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Abstract. We present an extension of the ontology-based data access platform
Ontop that supports answering SPARQL queries under the OWL 2 QL direct
semantics entailment regime for data instances stored in relational databases.
On the theoretical side, we show how any input SPARQL query, OWL 2 QL
ontology and R2RML mappings can be rewritten to an equivalent SQL query
solely over the data. On the practical side, we present initial experimental re-
sults demonstrating that by applying the Ontop technologies—the tree-witness
query rewriting, T -mappings compiling R2RML mappings with ontology hier-
archies, and T -mapping optimisations using SQL expressivity and database in-
tegrity constraints—the system produces scalable SQL queries.

1 Introduction

Ontology-based data access and management (OBDA) is a popular paradigm of organ-
ising access to various types of data sources that has been developed since the mid
2000s [11,17,24]. In a nutshell, OBDA separates the user from the data sources (rela-
tional databases, triple stores, etc.) by means of an ontology which provides the user
with a convenient query vocabulary, hides the structure of the data sources, and can en-
rich incomplete data with background knowledge. About a dozen OBDA systems have
been implemented in both academia and industry; e.g., [27,30,24,4,23,15,12,8,20,22].
Most of them support conjunctive queries and the OWL 2 QL profile of OWL 2 as the
ontology language (or its generalisations to existential datalog rules). Thus, the OBDA
platform Ontop [29] was designed to query data instances stored in relational databases,
with the vocabularies of the data and OWL 2 QL ontologies linked by means of global-
as-view (GAV) mappings. Given a conjunctive query in the vocabulary of such an on-
tology, Ontop rewrites it to an SQL query in the vocabulary of the data, optimises the
rewriting and delegates its evaluation to the database system.

One of the main aims behind the newly designed query language SPARQL 1.1—
a W3C recommendation since 2013—has been to support various entailment regimes,
which can be regarded as variants of OBDA. Thus, the OWL 2 direct semantics en-
tailment regime allows SPARQL queries over OWL 2 DL ontologies and RDF graphs
(which can be thought of as 3-column database tables). SPARQL queries are in many
aspects more expressive than conjunctive queries as they offer more complex query



constructs and can retrieve not only domain elements but also class and property names
using second-order variables. (Note, however, that SPARQL 1.1 does not cover all con-
junctive queries.) OWL 2 DL is also vastly superior to OWL 2 QL, but this makes query
answering under the OWL 2 direct semantics entailment regime intractable (CONP-
hard for data complexity). For example, the query evaluation algorithm of [19] calls an
OWL 2 DL reasoner for each possible assignment to the variables in a given query, and
therefore cannot cope with large data instances.

In this paper, we investigate answering SPARQL queries under a less expressive
entailment regime, which corresponds to OWL 2 QL, assuming that data is stored in
relational databases. It is to be noted that the W3C specification1 of SPARQL 1.1 defines
entailment regimes for the profiles of OWL 2 by restricting the general definition to the
profile constructs that can be used in the queries. However, in the case of OWL 2 QL,
this generic approach leads to a sub-optimal, almost trivial query language, which is
essentially subsumed by the OWL 2 RL entailment regime.

The first aim of this paper is to give an optimal definition of the OWL 2 QL direct
semantics entailment regime and prove that—similarly to OBDA with OWL 2 QL and
conjunctive queries—answering SPARQL queries under this regime is reducible to an-
swering queries under simple entailment. More precisely, in Theorem 4 we construct a
rewriting ·† of any given SPARQL query and ontology under the OWL 2 QL entailment
regime to a SPARQL query that can be evaluated on any dataset directly.

In a typical Ontop scenario, data is stored in a relational database whose schema is
linked to the vocabulary of the given OWL 2 QL ontology via a GAV mapping in the
language R2RML. The mapping allows one to transform the relational data instance
into an RDF representation, called the virtual RDF graph (which is not materialised in
our scenario). The rewriting ·† constructs a SPARQL query over this virtual graph.

Our second aim is to show how such a SPARQL query can be translated to an equiv-
alent SQL query over a relational representation of the virtual RDF graph as a 3-column
table (translation τ in Theorem 7). The third aim is to show that the resulting SQL query
can be unfolded, using a given R2RML mappingM, to an SQL query over the original
database (trM in Theorem 12), which is evaluated by the database system.
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Unfortunately, each of these three transformations may involve an exponential blowup.
We tackle this problem in Ontop using the following optimisation techniques. (i) The
mapping is compiled with the ontology into a T -mapping [29] and optimised by database
dependencies (e.g., primary, candidate and foreign keys) and SQL disjunctions. (ii) The
SPARQL-to-SQL translation is optimised using null join elimination (Theorem 8). (iii)
The unfolding is optimised by eliminating joins with mismatching R2RML IRI tem-
plates, de-IRIing the join conditions (Section 3.3) and using database dependencies.

Our contributions (Theorems 4, 7, 8 and 12 and optimisations in Section 3.3) make
Ontop the first system to support the W3C recommendations OWL 2 QL, R2RML,
SPARQL and the OWL 2 QL direct semantics entailment regime; its architecture is out-

1 http://www.w3.org/TR/sparql11-entailment
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lined in Section 4. We evaluate the performance of Ontop using the LUBM Bench-
mark [16] extended with queries containing class and property variables, and com-
pare it with two other systems that support the OWL 2 entailment regime by calling
OWL DL reasoners (Section 5). Our experiments show that Ontop outperforms the
reasoner-based systems for most of the queries over small datasets; over larger datasets
the difference becomes dramatic, with Ontop demonstrating a solid performance even
on 69 million triples in LUBM500. Finally, we note that, although Ontop was designed
to work with existing relational databases, it is also applicable in the context of RDF
triple stores, in which case approaches such as the one from [3] can be used to generate
suitable relational schemas. Omitted proofs and evaluation details can be found in the
full version at http://www.dcs.bbk.ac.uk/˜michael/ISWC-14-v2.pdf.

