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Georges-Köhler-Allee 051, 79110 Freiburg, Germany

schaetzle|zablocki|neua|lausen@informatik.uni-freiburg.de

Abstract. Driven by initiatives like Schema.org, the amount of seman-
tically annotated data is expected to grow steadily towards massive scale,
requiring cluster-based solutions to query it. At the same time, Hadoop
has become dominant in the area of Big Data processing with large infras-
tructures being already deployed and used in manifold application fields.
For Hadoop-based applications, a common data pool (HDFS) provides
many synergy benefits, making it very attractive to use these infrastruc-
tures for semantic data processing as well. Indeed, existing SPARQL-on-
Hadoop (MapReduce) approaches have already demonstrated very good
scalability, however, query runtimes are rather slow due to the underlying
batch processing framework. While this is acceptable for data-intensive
queries, it is not satisfactory for the majority of SPARQL queries that are
typically much more selective requiring only small subsets of the data.
In this paper, we present Sempala, a SPARQL-over-SQL-on-Hadoop ap-
proach designed with selective queries in mind. Our evaluation shows
performance improvements by an order of magnitude compared to ex-
isting approaches, paving the way for interactive-time SPARQL query
processing on Hadoop.

1 Introduction

In recent years, the Semantic Web has made its way from academia and re-
search into real-world applications (e.g. Google Knowledge Graph) driven by
initiatives like Freebase and Schema.org. With the agreement of leading search
engine providers to support the Schema.org ontology, one can expect the amount
of semantically annotated data to grow steadily at web-scale, making it infeasible
to store and process this data on a single machine [12].

At the same time, new technologies and systems have been developed in the
last few years to store and process Big Data. In some sense, RDF can also be seen
as an instance of Big Data since RDF datasets can have a very diverse struc-
ture and require expensive operations for evaluation. In this area, the Hadoop
ecosystem has become a de-facto standard due to its high degree of parallelism,
robustness, reliability and scalability while running on heterogeneous commodity
hardware. Though Hadoop is not developed with regard to the Semantic Web,



we advocate its adaptation for Semantic Web purposes for two main reasons:
(1) The expected growth of semantic data requires solutions that scale out as
witnessed by the annual Semantic Web Challenge1. (2) Industry has settled on
Hadoop (or Hadoop-style) architectures for their Big Data needs. This means
there exists a tremendous momentum to address existing shortcomings, leading
to (among others) scalable, interactive SQL-on-Hadoop as a recent trend.

In our view, using a dedicated infrastructure for semantic data processing
solely would abandon all potential synergy benefits of a common data pool
among various applications. Therefore, we believe that following the trend to
reuse existing Big Data infrastructures is superior to a specialized infrastructure
in terms of cost-benefit ratio. Consequently, there has been a lot of work done on
processing RDF and SPARQL, the core components of the Semantic Web stack,
based on Hadoop (MapReduce), e.g. [14, 22, 23, 25, 28]. These approaches scale
very well but exhibit pretty high runtimes (several minutes to hours) due to the
underlying batch processing framework. This is acceptable for ETL like work-
loads and unselective queries, both in terms of input and output size. However,
the majority of SPARQL queries exhibit an explorative ad-hoc style, i.e. they
are typically much more selective. There is currently an evolution of user expec-
tations, demanding for interactive query runtimes regardless of data size, i.e. in
the order of seconds to a few minutes. This is especially true for selective queries
where runtimes in the order of several minutes or even more are not satisfying.
This trend can be clearly observed in the SQL-on-Hadoop field where we cur-
rently see several new systems for interactive SQL query processing coming up,
e.g. Stinger initiative for Hive, Shark, Presto, Phoenix, Impala, etc. They all
have in common that they store their data in HDFS, the distributed file system
of Hadoop, while not using MapReduce as the underlying processing framework.

Following this trend, we introduce Sempala, a SPARQL-over-SQL approach
to provide interactive-time SPARQL query processing on Hadoop. We store RDF
data in a columnar layout on HDFS and use Impala, a massive parallel processing
(MPP) SQL query engine for Hadoop, as the execution layer on top of it. To
the best of our knowledge, this is the first attempt to run SPARQL queries
on Hadoop using a combination of columnar storage and an MPP SQL query
engine. Just as Impala is meant to be a supplement to Hive [27], we see our
approach as a supplement to existing SPARQL-on-Hadoop solutions for queries
where interactive runtimes can be expected.

