which uses the Klink data model8. This model is 
an extension of the BIBO ontology9 which in turn builds on SKOS10. It includes three 
semantic relations: relatedEquivalent, which indicates that two topics can be treated 
as equivalent for the purpose of exploring research data – e.g., Ontology Matching 
and Ontology Mapping; skos:broaderGeneric, which indicates that a topic is a sub-
area of another one – e.g., Linked Data is considered a sub-area of Semantic Web; 
and contributesTo, which indicates that the research outputs of one topic significantly 
contribute to research into another. For instance, research in Ontology Engineering 
contributes to the Semantic Web, but arguably Ontology Engineering is not a sub-area 
of the Semantic Web – that is, there is plenty of research in Ontology Engineering 

                                                             
7 https://mariadb.org/ 
8 http://technologies.kmi.open.ac.uk/rexplore/ontologies/BiboExtension.owl 
9 http://purl.org/ontology/bibo/ 
10 http://www.w3.org/2004/02/skos/ 



 

 

outside the context of Semantic Web research. The current version of STM uses the 
first two relationships.  

An important characteristic of the CSO ontology is that it allows for a research 
topic to have multiple super-areas – i.e., the taxonomic structure is a graph rather than 
a tree. This is a very important difference with respect to other taxonomies of research 
areas notably because research topics often derive from multiple areas and can be 
categorized under a variety of fields. For example, it can be argued that a topic such 
as Inductive Logic Programming should be a sub-area of both Machine Learning and 
Logic Programming. Hence, a representation that forces a research area to be 
subsumed by only one other area fails to capture adequately the network of 
relationships between research topics.  

The current version of the CSO ontology comprises about 17k topics linked by 70k 
semantic relationships and includes 8 levels of granularity. The main root is the topic 
Computer Science, however CSO includes also a number of secondary roots, such as 
Geometry, Semantics, Linguistics and so on. STM uses CSO for a variety of tasks, 
including i) inferring a list of well-defined and human readable semantic topics from 
the very large distributions of terms extracted from publications, ii) supporting the 
set-covering algorithm, and iii) structuring the outcome as a taxonomy, in order to 
help the editors to understand the relationships between research areas. 

CSO presents two main advantages over the classic manually crafted 
categorizations used in Computer Science, such as the well-known 2012 ACM 
Classification11. Firstly, it is able to recognize a very large number of terms which do 
not appear in these other classifications. In fact, it is about seventeen times larger than 
ACM in terms of number of concepts and about seventy times larger in terms of 
number of relationships. For this reason, it is able to characterize higher-level 
research areas by means of hundreds of sub-topics and related terms, which allows 
STM to effectively map specific terms from research publications to higher-level 
research areas. Secondly, the ontology can be easily updated to include novel research 
areas simply by adding the most recent publications to the dataset and running Klink-
2 over again. Conversely, human crafted classifications cannot keep up with the 
evolution of the research domain and tend to age very quickly, especially in rapidly 
changing fields such as Computer Science. A more comprehensive discussion of the 
advantages of adopting an automatically generated ontology in the scholarly domain 
can be found in [6]. 

The Springer Nature Classification for Computer Science is a three level 
classification, containing 76 categories characterizing both research fields (e.g., 
I23001 – Computer Applications) and domains (e.g., I23028 - Computer App. In 
Social and Behavioral Sciences). It is an internal company classification, which is 
used in order to categorize proceedings, books, and journals. This helps to 
appropriately channel the contents. For instance, users browsing the Springer Nature 
website can retrieve all contents on Computer Science or its sub-disciplines. These 
codes are also used in the metadata describing the contents for third parties (libraries, 
bookshops). 

We integrated CSO and SNC by means of 349 relationships, so that every SNC tag 
is now associated to a set of related topics. For example, we mapped the systems and 

                                                             
11 http://www.acm.org/about/class/2012 



 

 

data security category to topics such as Cryptography, Security Of Data, Network 
Security, Computer Crime, Data Privacy and so on. 

The mapping was performed in three phases. First, we used Klink-2 to generate 
automatically a number of relatedEquivalent and skos:broaderGeneric relationships 
between the SN label and the topics. Then, we manually cleaned these links and 
created additional ones by analysing the 158 topics at the first two levels of the CSO 
ontology. Finally, these links were revised by a Springer editor with extensive 
experience in using SNC for classifying conference proceedings.  

