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Abstract. Agricultural decision support systems are an important ap-
plication of real-time sensing and environmental monitoring. With the
continuing increase in the number of sensors deployed, selecting sensors
that are fit for purpose is a growing challenge. Ontologies that represent
sensors and observations can form the basis for semantic sensor data
infrastructures. Such ontologies may help to cope with the problems of
sensor discovery, data integration, and re-use, but need to be used in
conjunction with algorithms for sensor selection and ranking. This paper
describes a method for selecting and ranking sensors based on the re-
quirements of predictive models. It discusses a Viticulture use case that
demonstrates the complexity of semantic modelling and reasoning for the
automated ranking of sensors according to the requirements on environ-
mental variables as input to predictive analytical models. The quality
of the ranking is validated against the quality of outputs of a predictive
model using different sensors.

Keywords: Semantic sensor data, Sensor ranking, Sensor Cloud Ontol-
ogy, Viticulture, Predictive analytical models

1 Introduction

Real-time sensing for agricultural environmental monitoring has been an intense
area of research (e. g., [6], [13]). Farmers and crop managers monitor crop growth
and health continuously to make decisions based on their local knowledge and
experience. Decision making is supported by environmental data as provided by
automatic weather stations and by analytical tools that make predictions based
on this data, e. g., predicting the risk of frost or plant disease.

In viticulture, for example, botrytis bunch rot, or botrytis, causes ripening
bunches to rot on the vine [2]. Botrytis can develop during the ripening period
and bunches may have to be harvested early at low sugar, having negative impact
on wine quality. Wet weather is one of the factors that promotes the development
of botrytis. To assist farmers, analytical models have been developed that simu-
late the effects of risk factors and control options on the development of botrytis
epidemics. These models use weather information and crop management inputs
to predict the risk that a major botrytis epidemic will occur at harvest.
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The proliferation of sensing devices deployed in our environment benefits
farmers in terms of enhanced situational awareness. There are, however, remain-
ing challenges related to the deployment of sensors [5], the usability of decision
support systems [16], as well as the discovery of sensors and re-use of data from
different sensing devices. The latter is the focus of our work. Models that predict
the risk of botrytis require specific sensor data as part of their input (e. g., air
temperature, wind speed, and leaf wetness) and are sensitive to the quality of
the input data. For a model to produce reliable results it is of great importance
to run the model with input data that is fit for purpose.

Our contribution is the development of a generic method for analysing sensors
based on their capabilities, observed phenomena, calibration history, previous
measurements, and current state to find sensors that meet the requirements of a
particular model. Ontologies that represent sensors and observations may help
to cope with the problems of sensor discovery, data integration, and re-use, but
need to be used in conjunction with algorithms for sensor selection and ranking.
We present an algorithm that ranks available sensors based on their suitability
as input for a given model. Model-specific requirements towards input data are
expressed using a set of fitness functions. Our algorithm runs queries over the
semantically annotated resources to evaluate these functions. The result is an
ordered list of sensors that satisfy model requirements.

In addition, we discuss our experience in using ontologies to model knowledge
about sensing data and sensing devices in the context described above. We build
on the SSN Ontology [4] and ontologies derived from OGC’s Semantic Web
Enablement data models to provide an umbrella ontology, named Sensor Cloud
Ontology (sco), for our Sensor Web infrastructure. We discuss a number of use
cases, in which we applied sco.The design goal of sco was to refine the semantic
models provided by the imported ontologies according to the data and metadata
captured by our infrastructure.

We evaluate our modelling and ranking based on requirements of a Viti-
culture use case that demonstrates the complexity of semantic modelling and
reasoning for automated ranking of sensors according to the requirements on in-
put data by predictive analytical models. The quality of the ranking is validated
against the quality and sensitivity of the predictive model regarding different
inputs.

The remainder of this paper is structured as follows. Section 2 describes our
semantic sensor infrastructure and sco. Section 3 gives details about application
requirements through use cases. The semantic modelling to address the use cases
in discussed in Section 4. Section 5 presents our ranking algorithm. We evaluate
the results of our algorithm in Section 6. Section 7 concludes the paper by
discussing related work and giving a brief outlook into future work.

2 The Semantic Sensor Cloud

The Commonwealth Scientific and Industrial Research Organisation (csiro) col-
lects and archives data from a large number of terrestrial and marine sensors.
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Parts of the data are made available via an in-house sensor data infrastructure,
referred to as Sensor Cloud. An overview of the architecture is given in [14].