Our major contributions are as follows: (1) We present a space-efficient, uni-
fied RDF data layout for Impala using Parquet, a novel columnar storage format
for Hadoop. (2) Moreover, we provide a query compiler from SPARQL into the
SQL dialect of Impala based on our data layout. The prototype of Sempala
is available for download2. (3) Finally, we give a comprehensive evaluation to
demonstrate the performance improvements by an order of magnitude on aver-
age compared to existing SPARQL-on-Hadoop approaches, paving the way for
interactive-time SPARQL query processing on Hadoop.

1 See http://challenge.semanticweb.org/
2 See http://dbis.informatik.uni-freiburg.de/Sempala for download.



2 Impala & Parquet

Impala [1] is an open-source MPP SQL query engine for Hadoop inspired by
Google Dremel [16] and developed by Cloudera, one of the biggest Hadoop dis-
tribution vendors. It is seamlessly integrated into the Hadoop ecosystem, i.e. it
can run queries directly on data stored in HDFS without requiring any data
movement or transformation. Moreover, it is designed from the beginning to be
compatible with Apache Hive [27], the standard SQL warehouse for Hadoop. For
this purpose, it also uses the Hive Metastore to store table definitions etc. so that
Impala can query tables created with Hive and vice versa. The main difference to
Hive is that Impala does not use MapReduce as the underlying execution layer
but instead deploys an MPP distributed query engine. The architecture of Im-
pala and its integration into Hadoop is illustrated in Fig. 1 with Sempala being
an application on top of it. The Impala daemon is collocated with every HDFS
DataNode such that data can be accessed locally. One arbitrary node acts as
the coordinator for a given query, distributes the workload among all nodes and
receives the partial results to construct the final output. Impala is a relatively
young project with its first non-beta version released at the beginning of 2013
and new features and performance enhancements being constantly added. At
the time of writing this paper, Impala still lacks the support for on-disk joins,
i.e. joins are only done in-memory. The support for external joins is scheduled
for the second half of 2014.
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Fig. 1. Impala architecture and integration into the Hadoop stack

Parquet [2] is a general purpose columnar storage format for Hadoop inspired
by Google Protocol Buffers [16] and primarily developed by Twitter and Cloud-
era. Though not developed solely for Impala, it is the storage format of choice
regarding performance and efficiency for Impala. A big advantage of a colum-
nar format compared to a row-oriented format is that all values of a column
are stored consecutively on disk allowing better compression and encoding as all
data in a column is of the same type. Parquet comes with built-in support for bit
packing, run-length and dictionary encoding as well as compression algorithms
like Snappy. In addition, also nested data structures can be stored where so-called
repetition and definition levels are used to decompose a nested schema into a



list of flat columns and to reconstruct a record such that only those columns
are accessed that are requested. This way, Parquet is very efficient in storing
wide schemes with hundreds of columns while accessing only a few of them in
a request. In contrast, a row-oriented format would have to read the entire row
and select the requested columns later on. It is worth mentioning that NULL
values are not stored explicitly in Parquet as they can be determined by the def-
inition levels. We utilize both, the efficient support of wide tables and compact
representation of NULL values, in our data layout for RDF (cf. Sect. 3.1).

3 Sempala

In the following, we describe the architecture of Sempala consisting of two main
components as illustrated in Fig. 2. The RDF Loader converts an RDF dataset
into the data layout used by Sempala, which we describe in Sect. 3.1. The Query
Compiler, described in Sect. 3.2, rewrites a given SPARQL query into the SQL
dialect of Impala based on our data layout.
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Fig. 2. Overview of Sempala architecture