2 SPARQL Queries under OWL 2 QL Entailment Regime

SPARQL is a W3C standard language designed to query RDF graphs. Its vocabulary
contains four pairwise disjoint and countably infinite sets of symbols: I for IRIs, B for
blank nodes, L for RDF literals, and V for variables. The elements of C = I ∪ B ∪ L
are called RDF terms. A triple pattern is an element of (C∪V)× (I∪V)× (C∪V). A
basic graph pattern (BGP) is a finite set of triple patterns. Finally, a graph pattern, P ,
is an expression defined by the grammar

P ::= BGP | FILTER(P, F ) | BIND(P, v, c) | UNION(P1, P2) |
JOIN(P1, P2) | OPT(P1, P2, F ),

where F , a filter, is a formula constructed from atoms of the form bound(v), (v = c),
(v = v′), for v, v′ ∈ V, c ∈ C, and possibly other built-in predicates using the logical
connectives ∧ and ¬. The set of variables in P is denoted by var(P ).

A SPARQL query is a graph pattern P with a solution modifier, which specifies
the answer variables—the variables in P whose values we are interested in—and the
form of the output (we ignore other solution modifiers for simplicity). The values to
variables are given by solution mappings, which are partial maps s : V → C with
(possibly empty) domain dom(s). In this paper, we use the set-based (rather than bag-
based, as in the specification) semantics for SPARQL. For sets S1 and S2 of solution
mappings, a filter F , a variable v ∈ V and a term c ∈ C, let

– FILTER(S, F ) = {s ∈ S | F s = >};
– BIND(S, v, c) = {s⊕ {v 7→ c} | s ∈ S} (provided that v /∈ dom(s), for s ∈ S);
– UNION(S1, S2) = {s | s ∈ S1 or s ∈ S2};
– JOIN(S1, S2) = {s1 ⊕ s2 | s1 ∈ S1 and s2 ∈ S2 are compatible};
– OPT(S1, S2, F ) = FILTER(JOIN(S1, S2), F ) ∪ {s1 ∈ S1 | for all s2 ∈ S2,

either s1, s2 are incompatible or F s1⊕s2 6= >}.

Here, s1 and s2 are compatible if s1(v) = s2(v), for any v ∈ dom(s1) ∩ dom(s2), in
which case s1 ⊕ s2 is a solution mapping with s1 ⊕ s2 : v 7→ s1(v), for v ∈ dom(s1),
s1⊕s2 : v 7→ s2(v), for v ∈ dom(s2), and domain dom(s1)∪dom(s2). The truth-value
F s ∈ {>,⊥, ε} of a filter F under a solution mapping s is defined inductively:
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– (bound(v))s is > if v ∈ dom(s) and ⊥ otherwise;
– (v = c)s = ε if v /∈ dom(s); otherwise, (v = c)s is the classical truth-value of the

predicate s(v) = c; similarly, (v = v′)s = ε if either v or v′ /∈ dom(s); otherwise,
(v = v′)s is the classical truth-value of the predicate s(v) = s(v′);

– (¬F )s =

{
ε, if F s = ε,
¬F s, otherwise,

and (F1 ∧F2)
s =

⊥, if F s1 = ⊥ or F s2 = ⊥,
>, if F s1 = F s2 = >,
ε, otherwise.

Finally, given an RDF graph G, the answer to a graph pattern P over G is the set JP KG
of solution mappings defined by induction using the operations above and starting from
the following base case: for a basic graph pattern B,

JBKG = {s : var(B)→ C | s(B) ⊆ G}, (1)

where s(B) is the set of triples resulting from substituting each variable u inB by s(u).
This semantics is known as simple entailment.

Remark 1. The condition ‘F s1⊕s2 is not true’ in the definition of OPT is different from
‘F s1⊕s2 has an effective Boolean value of false’ given by the W3C specification:2 the
effective Boolean value can be undefined (type error) if a variable in F is not bound by
s1 ⊕ s2. As we shall see in Section 3.1, our reading corresponds to LEFT JOIN in SQL.
(Note also that the informal explanation of OPT in the W3C specification is inconsistent
with the definition of DIFF; see the full version for details.)

Under the OWL 2 QL direct semantics entailment regime, one can query an RDF
graph G that consist of two parts: an extensional sub-graph A representing the data as
OWL 2 QL class and property assertions, and the intensional sub-graph T representing
the background knowledge as OWL 2 QL class and property axioms. We write (T ,A)
in place of G to emphasise the partitioning. To illustrate, we give a simple example.

Example 2. Consider the following two axioms from the LUBM ontology (T ,A) (see
Section 5), which are given here in the functional-style syntax (FSS):

SubClassOf(ub:UGStudent, ub:Student), SubClassOf(ub:GradStudent, ub:Student).

Under the entailment regime, we can write a query that retrieves all named subclasses
of students in (T ,A) and all instances of each of these subclasses (cf. q′9 in Section 5):

SELECT ?x ?C WHERE { ?C rdfs:subClassOf ub:Student. ?x rdf:type ?C. }.