Within the Sensor Cloud, sensor data is structured following the hierarchy of
Network → Platform→ Sensor → Phenomenon→ Observation. This struc-
ture resembles the deployment of sensors in the physical world, i. e., a sensor
network consists of platforms, each platform has one or more sensors attached,
and each sensor observes one or more phenomena. Besides observations, infor-
mation such as sensor device characteristics and calibration history can also be
accessed through the Sensor Cloud.

2.1 The Sensor Cloud Ontology

To semantically describe sensor data from the Sensor Cloud we created the
Sensor Cloud Ontology (sco)3. Figure 1 shows the main classes and properties
of sco. The principle behind its design is to use and extend existing ontologies,
meanwhile aligning with the Sensor Cloud terminologies. Accordingly, classes
and properties are created and mapped to the ones in existing ontologies. We re-
use several ontologies, including the Semantic Sensor Network ontology (ssn)4,
the DOLCE ontology (dul)[12], the OGC’s Observation and Measurements (om)
ontology5, and the geo location (wgs84) vocabulary6. The advantages of re-
using and extending existing ontologies are that sensor data can be queried
according to the original terminologies while their consistency can be checked
against sco. We create SCO instances (RDF) from data in the Sensor Cloud
using a system called seraw, as described in [14].

ssn was designed to describe sensors: what is observed, how observations
are made and the qualities of the sensors and observations [4]. ssn is built
around a central pattern that describes the relationship between ssn:Sensors,
the ssn:Property measured, the real-world ssn:Stimulus that ’triggers’ the
sensor and the resultant ssn:Observation [9] . The ontology expands on this
to describe the ssn:MeasurementCapability (ssn:Accuracy, ssn:Frequency,
etc.) of the sensor as well as to provide a skeleton structure for describing
ssn:Platforms and ssn:Deployments.

Concepts that aggregate multiple sensors into larger units, such as sensor
networks or sensors grouped by properties, are required by our applications. ssn
provides ssn:System and ssn:hasSubSystem for describing multi-instrument
units of technology. In sco, such aggregations become sco:Networks, which can
be used for wireless sensor networks, organisational networks, geographically re-
lated networks or mission oriented networks. These aggregations enable ranking
and organisation of sensing resources: from sco:Sensor through sco:Network

up to sco:SensorCloud. Such aggregations further enable the propagation of
quality and trust estimates both up and down the hierarchy. For example, tend-
ing to increase the quality estimates of observations on a sensor because it is

3 http://www.sense-t.csiro.au/sensorcloud/ontology
4 http://purl.oclc.org/NET/ssnx/ssn
5 http://def.seegrid.csiro.au/isotc211/iso19156/2011/observation
6 http://www.w3.org/2003/01/geo/wgs84_pos

http://www.sense-t.csiro.au/sensorcloud/ontology
http://purl.oclc.org/NET/ssnx/ssn
http://def.seegrid.csiro.au/isotc211/iso19156/2011/observation
http://www.w3.org/2003/01/geo/wgs84_pos


4

sco:Network

sco:Platform

sco:Sensor

ssn: System

sco:Observed 
Phenomenon

sco:Observation 
Result

subclass

subclass
hasPlatform

ssn:Sensing 
Device

subclass
hasSensor

hasSensingDevice

ssn:observedBy
ssn:Observation

ssn:Sensor Output

subclass

subclass

ssn:observationResult

ssn:Observation 
Value

sco:TimeSeries
ObservedValue

subclass

ssn:hasValue

om:Metadata

geo:Point

hasMetadata

hasMetadata

hasLocationCoordinate

hasLocationCoordinate

hasMetadata

sco:Location
Coordinate

subclass

sco:Observed 
Property

ssn:observed
Property

Fig. 1: Main Concepts in the Sensor Cloud Ontology

associated with networks of a known high-quality provider, or decreasing the
trust on a provider because their sensors are not regularly maintained and cali-
brated.

To describe sensor observations in sco, we introduced the four concepts
sco:ObservedPhenomenon, sco:ObservedProperty, sco:ObservationResult

and sco:TimeSeriesObservedValue as subclasses of concepts ssn:Observation,
ssn:Property, ssn:SensorOutput, and ssn:ObservationValue, respectively.
ssn leaves open the representation of time — fixing time only as a dul:Region

— and does not include a definition of time series. We model time series as obser-
vation results of time-value pairs, by setting sco:TimeSeriesObservedValue v
sco:ObservationValue, and with the sco:TimeSeriesObservedValues having
sco:hasTimeValuePair relations to sco:TimeValuePairs. In Section 4, we give
more details of sco:ObservedPhenomenon and sco:ObservedProperty.