3.1 RDF Data Layout for Impala

For the following remarks, consider the small example RDF graph about arti-
cles and corresponding authors using a simplified RDF notation in Fig. 3. It
is a common approach by many RDF engines to store RDF data in a rela-
tional DBMS back-end, e.g. [30]. These solutions typically use a giant so-called
triples table with three columns, containing one row for each RDF statement,
i.e. triples(sub, prop, obj). While being flexible and simple in its representation,
it is not an efficient approach for large-scale datasets as queries typically cause
several self-joins over this table. In [29] the author describes the usage of so-
called property tables for query speed-up in Jena2. In general, a property table
has a schema propTable(sub, prop1, ..., propn) where the columns (properties)



are either determined by a clustering algorithm or by the class of the subject.
The idea is to store all properties in one table that tend to be defined together,
e.g. an article can have properties title, pages, author and cite in our example.
The biggest advantage of property tables compared to a triples table is that they
can reduce the number of subject-subject self-joins that result from star-shaped
patterns in a SPARQL query, e.g. {?s title ?t . ?s author ?a . ?s pages ?p}.
This is particularly relevant for selective SPARQL queries as they often contain
such patterns. Hence, the efficient support of star-shaped patterns is also an
important design goal for Sempala.
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Fig. 3. Simplified RDF graph about articles and corresponding authors

In [3] the authors discuss potential drawbacks of property tables. The biggest
problem arises from the typically diverse structure of RDF which makes it virtu-
ally impossible to define an optimal layout. Since not all subjects in a cluster or
class will use all properties, wide property tables may be very sparse containing
many NULL values and thus impose a large storage overhead, e.g. Article2 does
not have a cite property. On the other side, property tables are the more effective
the more property columns required by a query reside within a table, reducing
the number of necessary joins and unions. This means there is a fundamen-
tal trade-off between query complexity and table sparsity. Narrow tables where
property columns are highly correlated are more dense but the likelihood that
a query can be confined to a single table drops, resulting in more complicated
queries. Wide tables, indeed, require less joins simplifying query complexity but
they are more sparse, i.e. contain many NULL values.

The authors in [3] argue that a poorly-selected property table layout can sig-
nificantly slowdown query performance and propose a vertical partitioned schema
having a two-column table for every RDF property instead, e.g. author(sub, obj).
However, in their evaluation they used a row-oriented RDBMS (Postgres) as
back-end to store property tables, which is clearly not the best of choice for
wide tables. In the following, we explain how we leverage the properties of Par-
quet to overcome the aforementioned trade-off and drawbacks in Sempala.

In contrast to a row-oriented RDBMS, the column-oriented format of Parquet
is designed for very wide tables (in the order of hundreds of columns) where only
a few of them are accessed by a request. Therefore, we use a single unified property
table consisting of all RDF properties used in a dataset to reduce the number of
joins required by a query. In fact, star patterns can be answered entirely without
the need for a join. Furthermore, we do not need any kind of clustering algorithm



that is likely to produce suboptimal schemes for an arbitrary RDF dataset. It
also eases query translation and plan generation as all queries use a single table,
thus leaving more leeway for query optimization in general and the Impala query
optimizer in particular. Of course, this table will be typically sparse as an RDF
dataset can use many properties and most subjects will only use a small subset
of these properties. But since NULL values are not stored explicitly in Parquet
(cf. Sect. 2), sparse columns cause little to no storage overhead.

Nevertheless, our unified approach also comes at a cost. While it is straight-
forward to store properties with a maximum cardinality of one, multi-valued
properties (cf. e.g. author property in Fig. 3) cannot be easily expressed in a flat
schema. As Parquet supports nested data structures, we could use a repeated
field to store multiple values of a property. Unfortunately, Impala does currently
not support nested data (version 1.x). To represent multi-valued properties in a
flat table, we use the following strategy: For each value of a multi-valued prop-
erty we store a duplicate of the corresponding row containing all other column
values. That means for a subject having n multi-valued properties, each consist-
ing of m values, we would store n×m rows in our table. For example, the unified
property table for the RDF graph in Fig. 3 is depicted in Table 1.

Table 1. Unified Property Table for RDF graph in Fig. 3

subject author:string title:string pages:int cite:string erdoesNr:int

Article1 Paul Erdoes ”Title 1” 12 Article2
Article1 Alice ”Title 1” 12 Article2
Article2 Paul Erdoes ”Title 2” 8
Paul Erdoes 0
Alice 1

At first glance, this representation seems to impose a large storage overhead
if many multi-valued properties exist. In fact, this effect is strongly mitigated
by the built-in run-length encoding of Parquet. As all duplicates are stored in
consecutive rows in the table, they are represented by a pair (value, count).
As a consequence of this multi-value treatment, we have to use DISTINCT in
our (sub)queries where we access the table such that we do not produce a lot
of duplicate results. As we only do this when accessing the table, the query
semantics is not affected but it causes an additional overhead. With the support
for nested data as column values, e.g. lists, scheduled for Impala version 2.0, we
could refine this strategy to avoid duplicate rows in future versions of Sempala.

