
The Web Browser Personalization with the
Client Side Triplestore

Hitoshi Uchida1,2, Ralph Swick2, and Andrei Sambra3

1 Canon Inc., Tokyo, Japan,
2 World Wide Web Consortium, MIT CSAIL, Cambridge, MA USA

{uchida,swick}@w3.org,
3 Decentralized Information Group, MIT CSAIL, Cambridge, MA USA

asambra@mit.edu

Abstract. We introduce a client side triplestore library for HTML5 web
applications and a personalization technology for web browsers work-
ing with this library. The triplestore enables HTML5 web applications
to store semantic data into HTML5 Web Storage. The personalization
technology enables web browsers to collect semantic data from the web
and utilize them for enhanced user experience on web pages as users
browse. We show new potentials for web browsers to provide new user
experiences by personalizing with semantic web technology.

Keywords: semantic web, HTML5, triplestore, inference, web browser

1 Introduction

1.1 Silos of Current Web Services

It is becoming common to manage our personal data on diverse web services
in which we can create documents and presentation materials, manage personal
schedules, send and receive emails, manage personal photo albums not only with
web browsers on laptop PCs but also dedicated smart phone applications. It is
also becoming common to synchronize PC data to cloud storage services which
enable users not only to backup but also to open the synchronized files with
smart phone applications on the go. Thanks to social network services, our daily
lives became more communicative with friends and family by instantaneously
sharing messages and schedules and postings.

However, current web systems don’t provide enough options for users to mash
up and utilize personal data which are distributed among those services users
depend on in daily lives. A practical way to reuse our personal data among ser-
vices is to exchange them with one of authorization protocols such as OAuth 4.
Through a handshake between OAuth client and OAuth provider, they exchange
an access token which grants a permission to allow OAuth client to access user
data in the OAuth provider. However, the traditional approach using the autho-
rization protocol causes privacy issues for reuse of user data on other services.

4 http://tools.ietf.org/html/rfc6749

2

Without disclosing our private data to 3rd party services, we can’t reuse and
mash up among them. It is also difficult to understand how securely our privacy
is protected. After granting the access for user data to the 3rd party services,
in general, users don’t pay attention to which user data are still opened and
accessible for 3rd party services they previously authorized. In addition it is dif-
ficult for users to understand what is happening during the handshake because
the architecture of general authorization protocols depends on HTTP redirection
through client web browsers. If our favorite services don’t support the authoriza-
tion protocol, we can’t reuse personal data between services without migrating
or copy-and-pasting them manually.

1.2 The User Data Centralization on 3rd Party Services

Web browsers are becoming more functional on not only rendering rich graphical
web pages but also using latest innovative technologies such as real-time transfer
protocols of WebSocket[1] and SPDY[2], video streaming interface WebRTC[3]
and client side Web Storage[4]. However, we strongly depend on 3rd party ser-
vices to use and manage our personal web data. By disclosing our private data to
those 3rd party services, we get the benefits of reuse of our web data. We depend
on their functionality to control our web data and security levels because cur-
rent web browsers lack functionality for us to control personal web data. Though
Web Storage can store user data in web browsers, this capability is used by web
applications and not directly by users. We are always tied up with the architec-
ture of current web system where web browsers mainly work as web application
execution engine. Web browsers are users’ personal tools and they should give
more control for our personal data on the web without strongly depending on
3rd party services and disclosing our privacy.

1.3 What We Want to Achieve

The prior use cases and applications using semantic web were mainly server side.
The major architecture was to store application data as triples with standardized
formats like RDF[5] and provided endpoints which enabled client applications
to retrieve the stored application data with a dedicated query language such
as SPARQL[6]. However, there are a few challenges to apply semantic web to
client side web applications, especially for the new HTML55 platform which is
dramatically changing the existing web infrastructure.