To be compatible with geo and om, we introduce sco:LocationCoordinate
as a type of geo:Point, and use om:Metadata to describe metadata of several
classes (e.g. sco:Sensor). In doing so, we are then able to use standardised
(ISO) vocabularies for coordinates, deployment, and quality that are left open
in ssn. Furthermore, we introduce some properties that are specific to the Sensor
Cloud, e. g., those describing the number of time-value pairs of time series, and
the first or last observation time.
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3 A Use Case from Viticulture

Our work is informed by use case requirements in the viticulture domain. In this
section we describe examples taken from the Sense-T project7. The project orga-
nized user workshops, from which requirements for environmental sensor data,
derived variables and prediction models were collected from domain experts.

Predictive models for Botrytis risk use a combination of environmental vari-
ables. For example, the empirical early-season model in [2] assesses the effects
of weather on botrytis risk. A botrytis risk index, called the Bacchus Index [10],
uses air temperature and leaf wetness data to determine the daily risk of in-
fection by Botrytis. The Bacchus Index is calculated for the given temperature
at each “wet hour”, which in turn is calculated from the leaf wetness duration.
The hour is wet if the proportion of wetness duration is above, say 50%. Leaf
wetness raw data measurements can vary for different sensors. As an example,
the measurement can be the value of the electrical resistance on the surface of
the sensor or, derived from that, the percentage of time that a leaf surface is
considered wet8.

The Accumulated Bacchus Index (abi) is calculated from the daily sum of the
Bacchus Index over a specified time period (e.g. from flowering to harvest). The
early-season model plots the abi each day and compares it against a threshold
line, which is statistically determined from monitored botrytis epidemics over
many years. This model runs in an ad-hoc manner. That is, at a point prior
to the harvesting period the farmer decides to run the abi. At this point, the
challenge is to discover suitable sensors from a network of available sensors. We
may find automatic weather stations or low-cost sensors deployed in a vineyard
or in surrounding areas. In many cases suitable sensors may be deployed and
operational, but if sensors are malfunctioning or not well maintained, data needs
to be gathered from other suitable sensors. The choice of sensors can be based on
their location as well as on their maintenance status and their current behaviour,
for instance excluding sensors that have not been calibrated recently as well as
sensors that show “unexpected” readings , for example, from interference to the
sensing mechanism.

Although we have given the example of a predictive model, the same consider-
ations apply to derived variables for the purpose of situational awareness. These
include derived variables such as Growing Degree Days, Evapotranspiration or
the hourly Bacchus Index (see for example [13]). From the user or application
perspective, environmental variables derived from automatic weather stations
sensor data streams are usually summarized in expressions like “Average daily
temperature”, “Total daily rainfall”, “Maximum monthly discharge”, “9am Rel-
ative Humidity”, or “Average 10m wind speed (m/s)”.

For the purpose of finding or reusing sensors, representing the meaning of
these expressions can make the search or querying process much more efficient
and precise. Say we are looking at measurements recorded as time series, these

7 http://www.sense-t.org.au/projects/viticulture
8 http://www.campbellsci.com.au/237-l

http://www.sense-t.org.au/projects/viticulture
http://www.campbellsci.com.au/237-l
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expressions constitute a combination of a functional (statistical) aggregation op-
erator (e.g. average) and a temporal aggregator (e.g. daily) for an environmental
property (e.g. temperature) with a unit of measure (e.g. degree Celsius). Com-
posing properties with modifiers in a structured way can facilitate the reuse of
sensor measurements that usually incur in very expensive computations. Usually
these computations are necessary for the visualisation of time series, but they
are equally important when used as input for predictive models.

Predictive models not only require observation data of a certain type, but
also, in many cases, models have further (weak) constraints that define desired
properties for the input data. One of the main constraints affecting the quality
of the observation is the location of the sensors. For example, the sensors chosen
for measuring temperature for the risk of frost in a vineyard should be the ones
as close as possible to the frost event location. Another example of importance
is proper sensor calibration. Data from poorly calibrated sensors can have a
negative impact on forecast performance.

There might also be additional quality constraints that may require to ex-
amine values in time series e. g., no gaps longer than 6 hours, accuracy of all
observations ≥ 0.95. In addition, we may want to propagate quality information
along the hierarchy of Network, Platform, Sensor, and ObservedPhenomenon,
for example a platform with many poorly calibrated sensors is considered low
quality; if a network is considered poorly maintained the observations from the
sensors are not reliable. Thus, in order to improve quality and reduce uncer-
tainty in models, the discovery of sensors can involve finding information about
sensor capability, deployment, calibration as well as measuring or ranking the
quality of these factors so that they fit the requirements. Having knowledge of
quality information for model input may also be used to estimate the uncertainty
associated with the model output.