As URIs and literals in RDF tend to be rather long strings, it is also a com-
mon approach to use a dictionary encoding for compaction which is an already
built-in feature of Parquet. In addition, we also store a triples table along with
the unified property table as triple patterns with an unbound property in a
SPARQL query, e.g. {s ?p o}, cannot be easily answered using a property table.
It would not make sense to use a vertical partitioning in this case as the table is
only used for those parts of a query where the property is not specified anyway.



We implemented the conversion from RDF in N-Triples format into our uni-
fied property table layout using MapReduce such that it can also scale with the
dataset size. In an initial preprocessing job we identify all properties used in
the dataset together with their types (data types of the objects). In a second
job we then apply the actual conversion and parse the object values into the
corresponding data types of Impala, if possible. For all other types, we store
them as strings. We tested our data layout on an RDF dataset with 100 million
triples and compared it with the standard triples table and vertical partition-
ing described in [3], all stored with Parquet (except for the original RDF). For
performance comparison, we defined a set of carefully chosen SPARQL queries
consisting of basic graph patterns in various shapes (star and chain) as these
patterns are the core of every SPARQL query. Table 2 summarizes the results.
We see that the unified property table achieves an excellent compression ratio -
the compressed size is actually smaller than the compressed original RDF - while
having the best query performance both in arithmetic and geometric mean.

Table 2. Pre-evaluation results on an RDF dataset with 100 million triples

Original RDF Triples Table Vertical Unified
Partitioning Property Table

size Text Parquet Parquet Parquet
(uncompressed) 10.5 GB 9.7 GB 8.6 GB 14.2 GB
(snappy compressed) 2.1 GB 2.0 GB 2.3 GB 1.8 GB
(ratio) 0.2 0.2 0.27 0.13
runtimes
(arithmetic mean) 17.9 s 7.3 s 5.1 s
(geometric mean) 7.2 s 4.3 s 2.7 s

3.2 Query Compiler

The Query Compiler of Sempala is based on the algebraic representation of
SPARQL expressions defined by the official W3C recommendation [21]. We use
Jena ARQ to parse a SPARQL query into the corresponding algebra tree. Next,
some basic algebraic optimizations, e.g. filter pushing, are applied. However,
SPARQL query optimization was not a core aspect when developing Sempala,
hence there is still much room for improvement in this field. Finally, the tree is
traversed from bottom up to generate the equivalent Impala SQL expressions
based on our unified property table layout described in Sect. 3.1. Due to space
limitations, we focus on the most relevant key points in the following.

Every SPARQL query defines a graph pattern to be matched against an
RDF graph. The smallest pattern is called a triple pattern which is simply an
RDF triple where subject, property and object can be a variable. A set of triple
patterns concatenated by AND (.) is called a basic graph pattern (BGP). BGPs
are the core of any SPARQL query as they are the leaf nodes in the algebra tree.
Consider, for example, the BGP

p = {?s title ?t . ?s cite ?c . ?c author Paul Erdoes}.
Applied to the RDF graph in Fig. 3, it would yield a single result

(?s→ Article1, ?t→ ”Title 1”, ?c→ Article2).



For the translation of a BGP into an Impala SQL expression, we can exploit
the fact that all properties of a subject are stored in the same row in the unified
property table. Thus, we do not need an extra subquery for every triple pattern
but instead can use a single subquery for all triple patterns that have the same
subject, regardless of whether it is a variable or a fixed value. We call a set
of triple patterns in a BGP having the same subject a triple group. A BGP
can thus be decomposed into a disjoint set of triple groups, called a join group.
Considering BGP p, its join group consists of two distinct triple groups, tg1 =
{?s title ?t . ?s cite ?c} and tg2 = {?c author Paul Erdoes}. The algorithm to
decompose a BGP into its corresponding join group is depicted in Algorithm 1.
For the sake of clarity, it is slightly simplified in a way that it ignores the case
when the property in a triple pattern is a variable. As already mentioned in
Sect. 3.1, such patterns can be answered using the triples table.