Here ?C ranges over the class names (IRIs) in (T ,A) and ?x over the IRIs of individ-
uals. If, for example, A consists of the two assertions on the left-hand side, then the
answer to the query over (T ,A) is on the right-hand side:

A
ClassAssertion(ub:UGStudent, ub:jim)
ClassAssertion(ub:Student, ub:bob)

?x ?C
ub:jim ub:UGStudent
ub:jim ub:Student
ub:bob ub:Student

2 http://www.w3.org/TR/sparql11-query/#sparqlAlgebra
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To formally define SPARQL queries that can be used under the OWL 2 QL direct
semantics entailment regime, we assume that the set I of IRIs is partitioned into disjoint
and countably infinite sets of class names IC , object property names IR and individual
names II . Similarly, the variables V are also assumed to be a disjoint union of countably
infinite sets VC , VR, VI . Now, we define an OWL 2 QL BGP as a finite set of triple
patterns representing OWL 2 QL axiom and assertion templates in the FSS such as:3

SubClassOf(SubC, SuperC), DisjointClasses(SubC1, . . . , SubCn),
ObjectPropertyDomain(OP, SuperC), ObjectPropertyRange(OP, SuperC),
SubObjectPropertyOf(OP,OP), DisjointObjectProperties(OP1, . . . ,OPn),
ClassAssertion(SuperC, I), ObjectPropertyAssertion(OP, I, I),

where I ∈ II ∪ VI and OP, SubC and SuperC are defined by the following grammar
with C ∈ IC ∪ VC and R ∈ IR ∪ VR:

OP ::= R | ObjectInverseOf(R),

SubC ::= C | ObjectSomeValuesFrom(OP, owl:Thing),

SuperC ::= C | ObjectIntersectionOf(SuperC1, . . . , SuperCn) |
ObjectSomeValuesFrom(OP, SuperC).

OWL 2 QL graph patterns are constructed from OWL 2 QL BGPs using the SPARQL
operators. Finally, an OWL 2 QL query is a pair (P, V ), where P is an OWL 2 QL graph
pattern and V ⊆ var(P ). To define the answer to such a query (P, V ) over an RDF
graph (T ,A), we fix a finite vocabulary IT ,A ⊆ I that includes all names (IRIs) in T
and A as well as the required finite part of the OWL 2 RDF-based vocabulary (e.g.,
owl:Thing but not the infinite number of the rdf: n). To ensure finiteness of the answers
and proper typing of variables, in the following definition we only consider solution
mappings s : var(P )→ IT ,A such that s−1(Iα) ⊆ Vα, for α ∈ {C,R, I}. For each
BGP B, we define the answer JBKT ,A to B over (T ,A) by taking

JBKT ,A = {s : var(B)→ IT ,A | (T ,A) |= s(B)},

where |= is the entailment relation given by the OWL 2 direct semantics. Starting from
the JBKT ,A and applying the SPARQL operators in P , we compute the set JP KT ,A of
solution mappings. The answer to (P, V ) over (T ,A) is the restriction JP KT ,A|V of
the solution mappings in JP KT ,A to the variables in V .

Example 3. Suppose T contains

SubClassOf(:A,ObjectSomeValuesFrom(:P, owl:Thing)),
SubObjectPropertyOf(:P, :R), SubObjectPropertyOf(:P,ObjectInverseOf(:S)).

Consider the following OWL 2 QL BGP B:

ClassAssertion(ObjectSomeValuesFrom(:R,ObjectSomeValuesFrom(:S,
ObjectSomeValuesFrom(:T, owl:Thing))), ?x).

3 The official specification of legal queries under the OWL 2 QL entailment regime only allows
ClassAssertion(C, I) rather than ClassAssertion(SuperC, I), which makes the OWL 2 QL en-
tailment regime trivial and essentially subsumed by the OWL 2 RL entailment regime.



Assuming that A = {ClassAssertion(:A, :a),ObjectPropertyAssertion(:T, :a, :b)}, it is
not hard to see that JBKT ,A = {?x 7→ :a}. Indeed, by the first assertion of A and the
first two axioms of T , any model of (T ,A) contains a domain element w (not neces-
sarily among the individuals in A) such that ObjectPropertyAssertion(:R, :a, w) holds.
In addition, the third axiom of T implies ObjectPropertyAssertion(:S, w, :a), which to-
gether with the second assertion of A mean that {?x 7→ :a} is an answer.

The following theorem shows that answering OWL 2 QL queries under the direct
semantics entailment regime can be reduced to answering OWL 2 QL queries under
simple entailment, which are evaluated only on the extensional part of the RDF graph:

Theorem 4. Given any intensional graph T and OWL 2 QL query (P, V ), one can con-
struct an OWL 2 QL query (P †, V ) such that, for any extensional graphA (in some fixed
finite vocabulary), JP KT ,A|V = JP †KA|V .

Proof sketch. By the definition of the entailment regime, it suffices to construct B†, for
any BGP B; the rewriting P † is obtained then by replacing each BGP B in P with
B†. First, we instantiate the class and property variables in B by all possible class and
property names in the given vocabulary and add the respective BIND operations. In each
of the resulting BGPs, we remove the class and property axioms if they are entailed by
T ; otherwise we replace the BGP with an empty one. The obtained BGPs are (SPARQL
representations of) conjunctive queries (with non-distinguished variables in complex
concepts SuperC of the assertions ClassAssertion(SuperC, I)). The second step is to
rewrite these conjunctive queries together with T into unions of conjunctive queries
(BGPs) that can be evaluated over any extensional graph A [5,21]. (We emphasise that
the SPARQL algebra operations, including difference and OPT, are applied to BGPs
and do not interact with the two steps of our rewriting.) q

We illustrate the proof of Theorem 4 using the queries from Examples 2 and 3.

Example 5. The class variable ?C in the query from Example 2 can be instantiated,
using BIND, by all possible values from IC ∩ IT ,A, which gives the rewriting

SELECT ?x ?C WHERE {
{ ?x rdf:type ub:Student. BIND(ub:Student as ?C) } UNION
{ ?x rdf:type ub:GradStudent. BIND(ub:GradStudent as ?C) } UNION
{ ?x rdf:type ub:UGStudent. BIND(ub:UGStudent as ?C) } }.

The query from Example 3 is equivalent to a (tree-shaped) conjunctive query with three
non-distinguished and one answer variable, which can be rewritten to

SELECT ?x WHERE { { ?x :R ?y. ?y :S ?z. ?z :T ?u. } UNION
{ ?x rdf:type :A. ?x :T ?u. } }.

