
Studying Metadata for better client-server
trade-offs in Linked Data publishing

Miel Vander Sande

Ghent University – iMinds
Sint-pietersnieuwstraat 41, B-9000 Ghent, Belgium

miel.vandersande@ugent.be

1 Problem statement
Since the introduction of the Semantic Web, querying Linked Data mostly utilizes
two types of interfaces: Linked Data documents, or the sparql protocol. However,
both do not cover the wide spectrum of possible use cases and their specific
requirements. Not only is the amount of public sparql endpoints is limited, they
also suffer from frequent downtime [6,15]. Predicting the consumption of com-
putational resources of an endpoint is hard, because of sparql’s expressiveness
and individual user demand. Linked Data documents are more predictable, but
querying based on traversing links is significantly slower and renders less com-
plete results. Unfortunately, both are very undesired for reliable user applications.
These issues above hint at a need for other client/server trade-offs.

Such trade-offs can be analyzed using Linked Data Fragments (ldf) [17], which
proposes an uniform view on all interfaces to rdf. A Linked Data Fragment is
characterized by a specific selector (e.g., subject uri, sparql query), metadata
(e.g., variable names, counts), and controls (e.g., links or uris to other fragments).
This reveals a complete spectrum between Linked Data documents and the sparql
protocol, in which we can advance the state-of-the-art of Linked Data publishing.
This spectrum can be explored in the following two dimensions: i) selector,
allowing different, more complex questions for the server; and ii) metadata,
extending the response with more information clients can use.

This work studies the second metadata dimension in a practical Web context.
Considering the conditions on the Web, this problem becomes three-fold. First,
analog to the Web itself, ldf interfaces should exist in a distributed, scalable
manner in order to succeed. Generating additional metadata introduces overhead
on the server, which influences the ability to scale towards multiple clients. Second,
the communication between client and server uses the http protocol. Modeling,
serialization, and compression determine the extra load the overall network traffic.
Third, with query execution on the client, novel approaches need to apply this
metadata intelligently to increase efficiency.

Concretely, this work defines and evaluates a series of transparent, interchange-
able, and discoverable interface features. We proposed Triple Pattern Fragments
(tpf) [17], a Linked Data interface with low server cost, as a fundamental base.
This interface uses a single triple pattern as selector. To explore this research
space, we append this interface with different metadata, starting with an esti-
mated number of total matching triples. By combining several tpfs, sparql



2 Miel Vander Sande et al.

queries are evaluated on the client-side, using the metadata for optimization.
Hence, we can study the impact of metadata on query execution time, bandwidth
overhead, caching effectiveness, and server overhead.

2 Relevancy
The problem described in the previous section is relevant for both Linked Data
consumption and publishing. Our approach specifically aims at introducing new
client-server trade-offs. Thereby, our approach directly increases the granularity
of engagement Linked Data publishers can take [13]. This ability to optimize
between cost and utility, installs a lower threshold for publishing queryable Linked
Data, ultimately leading to more available and easily consumable datasets.

In turn, this drastically increases reliability and strength of Linked Data based
client applications [12]. Current infrastructure, such as sparql endpoints or data
dumps, have proven to be insufficient to introduce major adoption in application
development. This work facilitates reliable and dynamic data services in various
domains, including eCommerce and public sector.

3 Related work
Many related works can be found in distributed databases [3] and hybrid query
shipping [5, 7], which is already a very mature area. However, these works use a
local dedicated network. Works that apply these techniques in a Web context
and to Linked Data, which have different restraints, are still limited.

The works that do use metadata for sparql query optimization, either apply
a centralized approach [11], or do not measure the process of metadata extraction
and shipping (e.g., federated query systems) [1, 8, 14]. This is because most
research considers the sparql specification a given,

Some work has been done on more specific types of metadata. Highly relevant is
the proposal to extend the ask query response [9] with a Bloom filter, representing
a combinations of bindings, i.e. two variables in a triple pattern, to improve
source selection in sparql query federation frameworks. However, the benefit in
a single-server setup is unclear.

