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Abstract. Linked data has the potential of interconnecting data from different 

domains, bringing new potentials to machine agents to provide better services 

for web users. The ever increasing amount of linked data in government open 

data, social linked data, linked medical and patients’ data provides new oppor-

tunities for data mining and machine learning. Both are however strongly de-

pendent on the selection of high quality data features to achieve good results. In 

this work we present an approach that uses ontological knowledge to generate 

features that are suitable for building a decision tree classifier addressing the 

specific data set and classification problem. The approach that we present has 

two main characteristics - it generates new features on demand as required by 

the induction algorithm and uses ontological knowledge about linked data to re-

strict the set of possible options. These two characteristics enable the induction 

algorithm to look for features that might be connected through many entities in 

the linked data enabling the generation of cross-domain explanation models. 

1 Introduction 

Humans can apply knowledge from one situation to another where concepts with 

similar properties occur. For example, the similarity of cold and flu as diseases is 

known to humans and when decision about the treatment of these diseases is made, 

they know that the knowledge about the one can be reused on the other because they 

have similar causes and treatment that mainly mitigates symptoms like pain or fever. 

Machine learning (ML) algorithms for classification on the other hand don’t auto-

matically explore possible relationships between properties of different instances to 

build better models. While it is possible to identify correlation of particular data fea-

tures to the class prior to the execution of the ML algorithm, the algorithms don’t 

attempt to generate better features during model induction.    

For example, if the training data of ML algorithm contains data of two patients that 

were treated with paracetamol, the one because he had flu and the other because he 

had cold – the relationship between the common symptoms and treatment, will remain 

undiscovered in the induced model. One reason for this is that ML techniques are 

typically applied on data, where the attributes are preselected and their values are 

considered simple types (e.g. the attribute disease and it’s values cold and flu).  



The training data for the ML algorithms is typically prepared manually by the user 

through three steps: data selection, data preprocessing and data transformation. In the 

first two steps the data instances for learning are selected, cleaned and formatted in 

the format required for the ML algorithms. In the last step the features (data attrib-

utes) used in the ML algorithm are selected and/or generated through scaling, decom-

position or aggregation of existing features. Back to our example, a user of ML algo-

rithm might expand the feature disease in the data set with the associated feature 

symptoms in order to achieve better prediction model and capture the “hidden” cau-

sality of treating symptoms with paracetamol instead of treating diseases.  

 The relationships between the features and their values such as between cold and 

flu and their symptoms is however frequently available in ontologies. This leads to the 

central idea of the work – to use existing ontological relationships between concepts 

to generate new features that improve the quality of the induced ML model. 

This work is structured as follows: In the next section a formal representation of 

the problem is introduced, followed by an overview of the approach in section 3. Af-

terwards in section 4 we discuss the relevancy of the problem and what benefits 

would the approach bring. Section 5 presents the related work and differentiates the 

problem and our solution from the existing ones. In section 6 we present the research 

questions we plan to address and hypotheses we have. In section 7 the evaluation plan 

is presented followed by reflections in section 8 that conclude this work. 

2 Problem Statement 

To investigate the problem of using external ontological knowledge on the attributes 

and their values, we consider a classical supervised learning problem where we have a 

training set 𝑆 of 𝑁 training examples of the form {(𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁)} such that 𝑥𝑖 is 

the feature vector of the 𝑖 − 𝑡ℎ example, described by set of discrete features 𝑋,  and 

𝑦𝑖  is its discrete class label (i.e., class).  

