
Querying Datasets on the Web
with High Availability

Ruben Verborgh1, Olaf Hartig2, Ben De Meester1, Gerald Haesendonck1,
Laurens De Vocht1, Miel Vander Sande1, Richard Cyganiak3, Pieter Colpaert1,

Erik Mannens1, and Rik Van de Walle1

1 Ghent University – iMinds, Belgium
{firstname.lastname}@ugent.be

2 University of Waterloo, Canada
ohartig@uwaterloo.ca

3 Digital Enterprise Research Institute, nui Galway, Ireland
richard@cyganiak.de

Abstract. As the Web of Data is growing at an ever increasing speed,
the lack of reliable query solutions for live public data becomes apparent.
sparql implementations have matured and deliver impressive perfor-
mance for public sparql endpoints, yet poor availability—especially un-
der high loads—prevents their use in real-world applications. We pro-
pose to tackle this availability problem by defining triple pattern frag-
ments, a specific kind of Linked Data Fragments that enable low-cost
publication of queryable data by moving intelligence from the server to
the client. This paper formalizes the Linked Data Fragments concept,
introduces a client-side sparql query processing algorithm that uses
a dynamic iterator pipeline, and verifies servers’ availability under load.
The results indicate that, at the cost of lower performance, query tech-
niques with triple pattern fragments lead to high availability, thereby
allowing for reliable applications on top of public, queryable Linked Data.

Keywords: Linked Data, Linked Data Fragments, querying, availability,
scalability, sparql

1 Introduction

The past few years, the performance of sparql endpoints has increased steadily.
In spite of all this progress, reliable queryable access to public Linked Data
datasets largely remains impossible due to the low availability percentages of
public sparql endpoints. As of end-2013, the average sparql endpoint is down
for more than 1.5 days each month [4]. This means we cannot build reliable
applications on top of queryable public data. No matter how fast sparql imple-
mentations become, if their availability does not increase, no one will take the
risk of depending on public data providers to provide querying for their applica-
tions. Availability, not performance, is currently the main threat to the success
of the Semantic Web as a viable technology for today’s challenges.

2 Ruben Verborgh et al.

To circumvent the availability issue, consumers who want to query public
data typically download a data dump and host their own private sparql end-
point. While this seems to solve the issue, it has the following drawbacks:
– Hosting an endpoint requires (possibly expensive) infrastructural support

and involves (often manual) set-up and maintenance.
– The data in the endpoint is not guaranteed to be up-to-date.
– Each dataset required by any of the desired queries must be fully loaded into

the endpoint, even if only a small part of that dataset is actually needed.
Furthermore, querying a local machine can hardly be considered Web querying,
as everything happens offline. Making the Semantic Web vision scalable by down-
loading and querying all data locally seems an unsatisfactory paradox.

In order to advance towards a solution for high-availability Web querying,
Linked Data Fragments (ldfs) [27] were proposed as a framework to analyze
all possible ways of publishing parts of a Linked Data dataset, ranging from
sparql endpoints with highly specific results to data dumps that contain the
entire dataset. In particular, this framework allows to define specific types of
fragments that can be generated with minimal effort by servers, while still en-
abling efficient client-side querying. One such type are triple pattern fragments
(formerly called basic Linked Data Fragments [27]), which offer triple-pattern-
based access to a dataset.

In this paper, we show that client-side query processing using triple pattern
fragments allows live querying with high availability and scalability of public
datasets. This result demonstrates that this enables reliable query execution on
the Web of Data, with minimal server-side cost. First, the next section discusses
related work on querying rdf-based datasets on the Web. We then provide
a formalization of Linked Data Fragments in Section 3, followed by a client-side,
iterator-based query execution algorithm in Section 4. Section 5 contains the
availability evaluation and discussion. We conclude the paper in Section 6.

2 Related Work

On the current Web, several http interfaces that provide access to triple-based
data are available. We will discuss public sparql endpoints, Linked Data pub-
lishing, and other http interfaces for triples, as well as their querying methods.

2.1 Public sparql endpoints

The sparql language [12] is the wc standard to query a collection of rdf
triples [16]. Many triple stores, such as Virtuoso [5] and Jena tdb [11], offer
a sparql interface. Even though current sparql interfaces offer high perfor-
mance [3, 19,22], individual queries can consume a significant amount of server
processor time and memory. In fact, it has been shown that the evaluation prob-
lem for sparql is pspace-complete [21]. Like any high-performance database
server, sparql servers with high demand are generally expensive to host, which
is further complicated for public servers because of unpredictable loads.

Querying Datasets on the Web with High Availability 3

The current de-facto way for providing queryable access to triples on the Web
is the sparql protocol [6]: clients send sparql queries through a specific http
interface; the server executes these queries and responds with their results. This
contrasts with the majority of machine-to-machine http interactions on the
Web, where the server implements a rigidly structured api through which clients
access the data. Such apis purposely limit the kind of queries a client can ask,
as it allows those servers to place a bound on the computation time needed for
each api request [27]. With sparql endpoints, clients can demand the execution
of arbitrarily complicated queries1 [6]. Furthermore, since each client requests
unique, highly specific queries, regular http caching mechanisms are ineffective,
since they can only optimize repeated identical requests.

These factors contribute to the low availability of public sparql endpoints,
which is documented extensively [4]. It is important to note that this low avail-
ability is not the result of poor performance: as indicated by multiple bench-
marks [3,19,22], many sparql implementations deliver very high performance.
Instead, it is the consequence of the architectural decision of the current sparql
protocol, which demands the server responds to highly complex requests [27].
This makes providing reliable public sparql endpoints an exceptionally difficult
challenge, incomparable to hosting any other public http server.