4 Semantic Modelling

In the following we describe the required semantic modelling and the solution
given by the sco and ssn ontologies according to the use case described in the
last section. We look at environmental variables from two perspectives. First,
as observed phenomena, where the observed property and the features of its
measurement are represented. Then from the perspective of the sensor device
and its influence on the quality of the measurement.

We use sco:observedPhenomenon to describe the context of the measure-
ment for an environmental variable. This is aligned with the representation
of ssn:Observation as a dul:Situation. As partially shown in the exam-
ple below, this context includes a temporal modifier (e.g. daily), a functional
modifier (e.g. total), the unit of measure (e.g. degree Celsius) and the sensor
height (sco classes and properties accordingly). This is in addition to the in-
herited ssn class properties, which relate the observation to its observed prop-
erty and result, among others. The sco:ObservedProperty is independent of
an observation. It may be decomposed into parts using sco:hasPropertyPart,
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which is a sub-property of dul:hasPart. This aligns with dul:Quality and
thus sub concept ssn:Property being decomposable with dul:hasPart. We use
dul:UnitOfMeasure as the super-class for units of measure from MUO9. Prop-
erty sco:hasUnitPart can be used to decompose units of measure into parts.

<sco:ObservedPhenomenon rdf:ID="daily -sum -of-Bacchus -index">
<sco:hasFunctionalModifer rdf:resource ="# total"/>
<sco:hasTemporalModifier rdf:resource ="# daily"/>
<ssn:observedProperty rdf:resource ="# bacchus -index"/>

</sco:ObservedPhenomenon >

<sco:ObservedProperty rdf:ID="bacchus -index">
<sco:hasPropertyPart rdf:resource ="#leaf -wetness"/>
<sco:hasPropertyPart rdf:resource ="http :// purl.oclc.org/NET/ssnx/

cf/cf-property#air_temperature "/>
</sco:ObservedProperty >

The decomposition of observed properties and units into smaller parts enables
finding variables that are related to the derived variables in the user query. For
example, a query for “daily temperature” can closely match any temperature
that has a unit of measure equal to the “day” unit of measure or any of the
“day”’s unit parts (e.g. minute, second). Similarly, a query for “degree days”
can match related variables that are equal to “degree days’s” property parts.

Regarding the quality of sensors, ssn has no capacity for describing calibra-
tion or maintenance, both of which often change a deployed sensor’s properties
(the properties described by ssn:MeasurementCapability). Calibration is ad-
justing a single device’s output based on comparison against reference devices.
Manufacturer specifications may describe the full accuracy range of a sensing
device, but the actual performance of the device within this range depends on
its particular calibration and the time and conditions since calibration. ssn does
provide ssn:Drift as a way of describing the degradation of accuracy over
time. But the interaction of calibration, time since calibration, expected drift,
and dependence on calibration method, are subtle properties of a sensor that
are important in some applications.

Our solution for this issue, as shown below, is to use ssn:inCondition to
specify a time range for which the particular capability is valid. More specifically,
we model sco:CalibrationEvent as a condition, in effect stating, for example,
that the accuracy holds for the given calibration period. This approach is pow-
erful because the combination of ssn capabilities and conditions can express
many properties of sensors and the conditions under which they are true. Fur-
ther, such a method is invariant to the passage of time and consequent changes
in the world: to make a fixed specification, such as classifying a sensor as having
accuracy 2.9% or classifying it into a concept such as HighAccuracy, means that
any changes require retracting the assertion as well as any derived consequences
and making new assertions. In our system, where changes in time affect our
choices of the best sensors, and where we may need to revisit the history of a
sensor (e.g. find the sensors that have always been well maintained), retraction
and reassertion would be awkward and wouldn’t give the required functionality.

<sco:Sensor rdf:ID=" RIMCO_Rainfall">

9 http://purl.oclc.org/NET/muo

http://purl.oclc.org/NET/muo
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<ssn:hasMeasurementCapability rdf:resource ="# calibration -capability -12-06-13"/>
<ssn:hasMeasurementCapability rdf:resource ="# calibration -capability -20-01-14"/>
...