 

 
Algorithm 1. The STM algorithm 

2.2 The STM Approach 

The STM approach for generating topics and tags associated to a set of publications 
consists of three phases: 
-Topic extraction, in which the metadata of the publications are analysed and each 
publication is mapped to a list of semantic topics in the CSO ontology; 
-Topic selection, in which a greedy set-covering algorithm is used to reduce the topics 
to a user-friendly number, usually 10-20; 
-Tag inference, in which the selected topics are used to infer a number of SNC tags, 
using the mapping between CSO ontology and SNC. 

Figure 3 illustrates the steps of STM for inferring significant topics. The first panel 
shows the keywords provided by the authors, the second one shows the set of 
enriched keywords that include also the keywords extracted from titles and abstracts, 
the third one shows the output taxonomy. 

In the next sections we will discuss the details of each step. 

2.2.1 Topic Extraction 
In the first step, STM extracts the title, the abstract, the list of keywords and the 
chapter name from the XML denoting each publication. It analyses the text and 



 

 

extracts frequent keyphrases and the terms that coincide with the topic labels in the 
CSO ontology. The publication ID is then associated to a set of keywords which 
include these terms, the original keywords, and optionally some keywords suggested 
by the editor. 
 

 
Figure 3. Example of author keywords, enriched keywords and topics from CSO.  

In this phase, the proceedings can also be represented as a distribution of 
keywords, as shown in the second panel of Figure 3. However, this representation is 
usually very noisy: many terms are redundant and consist of different labels for the 
same topics and the keyword distribution contains a long tail of terms associated with 
a single paper. The editors who tried STM (see section 3.1) usually considered this 
representation unfriendly and very time consuming to browse.  

For this reason, STM uses the CSO ontology to infer a list of semantic topics from 
these keywords. To do so it normalizes the terms, by eliminating plural, genitive 
forms and common affixes and postfixes [8], and then it identifies the terms with the 
same label as the ontology concepts and associates to each publication tagged with 
them also all the relevant super areas. For example, a publication associated with the 
term SPARQL will be tagged with higher-level topics such as RDF, Linked Data, 
Semantic Web, World Wide Web, and Computer Science. Finally, it generates the 
topic distribution of all input publications. 

The keywords for which it was not possible to find a related concept in the 
ontology are not included in the topic distribution, unless the user checks the “Include 
keywords not in the ontology” checkbox in the GUI (see section 2.3). 

The drawback of this method is that an erroneous semantic connection in the 
ontology can sometimes lead to inferring a wrong topic and the error will then be 
propagated to the higher-level topics. For example, if the ontology were to state that 
Genetic Algorithms is a sub area of Genetics, the resulting high-level topics may 
include Biology, even if the proceedings do not address Natural Sciences at all. 
Although Klink-2 is actually able to infer semantic relationships with very high 
precision (> 90%, see [6]), incorrect links may still be present. However, the 
probability of having multiple incorrect links to the same node is quite low and the 
probability of multiple errors regarding all nodes in the path to the roots is extremely 



 

 

low. We thus addressed this problem by discarding from the topic distribution any 
research area which is not supported by at least n direct sub-topics. This prevents 
isolated errors in the lower levels of the ontology from easily propagating to the upper 
nodes. However, as n grows, the result set becomes smaller, since many high-level 
topics may be discarded. Hence, in a realistic setting it makes sense to adopt either 
n=1, equivalent to switching off this functionality, or n=2, potentially sacrificing 
recall for precision. We labelled this functionality ‘robust mode’. Editors preferred 
n=2 as default, but they also have the option of turning it off in the user interface.  

The output of this process is a large set of topics associated with the relevant 
papers. 

2.2.2 Topic Selection 
The list of topics returned in the previous step is richer and more human-friendly than 
the term distribution, but in most cases will still suffer from prolixity, being composed 
of a very large number of topics. For this reason, we apply a greedy covering-set 
algorithm with the aim of selecting a smaller set of topics that could be easily handled 
by Springer Nature editors. 

Since we want a comprehensive representation of the corpus given as input, which 
will include both high level fields and very granular research areas, we run the 
algorithm separately on the set of topics at each level of the ontology. The level of a 
topic is computed as 1 + the shortest path from the Computer Science root to the topic 
in question. For example, high-level fields, such as Human Computer Interaction and 
Artificial Intelligence, are at level 2 in the ontology, while more specific areas, such 
as Gesture Recognition and Speech Analysis, are at level 4. The maximum number of 
topics to be selected at any level depends on the granularity preferred by the user (see 
Section 2.3). The keywords that were not mapped to the ontology are considered in a 
level of their own. 