In classical supervised learning the feature vectors 𝑥𝑖 are of the form [𝑓1, 𝑓2, … , 𝑓𝑛], 
where the features are either binary (i.e.,𝑓𝑖 ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}), numerical (i.e.,  𝑓𝑖 ∈  ℝ), 

or nominal (i.e.,  𝑓𝑖 ∈ 𝑆𝑌𝑀, 𝑤ℎ𝑒𝑟𝑒 𝑆𝑌𝑀 𝑖𝑠 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑦𝑚𝑏𝑜𝑙𝑠). The goal is to 

produce a model y = f(x) from the 𝑁 training examples, so that it will predict the clas-

ses y of future unknown examples x with high accuracy. The function f(x) may also 

contain logical operations between the attributes. For the rest of the work we use the 

notation 𝑣𝑖𝑗  to represent the value of feature 𝑓𝑗 of the 𝑖 − 𝑡ℎ instance. 

In this work, we consider a scenario where 𝑓𝑗 is concept in the ontology and its fea-

ture values are vertices in a linked data graph (e.g. SWRC Ontology [1] and the AIFB 

Dataset [2]). Linked data graph is a directed multigraph represented in the form G=
{𝑉, 𝐸} and is built of set of triples in the form {(s, p, o)}, where the subject 𝑠 ∈ 𝑉 is an 

entity, the predicate 𝑝 denotes a property, and the object 𝑜 ∈ 𝑉 is either another entity 

or literal. Each edge 𝑒 ∈ 𝐸 in the graph is defined by a triple (s, p, o).  

 So for example the concept Employee might have the property birth date which is 

connected to a literal of type Date, but it might also have a relationship to another 

concept Project, which connects the concept Person to the project he/she is working 



at. The ML task might be to train a classifier on existing linked data in order to find 

out suitable affiliation for new employees. The linked data and ontology graphs pro-

vide useful information for the model learning. For example, in the affiliation predic-

tion task it might be the conferences at which the employee has published papers.  

Finding suitable features for building a good classification model poses a difficult 

problem because a good feature might be referenced through many other types of 

concepts. For example, for the task of assigning a social network user to a particular 

group, a good feature might be the religious view of the front man of the music group 

liked by the user. This information is however 3 hops away from the origin user ver-

tex in the linked data graph. Furthermore, in other classification problems the features 

providing good data predictions might be much further away than 3 hops. Not know-

ing the depth to which to explore the RDF graph causes further problems:  

 The number of features to consider, grows exponentially with every hop away 

from the origin.  

 A suitable halting criteria is required so that the approach doesn’t search indefinite-

ly throughout the ontology and linked data graph. 

 Evaluating features with the entire set 𝑆 might be too computationally expensive. 

3 Approach 

In this section we present an approach that is capable of generating new features from 

linked data and associated ontology during the induction of a decision tree. In deci-

sion tree induction, a feature 𝑓𝑥 is said to be better than another 𝑓𝑦, if by splitting on 

its values the impurity (entropy) of the dataset is reduced more than if the split would 

be executed on the feature 𝑓𝑦. The entropy reduction is known as information gain 

(IG), and measures the information gained by separating on а feature in bits. IG is 

only one possible split evaluation function - to denote split evaluation functions in 

general we use 𝐺(. ). Since the values of 𝑓𝑥 are vertices in the linked data graph G, our 

goal is to find related features that have higher value of G(.) than the original feature. 

To explore the related features, we expand the original features (concepts in the on-

tology graph) with related concepts connected through outgoing properties and add 

these new featureс to the feature vector (cf. Fig. 1). Doing this for all connected fea-

tures repeatedly, would eventually lead to exponentially growing number of options 

that should be evaluated. This requires heuristics that can restrict the number of pos-

sible features. The solution we propose is to consider only entities that are semantical-

ly related to the origin over some threshold value. 