</sco:Sensor >

<ssn:MeasurementCapability rdf:ID=" calibration -capability -20-01-14">
<ssn:inCondition rdf:resource ="# calibrationEvent_20 -01-14"/>
<ssn:forProperty rdf:resource ="http :// purl.oclc.org/NET/ssnx/cf/

cf-feature#rainfall"/>
<ssn:hasMeasurementProperty rdf:resource ="# RIMCO_Low_Rainfall_Accuracy "/>

</ssn:MeasurementCapability >

<ssn:Accuracy rdf:ID=" RIMCO_Low_Rainfall_Accuracy">
<sco:hasMaxValue rdf:resource ="# max_low_rainfall_mm_s "/>
<sco:hasMinValue rdf:resource ="# min_low_rainfall_mm_s "/>

</ssn:Accuracy >

<sco:MaximumAmount rdf:ID=" max_low_rainfall_mm_s">
<dul:hasDataValue rdf:datatype ="http :// www.w3.org /2001/ XMLSchema#string"

>0.3</dul:hasDataValue >
<dul:isClassifiedBy rdf:resource ="# uom_mm_s"/>

</sco:MaximumAmount >

<sco:CalibrationEvent rdf:ID=" calibrationEvent_20 -01-14">
<ssn:endTime rdf:resource ="# calibration_date_20 -01-14"/>

</sco:CalibrationEvent >

<dul:TimeInterval rdf:ID=" calibration_date_20 -01-14">
<sco:hasIntervalDateTime rdf:datatype ="http ://www.w3.org /2001/
XMLSchema#dateTime ">2014-01-20 T00 :00:00 </ sco:hasIntervalDateTime >

</dul:TimeInterval >

Further to this issue, ssn gives no guidance on how to describe the measure-
ment capabilities of an installed sensor instance versus the full range of potential
properties defined for the device. For example, it is typical to describe proper-
ties of types of sensors using TBox assertions and properties of instances of such
sensors as ABox assertions; if the TBox asserts that the device may have an
accuracy of ±2–4%, and the ABox asserts that a particular instance of the de-
vice has accuracy ±2–2.9% (due to calibration), both are still asserted (using
ssn:hasMeasurementCapability) for the instance because the TBox assertion
is still inferred. Some method of distinguishing between general (possible) prop-
erties of sensors and actual properties of deployed and calibrated instances of
such sensors is required. Our solution using instances (ABox assertions) accord-
ing to sco modelling is shown in the example above.

Attaching assertions, such as a sensor’s accuracy or an assessment of its suit-
ability as input to a model, to time points is in line with the fluents approach [18]
and the modelling of the passage of time in DOLCE. The approach allows ob-
jects, such as sensors, to keep a fixed uri, but still show the variance of the
object over time. As in the example below, it is easy to sparql for the latest
accuracy assertion or all the quality assessments made on a sensor.

SELECT ?s (MAX(?time) AS ?lastCalibration)
WHERE {
?s ssn:hasMeasurementCapability ?mc .
?mc ssn:inCondition ?c .
?c a sco:CalibrationEvent .
?c ssn:endTime ?ti .
?ti sco:hasIntervalDateTime ?time .

} GROUP BY ?s
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5 Ranking of Sensors based on Fitness for Purpose

In this section we describe a ranking algorithm for selecting sensors that provide
suitable input for a predictive model or to compute a derived variable. Our
algorithm is based on the semantic modelling described in Section 4. It takes a
description of model requirements for sensor data as input and returns a list of
suitable sensors together with their observations. Results are ranked based on
their fitness for purpose. In the following we describe the design of our ranking
algorithm based on the definitions of fitness functions and fitness queries.

5.1 Fitness Functions and Fitness Queries

In our queries we distinguish required properties and desired properties for sen-
sor data. Required properties (rps) define data properties that are essential
in order to run a model. A typical example is the observed property. If a
model requires air temperature as input it does not make sense to use rain-
fall observations instead. We consider sco classes and properties associated
with sco:observedPhenomenon to define rps, e. g., temporal modifier, func-
tional modifier, and unit of measure. The temporal modifier defines the interval
between observed values (e. g., hour). The functional modifier describes how ob-
served values within the interval are aggregated (e. g., average). In addition,
most models expect observations to be represented in a specific measurement
unit (e. g., Fahrenheit).

Desired properties (dps) describe preferences that models have towards the
input data in order to ensure high quality results. A common example is sensor
location. When running a predictive model we are interested in finding sensors
that are in close proximity to the location for which the prediction is made (e. g.,
a vineyard). Other examples include calibration history (e. g., we prefer sensors
that are calibrated regularly), age of the sensing device (e. g., newer devices are
preferred over older ones), or state of the time series of observation (e. g., number
of missing observations). In our ranking algorithm dps are used to further restrict
the set of sensors suitable to run a model as well as to rank results based on how
they satisfy the dps.

From our examples it becomes clear that there is a wide variety of dps.
To account for this variety we model dps using fitness functions. We assume a
set of fitness functions F = {f1, . . . , fn}. Each function f(G, op,KV ) takes as
input a knowledge base in the form of a rdf graph G, an observed phenomenon
op, and a set of function-specific key-value pairs KV . Each function returns a
value in an ordered domain D or a special null value ⊥. A typical example is a
spatial distance function. The function takes latitude and longitude information
as additional parameters. It retrieves the latitude and longitude of the sensor
that observed the given phenomenon and returns the Euclidean distance between
that sensor and the given location. If latitude and longitude information does
not exist for the given sensor the function returns ⊥.