The greedy covering-set algorithm assigns an initial weight equal to 1 to each 
paper, and at each iteration selects the topic which covered the publications with the 
highest total weight and reduces the weight of every covered paper (by a 0.5 factor in 
the prototype). 

We chose this solution because the simplest version of the greedy set-covering 
algorithm [9], which selects at each iteration the category which covers the largest 
number of uncovered items, did not work well in this domain. In fact, the proceedings 
of a conference tend to be related to a number of topics that are often at the 
intersection of two or more high level topics. For example, in a Semantic Web 
conference the topics Artificial Intelligence and Ontology will probably cover a very 
similar set of publications. Hence, an algorithm that simply selects the topic that 
covers the larger number of uncovered publications may discard one of them. In 
addition, when a prominent research area has multiple super topics, the algorithm may 
exclude all its super topics but one. Our implementation solves this problem, by 
allowing topics associated to already covered publications to be chosen when they 
appear in enough papers to be significant.  

The output of the set-covering algorithm depends on the maximum number of 
topics for each level and the robust mode factor, and can be further filtered by 
defining a minimum number of publications that a topic should cover to be taken into 
consideration. The user can control these settings by switching the ‘granularity level’ 
in the GUI between 1 and 5. Each granularity level is associated to a number of 
settings that will yield a more succinct or richer topic characterization. A granularity 



 

 

level of 1 will result in very few high level topics, while a granularity of 5 will result 
in a very long and comprehensive list of the topics in the proceedings. 

In some cases, an unusual input, such as a book with few chapters or associated 
keywords, may produce very few topics when using the normal granularity settings. 
For this reason, STM uses by default a mechanism for adjusting the settings to the 
input. It checks that the output meets some minimal requisites in terms of number of 
topics and number of covered publications and, if this is not the case, it automatically 
changes the granularity settings and re-runs the topic selection process. This modality 
can be disabled by changing manually the granularity or deselecting the ‘automatic 
settings’ checkbox in the user interface.  
 

The result of the summarization process can either be represented as a plain list or 
a taxonomy of topics. The second solution makes it easier to understand the context of 
each topic and why each topic was inferred; it is therefore used as default. In both 
cases the topics are associated to the number of papers they cover and, optionally, 
they are annotated with the weight computed by the set-covering algorithm. 

2.2.3 Tag inference 
In the final step, STM uses the mapping between the SNC and CSO to infer the SNC 
tags. It does so by inferring each tag that subsumes one of the selected topics 
according to the previously discussed mapping. For example, if the Cryptography 
topic was yielded by the previous step, STM will infer the tags ‘I15033 - Data 
Encryption’ (at the third level of SN Computer Science Classification), ‘I15009 - Data 
Structures, Cryptology and Information Theory’ (second level) and ‘I00001 - 
Computer Science, general’ (root). It then associates to each tag the total number of 
publications covered by the associated topics, so as to help the editor to assess how 
representative it is.  

2.3 User Interface 

Figure 1 shows the user interface of STM. Using the pane on the left, the user can 
upload the metadata, input some additional keywords and customise different settings, 
while the pane on the right displays the output of the process. 

The interface was iteratively improved according to the feedback of experienced 
Springer Nature editors. In particular, the editors explained that they need a flexible 
tool for investigating the proceedings and for producing different kinds of 
annotations, rather than an automatic pipeline for annotating books. Hence, STM 
offers two kinds of options: those for investigating the output and those for modifying 
it according to the editor’s needs. 

The   editors can control the outcome by changing the granularity of topics/tags, 
the metric used to order them (e.g., number of covered papers, the weight assigned by 
the set-covering algorithm) and the visualization style (tree list or plain list). The most 
used setting is the granularity value, which goes from 1 to 5 (default is 3) and, as 
discussed in section 2.2.2, allows users to choose how comprehensive should be the 
classification. It is mostly used to ‘zoom’ into the topic taxonomy, especially when 
the editor suspects that some significant topics may have been left out by the default 
visualization. In addition, the editors can choose to allow in the classification also 
frequent keywords that could not be mapped to the CSO ontology. This functionality 
allows STM to take in consideration also terms outside the Computer Science field or 
terms that are not strictly research areas, but may be important for assessing the 



 

 

content of a book, such as “commercial applications” or “empirical evaluation”. The 
output becomes noisier, but potentially more informative. 