2.2 Linked Data

Perhaps the most well-known alternative interface to rdf triples is described by
the Linked Data principles [2] which, not coincidentally, align with the Web’s
architectural constraints [8]. The principles require servers to publish documents
(“subject pages”) with triples about specific entities, which a client can access
through their entity-specific uri, a practice which is called dereferencing. Each of
these Linked Data documents contains triples that mention uris of other entities,
which can be dereferenced in turn. Serving such documents is like serving html
files, which does not require much processor time or memory, so hosting them
at low cost is straightforward. Several Linked Data querying techniques [14] aim
to use dereferencing to solve sparql queries over the Web of Data. This process
happens client-side, so the availability of servers is not impacted.

The Linked Data publishing and querying strategy has two main drawbacks.
First, query execution times are high, and many queries cannot be solved (ef-
ficiently). For example, it is nearly impossible to directly answer the following
seemingly simple query for any given dataset:

SELECT ?person WHERE { ?person a <http://xmlns.com/foaf/0.1/Person> }

A client could try to fetch the url http://xmlns.com/foaf/0.1/Person but, be-
cause of the Web’s unidirectional linking structure, the document at that url
cannot possibly link to all instances of foaf:Person. In fact, it does not link to
any, so the query execution yields an empty result.
1 Many endpoints allow to only expose a subset of all sparql queries, for instance, by
limiting the allowed execution time. However, even under those circumstances, the
availability of public sparql endpoints remains low [4].

http://xmlns.com/foaf/0.1/Person

4 Ruben Verborgh et al.

Second, documents about an entity are looked up through dereferencing, and
the uri of an entity only points to the single document on the server that hosts
the domain of that uri. For example, the uri http://dbpedia.org/resource/

Barack_Obama leads to triples about Barack Obama on the dbpedia server, not
to the triples hosted on other sources that also have data about Barack Obama,
such as the bbc or the New York Times. And even though dbpedia could link
to those sources, this is entirely up to the server’s discretion. While anybody
can reuse the dbpedia uri to add triples about an entity, it is highly unlikely
that those triples are considered by Linked Data querying. This contrasts with
sparql endpoints, which can provide data about resources with any uri.

2.3 Other http interfaces to rdf triples

Finally, several other http interfaces for triples have been designed. Strictly
speaking, the most trivial http interface is a data dump, which is a single-file
representation of a (part of a) dataset. As discussed in Section 1, this allows
consumers to set up a private query endpoint. Typical http apis offer more
granular access, albeit still far less flexible than sparql endpoints.

The Linked Data Platform [23] is a read/write http interface for Linked
Data, scheduled to become a wc recommendation. It details several concepts
that extend beyond the Linked Data principles, such as containers and write
access. However, the api has been designed primarily for consistent read/write
access to Linked Data resources, not to enable reliable and/or efficient query
execution. Another read/write interface is the sparql Graph Store Protocol [20],
which describes http operations to manage rdf graphs through sparql queries.

Additionally, several other fine-grained http interfaces for triples have been
proposed, such as the Linked Data api [17] and Restpark [18]. Some of them
aim to bridge the gap between the sparql protocol and the rest architectural
style underlying the Web [28]. However, none of these proposals are widely used
at the moment and no query engines for them are implemented to date.

3 Linked Data Fragments

3.1 Concept and context

What all of the above interfaces have in common is that, in one sense or another,
they publish certain fragments of a Linked Data dataset. A sparql endpoint re-
sponse, a Linked Data document, and a data dump each offer specific parts
of all triples of a given collection. Rather than presenting them as fully dis-
tinct approaches, we uniformly call the result of each request to such interfaces
a Linked Data Fragment (ldf) [25,27]. As Fig. 1 shows, each kind of fragment
mainly differs in its specificity. Depending on this, the workload to compute an-
swers to queries is divided differently between clients and servers. The key to
efficient and reliable Web querying is to find fragments that strike an optimal
balance between client and server effort. Before we examine particular options,
let us define formally what ldfs are.

http://dbpedia.org/resource/Barack_Obama
http://dbpedia.org/resource/Barack_Obama

Querying Datasets on the Web with High Availability 5

generic requests
high client effort
high server availability

specific requests
high server effort

low server availability

data
dump

Linked Data
document

sparql
result

triple pattern
fragments

various types of
Linked Data Fragments

Fig. 1: All http triple interfaces offer Linked Data Fragments of a dataset. They differ
in the specificity of the data they contain, and thus the effort needed to create them.

3.2 Formal definitions

As a basis for our formalization, we use the following concepts of the rdf data
model [16] and the sparql query language [12]. We write U , B, L, and V to
denote the sets of all uris, blank nodes, literals, and variables, respectively.
Then, T = (U ∪ B)× U × (U ∪ B ∪ L) is the (infinite) set of all rdf triples. Any
tuple tp ∈ (U ∪ V)× (U ∪ V)× (U ∪ L ∪ V) is a triple pattern. Any finite set of
such triple patterns is a basic graph pattern (bgp). Any more complex sparql
graph pattern, typically denoted by P , combines triple patterns (or bgps) using
specific operators [12,21]. The standard (set-based) query semantics for sparql
defines the query result of such a graph pattern P over a set of rdf triples
G ⊆ T as a set that we denote by [[P]]G and that consists of partial mappings
µ : V → (U ∪ B ∪ L), which are called solution mappings. An rdf triple t is
a matching triple for a triple pattern tp if there exists a solution mapping µ
such that t = µ[tp], where µ[tp] denotes the triple (pattern) that we obtain by
replacing the variables in tp according to µ.