Semantic relatedness calculation in ontologies hasn’t been widely studied and only 

few works exist. Mazuel et al. [3] calculate the semantic relatedness between ontolog-

ical concepts pair only on semantic correct paths as defined in [4]. Therefore in our 

work we expand features from the origin feature in a breadth first search (BFS) man-

ner considering the rules for semantically correct paths defined by Hirst & St-Onge 

[4]. The authors associate a direction in Upward(U), Downward(D) and Horizon-

tal(H) for each property type and give three rules to define a semantically correct path 



in terms of the three directions. Finally, Hirst & St-Onge enumerate 8 patterns of 

semantically-correct paths which match their three rules: {U, UD, UH, UHD, D, DH, 

HD, H}. Only concepts on outgoing paths from the origin entity conforming to these 

patterns are considered as possible features in the further process. 
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Fig. 1. Feature Generation using SWRC Ontology 

Another problem we are addressing is the selection of suitable sized subset, as 

searching with the entire dataset might be impossible if the dataset is too large. To 

address this issue we propose the application of a statistical technique called Hoeffd-

ing bound [5] used in a streaming algorithm for decision tree induction [6]. As ex-

tending each value of feature 𝑓𝑥 and calculating the resulting split value with the func-

tion G(.) for each related feature would be to expensive, we propose the use of the 

Hoeffding bound to select how much instances are enough to make the decision 

whether an entity should be expanded or not (i.e. expand to connected features).  

To present the Hoeffding bound, consider a real-valued random variable r whose 

range is R. Suppose we have made 𝑛 independent observations of this variable, and 

computed their mean �̅�. The Hoeffding bound states that, with probability 1 − δ  , the 

true mean of the variable is at least �̅�−∈, where  

 ∈= √𝑅2ln (
1

𝛿
)

2𝑛
 (1) 

In our work similar to [6], we use the Hoeffding bound to find lowest possible val-

ue for G(.) with the considered number of instances and probability 1 − δ. While the 

Hoeffding bound in [6] is used to select between two possible features in our work we 

use it to make the decision whether the algorithm should expand the feature search 

one hop further away from the origin in the ontology graph. This decision is made 

based on two further parameters specified by the user: ER represents the expected 

entropy reduction represented in percent and DF(.), which is a decreasing function 

calculated based on ER and the number hops from the origin (NH). Basically the de-

cision to expand the search a hop further is made in case that there are no features in 

the current depth that fulfil the expectations set by DF. The DF function is decreasing 

so that the expectations on the new features are lowered with increasing number of 

hops and the algorithm terminates. Setting high ER expectations and slowly decreas-

ing DF function would eventually lead to much deeper exploration of the graph.  

Before expanding to related concepts, it should be however ensured that a good es-

timate of the G(.) of the currently available features has been calculated. We do that 

by checking if the value of ∈ is smaller than a user defined threshold value 𝜎. If this 



condition is fulfilled this means that the induction algorithm has collected enough 

samples for a good estimate of G(.), but the best feature in the current hop is just not 

suitable for the classification problem. In that case, we expand all the features one hop 

further. To present the modifications we’ve made on the Hoeffding tree algorithm [6] 

(cf. Table 1), we further introduce the parameter ES, which is a dynamically managed 

expansion schema constructed of new attributes added during induction. It is required 

for sorting the new examples in the tree (expansion of the original feature vector x).  

Table 1. Procedure: SemanticHoeffdingTree (S;X;G;δ; 𝜎;ER;DF)  

Let HT be a tree with a single leaf  𝑙1 (the root). 

Let 𝑋1 = 𝑋 ∪ {𝑋∅} 

Let �̅�1(𝑋∅) be the �̅� obtained by predicting the most fre-
quent class in S 

For each class 𝑦𝑘 

 For each value 𝑥𝑖𝑗 of each attribute 𝑋𝑗 ∈ 𝑿 

  Let 𝑛𝑖𝑗𝑘(𝑙1) = 0 

For each example (𝑥, 𝑦𝑘) 𝑖𝑛 𝑆 
Expand x according to ES  

 Sort (𝑥, 𝑦) into a leaf l using HT 
  For each 𝑥𝑖𝑗 in x such that 𝑋𝑖 ∈ 𝑋𝑙    

  Increment 𝑛𝑖𝑗𝑘(𝑙). 