4 Research question(s)
This work seeks an answer to the following main research question:

How do different types of fragment metadata affect the relation between interface
cost and utility with regard to client-side query execution?

In this respect, we also formulate the following subquestions for a series of
selected types:
– Can such all selected metadata be modeled in rdf so it can be reconstructed

on the client?
– How does out-of-band delivery of metadata, i.e. included in a separate http

resource, compare to in-band delivery, in terms of query execution time?



Metadata for better client-server trade-offs 3

– What is the added server memory and cpu cost in generating such metadata?
– How does the type of metadata impact the shipping cost between server and

client in a Web context?
– Can metadata decrease federated query execution time over multiple Linked

Data sources?
– Can hypermedia to other relevant interfaces increase recall for federated

queries?
– Can such metadata decrease the amount of http requests used by the

client-side query execution?

5 Hypotheses
In respect to the stated research questions, we formulate the following hypotheses:
– A client can reconstruct metadata described in a formalized vocabulary.
– Out-of-band delivery of metadata decreases query execution time compared

to in-band.
– Generating metadata introduces an insignificant server cost compared to the

total server cost.
– The metadata introduces a significant increase in shipping cost.
– Hypermedia can dynamically increase recall for queries federated of a Web

of Data.
– Metadata significantly reduces the amount of http request required by clients

to answer a query.

6 Preliminary results
In the previous years, we have already conducted research with cardinality [18]
and Approximate Membership metadata [16].

The results of the cardinality experiments indicate that, at the cost of increased
query times, executing queries over tpf reduces server usage. tpf servers cope
better with increasing numbers of clients than sparql endpoints. They have a
generally low and regular cpu load, accompanied by less variation in response
time. Furthermore, querying benefits strongly from regular http caching, which
can be added at any point in the network. These three facts validate that the
interface reduces the server-side cost to publish knowledge graphs. This is all the
more remarkable since, to allow comparisons with other work, these results were
obtained with an existing sparql benchmark that focuses on performance, not
server cost.

A second experiment validates that this behavior extends to real-world knowl-
edge graphs such as dbpedia. A vast majority of queries stays well below the 1
second limit, despite being affected by the knowledge graph size. We note a strong
influence of the type of query, especially when non-bgp sparql constructs are
involved.

A third experiment shows that, although more compact formats show a
decrease in query execution time, these findings no longer apply when responses
are compressed by gzip, commonly used within the http protocol. Also, the



4 Miel Vander Sande et al.

serialization and deserialization costs can be decisive, especially if they involve
relatively few triples—which is the case for typical page sizes (e.g., 100) of
a tpf interface. The experiment shows the importance of carefully considering
serializations. Even though removing or shortening metadata and control triples
would work for specialized tpf clients, the applicability of the application would
be narrowed.

In terms of Approximate Membership metadata (amfs), we augmented the
tpf interface with both Bloom filters and Golomb-coded sets, which are two
types of Approximate Membership Filters. We aimed at reducing http requests
by avoiding expensive triple membership checks, since for one third of a set of
diverse query types, most of the request overhead are membership subqueries.
At the expense of one extra request to fetch the approximate membership
metadata, potentially many more could be saved. Indeed, the experimental results
confirm a drastic decrease in requests for half of the 250 randomly generated
WatDiv [2] queries, while others experience little overhead thanks to local caching.
Furthermore, this addition does not affect the low-cost nature of the server, which
only has a limited load increase. However, there is a computational overhead on
the client for queries that are not improved. An intelligent client should minimize
this, by deciding when to use membership metadata based on the query type.

Despite the reduction of requests, the total execution time is higher on average
because of long delays introduced to generate amfs. Therefore, we conclude that
this metadata is not suitable for real-time computation. We therefore recommend
to pre-compute or pre-cache it in advance. A strong benefit of http caching has
been proven for tpf querying [17] due to the limited possible number of requests,
and this mechanism can be applied efficiently to tpfs with augmented metadata.
While Bloom filters are preferred for lower computation time, the smaller size
of Golomb-coded sets would prevail in the presence of caching. To prevent the
overhead of generating and transferring amfs, they could be served in a separate
resource that clients explicitly request when needed.