For the sake of a more straightforward formalization, in this paper, we as-
sume without loss of generality that every dataset G published via some kind of
fragments on the Web is a finite set of blank-node-free rdf triples; i.e., G ⊆ T ∗
where T ∗= U × U × (U ∪ L). Each fragment of such a dataset contains triples
that somehow belong together; they have been selected based on some condition,
which we abstract through the notion of a selector:

Definition 1 (selector). A selector is a partial function s : 2T→ {true, false}.
A more concrete type of this abstract notion are triple pattern selectors, which
select triples that match a certain triple pattern:

Definition 2 (triple pattern selector). Given a triple pattern tp, the triple
pattern selector for tp is the selector stp that, for any singleton set {t}⊆2T, is
defined by

stp({t}) =

{
true if t is a matching triple for tp,
false else.

When publishing data on the Web, we should equip its representations with
hypermedia controls [1, 8, 9]. We encounter them on a daily basis when browsing
html pages; they are usually present as hyperlinks or forms. What all these
controls have in common is that, given some (possibly empty) input, they result
in our browser performing a request for a specific url.

Definition 3 (control). A control is a function that maps from some set to U .

6 Ruben Verborgh et al.

In particular, we are interested in controls whose domain is a set of selectors, as
they allow to create urls that correspond to data matching those selectors.

By now, we have introduced all elements necessary to define fragments of an
rdf-based dataset.
Definition 4 (Linked Data Fragment). Let G ⊆ T ∗ be a finite set of blank-
node-free rdf triples. A Linked Data Fragment (ldf) of G is a tuple f =
〈u, s, Γ,M,C〉 with the following five elements:
– u is a uri (which is the “authoritative” source from which f can be retrieved);
– s is a selector;
– Γ is a set consisting of all subsets of G that match selector s, that is, for every
G′ ⊆ G it holds that G′ ∈ Γ if and only if G′ ∈ dom(s) and s(G′) = true;

– M is a finite set of (additional) rdf triples, including triples that represent
metadata for f ; and

– C is a finite set of controls.
Any source of rdf-based data on the Web can be described as an ldf by spec-
ifying the corresponding values for u, s, Γ , M , and C. For example, the result
of a sparql CONSTRUCT query is an ldf where the selector is the query, the
metadata set is empty, and the control set contains a sparql endpoint url [6].

Informally, we distinguish different types of ldfs, each of which represents
ldfs that have the same type of selector and the same kind of conditions on their
metadata M and on their controls C. Section 3.3 will show a specific ldf type.

Some ldfs can be quite large; for instance, a data dump typically contains
millions of triples. Downloading such a large fragment can be undesired in cer-
tain situations, for instance, if we just want to inspect part of the data in the
fragment, or if we are only interested in a fragment’s metadata but not its actual
data. Therefore, a server that hosts ldfs can segment them into smaller pages.
Formally, we capture such a page as follows:
Definition 5 (ldf page). Let f = 〈u, s, Γ,M,C〉 be an ldf of some finite set
of blank-node-free rdf triples. A page partitioning of f is a finite, nonempty
set Φ consisting of so-called pages of f such that the following properties hold:
1. Each page φ ∈ Φ is a tuple φ = 〈u′, uf , sf , Γ ′,M ′, C ′〉 with the following six

elements: (i) u′ is a uri from which page φ can be retrieved with u′ 6= u,
(ii) uf = u, (iii) sf = s, (iv) Γ ′ ⊆ Γ , (v) M ′ ⊇M , and (vi) C ′ ⊇ C.

2. For every pair of two distinct pages φi = 〈u′i, uf , sf , Γ ′i ,M ′i , C ′i〉 ∈ Φ and
φj = 〈u′j , uf , sf , Γ ′j ,M ′j , C ′j〉 ∈ Φ it holds that u′i 6= u′j and Γ ′i ∩ Γ ′j = ∅.

3. Γ =
⋃
〈u′,uf ,sf ,Γ ′,M ′,C′〉∈Φ Γ

′.
4. There exists a strict total order ≺ on Φ such that, for every pair of two pages

φi = 〈u′i, uf , sf , Γ ′i ,M ′i , C ′i〉 ∈ Φ and φj = 〈u′j , uf , sf , Γ ′j ,M ′j , C ′j〉 ∈ Φ with φj
being the direct successor of φi (i.e., φi ≺ φj and ¬∃φk ∈ Φ : φi ≺ φk ≺ φj),
there exists a control c ∈ C ′i with u′j ∈ img(c).

Note in particular that each page contains all metadata and controls of the
corresponding fragment, in addition to the controls that allow to navigate from
one page to the next. If paging is available, servers should automatically redirect
clients from the fragment to its first page, to avoid sending overly large chunks.

Querying Datasets on the Web with High Availability 7

The collection of all ldfs of a certain dataset provided by a server is captured
formally as follows:

Definition 6 (ldf collection). Let G ⊆ T ∗ be a finite set of blank-node-free
rdf triples, and let c be a control. The c-specific ldf collection over G is a set F
of ldfs such that, for each ldf f ∈ F with f = 〈u, s, Γ,M,C〉, the following
three properties hold: 1. f is an ldf of G; 2. s ∈ dom(c); 3. c(s) = u.

Finally, we define a query semantics for evaluating sparql queries over a dataset
that is published as a collection of ldfs.

Definition 7 (query semantics). Let G ⊆ T ∗ be a finite set of blank-node-
free rdf triples, and let F be some ldf collection over G. The evaluation of
a sparql graph pattern P over F , denoted by [[P]]F , is defined by [[P]]F = [[P]]G.

3.3 Triple Pattern Fragments

The current http interfaces for rdf, as discussed in Section 2 and summarized
in Fig. 1, have limitations for query evaluation over live data with high avail-
ability. To facilitate querying on the client side, clients should be able to access
those fragments that correspond to important parts of the query. To maximize
availability on the server side, servers should only offer those fragments they can
generate with minimal effort. In other words, we have to search for a compromise
along the axis in Fig. 1. Offering triple-pattern-based access to datasets seems an
interesting compromise because a) graph patterns, the main building blocks for
sparql queries, consist of triple patterns, so they are important query parts for
clients; and b) servers can select triples corresponding to a certain triple pattern
at low processing cost [7]. For this reason, we introduced a triple-pattern-based
http interface for data access [26,27], which we formalize as follows.