Label 𝑙 with the majority class among the examples at l.  
If examples at l not all of the same class, then 

  Compute 𝐺�̅�(𝑋𝑗) for each attr. 𝑋𝑗 ∈ 𝑿𝒍 − {𝑋∅} using 𝑛𝑖𝑗𝑘(𝑙) 

  Let 𝑋𝑎 be the attribute with the highest 𝐺�̅� 

  Compute ∈ using Equation 1. 

  If 𝐺�̅�(𝑋𝑎) − 𝐷𝐹(𝐸𝑅, 𝑁𝐻)  >∈ and 𝑋𝑎 ≠ 𝑋∅, then 

    Replace l by an internal node that splits on 𝑋𝑎. 

   For each branch of the split 

    Add a new leaf 𝑙𝑚, and let 𝑿𝒎 = 𝑿 − {𝑋𝑎} 

Let �̅�𝑚(𝑋∅) be the �̅� obtained by predicting the 

most frequent class at 𝑙𝑚 

   For each class 𝑦𝑘 and each value 𝑥𝑖𝑗 of each   

   attribute 𝑿𝒊 = 𝑿𝒎 − {𝑋∅} 
      Let 𝑛𝑖𝑗𝑘(𝑙𝑚) = 0. 

   Else If ∈< 𝜎, then 
  Expand each 𝑋𝑗 ∈ 𝑿𝒍 with sem. related concepts 

  Add generated attributes(related concepts) to ES 

  Adjust 𝑛𝑖𝑗𝑘(𝑙) to the newly introduced features 

    NH=NH+1    

Return HT. 



4 Relevancy 

The ever increasing amount of linked data in different domains ranging from govern-

ment open data, to social linked data [7] yet to linked medical and patients data [8] 

enables cross-domain interlinking. It provides new opportunities to ML communities: 

such as: 

 Analysis of Linked Open Data (LOD): Interesting here is analysis of government 

open data as presented in [9], but also interesting for medical research e.g. connect-

ing medical gene research and statistics about patients’ disease progression.  

 Social networks data has inherently graph structure (such as Facebook Graph API), 

which can be transformed to linked data by using approaches like the one present-

ed in [7]. One example would be to find out why particular group of people clicked 

on specific advertising e.g. user clicking on holiday ad because their friends recent-

ly posted or liked pictures from a holiday resort location. 

 A typical application field of ML algorithms are recommender systems. Bouza et 

al. [10] present an approach which uses semantic information available for items to 

build item’s feature vector and subsequently using the items rating by a user to 

build user’s decision tree model. The model is then capable to assign a rating to 

items not yet rated by the user. Similarly, our approach can be used to dynamically 

select suitable features for the user’s rating decisions. 

5 Related Work 

Typically learning from linked data (RDF data) is divided in pre-processing, instance 

extraction optional feature extraction and the actual learning [11]. In the pre-

processing step – some of the RDF verbosity is reduced, additionally methods like 

RDFS/OWL inferencing can be used to more efficiently expose the relevant infor-

mation. In RDF it is typically accepted that an instance is represented by a resource in 

the RDF graph [11], however the resource itself doesn’t contain any information 

about the instance. The actual description of the instances is represented by the neigh-

borhood around the resource. Therefore, machine learning approaches such as [12, 

13] achieve instance extraction by extracting a full subgraph to a given depth.  

After the instance extraction two further options are available either one executes 

the learning algorithms directly on the extracted subgraphs or extracts feature vectors. 

In the first option different kernel functions are applied - one representative is the 

Weisfeiler-Lehman (WL) graph kernel, which computes the number of subtrees 

shared between two graphs by using the WL test of graph isomorphism. While the 

WL kernel is designed for all kind of graphs, Lösch et al. propose in their work [13] 

graph kernels specialized to RDF. Their kernel addresses specifics of the RDF graph 

such as that RDF node labels are used as identifiers occurring only once per graph and 

nodes may have a high degree. This differs from e.g. chemical compound graphs that 

usually have few node labels which occur frequently in the graph and nodes have a 



low degree. However, both graph kernel approaches do not create feature vectors and 

work with a fixed depth of instance extraction – usually 2 hops. 