In this paper we introduce a client side triplestore library, triplestoreJS6, and
semantic web browser plug-in, Semantic Spider 7, working with the triplestore.
The Semantic Spider site 8 describes the detailed architectures and demonstrates

5 http://www.w3.org/TR/html5/
6 http://www.w3.org/2013/04/semweb-html5/triplestoreJS/
7 https://chrome.google.com/webstore/detail/semantic-
spider/ckdnmkbanbampnifpddcfdphonmfibkb

8 http://www.w3.org/2013/04/semweb-html5/spider/

3

how it works. The source code of triplestoreJS and Semantic Spider is available
in a Github public repository9. The triplestore is a wrapper application pro-
gramming interface (API) for HTML5 Web Storage and enables HTML5 web
applications to store semantic data triples into a web browser local store and
search these stored triples with a dedicated triplestore API. The triplestore is
expected to meet enough processing performance to enable web applications to
work with it at reasonable speed. The semantic web browser plug-in is an HTML5
application working with the triplestore and currently works on Google Chrome
as an extension. The fundamental architecture is to extract semantic data from
web pages which a user visits in daily web browsing and save these data into
the triplestore of the plug-in. In addition to the semantic data extracted from
the web pages, the plug-in also collects personal semantic data from major so-
cial networking services (SNS). The collected semantic data represents the user
interests precisely, and allows the web browser integrating the plug-in to work
with the personal semantic data. This architecture to centralize user data into
the web browser local storage has the potential to resolve privacy issues caused
by the traditional approaches of permitting services to share data among them-
selves. We hope this challenge to apply semantic web technology into an actual
web browser will provide new inspirations and expand the use cases.

2 Related Works

One of the well-known cases using semantic web for knowledge bases is DB-
pedia 10. DBpedia is a crowd sourced community effort to extract knowledge
information from Wikipedia and make the information accessible on the Web in
structured form. Client applications can retrieve the extracted information with
semantic web tools using RDF/JSON/CSV/HTML as data format and SPARQL
as query language and can become more intelligent by integrating the knowledge
bases. Currently the English version of DBpedia describes 4 million things, out
of which 3.22 million are classified in a consistent ontology, including 832,000
persons, 639,000 places, 372,000 creative works, 209,000 organizations and so
on. DBpedia is also available in localized versions in 119 languages. Because
Wikipedia is growing and maintained by contributors from all over the world,
DBpedia will be one of the central knowledge sources for intelligent applications.
It is easy to create an encyclopedia application continuing to support new words
and keep up to date with the internationalization support.

Another well-known case using semantic web for knowledge bases is search
engines. Though a search engine crawler analyzes web pages to identify em-
bedded data for web search, it also extracts semantic data RDF and RDFa[7]
and microdata[8] which annotate the web contents. The semantic data provides
machine readable information which helps client applications like the crawler
to precisely understand the data types and composing properties of the web
contents from the standardized structure format. All of latest major web sites

9 https://github.com/shishimaru/triplestoreJS
10 http://dbpedia.org/

4

integrate semantic data into their HTML pages. They expect that the crawler
analyzes their web sites more precisely and collects higher quality information
which will be useful for web search processing. Currently the major consumer of
the semantic data integrated into web sites is the crawlers of the search engines.
Though the number of web pages continues to increase with the additional se-
mantic data to annotate the web contents, general users don’t directly feel the
full benefit in web browsing.

The Tabulator Extension[9] is a browser plug-in that visualizes RDF semantic
data in tabular form which is retrieved from a server. Users can browse and edit
the visualized RDF data in the web browser and reflect the modification against
the originating server with SPARQL update messages. Piggy Bank[10] is also a
browser plug-in which stores extracted semantic data during web browsing into
the web browser and provide a user interface to review them on any web sites.
However, these prior tools are for semantic web engineers; general users of web
browsers don’t get clear benefits how semantic web can change our lives on the
web. Therefore, we demonstrate how we can utilize potential semantic web for
enhancing browsing experiences as section 4.2-4.5.

There are existing development efforts in semantic web JavaScript libraries
for web applications. Green Turtle11 and microdatajs12 are RDFa and microdata
parsers in JavaScript, respectively. sparql.js13 is a JavaScript SPARQL library
which enables web applications to retrieve semantic data with sending SPARQL
messages to SPARQL endpoints. rdf-store.js14 is a comprehensive semantic web
JavaScript library which supports JSON-LD/Turtle/N3 parsers and a persis-
tent storage using HTML5 LocalStorage and a SPARQL query. Because the
persistent storage is based on W3C RDF Interfaces API which is a set of basic
primitives and a low level interface, it is for advanced developers who understand
the semantic web well. In the other hand, because our triplestoreJS is based on
an extension of RDFa API 15 whose architecture integrates the W3C DOM API
general web developers are familiar with, the learning curve is gentler and it is
easier to start web application development with the library.