Definition 8 (triple pattern fragment and collection). Given a control c,
a c-specific ldf collection F is called a triple pattern fragment collection if, for
any possible triple pattern tp, there exists an ldf 〈u, s, Γ,M,C〉 ∈ F , referred to
as a triple pattern fragment, such that the following three properties hold:
1. s is the triple pattern selector for triple pattern tp (as per Definition 2).
2. There exists a (metadata) rdf triple 〈u, void :triples, cnt〉 ∈ M with cnt

representing an estimate of the cardinality of Γ , that is, cnt is an integer
that has the following two properties:
(a) If [[tp]]G = ∅, then cnt = 0.
(b) If [[tp]]G 6= ∅, then cnt > 0 and abs

(
|[[tp]]G| − cnt

)
≤ ε for some F -specific

threshold ε.
3. c ∈ C.

Since the selector s of a triple pattern fragment f = 〈u, s, Γ,M,C〉 is a triple
pattern selector, all elements of Γ are singleton sets: |G′| = 1 for all G′ ∈ Γ .
Large fragments would usually be paged as in Definition 5; so while a single page
would not contain all matching triples of the fragment, it would contain the cnt
estimate metadata for the entire fragment, together with the collection’s control.

8 Ruben Verborgh et al.

Furthermore, any triple pattern fragment collection over some set of rdf
triples G consists of the complete set of triple pattern fragments of G, which in
practice means the server can provide any of them when requested, i.e., it does
not need to have materialized versions for all of them. Each of these fragments
includes the collection-specific hypermedia control (e.g., using the Hydra Core
Vocabulary [26]), making triple pattern fragment collections hypermedia-driven
rest apis [9]. Consequently, by discovering an arbitrary fragment of a collection,
a client can directly reach and retrieve all fragments of the collection. In partic-
ular, this includes all fragments with a selector for one of the triple patterns of
a given sparql graph pattern. Therefore, clients can compute a complete query
result for such a pattern over the collection after obtaining any of its fragments.
In the following section, we discuss an efficient approach for performing this.

4 sparql Queries over Triple Pattern Fragments

4.1 High-level algorithm

Triple pattern fragments offer triple-pattern-based access to a dataset on the Web.
If a client wants to evaluate a sparql query over this dataset, it should thus
transform this query into a sequence of triple pattern queries. To optimize the
performance of the execution, the number of http requests should be mini-
mized, and they should execute in parallel to the extent possible. Reducing the
number of expensive operations is possible by selecting a suitable order in which
query parts are evaluated. Therefore, database systems use a query planner to
create an optimized order, based on statistical information about the data [10].
Since such information is usually not available for data on the Web, query plan-
ners have to resort to heuristics [13]. To mitigate this, triple pattern fragments
contain metadata, i.e., the number of triples matching a certain pattern.

We previously introduced a recursive algorithm to efficiently evaluate basic
graph patterns (bgps) over a triple pattern collection [27], since bgps form the
main building blocks of sparql queries. We summarize the algorithm here:
1. For each triple pattern tpi in the bgp B = {tp1, . . . , tpn}, fetch the first

page φi1 of the ldf fi for tpi, which contains an estimate cnti of the total
number of matches for tpi. Choose ε such that cntε = min({cnt1, . . . , cntn}).

2. Fetch all remaining pages of fε. For each triple t in the ldf, generate the
solution mapping µt such that µt[tpε] = t. Then compose the subpattern
Bt = {tp | tp = µt[tpj] ∧ tpj ∈ B} \ {t}. If Bt 6= ∅, find mappings ΩBt by
calling the algorithm for Bt. Else, ΩBt

= {µ∅} with µ∅ the empty mapping.
3. Return all solution mappings µ ∈ {µt ∪ µ′ | µ′ ∈ ΩBt

}.
By recursively fetching those fragments with the lowest number of matches, and
applying their mappings to the graph pattern, we narrow down the number of
http requests that are subsequently needed.

While this algorithm finds all matches for the bgp in the collection, its recur-
sive calling structure returns all results at once, i.e., we have to wait for the first
result until all other results have been computed. Furthermore, adding support
for additional sparql operators to such a monolithic algorithm is impractical.

Querying Datasets on the Web with High Availability 9

4.2 Dynamic iterator pipelines

A common approach to implement query execution in database systems is through
iterators that are typically arranged in a tree or a pipeline, based on which query
results are computed recursively [10]. Such a pipelined approach has also been
studied for Linked Data query processing [13, 15]. In order to enable incremental
results and allow the straightforward addition of sparql operators, we imple-
ment a triple pattern fragments client using iterators.

The previous algorithm, however, cannot be implemented by a static iterator
pipeline. For instance, consider a query for architects born in European capitals:

SELECT ?person ?city WHERE {

?person a dbpedia-owl:Architect. # tp1
?person dbpprop:birthPlace ?city. # tp2
?city dc:subject dbpedia:Capitals_in_Europe. # tp3

} LIMIT 100

Suppose the pipeline begins by finding ?city mappings for tp3. It then needs
to choose whether it will next consider tp1 or tp2. The optimal choice, however,
differs depending on the value of ?city:
– For dbpedia:Paris, there are ±1,900 matches for tp2, and ±1,200 matches

for tp1, so there will be less http requests if we continue with tp1.
– For dbpedia:Vilnius, there are 164 matches for tp2, and ±1,200 matches for
tp1, so there will be less http requests if we continue with tp2.