The main tool for exploring a proceedings book and assessing the quality of the 
classification is the advanced analytics functionality, which shows 1) the title of each 
paper/chapter, 2) the list of keywords and the percentage of publications which are 
not covered by the produced classification, and 3) the title and ID of each paper and 
its associated list of keywords and topics. Figure 4 shows a detail of its output. The 
list of uncovered terms is particularly useful since it reveals how complete is the 
representation yielded by STM. The advanced analytics functionality is often used 
when editors find out that a topic that they would have normally assigned to a 
conference does not appear in the output. In many occasions, the resulting analysis 
lead to the discovery that a topic, which used to be prominent, was not so popular 
anymore in the conference under analysis or that some topics mentioned in the call for 
papers were almost absent in the proceedings. 

 

 

Figure 4. Fragment of the Advanced analytics section. 

Similarly, sometimes editors find some topics in the output that seem inconsistent 
with their previous experience of the conference and need a way to assess them. For 
this reason, we included the show explanation checkbox, which displays near each 
topic the full list of terms used to infer it and how many papers they cover. For 
example, this functionality could show that the topic Semantic Web was inferred 
because the system found the terms “linked data”, “semantic similarity”, “RDF” and 
so on. During the tests conducted in Springer Nature, the editors used often this 
functionality and in most cases they discovered that the proceedings actually 
contained a number of terms that suggested the emergence of that topic.  They were 
able to further confirm this intuition by examining the related papers with the 
advanced analytics functionality. In addition, the user can also inspect the full 
keyword distribution extracted from the text of the proceedings by checking the show 
input keyword distribution checkbox. 

Finally, the users can configure more complex settings by means of the ‘expert 
setting’ menu, which allows them to switch on and off: 1) the order of the topics 
according to the ontology level, 2) the text-mining from titles, abstracts and SN 
metadata, 3) the robust mode, 4) the automating setting, and 5) the suggestion of SNC  
tags. 



 

 

3 Evaluation 

3.1 User Study  

We conducted a qualitative study on STM to assess the quality of its output, the 
clarity of the explanations, the impact on the editor workflows and the usability of the 
user interface12. To this end, we organized individual sessions with eight experienced 
SN editors. We introduced STM and its main functionalities for about 15 minutes and 
then asked them to use the application for classifying a number of proceedings in their 
fields of expertize for about 45 minutes. Every session was recorded to further 
analyse their interactions with the GUI, as well as their reactions and feedbacks. After 
the hands-on session the editors filled a three-parts survey about their experience. The 
first part assessed the editor background and expertise, the second part included 8 
open questions, and the third part was a standard SUS questionnaire to assess the 
usability of the application. A demo version of STM used in this evaluation is 
available at http://rexplore.kmi.open.ac.uk/STM_demo. The reader can try it by using 
the ‘Example Springer Nature Proceedings’ option, which allows testing the 
application by using six default SN proceedings covering a variety of distinct fields.  

On average, the users had 13 years of experience as editors, with seven out of eight 
of them having at least 5 years. All of them stated to have extensive knowledge of the 
main topic classifications in their fields and seven an extensive knowledge of 
Springer Nature Classification. Four of them considered themselves also experts at 
working with digital proceedings. The expertise of the editors covered a variety of 
Computer Science topics, including but not limited to Theoretical Computer Science, 
Computer Networks, Software Engineering, HCI, AI, Bioinformatics, and Security. 
The open question survey consisted of five questions about the strengths and 
weaknesses of STM and three about the quality of the results. We will first summarize 
the answers to the first set of questions. 

Q1. How do you find the interaction with the STM interface? Five editors 
considered it “good and straightforward” to use, two of them found some minor 
issues, and one was neutral about it. The issues included the need to re-click the 
‘submit’ button every time the user changed a setting and the fact that the checkboxes 
did not have explanatory tooltips.  

Q2. How effectively did STM support you in classifying books/publications? 
Three editors stated that the application had an extremely positive effect on their 
work, commenting that it was “really effective”, “very good, it saved me lots of time” 
and “it helps a lot”. Four of them assessed it positively, stating it worked well for 
them and the result looked correct, and one was neutral. When asked to assess the 
accuracy of the results the estimates varied between 75% and 90%.  

Q3. What were the most useful features of STM? The most useful features 
included: the ability to produce taxonomies of semantic topics (7 editors), the 
mapping to the SNC tags (5), the ability to explore topics at different granularities (2) 
and the speed of the analysis (1). 

Q4. What are the main weaknesses of STM? The main issues suggested by the 
editors were: the scope is limited to the Computer Science field (2 editors), the 

                                                             
12 The data collected for the evaluation and the publication coverage study are available at 

http://technologies.kmi.open.ac.uk/rexplore/iswc2016/stm/. 