3 A Triplestore for HTML5 Web Storage

We developed a triplestore wrapper library triplestoreJS in JavaScript which
stores subject-property-value triples into HTML5 Web Storage16. Web Storage
is a new persistent data storage of key-value pairs for web applications and
enables to store application data into local storage of a web browser. The API
of triplestoreJS is an extension on the RDFa API and provides operations to
store and search triples. Though Web Storage is based on key-value and isn’t

11 https://github.com/alexmilowski/green-turtle
12 https://github.com/foolip/microdatajs
13 http://www.w3.org/2001/sw/wiki/SPARQL Javascript Library
14 https://github.com/antoniogarrote/rdfstore-js
15 http://www.w3.org/TR/rdfa-api/
16 http://www.w3.org/TR/webstorage/

5

optimized for storing triples, triplestoreJS is organized for storing and searching
the subject-property-value model. triplestoreJS also conceals the routine work
to resolve CURIEs within RDFa. Therefore, it can reduce the development cost
for web applications which store triples into a browser storage. Performance
measurements of the triplestore are described in section 5.

3.1 A Save Operation

Web applications can store specified triples into Web Storage with a dedicated
triplestore API. Because the Web Storage is based on the key-value model using
string data type, the triplestore stores a subject as a key and a JSON string of
the corresponding RDF properties and values as a value.

var st = new Triplestore();

/*

* ’setMapping(prefix, URI)’ registers a pair

* of prefix and URI for CURIE processing.

*/

st.setMapping(’foaf’, ’http://xmlns.com/foaf/0.1/’);

/*

* ’add(subject, property, value)’ method saves a triple.

* If the subject already has a value for the property,

* the new value is appended as additional values of the property.

*/

st.add(’http://example.org/people#bob’, ’foaf:name’, ’Bob’);

st.add(’http://example.org/people#bob’, ’foaf:homepage’,

’http://old.org’);

/*

* ’set(subject, property ,value)’ method overwrites

* all old values of the property with new one.

*/

st.set(’http://example.org/people#bob’, ’foaf:homepage’,

’http://new.org’);

3.2 A Search Operation

Web applications can search the stored triples with simple APIs, getProper-
ties(subject), getValues(subject, property) and so on. If the property parameter
of getValues(subject, property) is null, all values which associate with the subject
are returned.

//returns [’http://xmlns.com/foaf/0.1/name’,

// ’http://xmlns.com/foaf/0.1/homepage’]

var properties = st.getProperties(’http://example.org/people#bob’);

//returns [’Bob’]

var name = st.getValues(’http://example.org/people#bob’, ’foaf:name’);

6

//returns all values [’Bob’, ’http://new.org’]

var values = st.getValues(’http://example.org/people#bob’, null);

4 A Web Browser enhanced with Personal Semantic Data

We integrated triplestoreJS into Google Chrome as a Chrome extension to evalu-
ate the potential to apply semantic web technology into the actual web browser
experience. Especially, our challenge is to address how to utilize the personal
semantic data collected during web browsing to enhance current and future user
experience during browsing operations. The Chrome extension is an HTML5
application and has its own Web Storage.

4.1 Collecting Personal Knowledge Bases from The Web

Fig. 1. Architecture for collecting personal
knowledge bases

Fig. 2. Screenshot of a search function for
stored semantic data

Any web contents annotated with RDFa or microdata are extracted from
web pages users visit and are stored into the web browser automatically via the
triplestoreJS as shown Figure 1. An automatic save function works when one of
following conditions is met:

– When a user stays at a page longer than a specific period, e.g. 5 minutes
– When a user visits a page more than a specific frequency, e.g. 5 times

If a subject and the properties are already stored and now new additional
properties of the subject are found in other web pages, the additional properties
are appended to the subject. In this manner, the users’ database of semantic
data will grow based on their web browsing and the plug-in can provide more
personalized functions with the stored personal semantic data.