With a static pipeline, we would have to choose the pipeline structure in advance
and subsequently reuse it.

In order to generate an optimized pipeline for each (sub-)query, we propose
a divide-and-conquer strategy in which a query is decomposed dynamically into
subqueries depending on partial solution mappings. The main function of an
iterator is next(), which either returns a mapping or nil if no mappings are left.

We first introduce a trivial start iterator, which outputs the empty map-
ping µ0 on the first call to next(), and nil on all subsequent calls.

Next, we implement a previously defined triple pattern iterator [15] for triple
pattern fragments. This iterator Itp is initialized with a predecessor iterator Ip,
a triple pattern tp, and a page φ0 of an arbitrary triple pattern fragment of a col-
lection F . The iterator then extends mappings from its predecessor by reading
triples from the ldf corresponding to triple pattern tp. The url of this ldf is re-
trieved through the collection control in the start page φ0. Each call to Itp.next()
results in mappings for tp in F , depending on the predecessor’s mappings.

To solve bgps of sparql queries, we introduce a triple pattern fragment
bgp iterator. Such a bgp iterator is initialized with a predecessor Ip, a bgp B =
{tp1, . . . , tpn}, and an arbitrary triple pattern fragment page φ0 of a collection F .
For an empty pattern (n = 0), a bgp iterator is equal to a start iterator. For
a pattern length n = 1, it is constructed by creating a triple pattern iterator
for (Ip, tp1, φ0). For n ≥ 2, a bgp iterator uses Algorithm 1.

bgp iterators evaluate a bgp by recursively decomposing it into smaller itera-
tors. For each triple pattern in the bgp mapped by each result of Ip, the iterator

10 Ruben Verborgh et al.

Data: (predecessor Ip, bgp B = {tp1, . . . , tpn} with n ≥ 2, start page φ0)
1 I ← nil; c← the triple pattern control in the control set C0 of φ0;
2 Function BasicGraphPatternIterator.next()

3 µ← nil;
4 while µ = nil do
5 while I = nil do
6 µp ← Ip.next();
7 return nil if µp = nil;
8 Φ← {φi1 | φi1 = http GET first fragment page using url c(µp[tpi])};
9 ε← i such that cntφi

1
= min({cntφ1

1
, . . . , cntφn

1 });
10 Iε ← TriplePatternIterator(StartIterator(), µp[tpε], φ

ε
1);

11 I ← BasicGraphPatternIterator(Iε, {µ[tp] | tp ∈ B \ {tpε}}, φε1);
12 µ← I.next();
13 return µ ∪ µp;

Algorithm 1: For all mappings µp of a predecessor Ip, a bgp iterator for
a pattern B = {tp1, . . . , tpn} creates a triple pattern iterator Iε for the least
frequent pattern tpε, passed to a bgp iterator for the remainder of P .

fetches the first page of the corresponding ldf. This page contains the cnt meta-
data, which tells us how many matches the dataset has for each triple pattern.
The pattern is then decomposed by evaluating it using a) a triple pattern iter-
ator for the triple pattern with the smallest number of matches, and b) a new
bgp iterator for the remainder of the pattern. This results in a dynamic pipeline
for each of the mappings of its predecessor, as visualized in Fig. 2. Each pipeline
is optimized locally for a specific mapping, reducing the number of requests.

To evaluate a sparql query over a triple pattern fragment collection, we pro-
ceed as follows. For each bgp of the query, a bgp iterator is created. Dedicated
iterators are necessary for other sparql constructs such as UNION and OPTIONAL,
but their implementation need not be ldf-specific; they can reuse the triple
pattern fragment bgp iterators. The predecessor of the first iterator is a start
iterator. We continuously pull solution mappings from the last iterator in the
pipeline and output them as solutions of the query, until the last iterator re-
sponds with nil. This pull-based process is able to deliver results incrementally.

...

B′′= { Drago_Ibler a Architect. }

Alen_Peternac
Drago_Ibler
Juraj_Neidhardt
...

?person birthPlace Zagreb.

B′= { ?person a Architect. ?person birthPlace Zagreb. }

Zagreb
Budapest
Rome
...

?city subject
Capitals_in_Europe.

B= { ?person a Architect. ?person birthPlace ?city. ?city subject Capitals_in_Europe. }

Fig. 2: A bgp iterator decomposes a bgp B = {tp1, . . . , tpn} into a triple pattern
iterator for an optimal tpi and, for each resulting solution mapping µ of tpi, creates
a bgp iterator for the remaining pattern B′ = {tp | tp = µ[tpj] ∧ tpj ∈ B} \ {µ[tpi]}.

Querying Datasets on the Web with High Availability 11

As most time of an ldf client is spent waiting on http requests, the process
can be sped up by buffering the individual iterators. A major advantage of
our dynamic pipelines is that, because each element of a bgp iterator uses its
own separate sub-pipeline, multiple pipelines can run in parallel. E.g., given the
context of Fig. 2, the pipelines for Zagreb, Budapest, and Rome can run in parallel,
and so can those for the Alen_Peternac, Drago_Ibler, and Juraj_Neidhardt. This
results in more concurrent http requests and thus a lower average waiting time
per request. Since triple pattern fragment apis are deliberately designed to allow
high throughput, clients are not bound by crawler politeness rules [14].

5 Evaluation
The goal of the evaluation is to compare the availability–performance relation-
ship of triple-pattern-based query execution to query execution over other ldfs,
sparql endpoints in particular. Performance in this case refers to the query re-
sponse time (i.e., time until the client reports a first solution of the query result)
and total execution time. We measure availability of a server as the fraction of
cases in which the client receives a response within a specified amount of time
after sending a request. For this evaluation, we use a timeout of 60 seconds.