3 Translating SPARQL under Simple Entailment to SQL

A number of translations of SPARQL queries (under simple entailment) to SQL queries
have already been suggested in the literature; see, e.g., [9,13,7,32,27]. However, none



of them is suitable for our aims because they do not take into account the three-valued
logic used in the OPTIONAL and BOUND constructs of the current SPARQL 1.1 (the se-
mantics of OPTIONAL was not compositional in SPARQL 1.0). Note also that SPARQL
has been translated to Datalog [25,2,26].

We begin by recapping the basics of relational algebra and SQL (see e.g., [1]). Let
U be a finite (possibly empty) set of attributes. A tuple over U is a map t : U → ∆,
where∆ is the underlying domain, which always contains a distinguished element null.
A (|U |-ary) relation over U is a finite set of tuples over U (again, we use the set-based
rather than bag-based semantics). A filter F over U is a formula constructed from atoms
isNull(U ′), (u = c) and (u = u′), where U ′ ⊆ U , u, u′ ∈ U and c ∈ ∆, using the
connectives ∧ and ¬. Let F be a filter with variables U and let t be a tuple over U . The
truth-value F t ∈ {>,⊥, ε} of F over t is defined inductively:

– (isNull(U ′))t is > if t(u) is null, for all u ∈ U ′, and ⊥ otherwise;
– (u = c)t = ε if t(u) is null; otherwise, (u = c)t is the classical truth-value of

the predicate t(u) = c; similarly, (u = u′)t = ε if either t(u) or t(u′) is null;
otherwise, (u = u′)t is the classical truth-value of the predicate t(u) = t(u′);

– (¬F )t =

{
ε, if F t = ε,

¬F t, otherwise,
and (F1 ∧ F2)

t =

⊥, if F t1 = ⊥ or F t2 = ⊥,
>, if F t1 = F t2 = >,
ε, otherwise.

(Note that ¬ and ∧ are interpreted in the same three-valued logic as in SPARQL.) We
use standard relational algebra operations such as union, difference, projection, selec-
tion, renaming and natural (inner) join. Let Ri be a relation over Ui, i = 1, 2.

– If U1 = U2 then the standard R1 ∪R2 and R1 \R2 are relations over U1.
– If U ⊆ U1 then πUR1 = R1|U is a relation over U .
– If F is a filter over U1 then σFR1 = {t ∈ R1 | F t = >} is a relation over U1.
– If v /∈ U1 and u ∈ U1 then ρv/uR1 =

{
tv/u | t ∈ R1

}
, where tv/u : v 7→ t(u) and

tv/u : u
′ 7→ t(u′), for u′ ∈ U1 \ {u}, is a relation over (U1 \ {u}) ∪ {v}.

– R1 1 R2 = {t1 ⊕ t2 | t1 ∈ R1 and t2 ∈ R2 are compatible} is a relation over
U1∪U2. Here, t1 and t2 are compatible if t1(u) = t2(u) 6= null, for all u ∈ U1∩U2,
in which case a tuple t1⊕ t2 over U1 ∪U2 is defined by taking t1⊕ t2 : u 7→ t1(u),
for u ∈ U1, and t1 ⊕ t2 : u 7→ t2(u), for u ∈ U2 (note that if u is null in either of
the tuples then they are incompatible).

To bridge the gap between partial functions (solution mappings) in SPARQL and total
mappings (on attributes) in SQL, we require one more operation (expressible in SQL):

– If U ∩ U1 = ∅ then the padding µUR1 is R1 1 nullU , where nullU is the relation
consisting of a single tuple t over U with t : u 7→ null, for all u ∈ U .

By an SQL query, Q, we understand any expression constructed from relation symbols
(each over a fixed set of attributes) and filters using the relational algebra operations
given above (and complying with all restrictions on the structure). Suppose Q is an
SQL query and D a data instance which, for any relation symbol in the schema under
consideration, gives a concrete relation over the corresponding set of attributes. The



answer to Q over D is a relation ‖Q‖D defined inductively in the obvious way starting
from the base case: for a relation symbol Q, ‖Q‖D is the corresponding relation in D.

We now define a translation, τ , which, given a graph pattern P , returns an SQL
query τ (P ) with the same answers as P . More formally, for a set of variables V , let
extV be a function transforming any solution mapping s with dom(s) ⊆ V to a tuple
over V by padding it with nulls:

extV (s) = {v 7→ s(v) | v ∈ dom(s)} ∪ {v 7→ null | v ∈ V \ dom(s)}.

The relational answer to P over G is ‖P‖G = {extvar(P )(s) | s ∈ JP KG}. The SQL
query τ (P ) will be such that, for any RDF graph G, the relational answer to P over G
coincides with the answer to τ (P ) over triple(G), the database instance storing G as a
ternary relation triple with the attributes subj, pred, obj. First, we define the translation
of a SPARQL filter F by taking τ (F ) to be the SQL filter obtained by replacing each
bound(v) with ¬isNull(v) (other built-in predicates can be handled similarly).

Proposition 6. Let F be a SPARQL filter and let V be the set of variables in F . Then
F s = (τ (F ))extV (s), for any solution mapping s with dom(s) ⊆ V .

The definition of τ proceeds by induction on the construction of P . Note that we can
always assume that graph patterns under simple entailment do not contain blank nodes
because they can be replaced by fresh variables. It follows that a BGP {tp1, . . . , tpn} is
equivalent to JOIN({tp1}, JOIN({tp2}, . . . )). So, for the basis of induction we set

τ ({〈s, p, o〉}) =



π∅σ(subj=s)∧(pred=p)∧(obj=o) triple, if s, p, o ∈ I ∪ L,
πsρs/subj σ(pred=p)∧(obj=o) triple, if s ∈ V and p, o ∈ I ∪ L,
πs,oρs/subj ρo/obj σpred=p triple, if s, o ∈ V, s 6= o, p ∈ I ∪ L,
πsρs/subj σ(pred=p)∧(subj=obj) triple, if s, o ∈ V, s = o, p ∈ I ∪ L,
. . .