7

Besides semantic data extraction from web pages, the plug-in supports lo-
gin to Google and Facebook to gather user profile information, contact lists of
friends, personal schedules and postings by the user and friends. Those user
data and SNS data are converted into triples with standard vocabularies from
schema.org 17 and Friend-of-a-Friend (FOAF) 18. Therefore, after storing the
user data from those services, the internal representations can be equally com-
bined with general semantic data stored from web pages.

If a stored triple has an expiration date and time, it will be removed auto-
matically from the triplestore as the browser does for cookie or cache expiration.
When a user visits a web page, the plug-in monitors HTTP traffic and handles
Expires header in HTTP response. When the semantic data is stored, the expi-
ration information is also stored at the same time. Even if the auto-save function
is always enabled by the user, this auto-remove function reduces the growth of
stored semantic data in the triplestore.

The stored semantic data can be synchronized among browsers. If a user
would like to copy stored favorite semantic data into another browser, the user
can indicate which items she would like to synchronize. The plug-in stores the
specified items into a dedicated Chrome synchronization storage and a plug-in
working in another browser merges them into the local triplestore. The plug-in
executes the synchronization process only when the activity on the browser is
idle so as not to slow the browsing operation.

Figure 2 is a screenshot of the visualized stored semantic data. The user
interface has three components: keyword search field, item type search field, and
the search result field. The figure shows an example in which a user searched
items whose types were ’flickr photos:set’ and semantic data stored from online
photo album Flickr is shown in the search result. The type is a service oriented
name or a standardized URI or a term defined in schema.org or FOAF.

4.2 Suggesting Related Semantic Data

The plug-in detects related stored semantic data by calculating the similarities
using inference processing based on the Jaccard similarity coefficient algorithm
[13]. Suppose that A is a list of words composing a stored item X and B is a
list of words composing a new item Y found in a web site the user is browsing.
The plug-in calculates the similarity of A and B by equation (1) after sanitizing
them by eliminating noise words such as numbers and determiners. If the simi-
larity is above a pre-defined threshold, the plug-in recognizes the item X has a
relationship with item Y. If the web site has several items of semantic data, the
plug-in calculates the similarity for all combination of item X and Y. We used
0.5 as the pre-defined threshold for Jaccard.

J(A,B) = |A ∩B|/|A ∪B| (1)

17 http://schema.org/
18 http://www.foaf-project.org/

8

One use case for this similarity function is to make a personal online photo
album by mashing up user data distributed on the web. Figure 3 represents a
possible architecture for the use case. Generally the online photo album should
contain some relationships with other user data. For example, if the photo was
taken while traveling, then the corresponding schedule would be also registered
in a calendar service. If the photo has persons, some of them may be friends who
are registered in SNS services. An SNS friend may post a new message for the
online album representing her impression.

In step 1 of figure 3, the plug-in collects those personal user data from the web
and stores into the local triplestore. In step 2, the plug-in finds related semantic
data from the personal triplestore by calculating the Jaccard similarities and
suggests this data to mash up with the online multimedia. Then the plug-in
generates an HTML fragment including the detected semantic data and inserts
this fragment into the web page. Figure 4 is a screenshot of the behavior of this
use case on a Google+ photo album. The plug-in suggests the related schedule
item of the trip containing the date and location and creator, a comment item for
the album posted by a Facebook friend, the friend’s SNS profile item containing
the name and account id and organization, the album item containing the title
and date and number of photos. The suggestion window created by the plug-in
is minimized by default and toggled with the ESC key. One common issue for
photo albums is how to easily add annotations to photos because this is a tedious
work and we need to consider the contents of the annotation itself. In section
4.3, we introduce an annotation function which assists users to annotate photos
with the suggested semantic data.