Since overloaded servers are a major cause of unavailability, we also monitor
processor, memory, and bandwidth usage of servers. The assumption is that
servers with high resource usage will be more prone to low availability, i.e.,
a temporal inability to process responses in a reasonable time.

5.1 Experimental setup

We implemented the triple pattern fragments query execution approach of Sec-
tion 4 as an open-source ldf client for sparql queries. This client is written
in JavaScript, so it can be used either as a standalone application, or as a li-
brary for browser and server applications. While we also implemented an ldf
client as an adapter for the popular Java framework Jena [11], it was not in-
cluded in the comparison, because it uses the existing Jena arq querying in-
frastructure instead of our algorithm. The used ldf server is an open-source
Java server with the compressed hdt format [7] as back-end. We provide all
source code of the implementations, as well as the full benchmark configu-
ration, at https://github.com/LinkedDataFragments/. The triple pattern frag-
ments client/server setup is compared to four sparql endpoint infrastructures:
Virtuoso (6.1.8 and 7.1.1) [5] and Jena Fuseki [11] (tdb 1.0.1 and hdt 1.1.1).

To measure the availability and performance of triple pattern fragment servers
and sparql endpoints under varying loads, we set up an environment with one
server and a variable number of clients. In order to obtain repeatable experi-
ments, the benchmarks were executed on virtual machines on the Amazon aws
platform. The complete setup consists of 1 server (4 virtual cpus, 7.5 gb ram),
1 http cache (8 virtual cpus, 15 gbram) and 60 client machines (4 virtual
cpus, 7.5 gbram), capable of running 4 single-threaded clients each. We pur-
posely chose a modest server machine to show the impact for low-budget sce-
narios. The http cache acts as a proxy server between servers and clients and

https://github.com/LinkedDataFragments/

12 Ruben Verborgh et al.

was chosen for its bandwidth capabilities (which Amazon associates with specific
cpu/ram combinations). It caches http requests for a maximum of 5 minutes.

To date, no sparql availability benchmark exists; however, several perfor-
mance benchmarks exist. We chose the Berlin sparql Benchmark (bsbm) [3]
because of its wide-spread use, with a dataset size of 100 million triples. To
mimic the variability of real-world scenarios, each client executes different bsbm
query workloads based on its own random seed. As existing work on Linked
Data querying focuses exclusively on bgp queries [14], this paper is the first
to use a sparql benchmark on a Linked Data publishing method with a non-
sparql http interface. We do not aim for best performance with triple pattern
fragments; instead, we strive to improve the availability/performance balance.

For our experiments, we have extended bsbm with support for parsing stream-
ing Turtle results, and added the possibility to measure the response time (re-
ception of first solution) in addition to the total query execution time (reception
of all solutions). Some of the bsbm queries use the ORDER BY operator, which has
to be implemented in a blocking way; i.e., the first solution can only be sent
after all solutions have been computed. Therefore, (only) for measurements of
the response time, we use variants of these queries without ORDER BY, assuming
the user application prefers streaming results and performs sorting itself.

After every 1-second interval during the evaluation, we measure on the server,
cache, and client the current value of several properties, including cpu usage of
each core, memory usage, and network io. These measurements are obtained
using PerfMon, while distributed testing happens using JMeter.2

5.2 Results and discussion

Figs. 3.1 to 3.10 summarize the main measurements of the evaluation. All x-axes
use a logarithmic scale, because we varied the number of clients exponentially.

Fig. 3.1 shows that the performance of sparql endpoints significantly de-
creases with the number of clients. Even though a triple pattern fragments setup
executes sparql queries with lower performance, the performance decrease with
a higher number of clients is significantly lower. Because of caching effects, triple
pattern fragments querying starts performing slightly better with a high number
of clients (n > 100). The per-core processor usage of the sparql endpoints grows
rapidly (Fig. 3.5) and quickly reaches the maximum; in practice, this means the
endpoint spends all cpu time processing queries while newly incoming requests
are queued. The triple pattern fragments server consumes only limited cpu,
because each individual request is simple to answer, and due to their finer gran-
ularity, the cache can answer several requests (Fig. 3.4).

At the client side, the opposite happens (Fig. 3.7): clients of sparql endpoints
hardly use cpu, whereas triple pattern fragments clients do use between 20% and
100% cpu. This percentage decreases with higher numbers of clients, because the
networking time dominates. Memory consumption remains fairly constant and
low (Fig. 3.8). On the server (Fig. 3.6), memory usage remains constantly high;
however, each considered implementation could be configured to use less memory.
2 http://jmeter.apache.org/ and http://jmeter-plugins.org/wiki/PerfMonAgent/

http://jmeter.apache.org/
http://jmeter-plugins.org/wiki/PerfMonAgent/

Querying Datasets on the Web with High Availability 13

1 10 100

1
0

1
0
0

1
0
0
0
1
0
0
0
0

clients

th
ro

u
g
h
p
u
t

(q
/
h
r) Virtuoso 6 Virtuoso 7

Fuseki–tdb Fuseki–hdt
triple pattern fragments

Fig. 3.1: Server performance (log-log plot)
1 10 100

0

2

4

clients

d
ata

sen
t

(m
b
)

Fig. 3.2: Server network traffic

1 10 100
0

50

100

150

200

clients

#
ti

m
eo

u
ts

Fig. 3.3: Query timeouts
1 10 100

0

10

20

clients

sen
t

(m
b
)

Fig. 3.4: Cache network traffic

1 10 100
0

50

100

clients

c
p
u

u
se

(%
)

Fig. 3.5: Server processor usage per core
1 10 100

0

2

4

6

8

clients

r
a
m

u
se

(g
b
)

Fig. 3.6: Server memory usage

1 10 100
0

50

100

clients

c
p
u

u
se

(%
)