Algorithm 1: computeJoinGroup(BGP)

input : BGP : Set〈TriplePattern : (subject, property, object)〉
output: JoinGroup : Map〈key : String → TripleGroup : Set〈TriplePattern〉〉

1 JoinGroup← new Map()
2 foreach triple : TriplePattern ∈ BGP do
3 if JoinGroup.containsKey(triple.subject) then // add triple to exisiting TripleGroup
4 JoinGroup.getByKey(triple.subject).add(triple)
5 else // add a new TripleGroup for that triple
6 JoinGroup.add(triple.subject→ new TripleGroup(triple))

7 end
8 return JoinGroup

Every triple group is answered by a subquery that does not contain a join.
The basic idea is that, at first, variables occurring in a triple group define the
columns to be selected by the query. At second, fixed values are used as condi-
tions in the WHERE clause. The names of the variables are also used to rename
the output columns such that an outer query can easily refer to it. This strategy
is depicted in Algorithm 2 using a simplified relational algebra style notation.
Again, we omit the special case of a property being a variable. For every variable
in a triple pattern, we have to add the corresponding column (identified by the
property) to the list of projected columns (lines 4, 7). Additionally, if the object
is a variable, we also have to add a test for not NULL to the list of conditions
(line 8) because NULL values indicate that the property was not set for this
subject. This is not necessary for variables on subject position as the subject
column does not contain NULL values. For example, the subquery sq1 for tg1 is
SELECT DISTINCT subject AS s, title AS t, cite AS c FROM propTable

WHERE title IS NOT NULL AND cite IS NOT NULL

and the subquery sq2 for tg2 is
SELECT DISTINCT subject AS c FROM propTable WHERE author = ’Paul_Erdoes’

Finally, if a join group consists of more than one triple group, we have to
combine the results of all corresponding subqueries using a sequence of joins.
The join attributes are determined by the shared variables in the triple groups



Algorithm 2: TripleGroup2SQL(TripleGroup)

input : TripleGroup : Set〈TriplePattern : (subject, property, object)〉
output: SQL query (written in relational algebra style for the sake of clarity)

1 projection← ∅, conditions← ∅
2 foreach triple : TriplePattern ∈ TripleGroup do
3 if isVariable(triple.subject) then
4 projection.add(subject→ triple.subject)
5 else conditions.add(subject = triple.subject) // subject is a fixed value

6 if isVariable(triple.object) then
7 projection.add(triple.property → triple.object)
8 conditions.add(triple.property not null)

9 else conditions.add(triple.property = triple.object) // object is a fixed value

10 end
11 return πprojection(σconditions(propTable))

which correspond to the projected columns in respective subqueries. Since we
rename the columns according to variable names, we essentially have to compute
the natural join between all subqueries. To avoid unnecessary cross products, we
order the triple groups by the number of shared variables, assuming that joins
are more selective the more attributes they have. This strategy is depicted in
Algorithm 3. For example, the final query for p is

SELECT q1.s, q1.t, q2.c FROM (sq1) q1 JOIN (sq2) q2 ON (q1.c = q2.c)

Algorithm 3: JoinGroup2SQL(JoinGroup)

input : JoinGroup : Map〈key : String → TripleGroup : Set〈TriplePattern〉〉
output: SQL query (written in relational algebra style for the sake of clarity)

1 JoinGroup← JoinGroup.orderBySharedVariables()
2 query ← TripleGroupToSQL(JoinGroup.getFirst())
3 JoinGroup.removeFirst()
4 foreach group : TripleGroup ∈ JoinGroup do
5 query ← query ./ TripleGroup2SQL(group)
6 end
7 return query

In general, this strategy does not guarantee an optimal join order. However,
after creating the unified property table, we utilize the built-in analytic features
of Impala to compute table and column statistics that are used to optimize
join order. In our tests, the automatic optimization showed almost the same
performance as a manually optimized join order.

A FILTER expression in SPARQL can be mapped to the equivalent condi-
tions in Impala SQL where we essentially have to adapt the SPARQL syntax to
the syntax of SQL. These conditions can then be added to the WHERE clause
of the corresponding (sub)query. The OPTIONAL pattern is realized by a left
outer join in Impala SQL. If it contains an additional filter in the optional pat-
tern (right-hand side), e.g. {?s title ?t OPTIONAL{?s pages ?p FILTER(?p > 10)}},
these conditions are added to the ON clause of the left outer join, according to



the W3C specification. UNION, OFFSET, LIMIT, ORDER BY and DISTINCT
can be realized using their equivalent clauses in the SQL dialect of Impala.