 

 

occasional noisy results when examining books with very few chapters/keywords (2), 
and the wrong capitalization of some topics (1). Two editors also commented that 
they would like to use STM on the full text of publications, while at the moment the 
system can only process SN metadata. 

Q5. Can you think of any additional features to be included in STM? The 
suggested features were: being able to produce analytics about the evolution of a 
venue or a journal in terms of significant topics (4 editors); allowing users to find the 
most significant proceedings for a certain topic (3); improving the SNC (1); and 
mapping the topic ontology also to the ACM classification (1). 
 

 
Figure 5. STM performance according to the editors (labelled 1-8). 

We mapped the three remaining questions on a 1 to 5 scale, where 1 is the most 
negative assessment and 5 the most positive. Figure 5 shows the quality of SNC tags 
and topics, the usability (according to the SUS statement “I thought the system was 
easy to use”), and the willingness of the users to use the application regularly for their 
work. These features obtained a similar average score: quality of SNC tags 4.0±0.8, 
quality of topics 3.9±0.8, usability 4.0±0.5, and willingness to use it regularly 
4.0±0.8. Interestingly, the quality of the topics was considered generally higher by the 
three editors working exclusively with proceedings (4.7±0.6).  

The SUS questionnaire confirmed the good opinion of the editors, scoring a 77/100 
(the average system scores a 68), which places STM in the 80% percentile rank in 
term of usability. 

3.2 Assessing Publication Coverage  

Editors need a topic summarization that is succinct but covers most of the 
publications. We thus performed a study about how the semantic topics produced by 
STM compare with keywords in terms of coverage.  

To this end, we selected a dataset of 200 SN proceedings and generated for each of 
them three sets of categories: 1) the keywords defined by the authors, originally 
associated with each publication, 2) the enriched set of keywords, which also included 
additional terms extracted from abstracts, titles, and SN metadata (as discussed in 



 

 

section 2.2.1), and 3) the semantic topics produced by STM. Then, for each 
proceedings book, we computed the average number of papers covered by each 
member of the first n-th category, using the three sets. We used the average coverage 
rather than the total coverage, since the latter grows monotonically with the number 
of descriptors and thus the top level categories (e.g., Computer Science), that often 
cover most of the papers, would obscure the more fine-grained ones.  
 
  1 2 3 4 5 10 20 30 
Author keywords 2.83 2.42 2.18 2.04 1.92 1.57 1.33 1.25 
Enrich. keywords 8.27 6.95 6.11 5.56 5.14 3.95 2.92 2.44 
Topics 25.26 21.08 18.83 17.19 15.93 12.03 8.62 6.93 

Table 1. Average number of papers covered by the first n descriptors.  

Table 1 shows the average result across the proceedings. The topics produced by 
STM performed significantly better than the enriched keywords (the Wilcoxon test for 
two correlated distributions yielded p<0.0007), which in turn outperformed the author 
keywords (p<0.0007). Hence, we can conclude that while extracting keywords from 
text allows for a more representative set of categories, adding semantic to this 
representation produces a much more complete set of categories. 

4 Plans for large scale deployment  

While the tool was very well received in Springer Nature, making it part of the daily 
workflow of the editors requires additional steps. Before outlining these, let us take a 
closer look at the context of the Computer Science proceedings in Springer Nature. 
Every year Springer Nature publishes about 1,200 proceedings volumes. Almost 800 
of these are published in Computer Science, more specifically in the Lecture Notes in 
Computer Science (LNCS) series family. This includes LNCS itself, its subseries 
Lecture Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics 
(LNBI), as well as more recently launched series, such as Lecture Notes in Business 
Information Processing (LNBIP), and Communications in Computer and Information 
Science (CCIS). Last but not least, there are also two series in cooperation with the 
IFIP and ICST/EAI societies (IFIP-AICT and LNICST, respectively). 

In order to deploy STM at such a large scale (classifying 800 proceedings/year) we 
have to connect STM with existing production systems. In an ideal case, STM could 
receive inputs already from the conference submission system used by the conference. 
This could happen during the preparation of the material for publication by the 
conference chairs. In practice, however, the diversity of the submission systems and 
the lack of commonly accepted standards used beyond the Semantic Web community 
makes it difficult to expect each of the existing conference management systems to 
adopt a standard for exporting the data about abstracts, titles, and keywords required 
by STM. Therefore, we are going to explore the integration of STM with the Springer 
Nature’s own submission system, OCS (Online Conference Service13). 