Another approach is [14] where the authors introduce an expressive graph-based 

language for extracting features from linked data and a theoretical framework for 

constructing feature vectors from the extracted features. The construction of the fea-

ture vector there is mainly driven by the provided queries (SPARQL/NAGA) and 

their result, which is used as basis for the feature generation. 

Yet another work that uses similar technique as ours for creating features vectors 

out of extracted instances is the one presented by Paulheim [9], where however the 

main goal is the generation of possible interpretations for statistics using linked open 

data. The main difference to our work regarding the feature generation technique is 

that the author proposes an approach that firstly generates all possible properties for 

all features, followed by feature selection afterwards. Further differences to our work 

are that no selection of subset of instances for the feature generation step is done as 

we propose with the Hoeffding bound and all related features are considered.  

6 Research Question and Hypotheses 

Two main research question should be answered: 

 How can ontological knowledge (especially relationships between concepts) be 

used to automatically generate features for a specific entity and a given classifica-

tion problem using instance extraction with dynamic depth (cf. section 3)? 

 How can ontological knowledge and instance extraction with dynamic depth be 

used to automatically improve manually generated/selected features in training da-

ta so that the accuracy of the induced ML model on unknown examples improves? 

The main hypothesis is that enabling machine learning algorithms to dynamically 

expand the set of possible features through the linked data graph would improve the 

classification accuracy of the produced classifier on unknown instances in comparison 

to models induced with static depth of instance extraction. 

7 Evaluation Plan 

To validate our hypothesis, we envision twofold evaluation: first we would compare 

our approach to the induction of decision tree using the unmodified Hoeffding tree 

algorithm [6] with a fixed depth of instance extraction (2 hops) as suggested in [12, 

13]. We do this evaluation to minimize the effect of the underlying ML induction 

algorithm and only measuring the effect of the dynamic expansion depth. 

Second our goal is to compare the classification performance of the models con-

structed with the here presented approach to the state of the art approaches for learn-

ing on RDF Data. The works of Lösch et al  [13] and Vries,G.de [12] are envisioned 

as baselines. In particular, we compare the approach to both works, because they re-

strict the depth of the instance extraction to 2 hops. 



We plan to execute the evaluation on the entity classification and link prediction 

learning tasks presented in [13]. The algorithms would be trained and tested on the 

two datasets used in [13] and [12] namely: the AIFB dataset [2] (SWRC Ontology), 

where the main task is classifying the affiliation of a staff member to a research 

group, and the dataset from LiveJournal.com (Friend of a Friend ontology) where the 

main task is to classify persons in one of four age classes. 

8 Reflections 

In this work only the general idea of dynamic feature generation during induction 

of decision tree is presented and some specifics haven’t been addressed such as: how 

referenced list are handled (e.g. multiple published papers), how semantic similarity 

can be used in this context or how cycles in the linked data graph are managed. Fur-

ther research question that is within the research scope, but not directly addressed in 

this work is how multiple origins would be handled and how would this impact fea-

ture selection. All these are subject of future work. 

While a similar technique of expanding linked data values has been explored in [9] 

with the goal of generating hypothesis, in the current work we suggest a decision tree 

induction algorithm that executes an on demand expansion of linked data features 

considering only semantically related concepts. We expect that through these charac-

teristics of the induction algorithm the graph can be explored in greater depth, thus 

finding cross-domain explanations, that eventually would be a better representation 

for the classification problem. 

Another difference of our technique to the one presented in [9] is that we explore 

new features with a subset of the instances using the Hoeffding bound [5] to select 

how many instances are enough in order to evaluate if deeper exploration is required 

or the currently selected features are good enough. Thus we envision that the ap-

proach is capable of exploring more possible features with less expensive calculation 

of split evaluation functions. 
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