(the remaining cases are similar). Now, if P1 and P2 are graph patterns and F1 and F
are filters containing only variables in var(P1) and var(P1)∪var(P2), respectively, then
we set Ui = var(Pi), i = 1, 2, and

τ (FILTER(P1, F1)) = στ (F1)τ (P1),

τ (BIND(P1, v, c)) = τ (P1) 1 {v 7→ c},
τ (UNION(P1, P2)) = µU2\U1

τ (P1) ∪ µU1\U2
τ (P2),

τ (JOIN(P1, P2)) =
⋃

V1,V2⊆U1∩U2

V1∩V2=∅

µV1∪V2

[
(πU1\V1

σisNull(V1)τ (P1))1(πU2\V2
σisNull(V2)τ (P2))

]
,

τ (OPT(P1, P2, F )) = στ (F )(τ (JOIN(P1, P2))) ∪
µU2\U1

(
τ (P1) \ πU1

στ (F )(τ (JOIN(P1, P2)))
)
.

It is readily seen that any τ (P ) is a valid SQL query and defines a relation over var(P ).

Theorem 7. For any RDF graphG and any graph pattern P , ‖P‖G = ‖τ (P )‖triple(G).



Proof. The proof is by induction on the structure of P . Here we only consider the
induction step for P = JOIN(P1, P2). Let Ui = var(Pi), i = 1, 2, and U = U1 ∩ U2.

If t ∈ ‖JOIN(P1, P2)‖G then there is a solution mapping s ∈ JJOIN(P1, P2)KG
with extU1∪U2(s) = t, and so there are si ∈ JPiKG such that s1 and s2 are compatible
and s1 ⊕ s2 = s. Since, extUi

(si) ∈ ‖Pi‖G, by IH, extUi
(si) ∈ ‖τ (Pi)‖triple(G). Let

V = dom(s1) ∩ dom(s2) and Vi = U \ dom(si). Then V1, V2 and V are disjoint and
partition U . By definition, extUi

(si) : v 7→ null, for each v ∈ Vi, and therefore extUi
(si)

is in ‖σisNull(Vi)τ (Pi)‖triple(G). Let ti = extUi\Vi
(si) andQi = πUi\Vi

(σisNull(Vi)τ (Pi)).
We have ti ∈ ‖Qi‖triple(G), and since s1 and s2 are compatible and V are the common
non-null attributes of t1 and t2, we obtain t1 ⊕ t2 ∈ ‖Q1 1 Q2‖triple(G). As t extends
t1 ⊕ t2 to V1 ∪ V2 by nulls, we have t ∈ ‖τ (JOIN(P1, P2))‖triple(G).

If t ∈ ‖τ (JOIN(P1, P2))‖triple(G) then there are disjoint V1, V2 ⊆ U and compatible
tuples t1 and t2 such that ti ∈ ‖πUi\Vi

(σisNull(Vi)τ (Pi))‖triple(G) and t extends t1⊕t2 to
V1∪V2 by nulls. Let si = {v 7→ t(v) | v ∈ Ui and t(v) is not null}. Then s1 and s2 are
compatible and extUi(si) ∈ ‖τ (Pi)‖triple(G). By IH, extUi(si) ∈ ‖Pi‖G and si ∈ JPiKG.
So, s1 ⊕ s2 ∈ JJOIN(P1, P2)KG and extU1∪U2

(s1 ⊕ s2) = t ∈ ‖JOIN(P1, P2)‖G. q

3.1 Optimising SPARQL JOIN and OPT

By definition, τ (JOIN(P1, P2)) is a union of exponentially many natural joins (1).
Observe, however, that for any BGP B = {tp1, . . . , tpn}, none of the attributes in the
τ (tpi) can be null. So, we can drastically simplify the definition of τ (B) by taking

τ ({tp1, . . . , tpn}) = τ (tp1) 1 · · · 1 τ (tpn).

Moreover, this observation can be generalised. First, we identify the variables in graph
patterns that are not necessarily bound in solution mappings:

ν(B) = ∅, B is a BGP,
ν(FILTER(P1, F )) = ν(P1) \ {v | bound(v) is a conjunct of F},
ν(BIND(P1, v, c)) = ν(P1),

ν(UNION(P1, P2)) = (var(P1) \ var(P2)) ∪ (var(P2) \ var(P1)) ∪ ν(P1) ∪ ν(P2),

ν(JOIN(P1, P2)) = ν(P1) ∪ ν(P2),

ν(OPT(P1, P2, F )) = ν(P1) ∪ var(P2).

Thus, if a variable v in P does not belong to ν(P ), then v ∈ dom(s), for any solution
mapping s ∈ JP KG and RDF graph G (but not the other way round). Now, we observe
that the union in the definition of τ (JOIN(P1, P2)) can be taken over those subsets of
var(P1) ∩ var(P2) that only contain variables from ν(P1) ∪ ν(P2). This gives us:

Theorem 8. If var(P1) ∩ var(P2) ∩ (ν(P1) ∪ ν(P2)) = ∅ then we can define

τ (JOIN(P1, P2)) = τ (P1) 1 τ (P2), τ (OPT(P1, P2, F )) = τ (P1) τ (F )τ (P2),

where R1 FR2 = σF (R1 1 R2)∪µU2\U1
(R1\πU1

(σF (R1 1 R2))), for Ri over Ui.

(Note that the relational operation F corresponds to LEFT JOIN in SQL with the
condition F placed in its ON clause.)



Example 9. Consider the following BGP B taken from the official SPARQL specifica-
tion (‘find the names of people who do not know anyone’):

FILTER(OPT({ ?x foaf:givenName ?n }, { ?x foaf:knows ?w }, >),¬bound(?w)).