Finally, a translated query is executed with Impala where the results are not
materialized locally but stored in a separate results table in HDFS. This way,
we can even query them later one with Impala, if necessary.

Example. A complete example of how a a SPARQL query is translated to Im-
pala SQL is illustrated in Fig. 4. The SPARQL query (1) asks for page numbers,
authors and optionally their Erdős numbers (if smaller than three) of all articles,
ordered by number of pages in descending order. The corresponding algebra tree
is illustrated in (2) and the final Impala SQL query is given in (3). This query
is then executed with Impala.

SELECT *

WHERE { ?s :pages ?p . ?s :author ?a .

        OPTIONAL { ?a :erdoesNr ?e FILTER(?e < 3) }

        FILTER(?p > 10) }

ORDER BY DESC(?p)

ORDER BY

DESC ?p

Left Join

?e < 3
BGP

?a :erdoesNr ?e

Filter

?p > 10

BGP

?s :pages ?p
?s :author ?a

CREATE TABLE result AS SELECT q1.s, q1.p, q1.a, q2.e

FROM ( SELECT DISTINCT subject AS s, pages AS p, author AS a FROM propTable

       WHERE author IS NOT NULL AND pages > 10 ) q1

     LEFT OUTER JOIN

     ( SELECT DISTINCT subject AS a, erdoesNr AS e FROM propTable

       WHERE erdoesNr IS NOT NULL ) q2

     ON ( q1.a = q2.a AND q2.e < 3 )

ORDER BY p DESC
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Fig. 4. Sempala Query Compiler workflow from SPARQL to SQL

4 Evaluation

The evaluation was performed on a small cluster of ten machines, each equipped
with a six core Xeon E5-2420 CPU, 2×2 TB disks and 32 GB RAM having
the Hadoop distribution of Cloudera in version 4.5 and Impala in version 1.2.3
installed. The machines were connected via Gigabit network. This is actually
a rather low-end configuration as Cloudera recommends 256 GB RAM and
12 disks or more for Impala nodes which is also a typical configuration in an
Hadoop production cluster. We used two well-known SPARQL benchmarks for
our evaluation, Lehigh University Benchmark (LUBM) [10] with datasets from



1000 to 3000 universities and Berlin SPARQL Benchmark V3.1 (BSBM) [6] with
datasets from one to three million products. For LUBM, we used WebPie [28]
to pre-compute the transitive closure as Sempala does not support OWL rea-
soning. The load times and store sizes for Sempala are listed in Table 3. We
can see that – although we store both, property and triples table – the actual
store size is significantly smaller than the size of the original RDF graph. This
is achieved by Parquets built-in support for run-length and dictionary encoding
in combination with Snappy compression that perform great for storing RDF in
a column-oriented format.

Table 3. Load times and store sizes for Sempala (sizes in GB)

RDF triples RDF size Load time Prop. Tab. Triples Tab. Ratio

L
U

B
M 1000 205 million 34.1 40 min 2.4 2.4 0.14

2000 410 million 68.5 76 min 4.8 5.7 0.15
3000 615 million 102.9 113 min 7.2 9.8 0.16

B
S
B

M 1000K 350 million 85.9 70 min 11.1 14.9 0.30
2000K 700 million 172.5 92 min 22.1 29.8 0.30
3000K 1050 million 259.3 138 min 38.9 44.6 0.32

We compared our prototype of Sempala with four other Hadoop based sys-
tems, where three of them are our own prototypes from other research projects.
(1) Hive [27] is the standard SQL warehouse for Hadoop based on MapReduce.
As Impala was developed to be highly compatible with Hive, we can run the
same queries (with minor syntactical changes) on the same data with Hive as
well. This way, Hive could also be seen as an alternative execution engine for
Sempala. (2) PigSPARQL [25, 26] follows a similar approach as Sempala but
uses Pig as the underlying system. It stores RDF data in a vertically partitioned
schema similar to [3]. (3) MapMerge [22] is an efficient map-side merge join im-
plementation for scalable SPARQL BGP processing that significantly reduces
data shuffling between map and reduce phases in MapReduce. (4) MAPSIN [24]
uses HBase, the standard NoSQL database for Hadoop, to store RDF data and
applies a map-side index nested loop join that completely avoids the reduce
phase of MapReduce.