For the proceedings not using OCS, the data required for STM will be provided 
during the production process, after the metadata about individual papers have been 
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finalized and before the proceedings are published. Depending on how STM performs 
and the overall metadata strategy of Springer Nature, STM might be used for 
annotating already published contents (roughly 10,000 proceedings volumes). In 
combination with the data already available at the Springer LOD portal,14 this would 
allow editors to analyse the evolution of conference topics. 

We are also looking into how STM could be used to improve the existing Springer 
Nature Classification. One possible way of approaching this problem would be to set 
up periodic updates of the SNC based on the most recently published material. During 
such updates new categories could be added, corresponding to the emerging topics, 
while the categories corresponding to disappearing topics could be deprecated.  

Finally, we also plan to expand the scope of the research area ontology to fields 
other than Computer Science, to support the classification of books and proceedings 
in other domains as well. 

5 Related Work 

STM identifies research areas from a corpus of metadata by using an automatically 
generated ontology of topics. In this regard, it can be considered a classic name-entity 
linking approach. In particular, many historical approaches focus on linking entities to 
general knowledge bases, such as Wikipedia or DBpedia. For example, Mihalcea and 
Csomai [10] and Bunescu and Pasca [11], introduced some of the first approaches for 
mapping text to Wikipedia pages. Since then, we saw the creation of a number of 
systems for name-entity linking which exploited DBpedia or Wikipedia, including 
DBPedia Spotlight [12], Microsoft Entity Linking15, BabelFly [13], Illinois Wikifier 
[14], KORE [15], AGDISTIS [8] and many others. DBpedia Spotlight is also used by 
the Klink-2 [6], the algorithm which generated the CSO ontology, for linking 
keywords to DBpedia entities and informing the identification of semantic 
relationships between research topics. However, using directly DBpedia as source for 
research areas presents some issues, since the research fields taxonomy in DBpedia is 
quite coarse-grained: it does not contain some of the most recent or specific topics 
and lacks a number of links between them. Another alternative is the Machine Aided 
Indexer16, a rule-based document indexer that can map the full text of a document to a 
taxonomy of topics. However, this method requires the manual definition of a number 
of rules for the mapping. 

Similarly to STM, a number of methods for topic detection extract topics from a 
corpus of documents. The best-known technique is the Latent Dirichlet Allocation 
(LDA) [16], which considers each document as a distribution of topics and each topic 
as a distribution over words. This approach is applicable to any kind of documents 
and has been influential in the topic detection community in the last decade. For this 
reason, we saw the emergence of a number of solutions tailored to the scholarly 
domain. For example, He at al [17] introduced an approach which makes use of the 
citation graph while the Author-Conference-Topic (ACT) model used by AMiner [18] 
exploits also information about authors, conferences and journals. However, LDA and 
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similar methods are a good solution mainly in scenarios where a very large numbers 
of documents need to be classified, there is no good domain knowledge, fuzzy 
classification is acceptable and it is not important for users to understand the rationale 
of a classification or customise the output. None of these tenets apply to our case. 

A number of digital libraries (e.g., ACM, Springer Nature, Scopus17) and academic 
search engines (e.g., Microsoft Academic Search18) rely on taxonomies of topics for 
supporting the classification of research publications. STM uses a similar solution by 
adopting the CSO ontology. Indeed, ontologies of research topics have proved to be 
very useful to enrich semantically a number of analytics models [7], as well as 
supporting trend detection [19] and community detection [20, 21]. 

6 Conclusions 

In this paper, we have presented Smart Topic Miner, a novel Semantic Web 
application designed to assist Springer Nature editors in classifying conference 
proceedings. The evaluation, performed with a number of experienced Springer 
Nature editors, showed that STM produces accurate and useful results. In particular, 
the semantic model on which STM builds was considered very helpful since it allows 
the editors to obtain a more concise representation, which can be easily analysed. A 
key lesson learned during the STM development regards the critical value of 
producing human-friendly explanations and the value of an explicit semantic 
representation for supporting this task. 

We are planning to integrate the STM tool into Springer Nature workflows, in 
particular those used for publishing Computer Science proceedings. The use of such 
controlled topic vocabulary will improve discoverability and navigation of the 
contents of Springer Nature proceedings, as well as enable new applications. In 
addition, STM could be extended to indicate the emergence of new topics, as well as 
the fading of some traditional ones. Finally, we also plan to explore the possibility of 
using STM for directly supporting authors in defining the set of topics which best 
describe their paper.  
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