By Theorem 8, τ (B) is defined as σisNull(w)(πx,nQ1 πx,wQ2), where Q1 and Q2

are σpred=foaf:givenNameρx/subjρn/obj triple and σpred=foaf:knowsρx/subjρw/obj triple, respec-
tively (we note in passing that the projection on x is equivalent to πxQ1 \ πxQ2).

3.2 R2RML Mappings

The SQL translation of a SPARQL query constructed above has to be evaluated over
the ternary relation triple(G) representing the virtual RDF graph G. Our aim now is to
transform it to an SQL query over the actual database, which is related toG by means of
an R2RML mapping [10]. A variant of such a transformation has been suggested in [27].
Here we develop the idea first presented in [28]. We begin with a simple example.

Example 10. The following R2RML mapping (in the Turtle syntax) populates an object
property ub:UGDegreeFrom from a relational table students, whose attributes id and
degreeuniid identify graduate students and their universities:

:m1 a rr:TripleMap;
rr:logicalTable [ rr:sqlQuery ”SELECT * FROM students WHERE stype=1” ];
rr:subjectMap [ rr:template ”/GradStudent{id}” ] ;
rr:predicateObjectMap [ rr:predicate ub:UGDegreeFrom ;

rr:objectMap [ rr:template ”/Uni{degreeuniid}” ] ]

More specifically, for each tuple in the query, an R2RML processor generates an RDF
triple with the predicate ub:UGDegreeFrom and the subject and object constructed from
attributes id and degreeuniid, respectively, using IRI templates.

Our aim now is as follows: given an R2RML mappingM, we are going to define
an SQL query trM(triple) that constructs the relational representation triple(GD,M) of
the virtual RDF graph GD,M obtained byM from any given data instance D. Without
loss of generality and to simplify presentation, we assume that each triple map has

– one logical table (rr:sqlQuery),
– one subject map (rr:subjectMap), which does not have resource typing (rr:class),
– and one predicate-object map with one rr:predicateMap and one rr:objectMap.

This normal form can be achieved by introducing predicate-object maps with rdf:type
and splitting any triple map into a number of triple maps with the same logical ta-
ble and subject. We also assume that triple maps contain no referencing object maps
(rr:parentTriplesMap, etc.) since they can be eliminated using joint SQL queries [10].
Finally, we assume that the term maps (i.e., subject, predicate and object maps) contain
no constant shortcuts and are of the form [rr:column v], [rr:constant c] or [rr:template s].

Given a triple map m with a logical table (SQL query) R, we construct a selec-
tion σ¬isNull(v1) · · ·σ¬isNull(vk)R, where v1, . . . , vk are the referenced columns of m
(attributes of R in the term maps in m)—this is done to exclude tuples that contain
null [10]. To construct trm, the selection filter is prefixed with projection πsubj,pred,obj



and, for each of the three term maps, either with renaming (e.g., with ρobj/v if the object
map is of the form [rr:column v]) or with value creation (if the term map is of the form
[rr:constant c] or [rr:template s]; in the latter case, we use the built-in string concatena-
tion function ). For instance, the mapping :m1 from Example 10 is converted to the
SQL query

SELECT (’/GradStudent’ id) AS subj, ’ub:UGDegreeFrom’ AS pred,
(’/Uni’ degreeuniid) AS obj FROM students

WHERE (id IS NOT NULL) AND (degreeuniid IS NOT NULL) AND (stype=1).

Given an R2RML mappingM, we set trM(triple) =
⋃
m∈M trm.

Proposition 11. For any R2RML mappingM and data instanceD, t ∈ ‖trM(triple)‖D
if and only if t ∈ triple(GD,M).

Finally, given a graph pattern P and an R2RML mappingM, we define trM(τ (P ))
to be the result of replacing every occurrence of the relation triple in the query τ (P ),
constructed in Section 3, with trM(triple). By Theorem 7 and Proposition 11, we ob-
tain:

Theorem 12. For any graph pattern P , R2RML mapping M and data instance D,
‖P‖GD,M = ‖trM(τ (P ))‖D.

3.3 Optimising SQL Translation

The straightforward application of trM to τ (P ) can result in a very complex SQL
query. We now show that such queries can be optimised by the following techniques:

– choosing matching trm from trM(triple), for each occurrence of triple in τ (P );
– using the distributivity of 1 over ∪ and removing sub-queries with incompatible

IRI templates and de-IRIing join conditions;
– functional dependencies (e.g., primary keys) for self-join elimination [6,18,29,30].

To illustrate, suppose we are given a mappingM containing :m1 from Example 10 and
the following triple maps (which are a simplified version of those in Section 5):

:m2 a rr:TripleMap;
rr:logicalTable [ rr:sqlQuery ”SELECT * FROM students WHERE stype=0” ];
rr:subjectMap [ rr:template ”/UGStudent{id}”; rr:class ub:Student ].

:m3 a rr:TripleMap;
rr:logicalTable [ rr:sqlQuery ”SELECT * FROM students WHERE stype=1” ];
rr:subjectMap [ rr:template ”/GradStudent{id}”; rr:class ub:Student ].

which generate undergraduate and graduate students (both are instances of ub:Student,
but their IRIs are constructed using different templates [16]). Consider the following
query (a fragment of qobg

2 from Section 5):

SELECT ?x ?y WHERE { ?x rdf:type ub:Student. ?x ub:UGDegreeFrom ?y }.