LUBM consists of 14 predefined queries taken from an university domain,
most of them rather selective returning a limited number of results. This is the
kind of workload where Sempala can play its full strength. The performance
comparison for LUBM 3000 is illustrated in Fig. 5 on a log scale while absolute
runtimes are given in Table 4. We can clearly observe that Sempala outperforms
all other systems by up to an order of magnitude on average (geometric mean).
Q1, Q3, Q4, Q5, Q10, Q11 are the most selective queries returning only a few
results and can be answered by Sempala within ten seconds or less. All these
queries define a star-shaped pattern which can be answered very efficiently with
the unified property table of Sempala. In addition, runtimes remain almost con-
stant when scaling the dataset size. Q6 and Q14 have the slowest runtimes as
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Fig. 5. Performance comparison for LUBM 3000 (log scale)

Table 4. LUBM query runtimes (in s), GM: geometric mean, n/a: not applicable

LUBM Query 1 2 3 4 5 6 7 8 9 10 11 12 13 14 GM

1
0
0
0

Sempala 7 11 6 8 6 28 17 10 14 7 6 8 9 24 10
Hive 77 253 75 89 82 133 310 243 312 77 74 165 217 125 137
PigSPARQL 44 144 48 56 40 35 129 140 207 45 40 119 39 39 66
MapMerge 36 405 31 63 33 15 71 58 179 43 13 15 28 16 41
MAPSIN 32 n/a 30 35 33 45 60 60 n/a n/a 32 n/a 42 42 40

2
0
0
0

Sempala 7 15 7 9 7 47 27 14 21 7 7 9 12 43 13
Hive 80 298 89 97 85 153 353 284 371 82 80 180 237 145 154
PigSPARQL 65 196 55 78 55 50 195 195 309 60 50 158 50 49 89
MapMerge 61 750 52 117 56 18 120 93 311 75 13 16 46 18 62
MAPSIN 52 n/a 47 60 52 67 93 92 n/a n/a 51 n/a 81 78 65

3
0
0
0

Sempala 8 21 8 10 8 66 36 18 28 8 8 10 15 61 16
Hive 98 305 85 96 85 162 417 320 407 87 84 192 245 170 165
PigSPARQL 66 255 65 102 66 55 251 256 391 71 56 208 60 50 107
MapMerge 81 1099 67 153 71 25 167 124 432 98 14 17 57 24 80
MAPSIN 81 n/a 70 89 78 98 120 119 n/a n/a 74 n/a 125 105 94

they are the most unselective queries returning all students and undergraduate
students, respectively. For this queries, the runtime is dominated by storing mil-
lions of results back to HDFS. This is evidenced by the fact that if we just count
the number of results, runtimes again drop below ten seconds. Q2, Q7, Q8, Q9
and Q12 are more challenging with Q2 and Q9 defining the most complex pat-
terns. Also for this queries, runtimes of Sempala are significantly faster than for
all other systems, remaining way below one minute.

For BSBM, we used the query templates defined in the Explore use case
that imitate consumers looking for products in an e-commerce domain. We had
to omit Q9 and Q12 as we do currently not support CONSTRUCT and DE-
SCRIBE queries. For each dataset size we generated 20 instances of every query
template using the BSBM test driver, summing up to a total of 200 queries
per dataset. In Table 5 we report the average query execution time (aQET)
per query. MapMerge and MAPSIN could not be used for BSBM evaluation as
they only support SPARQL BGPs. Again, Sempala outperforms Hive and also
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Fig. 6. Performance comparison for BSBM 3000K (log scale)

Table 5. BSBM query runtimes (in s), GM: geometric mean

BSBM Query 1 2 3 4 5 6 7 8 10 11 GM

1
0
0
0
K Sempala 8 16 8 12 17 8 28 36 11 14 14

Hive 164 219 148 292 233 139 631 818 169 114 234
PigSPARQL 127 169 161 189 200 35 235 278 226 131 157

2
0
0
0
K Sempala 11 23 11 16 27 8 37 48 12 18 18

Hive 202 307 188 336 309 188 828 1169 211 170 309
PigSPARQL 144 184 180 226 224 36 278 358 259 235 187