Fitness functions may also access external data sources. This is particularly
important for functions that operate on time series. Currently we exclude the
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actual observed time-value pairs from our knowledge base. The two main reasons
for this decision are that (1) the data changes frequently and we would need
to continuously update the knowledge base, and (2) rdf is not well suited to
represent time series data potentially leading to increased query execution times.
Observed time-value pairs can be stored using different architectures (e. g., the
Sensor Cloud), instead. Our knowledge base contains a reference (url) to the
data. Using these references a fitness function can retrieve the time series from
the external source and compute a value over the data (e. g., the maximal time
gap between consecutive observations).

Formally, a query for sensors suitable to run a given model, referred to as
fitness query, is a pair (Q,FFS ). Q is a sparql query for observed phenomena
that satisfy the rps of a model. Note that we focus on observed phenomena
instead of sensors since each sensor can observe multiple phenomena. We later
retrieve the sensor that made the observations for our final result. FFS is a
set of fitness function statements. Each fitness query contains a non-empty set
of fitness functions FFS = {(f1, ω1, c1,KV 1), . . . , (fn, ωn, cn,KV n)}. With each
function we associate a weight ω to reflect the importance given to that particular
property. For example, a model may give higher importance to the distance of a
sensor to a given location than to calibration status. Although fitness functions
represent desired properties (or weak constraints), models can have thresholds
on fitness values, e. g., only consider sensors that have been calibrated within the
last 12 months. We associate a Boolean function c with each fitness function to
represent such strong constraints. Function c returns true if the value returned
by f satisfies the constraint and false otherwise.

5.2 Ranking Algorithm

Our ranking algorithm, which executes fitness queries, is shown in Figure 2.
Information about sensors and their properties is maintained in a knowledge
base in rdf format. The algorithm takes the rdf graph G, a sparql query Q,
and fitness function statements FFS as input. It returns a ranked list of (sen-
sor, observed phenomenon)-pairs. There are three main steps in our algorithm:
(1) retrieve observed phenomena that satisfy the rps, (2) compute a ranking
of returned phenomena for each fitness function in FFS , and (3) compute an
aggregate ranking of phenomena from the individual rankings.

The first step in the algorithm returns observed phenomena in G that satisfy
the rps by executing the sparql query Q. The only constraint towards Q is
that it returns a list of uris for sco:ObservedPhenomenon. An example query
is shown below. The query retrieves all observed phenomena for the observed
property cf:air temperature, which have been measured hourly and classified
according to http://purl.oclc.org/NET/muo/ucum/unit/time/hour.

SELECT DISTINCT ?observation
WHERE {

?observation a sco:ObservedPhenomenon .
?observation ssn:observedProperty cf:air_temperature .
?observation sco:hasTemporalModifier ?tempMod .
?tempMod dul:isClassifiedBy <http :// purl.oclc.org/NET/muo/ucum/unit/time/hour >

}
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Input: G,Q,FFS
Output: List of (sensor, observed phenomenon)-pairs and their overall ranking score

CANDIDATES ← SPARQL(G,Q); /* Step 1 */
RANKINGS ← ∅; /* Step 2 */
for all (f, ω, c,KV ) ∈ FFS do

RANK ← ∅;
for all op ∈ CANDIDATES do

val ← f(G, op,KV );
if c(val) then

RANK ← RANK ∪ {(op, val)};
else

CANDIDATES ← CANDIDATES \ op;
end if

end for
RANKINGS ← RANKINGS ∪ sortf (RANK );

end for
RESULT ← ∅; /* Step 3 */
for all op ∈ CANDIDATES do

score ← 0;
for all (f, ω, c,KV ) ∈ FFS do

score ← score + (ω × get-rank -position(op,RANKINGS , f));
end for
RESULT ← RESULT ∪ {((op, get-sensor -for(op)), score)};

end for
sortASC(RESULT );
return RESULT ;

Fig. 2: Pseudo-code for ranking algorithm.

The second step in the algorithm ranks candidate phenomena for each fitness
function f individually. Should a candidate fail the respective strong constraint c
associated with f it is removed from the set of candidates. For those candidates
that satisfy the constraint we maintain the uri of the phenomenon and the
returned function value. We then rank all candidates that have not been pruned.
We assume the existence of a ranking function sortf that returns a list of uri-
value pairs such that the pair with the best value (according to function f)
is ranked first, the second-best value second, and so on. For a spatial distance
function, for example, the pairs are sorted in ascending order of distance values.