7 Approach
Our approach defines a series of transparent, interchangeable, and discoverable
interface features. These feature supply informative metadata, and can be ignored
by the client if not needed. This process in split into five sequential steps, which
are studied in this work: selecting, generating, modeling, shipping and consuming.
The complete setup is illustrated in Figure 1.

7.1 Selecting metadata

This first step identifies candidate types to include in this work, originating
from an extensive literature study (as briefly mentioned in Section 3). Good
candidates are usable in the context of i) the RDF format, and ii) the Web, i.e.
they are resistant to the delays, protocols and serializations. Thus, given these
restrictions, we conduct a feature-based analysis to assess existing and novel
metadata techniques for query optimization. For each selected metadata type,
we compose a new interface based on the Triple Pattern Fragments interface.



Metadata for better client-server trade-offs 5

Client

(5) Consuming

Server

SPARQL
Query

Results
(3) M

odeling

(2) G
enerating

Linked 
Data
Source

(4) Shipping

HTTP

(1) Selecting

Request Fragment

Response 
Fragment + Metadata

Query 
Algorithm

Fig. 1: Complete setup with 5 sequential steps that are subject to research.

As a primary focus, we selected four metadata types:
1. cardinality: the amount of triple patterns matches
2. membership: a compact representation of the set of matches
3. summary: a compact representation of the complete dataset
4. discovery: a set of links, i.e. hypermedia, to navigate to similar interfaces

to retrieve more relevant data
However, future research may uncover new interesting types or variations that
can be included in this research.

7.2 Generating metadata

Next, we study the methods that extract the necessary metadata. Important
here is the introduced overhead on the server, which directly impacts the cost of
hosting such interface reliably. Therefore, any extraction process should minimize
its average cpu usage, relative to the overall cpu usage.

Accordingly, we propose evaluating the following algorithms to construct
specific metadata from a existing knowledge base:
1. constructing a Approximate Membership filter (e.g., Bloom filter) from a

fragment
2. profiling and summarizing an rdf dataset
3. triple pattern cardinality estimation
4. a summary index for constructing relevant hyperlinks to other interfaces.

7.3 Modeling metadata

To ensure the scalability of our approach in the distributed Web environment,
we aim at loose coupling between client and server. Therefore, the notion of a
self-descriptive interface is key. An rdf description on how the client should
interpret the metadata is included in the server’s response. Specifically, this
is modeled using the Hydra core vocabulary from the Hydra wc Community
Group, augmented with void, a novel vocabulary for Approximate Membership
Filters1, and an adjusted data summary vocabulary loosely based on void.
1 http://semweb.datasciencelab.be/ns/membership#



6 Miel Vander Sande et al.

7.4 Shipping metadata
On the Web, shipping (meta)data from server to client, is subject to its charac-
teristics: the http protocol, the available network bandwidth, and the resource-
oriented design.

Therefore, we study techniques that improve the effects of different metadata
on caching and response size. The former determines how metadata should be
embedded in the request-response cycle. For example, considering a single request,
is the metadata supplied in-band or as a separate resource? The latter dictates
download speeds, thus requires optimal serialization or compression.

7.5 Consuming metadata
Finally, we introduce techniques to improve client-side query execution using the
metadata, provided by the interface. Improvements are made by i) lowering the
number of required http requests to solve a query; ii) improving the recall of
query results by applying automatic dataset discovery.