Fig. 3.7: Client processor usage per core
1 10 100

0

0.2

0.4

0.6

0.8

1

clients

r
a
m

u
se

(g
b
)

Fig. 3.8: Client memory usage

1 10 100
0

0.01

0.1

1

10

clients

av
g
.
ti

m
e

(s
)

Fig. 3.9: Query 3 execution time (log-log plot)
1 10 100

0

0.01

0.1

1

10

clients

av
g
.
tim

e
(s)

Fig. 3.10: Query 3 response time (log-log plot)

Fig. 3.2 shows the outbound network traffic on the server with an increasing
number of clients. This traffic is substantially higher with triple pattern fragment
servers, because clients need to ask for several responses to evaluate a single
query. The cache ensures that responses to identical requests are reused; Fig. 3.4
indeed shows that caching is far more effective with triple pattern fragments.

Some of the bsbm queries execute slowly on triple pattern fragments clients,
especially those queries that strongly depend on operators such as FILTER, which
in a triple-pattern-based interface can only be evaluated on the client. The exe-
cution times of these queries exceed the timeout limit of 60s (Fig. 3.3). There-
fore, we separately study bsbm query template 3 (finding products that satisfy
2 numerical inequalities and an OPTIONAL clause), which is one of the templates
whose queries cause few timeouts. Note how its execution time (Fig. 3.9) for
triple pattern fragments starts high, but only increases very gradually, whereas
the execution time on sparql endpoints rises very rapidly. Furthermore, the
response times increase more slowly with increased load (Fig. 3.10). Only on the
triple pattern fragments server, cpu usage remains low for this query at all times.

14 Ruben Verborgh et al.

These results indicate that triple pattern fragments query execution succeeds
in reducing server usage, at the cost of increased query times. Triple pattern
fragments servers cope better with increasing numbers of clients than sparql
endpoints. Furthermore, querying benefits strongly from regular http caching,
which can be added at any point in the network. This is all the more remark-
able since, to allow comparisons with other work, these results were obtained
with an existing sparql benchmark that focuses on performance, not availabil-
ity. Even though certain queries make it difficult for an ldf client to find all
results within the timeout window (especially with blocking operators such as
ORDER BY), the first results to all queries arrive before the timeout period. In the
future, the development of an availability-focused sparql benchmark could stim-
ulate availability improvements of the considered systems. The full results of our
experiments are published as ldfs at http://data.linkeddatafragments.org/.

6 Conclusions
Publishers of Linked Data strive to host their data reliably at minimal cost.
Applications, on the other hand, need to query data in the most flexible way.
The three well-known rdf interfaces on the Web—sparql endpoints, Linked
Data documents, and data dumps—are just a fraction of all possible ways to
transfer Linked Data from a server to a client. Since sparql endpoints offer
the most flexibility, they are not coincidentally the most expensive to host with
high availability. The Linked Data Fragments framework captures the search for
alternative http interfaces to rdf data, trying to balance the server’s desire for
maximum reliability and the client’s need for maximum flexibility.

In this paper, we have shown that triple pattern fragments, which addition-
ally contain count metadata and hypermedia controls, can reduce the load on
servers to less than 30% of the load on sparql endpoints. This happens by
shifting the query-specific tasks to clients, at the cost of slower query execution.
Instead of sending one complex query, clients use a dynamic iterator pipeline to
combine the results of several simpler queries, thereby also vastly improving the
effectiveness of http caching. This captures the spirit of Web querying: clients
browse pages and iteratively extract bits of information to find complex answers.
The goal of triple pattern fragments is to provide those bits that are helpful for
clients to evaluate queries, yet inexpensive to generate by servers.

Triple pattern fragments are definitely not the final answer to querying rdf
datasets on the Web. In fact, there will probably never be such a final answer.
By definition, each api on the Web that publishes rdf triples (which, through
json-ld [24], can include those apis that publish json) offers its own kind of
ldfs. The challenge for future clients is to find answers to queries through all
kinds of different fragments along the axis of ldfs. The results indicate the po-
tential of this querying strategy, as we have shown they allow executing complex
queries of common sparql benchmarks over live data on the Web with high
availability. Whereas the Linked Data principles emphasize hyperlinks between
data documents [2], triple pattern fragments add forms that let clients control
what data they request. Those forms allow custom access, but at the same time
limit the possible kind of queries in order to save on server processing resources.

http://data.linkeddatafragments.org/

Querying Datasets on the Web with High Availability 15

Especially in cases where there are limited financial resources to publish data,
triple pattern fragments could make a significant difference: data can be hosted
at low cost, in a way that allows live querying, with high availability. In addition
to our own open source implementations of ldf servers, two third-party imple-
mentations are available. The Belgian Crossroads Bank for Enterprises recently
published their data as triple pattern fragments (http://data.kbodata.be/) us-
ing their own open-source server. The open-source data management system
The DataTank (http://thedatatank.com/) now also supports triple pattern frag-
ments. This lowers the entry barrier for publishers even further. Implementers
of clients and servers can follow the triple pattern fragments specification [26].

Improving the performance is possible if clients can query more specific frag-
ments. In particular, support for certain FILTER expressions would speed up sev-
eral queries, as triple pattern fragments only allow for exact matches. Interesting
future work is therefore to define new classes of ldfs that support such features,
where we always need to keep in mind that minimizing the server’s processing
cost for each fragment is the key to maximizing its availability. Part of this work
includes the description of such fragments, so a client can dynamically discover
what fragment types a server offers, and thus how it can execute a query in an
optimal way. For instance, if a server supports (a subset of) sparql, clients need
to ask fewer queries than when only triple patterns are supported. This trade-off
between server cost/availability and client performance will continue to exist.