Fig. 3. Architecture of the personalized photo album

9

Fig. 4. Screenshot of the augmented Google+ photo album

In the current architecture, to mash up user data on several services users
needed to authorize those services to allow access to user data. The access to
user data always raises underlying privacy issues. If some of the services don’t
support an authorization protocol, users can’t mash up and utilize their personal
web data. The challenge for mashing up personal data continues to grow as
users manage data in more dedicated services and the kinds of data become
diverse: from an office domain like documents and calendars and emails to a
social network domain like friend networks and published postings and photos
and videos. The web browser itself has a potential to help the users to resolve
the data access situation and we facilitate that with semantic web technology.

4.3 Assisting Media Sharing Operations

Our Chrome plug-in assists users to annotate and share online photos/videos
with their friends and supports users’ SNS activities by utilizing a stored con-
tact list from FOAF. When a user Paul wants to send photos stored in online
photo album services such as Flickr to a new friend whose contact information
isn’t registered to the service, if Paul visits the friend’s homepage or SNS page in-
cluding the friend’s contact information as FOAF, this information is stored into
the triplestore and the plug-in works as personal contact list manager without
depending on and disclosing the private contact information to 3rd party ser-
vices. Figure 5 illustrates this architecture. In step 1, the plug-in collects FOAF
data from SNS services and Blog sites and stores the data into the triplestore.
In step 2, when a user indicates to the plug-in to share a specified online photo

10

with the SNS friends, the plug-in shows the stored contact information of the
SNS friends overlaid on the photo album site. If the user selects one of contacts,
then the plug-in sends the photo using the specified contact information.

Fig. 5. Architecture of the assisted media
sharing Fig. 6. Screenshot of showing a contact list

Fig. 7. Screenshot showing suggested tags
for annotating a photo

Fig. 8. Screenshot showing the photo shar-
ing with a Google+ friend

For example, in a personal photo album of a trip to New York City on Flickr,
when a user selects a photo with right click to share with an SNS friend and
select ’share’ from the menu provided by the plug-in then a stored contact list is
overlaid on the web site as showed in Figure 6. When the user selects one of these
contacts, the plug-in asks the user to select related semantic data to annotate
the photo to be shared. In Figure 7, a schedule name of a trip to New York
stored in Google Calendar and photo album items stored in Flickr are suggested

11

for annotating the photo. If the schedule name is selected, the user can send the
photo through Google+ or Facebook or email with the annotated travel schedule
as showed in Figure 8. The receiver can see the shared photo with the annotated
travel schedule.

4.4 Assisting Text Input Operations

When a user is inputting a search keyword into text fields in web sites, the plug-
in suggests candidates from stored semantic data. Though newer online services
also suggest popular keywords or users’ prior input histories, keyword suggestion
provided by this plug-in is independent of any 3rd party services and derived
from the users’ personal semantic data collected from their web browsing and
representing their interests. It is difficult for 3rd party services to collect this
personalized data, however the plug-in learns them from the user’s activities
and we utilize this stored data for the keyword suggestion.

The keyword suggestion works in any text fields on web pages. Figure 9 shows
how this works on online photo albums mashed up with personal schedules of
stored semantic data. In step 1, the plug-in stores the user’s personal schedules
from calendar services into the triplestore. In step 2, when the user starts to
input a search keyword in a search field on the online photo album, the plug-in
finds items whose name are matched with the search keyword and generates an
HTML fragment including the names of the matched items and appends it close
to the search field the user inputs.

Fig. 9. Architecture of the keyword suggestion combining calendar and photo album

Figure 10 is the screenshot of the behavior on an online photo album Flickr. If
a user manages his photo albums based on travel names like ’Travel New York’
and starts to search with a keyword ’Travel’ on a search field in Flickr, then
because personal schedules from Google Calendar can be collected as semantic

12

data by the plug-in, the corresponding matched travel names are suggested for
the candidate.

Fig. 10. Screenshot of the search keyword suggestion on Flickr

The plug-in recognizes semantic tagging on HTML input fields; If a text field
in a web page is annotated with an attribute @itemtype with microdata or @type
with RDFa which constrains the type of semantic data, the plug-in understands
the annotation and suggests only keywords whose types of semantic data are
matched with the specified type. For example, if the text field is described with
the following markup, only keywords which are related to information whose
type is ’http://schema.org/Event’ are suggested.