8 Evaluation plan
The evaluation of our approach is specific to the task that a client needs to
perform, i.e., the use case. For this work, we evaluate in context of client-side
sparql querying, which is selected as main use case. Therefore, we rely on a few
established query mixes for sparql endpoint testing:
1. the Berlin benchmark [4], for fair comparison with existing single-machine

systems
2. the WatDiv benchmark [2], for in-depth analysis of the performance of specific

query patterns
3. the DBpedia benchmark [10], for real-world scenarios
4. the FedBench benchmark, for measuring to what extend hypermedia can

increase the recall of federated queries
We implement the aforementioned interfaces by extending the existing NodeJS

server2. Also, we extend the NodeJS query client3 to automatically discover all
metadata and adjust the query execution accordingly.

Next, we have built a benchmarking tool that measures the following:
1. total query execution time
2. time to first result
3. response size
4. the number of http requests
5. individual and average request duration
6. cpu and memory usage on both client and server

With this tool, we run all three query mixes in several iterations on datasets
with different sizes and various http cache setups. Results are compared against
the tpf baseline (cardinality metadata) to assess the improvement, and against
state-of-the-art sparql query systems.
2 http://github.com/LinkedDataFragments/Server.js
3 http://github.com/LinkedDataFragments/Client.js



Metadata for better client-server trade-offs 7

9 Reflections
The practical aspects of Linked Data querying have been understudied so far.
Focus has been on query execution time, precision and recall, while the feasibility
of most of sparql and Linked Data query approaches is questionable. A Web
context introduces many important characteristics, restrictions and opportunities,
which are not mentioned or evaluated. As a result, we have not seen a widespread
adoption of queryable Linked Data sources yet, or applications that rely on them.

LODstats (http://stats.lod2.eu/) counts 9960 Linked Datasets, of which
only 187 endpoints exist error-free, which is only 0.02%. According to the more
modern SPARQLES (http://sparqles.ai.wu.ac.at/), there are currently 535
endpoints, with currently only 44.67% with sufficient availability. Note that,
although the number of endpoints has tripled since 2011, the availability rate
has not improved. A recent count from LODLaundromat (http://lodlaundromat.
org/wardrobe/), indicates that around 658,018 Linked Datasets exist, each of
which is available as a Triple Pattern Fragments interface [13]. Thus, we can only
conclude that relative number of endpoints is decreasing steadily, whereas the
number of Triple Pattern Fragments interfaces is keeping up. This makes research
for such lightweight interfaces important. The essence is that, by enabling more
nuance and demanding less from servers, you can get more done with Linked
Data.

References
1. Acosta, M., Vidal, M.E., Lampo, T., Castillo, J., Ruckhaus, E.: anapsid: An adap-

tive query processing engine for sparql endpoints. In: Proceedings of the 10th In-
ternational Conference on The Semantic Web. pp. 18–34. ISWC’11, Springer-Verlag,
Berlin, Heidelberg (2011), http://dl.acm.org/citation.cfm?id=2063016.2063019

2. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: The Semantic Web – ISWC 2014:
13th International Semantic Web Conference, Riva del Garda, Italy, October
19-23, 2014. Proceedings, Part I, chap. Diversified Stress Testing of RDF Data
Management Systems, pp. 197–212. Springer International Publishing, Cham (2014),
http://dx.doi.org/10.1007/978-3-319-11964-9_13

3. Bernstein, P.A., Goodman, N., Wong, E., Reeve, C.L., Rothnie Jr, J.B.: Query
processing in a system for distributed databases (sdd-1). ACM Transactions on
Database Systems (TODS) 6(4), 602–625 (1981)

4. Bizer, C., Schultz, A.: Benchmarking the performance of storage systems that
expose sparql endpoints. World Wide Web Internet And Web Information Systems
(2008)

5. Bowman, I.T.: Hybrid shipping architectures: A survey. University of Waterloo
February (2001)

6. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: sparql Web-
querying infrastructure: Ready for action? In: 12th International Semantic Web
Conference (Nov 2013)

7. Franklin, M.J., Jónsson, B.T., Kossmann, D.: Performance tradeoffs for client-server
query processing. In: ACM SIGMOD Record. vol. 25, pp. 149–160. ACM (1996)