The last step of the algorithm computes an aggregate ranking for candidates
based on the individual rankings and the weights given to the respective fitness
functions. We maintain a list of rankings (RANKINGS ). The problem of combin-
ing ranking results has been studied extensively in social choice theory and web
search (e. g., [7], [1]). Dwork et al. show that the problem of computing an opti-
mal solution can by NP-hard (for certain distance measures) given four or more
input rankings [7] and propose several heuristic algorithms for rank aggregation.
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Our current implementation is based on Borda’s positional method [3] that can
be computed in linear time. Borda’s method assigns a score to each candidate
corresponding to the position at which it appears in each individual ranking.
The function get-rank -position(op,RANKINGS , f) returns the rank position of
the candidate identified by op in the ranking computed for fitness function f .
We multiply the result by the weight assigned to f . Function get-sensor -for(op)
retrieves the uri of the sensor that observed phenomenon op. For our result we
sort all (sensor, observed phenomenon)-pairs in ascending order of their accu-
mulated score. Note that we can use other rank aggregation methods, e. g., using
Markov chains as proposed in [7]. The main purpose of this section, however,
is to present a method for discovering sensors that are fit for purpose based on
the semantic modelling in Section 4. We consider the problem of evaluating the
effectiveness of different ranking methods as future work.

Table 1 gives examples of fitness functions that we have implemented. The
functions use sparql queries to retrieve information such as sensor location,
most recent calibration event, or the url that provides access to the time series
of observed values. The spatial distance function expects coordinates for a point
of interest (PoI). It computes the Euclidean distance between the PoI and the
retrieved coordinates. The gap count function looks at the time intervals between
consecutive values in a time series. If the interval between two values is larger
than the maximum interval it increments the gap count by the quotient of the
actual interval and the expected interval.

To give an example for fitness function statements consider a model like the
accumulated Bacchus index that requires leaf wetness data. The dps are (i) close
proximity to a PoI, and (ii) calibrated recently. We use the following statements
to express the dps for location (f : Spatial Distance, ω: 0.8, c(val): val ≤ 10 km,
KV : {lat : −42.15, lon : 147.45}) and calibration (f : Calibration, ω: 0.2, c(val):
val ≤ 6 months, KV : {}). We exclude sensors that are more than 10 km away
from the PoI or that have not been calibrated in the last 6 months. We also put
higher importance on the distance of the leaf wetness sensor to PoI than on the
calibration date, e. g., due to the model being more sensitive to location.

Table 1: Three examples of fitness functions for spatial distance, last calibration
date, and number of gaps in a time series of observed values.

Steps Parameter

Spatial Distance
1) sparql for location of measuring sensor Latitude for PoI
2) Calculate Euclidean distance Longitude for PoI

Calibration 1) sparql as shown on page 8

Gap Count
1) sparql for url to access data Expected Time Interval
2) Retrieve time series of observed values Max. Time Interval
3) Count number of gaps
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6 Implementation and Evaluation

We implemented a number of derived variables from our Viticulture use case.
We used the Kepler [11] workflow engine to compute the variables, having the
Sensor Cloud infrastructure as the source of raw data.

We use the Accumulated Bacchus Index (abi) (see Section 3) to evaluate our
modelling and fitness for purpose ranking algorithm. The abi requires hourly
air temperature and leaf wetness observations as input. Our evaluation consists
of the following steps. We first compute a baseline abi graph for a fixed period
(Jan. 2014) using a pair of well maintained sensors for air temperature and leaf
wetness, i. e., our gold standard. We then fix the leaf wetness sensor and re-run
the abi with different temperature sensors from a set of candidates. That is, we
assume that we need to find a replacement for the gold standard temperature
sensor. We plot the different abi outputs in Figure 3. From these results we
derive the optimal ranking of candidates based on how good they resemble the
baseline result. We then show that our ranking algorithm produces the optimal
ranking according to the user criteria.

Fig. 3: abi computed for Jan. 2014 using a fixed leaf wetness sensor (at Pooley
Cooinda) and six different air temperature sensors.

Our baseline is obtained using sensors at Pooley Cooinda. Our set of candi-
dates contains five air temperature sensors that are in close proximity to Pooley
Cooinda. Figure 3 shows that the sensor at Home Hill results in an abi that
almost exactly resembles the baseline result. The sensor at Spring Vale gives
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a less accurate but still acceptable result. Using the sensor at Frogmore Creek
produces the worst result. This is mainly due to the fact that the sensor has a
large gap (approximately seven days) with missing data. Based on Figure 3 we
define an optimal ranking for candidates in order of increasing mean squared
error (mse) with the baseline (shown in brackets): Home Hill (0.008), Spring
Vale (0.015), Cape-Barren (0.068), Flowerdale (0.110), Frogmore Creek (0.371).