The translation τ of its BGP (after the SPARQL JOIN optimisation of Section 3.1) is

(πxρx/subjσ(pred=rdf:type)∧(obj=ub:Student) triple) 1
(πx,yρx/subjρy/objσpred=ub:UGDegreeFrom triple)



First, since triple always occurs in the scope of some selection operation σF , we can
choose only those elements in

⋃
m∈M trm that have matching values of pred and/or

obj. In our example, the first occurrence of triple is replaced by tr :m2 ∪ tr :m3, and the
second one by tr :m1. This results in the natural join of the following union, denoted A:

(SELECT DISTINCT ’/UGStudent’ id AS x FROM students
WHERE (id IS NOT NULL) AND (stype=0))

UNION (SELECT DISTINCT ’/GradStudent’ id AS x FROM students
WHERE (id IS NOT NULL) AND (stype=1))

and of the following query, denoted B:
SELECT DISTINCT ’/GradStudent’ id AS x, ’/Uni’ degreeuniid AS y FROM students
WHERE (id IS NOT NULL) AND (degreeuniid IS NOT NULL) AND (stype=1)

Second, observe that the IRI template in B is compatible only with the second compo-
nent of A. Moreover, since the two compatible templates coincide, we can de-IRI the
join, namely, replace the join over the constructed strings (A.x = B.x) by the join over
the numerical attributes (A.id = B.id), which results in a more efficient query:

SELECT DISTINCT A.x, B.y FROM
(SELECT id, ’/GradStudent’ id AS x FROM students
WHERE (id IS NOT NULL) AND (stype=1)) A

JOIN
(SELECT id, ’/GradStudent’ id AS x, ’/Uni’ degreeuniid AS y FROM students
WHERE(id IS NOT NULL)AND(degreeuniid IS NOT NULL)AND(stype=1))B

ON A.id = B.id
Finally, by using self-join elimination and the fact that id and stype are the composite
primary key in students, we obtain the query (without DISTINCT as x is unique)

SELECT ’/GradStudent’ id AS x, ’/Uni’ degreeuniid AS y FROM students
WHERE (degreeuniid IS NOT NULL) AND (stype=1)

4 Putting it all Together

The techniques introduced above suggest the following architecture to support answer-
ing SPARQL queries under the OWL 2 QL entailment regime with data instances stored
in a database. Suppose we are given an ontology with an intensional part T and an ex-
tensional part stored in a database,D, over a schemaΣ. Suppose also that the languages
ofΣ and T are connected by an R2RML mappingM. The process of answering a given
OWL 2 QL query (P, V ) involves two stages, off-line and on-line.

OFFLINE ONLINE

OWL 2 QL
reasoner

ontology T
(intensional part)

T -mapping
optimiser

R2RML
mappingM

DB integrity constraints Σ

classified ontology

T -mappingM′

OWL 2 QL
query (P, V )

OWL 2 QL query (P †, V )
over H-complete RDF graph

under simple entailment

entailment regime
rewriter

SQL query

SPARQL to SQL
translator

The off-line stage takes T ,M and Σ and proceeds via the following steps:
Ê An OWL 2 QL reasoner is used to obtain a complete class / property hierarchy in T .



Ë The compositionMT ofM with the class and property hierarchy in T is taken as
an initial T -mapping. Recall [29] that a mappingM′ is a T -mapping overΣ if, for any
data instanceD satisfyingΣ, the virtual (not materialised) RDF graphGD,M′ obtained
by applyingM′ toD contains all class and property assertionsαwith (T , GD,M′) |= α.
As a result,GD,M′ is complete with respect to the class and property hierarchy in T (or
H-complete), which allows us to avoid reasoning about class and property inclusions (in
particular, inferences that involve property domains and ranges) at the query rewriting
step Í and drastically simplify rewritings (see [29] for details).
Ì The initial T -mapping MT is then optimised by (i) eliminating redundant triple
maps detected by query containment with inclusion dependencies in Σ, (ii) eliminating
redundant joins in logical tables using the functional dependencies inΣ, and (iii) merg-
ing sets of triple maps by means of interval expressions or disjunctions in logical tables
(see [29] for details). LetM′ be the resulting T -mapping over Σ.
The on-line stage takes an OWL 2 QL query (P, V ) as an input and proceeds as follows:
Í The graph pattern P and T are rewritten to the OWL 2 QL graph pattern P † over the
H-complete virtual RDF graph GD,M′ under simple entailment by applying the clas-
sified ontology of step Ê to instantiate class and property variables and then using a
query rewriting algorithm (e.g., the tree-witness rewriter of [29]); see Theorem 4.
Î The graph pattern P † is transformed to the SQL query τ (P †) over the 3-column
representation triple of the RDF graph (Theorem 7). Next, the query τ (P †) is unfolded
into the SQL query trM′(τ (P †)) over the original database D (Theorem 12). The un-
folded query is optimised using the techniques similar to the ones employed in step Ì.
Ï The optimised query is executed by the database.
As follows from Theorems 4, 7 and 12, the resulting query gives us all correct answers
to the original OWL 2 QL query (P, V ) over T and D with the R2RML mappingM.

5 Evaluation

The architecture described above has been implemented in the open-source OBDA sys-
tem Ontop4. We evaluated its performance using the OWL 2 QL version of the Lehigh
University Benchmark LUBM [16]. The ontology contains 43 classes, 32 object and
data properties and 243 axioms. The benchmark also includes a data generator and a
set of 14 queries q1–q14. We added 7 queries with second-order variables ranging over
class and property names: q′4, q

′′
4 , q
′
9, q
′′
9 derived from q4 and q9, and qobg

2 , qobg
4 , qobg

10 taken
from [19]. The LUBM data generator produces an OWL file with class and property as-
sertions. To store the assertions in a database, we created a database schema with 11
relations and an R2RML mapping with 89 predicate-object maps. For instance, the in-
formation about undergraduate and graduate students (id, name, etc.) from Example 10
is collected in the relation students, where the attribute stype distinguishes between the
types of students (stype is known as a discriminant column in databases); more details
including primary and foreign keys and indexes are provided in the full version.

We experimented with the data instances LUBMn, n = 1, 9, 20, 50, 100, 200, 500
(where n specifies the number of universities; LUBM1 and LUBM9 were used in [19]).