<input type="text" itemtype="http://schema.org/Event">

It is difficult for a general web service to suggest such keywords which are
derived from other web services because the service needs to support at least
one authorization protocol to get permission to access user data and collect
user interests and preferences from other web services beforehand. Our plug-in
architecture allows the web browser to securely collect user interests from web
browsing without changing services, therefore this keyword suggestion can be
realized and works on any web pages.

4.5 Annotating Online Photos

Major online photo album services provide face annotation functionality which
shows the name of the identified person if his or her name and face image are
registeredin the services beforehand. Some online photo album services support

13

online machine learning which enables users to register new face images on their
online photos and learn with the new faces and improve the accuracy of the face
annotation.

Our plug-in supports a face annotation function which works on any on-
line photo with the stored personal semantic data without disclosing the user’s
private information to the photo album services. The plug-in collects profile in-
formation of friends and family from any web pages distributing FOAF data and
from SNS services like Google+ and Facebook through a login functionality the
plug-in provides. If a user visits a blog site managed by a friend distributing
FOAF data, the plug-in can easily collect profile data when visiting the blog.
After storing FOAF data, the plug-in annotates online photos with the stored
FOAF data using face identification processing we developed. For face detection,
we used open source libraries ccv.js19 and face.js20 which enable web applications
to detect the face locations on an online photo. We developed a face identification
JavaScript library to annotate online photos with the stored semantic data.

Matthew A. Turk and Alex P. Pentland[14] describe a fundamental identifi-
cation algorithm by comparing characteristics of the face to known individuals
using principal component analysis (PCA). We trained our recognizer offline
using a face database 21 of 13233 images and created a training result Eigen-
faces. Figure 11 is the visualized Eigenfaces we acquired. We serialized this into
JavaScript codes to integrate into the face identification processing of the plug-
in. The plug-in compares each face of an online photo with SNS profile images
from the stored semantic data using the serialized Eigenfaces.

Fig. 11. Screenshot of visualized Eigenfaces trained with 13233 face images

Figure 12 is a screenshot of the face annotation functionality on an online
photo. The gray rectangle represents the detected face location obtained from

19 http://libccv.org/
20 https://github.com/wesbos/HTML5-Face-Detection
21 http://vis-www.cs.umass.edu/lfw/

14

face.js. If a user moves a mouse pointer to one of the gray rectangles, then the
corresponding FOAF data collected from the web is overlaid on the photo. In
figure 12, a Google+ account is suggested for the selected SNS friend and the user
can share the online photo with the friend through Google+. Without depending
on the functionality of 3rd party online services and disclosing our SNS friends’
information to them, the face annotation can be realized with stored personal
semantic data within client side scripts in real-time.

Fig. 12. Screenshot of face annotation with stored FOAF data

5 Evaluation

We measured the processing performance of the client side triplestore library
used by the plug-in. For performance measurement we used semantic data col-
lected from Google+ and Facebook and web sites including RDFa or microdata.
The average number of properties per item was 9.5.

For the ’save’ operation, we measured the performance by saving triples, a
subject and properties and corresponding values into the triplestore. For the
’search’ operation, we measured the performance by searching all values of spec-
ified subjects and properties. The searched data is the data stored by ’save’
operation. Graph 13 shows the measured performance based on the number of
triples. The horizontal axis is the number of triples and the vertical axis is the
total time to complete each operation. For example, in case of 7698 triples, the
average time to save was 1125 milliseconds, and the average time to search was
245 milliseconds. As we can see from the graph 13, the performance is linear
with the number of triples. We think the core operations ’save’ and ’search’ us-
ing semantic data collected from actual web services meet sufficient performance
for web applications to work on a general HTML5 platform.

15

�

����

����

����

����

����

����

����

	���

���

���� ����� ��	�
 �	��� ��
�	
����

��� ������

�

�

�

�

�

�

�

�

�����������������

Fig. 13. The result of performance measurement based on the number of triples

6 Conclusion and Future Work

In this paper we introduced a client side triplestore library triplestoreJS for the
HTML5 platform and a web browser personalization technology working with
this library. Where existing examples of semantic web development were mainly
server side applications and used for background development tools, general users
didn’t directly see benefits in daily web browsing. The motivation for general
web developers to integrate semantic data into their web sites was to expect
higher ranking on search results. We directly enhance user experience in the
web browser by utilizing personal semantic data collected during prior browsing
activity.