We now show that our ranking algorithm can produce the optimal ranking
based on user criteria expressed using fitness function statements. To do so, we
use two different fitness functions: one for spatial distance and one for missing
data (as shown in Section 5). For the latter we count the number of missing
observed values considering that the abi requires input on an hourly basis.

Table 2 shows rankings of candidate sensors using different fitness function
statements. The ranking using the spatial distance fitness function solely uses
distance from the leaf wetness sensor at Pooley Cooinda to rank the temperature
sensors. According to this ranking the sensor at Frogmore Creek is the best re-
placement sensor and the sensor at Cape-Barren is the worst replacement sensor.
The result clearly contradicts the optimal ranking. When ranked by increasing
number of gaps, Home Hill is the best choice and Frogmore Creek the worst.
This ranking exactly reflects the optimal ranking and highlights that the quality
of data is of higher importance to the abi than the distance of the sensor. The
aggregated rankings are weighted over distance and gap count. When giving a
higher importance to distance (Aggreg. (0.8, 0.2)), the sensor at Frogmore Creek
is still ranked as one of the preferred replacements. The situation changes when
giving higher importance to gap count instead.

Table 2: Rankings of candidate sensors for different fitness functions.
Rank Spatial Distance Gap Count Aggreg. (0.8, 0.2) Aggreg. (0.2,0.8)

1 Frogmore Creek Home Hill Home Hill Home Hill
2 Home Hill Spring Vale Frogmore Creek Spring Vale
3 Spring Vale Cape-Barren Spring Vale Cape-Barren
4 Flowerdale Flowerdale Flowerdale Flowerdale
5 Cape-Barren Frogmore Creek Cape-Barren Frogmore Creek

We repeat the experiment for Apr. 2014 where none of the candidate sensors
has gaps (graph not shown). The optimal ranking (based on mse) is: Frogmore
Creek (0.001), Home Hill (0.004), Spring Vale (0.011), Flowerdale (0.022), Cape-
Barren (0.075). This ranking equals the ranking based on spatial distance (as
shown in Figure 2). A ranking on gaps, on the other hand, will rank all sensors
the same. Thus, for the different time periods different fitness functions produce
the optimal result, i. e., gap count for Jan. 2014 and distance for Apr. 2014. For
both time periods the aggregated ranking that gives higher importance to gaps
always produces the optimal result. This clearly shows the benefit of combining
fitness function statements to receive optimal results for different situations.
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The evaluation shows that our algorithm is able to produce optimal rankings.
The quality of ranking, however, depends on the user supplied fitness function
statements. If the statements correctly capture the fact that the abi has high
sensitivity to gap count, our algorithm correctly ranks the replacement candi-
dates. Should the user decide to give higher weight to the distance, on the other
hand, the results could be non-optimal. In general, the choice of functions and
their weights requires knowledge about the sensitivity of the model. We envision
that developers of a model will specify these fitness requirements. The user then
only specifies user dependent properties such as the location of their vineyard.

7 Conclusions

In this paper we propose an ontology-based framework for finding observation
data that is fit for purpose as input to predictive models. In particular, we focus
on the modelling methodology and approaches to handling the difficulties of
describing sensors and evaluating them in a dynamic environment.

Within this framework, we further present a generic approach to ranking
sensor data based on fitness for purpose. Our framework allows to rank sensors
against criteria such as location, most recent calibration event, administered by
an organisation that maintains sensors regularly, and data quality over a period
of time (e. g., number of gaps). Ranking makes use of the accumulated metadata
and semantics in the ontology for long term analysis and semantic analysis of
the sensors. Since the quality of sensor measurements is not fixed over time our
semantic model accounts for this changing behaviour.

Our work presents a first approach to exploit sensor properties for ranking
based on fitness for a particular purpose. Existing approaches rank sensors based
on the probability that they have a certain output state at a given time [8] or
based on the similarity of their observed values [17]. The work in [15] goes into
a similar direction as ours, however, our work has a strong focus on semantic
modelling. Furthermore, the fitness functions that we consider allow for more
complex expressions of fitness for purpose.

In future work, we consider automating the search for compatible sensors.
For example, when a model requires maximum hourly air temperature, sensors
that observe air temperature on a minutely basis are candidates because the data
can convert through aggregation. Performance of evaluating fitness functions is
another area of future work. Here, our particular focus is on caching the results
of functions that incur high cost, e. g., computing values over time series data
from external data sources.
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