8. Görlitz, O., Staab, S.: splendid: sparql endpoint federation exploiting void de-
scriptions. In: Proceedings of the 2nd International Workshop on Consuming Linked
Data. Bonn, Germany (2011), http://uni-koblenz.de/~goerlitz/publications/

GoerlitzAndStaab_COLD2011.pdf

http://stats.lod2.eu/
http://sparqles.ai.wu.ac.at/
http://lodlaundromat.org/wardrobe/
http://lodlaundromat.org/wardrobe/
http://dl.acm.org/citation.cfm?id=2063016.2063019
http://dx.doi.org/10.1007/978-3-319-11964-9_13
http://uni-koblenz.de/~goerlitz/publications/GoerlitzAndStaab_COLD2011.pdf
http://uni-koblenz.de/~goerlitz/publications/GoerlitzAndStaab_COLD2011.pdf


8 Miel Vander Sande et al.

9. Hose, K., Schenkel, R.: Towards benefit-based rdf source selection for sparql
queries. Proc. of the 4th International Workshop on Semantic Web Information
Management pp. 1–8 (2012)

10. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.C.: Dbpedia sparql
benchmark–performance assessment with real queries on real data. The Semantic
Web–ISWC 2011 pp. 454–469 (2011)

11. Neumann, T., Weikum, G.: x-rdf-3x: Fast querying, high update rates, and
consistency for rdf databases. In: Proceedings of the International Conference on
Very Large Data Bases. vol. 3, pp. 256–263. VLDB Endowment (Sep 2010)

12. Rietveld, L., Beek, W., Schlobach, S.: Lod lab: Experiments at lod scale. In: The
Semantic Web-ISWC 2015, pp. 339–355. Springer (2015)

13. Rietveld, L., Verborgh, R., Beek, W., Vander Sande, M., Schlobach, S.: Linked
data-as-a-service: The Semantic Web redeployed. In: Proceedings of the 12th
Extended Semantic Web Conference (Jun 2015), http://linkeddatafragments.org/
publications/eswc2015-lodl.pdf

14. Saleem, M., Khan, Y., Hasnain, A., Ermilov, I., Ngonga Ngomo, A.C.: A fine-grained
evaluation of sparql endpoint federation systems. Semantic Web Journal (2014),
http://svn.aksw.org/papers/2014/fedeval-swj/public.pdf

15. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: International Semantic Web Conference,
pp. 245–260 (2014)

16. Vander Sande, M., Verborgh, R., Van Herwegen, J., Mannens, E., Van de Walle, R.:
Opportunistic Linked Data querying through approximate membership metadata.
In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas,
K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) The
Semantic Web – ISWC 2015. Lecture Notes in Computer Science, vol. 9366, pp. 92–
110. Springer (Oct 2015), http://linkeddatafragments.org/publications/iswc2015-
amf.pdf

17. Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L., Van-
der Sande, M., Cyganiak, R., Colpaert, P., Mannens, E., Van de Walle, R.: Querying
datasets on the Web with high availability. In: Mika, P., Tudorache, T., Bernstein,
A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble,
C. (eds.) Proceedings of the 13th International Semantic Web Conference. Lecture
Notes in Computer Science, vol. 8796, pp. 180–196. Springer (Oct 2014)

18. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L.,
De Meester, B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: a low-
cost knowledge graph interface for the Web. Journal of Web Semantics 37–38,
184–206 (2016), http://linkeddatafragments.org/publications/jws2016.pdf

http://linkeddatafragments.org/publications/eswc2015-lodl.pdf
http://linkeddatafragments.org/publications/eswc2015-lodl.pdf
http://svn.aksw.org/papers/2014/fedeval-swj/public.pdf
http://linkeddatafragments.org/publications/iswc2015-amf.pdf
http://linkeddatafragments.org/publications/iswc2015-amf.pdf
http://linkeddatafragments.org/publications/jws2016.pdf

	Studying Metadata for better client-server trade-offs in Linked Data publishing