One of the features we achieved is to make online services more informative
by mashing up with personal semantic data discovered on the web and securely
collected into the web browser local storage. Another feature we achieved is to
enhance user experiences in the web browser by suggesting candidates for text
input operation and assisting to share and annotate online multimedia. This
feature is especially helpful for small devices to improve user experiences whose
user interface area are small and the input features such as hardware buttons
are limited.

A future work is to replace the underlying Web Storage with IndexedDB 22

in the triplestore library. When we started the development, the standardization
progress of IndexedDB was in W3C Candidate Recommendation and there was
still a risk to change the API or behavior. And because we thought supporting
mobile web platforms was also important and these didn’t support IndexedDB
at all, we selected Web Storage for the underlying storage of the triplestore.
However, because IndexedDB can directly store semantic data as JavaScript ob-
jects without converting the objects to a string value to store into Web Storage,

22 http://www.w3.org/TR/IndexedDB/

16

it is expected the performance for storing and searching semantic data can be
improved. A performance comparison of the triplestore between Web Storage
and IndexedDB will be also addressed.

We hope the work introduced in this paper will inspire new applications of
semantic web technologies in HTML5 and will expand the use cases and be a
promising bridge between them.

References

1. Pimentel, V., Nickerson, B.G.: Communicating and Displaying Real-Time Data with
WebSocket. Internet Computing, vol. 16, pp. 45-53. IEEE (2012)

2. Cardaci, A., Caviglione, L., Gotta, A., Tonellotto, N.: Performance Evaluation of
SPDY over High Latency Satellite Channels. In Personal Satellite Services, vol. 123,
pp. 123-134. Springer International Publishing (2013)

3. Singh, V., Lozano, A. A., Ott, J.: Performance Analysis of Receive-Side Real-Time
Congestion Control for WebRTC. Proc. of IEEE Packet Video, vol. 2013, (2013)

4. West, W., Pulimood, S. M.: Analysis of privacy and security in HTML5 web storage.
Journal of Computing Sciences in Colleges, vol. 27, pp. 80-87. (2012)

5. Broekstra, J., Kampman, A., Van Harmelen, F.: Sesame: A generic architecture for
storing and querying rdf and rdf schema. In The Semantic WebISWC, pp. 54-68.
Springer Berlin Heidelberg (2002)

6. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In The
Semantic Web: Research and Applications, pp. 524-538. Springer Berlin Heidelberg
(2008)

7. Dietzold, S., Hellmann, S., Peklo, M.: Using javascript rdfa widgets for model/view
separation inside read/write websites. In Proceedings of the 4th Workshop on Script-
ing for the Semantic Web. (2008)

8. Heinrich, M., Gaedke, M.: WebSoDa: a tailored data binding framework for web
programmers leveraging the WebSocket protocol and HTML5 Microdata. In Web
Engineering, pp. 387-390. Springer Berlin Heidelberg (2011)

9. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J.,
Sheets, D.: Tabulator: Exploring and analyzing linked data on the semantic web. In
Proceedings of the 3rd International Semantic Web User Interaction Workshop (Vol.
2006). (2006)

10. Huynh, D., Mazzocchi, S., Karger, D.: Piggy bank: Experience the semantic web
inside your web browser. In The Semantic WebISWC 2005, pp. 413-430. Springer
Berlin Heidelberg (2005)

11. Cai, M., Frank, M.: RDFPeers: a scalable distributed RDF repository based on a
structured peer-to-peer network. In Proceedings of the 13th international conference
on World Wide Web, pp. 650-657. ACM (2004)

12. Buraga, S. C., Panu, A: A Web Tool for Extracting and Viewing the Semantic
Markups. In Knowledge Science, Engineering and Management, pp. 570-579. Springer
Berlin Heidelberg (2013)

13. McAuley, J.: Machine grouping for efficient production. Production Engineer, vol.
51, pp. 53-57. (1972)

14. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of cognitive neuro-
science, vol.3, No. 1, pp. 71-86. (1991)