4 http://ontop.inf.unibz.it

http://ontop.inf.unibz.it


Q LUBM1 LUBM9 LUBM100 LUBM200 LUBM500

O OBH OBP P O OBH P O P O O

q1 2 8 29 1 3 97 1 3 1 3 2
q2 2 25 11 137 19 3 2 531 256 16 30 593 36 88
q3 1 6 86 9 2 78 158 2 2 087 63 12
q4 13 7 19 14 15 44 164 27 2 093 24 22
q5 16 12 4 451 10 22 98 158 32 2 182 28 23
q6 455 27 32 21 5 076 411 317 58 968 10 781 123 578 434 349
q7 5 21 34 005 10 6 429 157 8 2 171 8 9
q8 726 195 95 875 80 760 917 192 796 2 131 820 855
q9 60 972 168 978 78 668 189 126 857 7 466 12 125 15 227 44 598
q10 2 6 126 9 3 97 158 2 2 134 3 2
q11 4 5 58 10 6 43 160 11 2 093 18 44
q12 3 4 19 15 4 70 236 3 2 114 5 5
q13 6 4 67 8 7 40 157 14 2 657 38 58
q14 91 20 24 15 1 168 329 287 13 524 4 457 29 512 92 376
q′4 93 58 190 46 99 98 767 92 4 422 95 107
q′′4 108 21 35 63 122 72 719 115 9 179 108 127
q′9 257 716 91 855 174 4 686 40 575 1 385 54 092 19 945 115 110 295 228
q′′9 557 951 65 916 102 6 093 178 401 1 214 67 123 19 705 151 376 356 176
qobg
2 150 30 57 141 29 9 992 520 348 39 477 5 411 79 351 206 061
qobg
4 6 7 241 25 31 40 273 7 3 969 7 494
qobg
10 641 760 31 269 253 6 998 149 191 2 258 163 308 17 929 174 362 459 669

start up 3.1s 13.6s 7.7s 3.6s 3.1s 80m33s 18s 3.1s 3m23s 3.1s 3.1s
data load 10s n/a n/a n/a 15s n/a n/a 1m56s n/a 3m35s 10m17s

Table 1. Start up time, data loading time (in s) and query execution time (in ms): O is Ontop ,
OBH and OBP are OWL-BGP with Hermit and Pellet, respectively, and P is standalone Pellet.

Here we only show the results for n = 1, 9, 100, 200, 500 containing 103k, 1.2M, 14M,
28M and 69M triples, respectively; the complete table can be found in the full version.
All the materials required for the experiments are available online5. We compared On-
top with two other systems, OWL-BGP r123 [19] and Pellet 2.3.1 [31] (Stardog and
OWLIM are incomplete for the OWL 2 QL entailment regime). OWL-BGP requires an
OWL 2 reasoner as a backend; as in [19], we employed HermiT 1.3.8 [14] and Pel-
let 2.3.1. The hardware was an HP Proliant Linux server with 144 cores @3.47GHz,
106GB of RAM and a 1TB 15k RPM HD. Each system used a single core and was
given 20 GB of Java 7 heap memory. Ontop used MySQL 5.6 database engine.

The evaluation results are given in Table 1. OWL-BGP and Pellet used significantly
more time to start up (last but one row) because they do not rely on query rewriting and
require costly pre-computations. OWL-BGP failed to start on LUBM9 with Pellet and
on LUBM20 with HermiT; Pellet ran out of memory after 10hrs loading LUBM200. For
Ontop , the start up is the off-line stage described in Section 4; it does not include the
time of loading the data into MySQL, which is specified in the last row of Table 1 (note
that the data is loaded only once, not every time Ontop starts; moreover, this could be
improved with CSV loading and delayed indexing rather than SQL dumps we used).

On queries q1–q14, Ontop generally outperforms OWL-BGP and Pellet. Due to the
optimisations, the SQL queries generated by Ontop are very simple, and MySQL is
able to execute them efficiently. This is also the case for large datasets, where Ontop is
able to maintain almost constant times for many of the queries. Notable exceptions are
q6, q8 and q14 that return a very large number (hundreds of thousands) of results (low

5 https://github.com/ontop/iswc2014-benchmark

https://github.com/ontop/iswc2014-benchmark


selectivity). A closer inspection reveals that execution time is mostly spent on fetching
the results from disk. On the queries with second-order variables, the picture is mixed.
While indeed these queries are not the strongest point of Ontop at the moment, we see
that in general the performance is good. Although Pellet outperforms Ontop on small
datasets, only Ontop is able to provide answers for very large datasets. For second-
order queries with high selectivity (e.g., q′4 and q′′4 ) and large datasets, the performance
of Ontop is very good while the other systems fail to return answers.

6 Conclusions

In this paper, we gave both a theoretical background and a practical implementation
of a procedure for answering SPARQL 1.1 queries under the OWL 2 QL direct seman-
tics entailment regime in the scenario where data instances are stored in a relational
database whose schema is connected to the language of the given OWL 2 QL ontology
via an R2RML mapping. Our main contributions can be summarised as follows:

– We defined an entailment regime for SPARQL 1.1 corresponding to the OWL 2 QL
profile of OWL 2 (which was specifically designed for ontology-based data access).

– We proved that answering SPARQL queries under this regime is reducible to an-
swering SPARQL queries under simple entailment (where no reasoning is involved).

– We showed how to transform such SPARQL queries to equivalent SQL queries over
an RDF representation of the data, and then unfold them, using R2RML mappings,
into SQL queries over the original relational data.

– We developed optimisation techniques to substantially reduce the size and improve
the quality of the resulting SQL queries.

– We implemented these rewriting and optimisation techniques in the OBDA system
Ontop . Our initial experiments showed that Ontop generally outperforms reasoner-
based systems, especially on large data instances.

Some aspects of SPARQL 1.1 (such as RDF types, property paths, aggregates) were not
discussed here and are left for future work.
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