Finally, ldf querying shows us that we perhaps need to re-evaluate the way
we develop applications on top of Linked Data. The dominant paradigm so far
has been: “ask a complex question to a server; wait; act on the results”, where the
“waiting” part can be long if the server has low availability. As the response times
of the evaluation indicate, new applications might prefer not to wait, evolving
towards a real-time, distributed paradigm: “ask simple questions to many servers,
acting on results as they arrive”. A major benefit of clients that solve queries by
fetching fragments of Linked Data, in addition to incrementally updating results,
is that they can support distributed querying by asking fragments from different
servers. In other words, limiting the http interfaces of rdf servers does not
only lead to higher availability, it encourages clients to solve complex queries
themselves—and for that, they have the entire Web of Data at their disposal.

References

1. Amundsen, M.: Hypermedia types. In: rest: From Research to Practice, pp. 93–
116. Springer (2011)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – the story so far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (Mar 2009)

3. Bizer, C., Schultz, A.: The Berlin sparql benchmark. International Journal on
Semantic Web and Information Systems 5(2), 1–24 (2009)

4. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: sparql Web-
querying infrastructure: Ready for action? In: Proceedings of the 12th International
Semantic Web Conference (Nov 2013)

5. Erling, O., Mikhailov, I.: Virtuoso: rdf support in a native rdbms. In: Semantic
Web Information Management, pp. 501–519. Springer (2010)

http://data.kbodata.be/
http://thedatatank.com/

16 Ruben Verborgh et al.

6. Feigenbaum, L., Williams, G.T., Clark, K.G., Torres, E.: sparql . protocol.
Recommendation, wc (Mar 2013), http://www.w3.org/TR/sparql11-protocol/

7. Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:
Binary rdf representation for publication and exchange (hdt). Journal of Web
Semantics 19, 22–41 (Mar 2013)

8. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California (2000)

9. Fielding, R.T.: rest apis must be hypertext-driven (Oct 2008), http://roy.gbiv.
com/untangled/2008/rest-apis-must-be-hypertext-driven

10. Graefe, G.: Query evaluation techniques for large databases. acm Computing Sur-
veys 25(2), 73–169 (Jun 1993)

11. Grobe, M.: rdf, Jena, sparql and the Semantic Web. In: Proceedings of the 37th

Annual acm siguccs Fall Conference: Communication and Collaboration (2009)
12. Harris, S., Seaborne, A.: sparql . query language. Recommendation, wc (Mar

2013), http://www.w3.org/TR/sparql11-query/
13. Hartig, O.: Zero-knowledge query planning for an iterator implementation of link

traversal based query execution. In: Proceedings of the 8th Extended Semantic
Web Conference. pp. 154–169. Springer (2011)

14. Hartig, O.: An overview on execution strategies for Linked Data queries.
Datenbank-Spektrum 13(2), 89–99 (2013)

15. Hartig, O., Bizer, C., Freytag, J.C.: Executing sparql queries over the Web of
Linked Data. In: Proceedings of the 8th International Semantic Web Conference.
pp. 293–309. Springer (2009)

16. Klyne, G., Carrol, J.J.: Resource Description Framework (rdf): Concepts and
abstract syntax. Rec., wc (Feb 2004), http://www.w3.org/TR/rdf-concepts/

17. Linked Data api, https://code.google.com/p/linked-data-api/
18. Matteis, L.: Restpark: Minimal restful api for retrieving rdf triples (2013), http:

//lmatteis.github.io/restpark/restpark.pdf
19. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.C.: dbpedia sparql bench-

mark – performance assessment with real queries on real data. In: Proceedings of
the 9th International Semantic Web Conference (2011)

20. Ogbuji, C.: sparql 1.1 Graph Store http Protocol. Recommendation, wc (Mar
2013), http://www.w3.org/TR/sparql11-http-rdf-update/

21. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. acm
Transactions on Database Systems 34(3), 16:1–16:45 (Sep 2009)

22. Schmidt, M., Hornung, T., Meier, M., Pinkel, C., Lausen, G.: SP2Bench: A sparql
performance benchmark. In: Semantic Web Information Management (2010)

23. Speicher, S., Arwe, J., Malhotra, A.: Linked Data Platform 1.0. Candidate recom-
mendation, wc (Jun 2014), http://www.w3.org/TR/2014/CR-ldp-20140619/

24. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Lindström, N.: json-ld 1.0.
Recommendation, wc (Jan 2014), http://www.w3.org/TR/json-ld/

25. Verborgh, R.: Linked Data Fragments. Unofficial draft, Hydra wc Community
Group, http://www.hydra-cg.com/spec/latest/linked-data-fragments/

26. Verborgh, R.: Triple Pattern Fragments. Unofficial draft, Hydra wc Community
Group, http://www.hydra-cg.com/spec/latest/triple-pattern-fragments/

27. Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., Van de
Walle, R.: Web-scale querying through Linked Data Fragments. In: Proceedings of
the 7th Workshop on Linked Data on the Web (Apr 2014)

28. Wilde, E., Hausenblas, M.: restful sparql? You name it! – Aligning sparql with
rest and resource orientation. In: Proceedings of the 4th Workshop on Emerging
Web Services Technology. pp. 39–43. acm (2009)

http://www.w3.org/TR/sparql11-protocol/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf-concepts/
https://code.google.com/p/linked-data-api/
http://lmatteis.github.io/restpark/restpark.pdf
http://lmatteis.github.io/restpark/restpark.pdf
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/2014/CR-ldp-20140619/
http://www.w3.org/TR/json-ld/
http://www.hydra-cg.com/spec/latest/linked-data-fragments/
http://www.hydra-cg.com/spec/latest/triple-pattern-fragments/

	Querying Datasets on the Web with High Availability