3
0
0
0
K Sempala 11 30 11 16 37 10 MEM 63 13 27 19

Hive 294 414 277 490 399 285 1203 1554 265 216 427
PigSPARQL 151 191 198 265 240 41 330 409 307 343 215

PigSPARQL by an order of magnitude on average while runtimes for Q1, Q3,
Q4, Q6 and Q10 remain almost constant around ten seconds for all dataset sizes.
For Q7, a memory error occurred due to the reason that Impala in version 1.2.3
does only support in-memory joins and whenever an Impala node exceeds its
memory resources, the whole query execution is cancelled. So the resources of
an individual Impala node can be a bottleneck for scalability as adding more
nodes to the cluster would not solve this issue. The support for on-disk joins in
Impala is announced for a version beyond 2.0 in the second half of 2014. In the
interim, we can fall back on Hive without additional effort if a memory intensive
query fails on Impala.

Overall, the evaluation clearly demonstrates that combining existing tech-
nologies for Big Data processing can be an efficient solution for querying seman-
tic data. In that sense, Sempala is a significant step towards interactive-time
SPARQL query processing on Hadoop.

5 Related Work

RDF-3X [18] is considered to be one of the fastest single machine RDF sys-
tems but its performance degrades for queries with unbound objects and low
selectivity factor [14]. Furthermore, with continuously increasing dataset sizes



it becomes more and more challenging to store and process RDF datasets on a
single machine only [12], raising the need for distributed solutions.

The authors in [13, 17] were among the first to use Hadoop for RDF storage
and retrieval. They presented systems based on MapReduce for SPARQL BGP
processing, omitting more complex SPARQL language elements. HadoopDB [4]
is a hybrid of MapReduce and DBMS where MapReduce is the communication
layer above multiple single node DBMS aiming to combine the speed of a SQL
database with the scalability of MapReduce. The authors in [12] adopted this
hybrid approach for RDF data using RDF-3X instead of a SQL database. An
RDF graph is partitioned into subgraphs, each of them stored on a single node
running an instance of RDF-3X. Furthermore, each node also stores the n-hop
neighborhood of his subgraph such that queries within an n-hop distance can
be answered locally. However, the initial graph partitioning is done on a single
machine which strongly limits scalability and query performance drops signif-
icantly when a query cannot be answered within the n-hop neighborhood. So
there is a fundamental trade-off between query performance and scalability as
the size of locally replicated data growth exponentially with n. HadoopRDF [14]
is a MapReduce based RDF system that stores data directly in HDFS and rebal-
ances automatically when cluster size changes but join processing is done in the
reduce phase only, thus there is always a costly data shuffling phase involved [24].
There is a large body of work on join optimization in MapReduce, e.g. [5, 7, 22,
24]. However, they still suffer from overall MapReduce batch processing overhead
what makes interactive runtimes virtually impossible to achieve on MapReduce.

There are several approaches which store RDF data in HBase, a NoSQL
database based on HDFS. Jena-HBase [15] provides a combination of the Seman-
tic Web framework Jena and HBase to overcome the lack of scalability of single
machine RDF-stores. However, they do not provide a distributed query engine,
thus scalability and query performance for large RDF data is still an issue. The
MAPSIN join proposed in [24] utilizes HBase to avoid costly shuffle phases by
processing joins in the map phase with a focus on selective star pattern queries.
The authors of RDFChain [8] refined this idea to support chained queries more
efficiently. H2RDF+ [20] also stores RDF data in HBase and processes joins
locally or distributed depending on join complexity estimation. However, like
most RDF systems for Hadoop, also MAPSIN, RDFChain and H2RDF do solely
support join-only queries, i.e. SPARQL BGPs. In contrast, Sempala supports
the full range of single graph operators from the SPARQL 1.0 spec.

Instead of implementing a SPARQL processing engine directly in MapRe-
duce, PigSPARQL [26] translates SPARQL queries to Pig Latin, a high-level
languages for data processing on MapReduce. As with Sempala, it supports all
SPARQL 1.0 operators and benefits from further developments of Pig as illus-
trated in a revised work [25]. However, based on MapReduce execution, it cannot
provide interactive query runtimes.

Beyond general-purpose platforms like Hadoop, Virtuoso Cluster Edition [9],
Clustered TDB [19] and 4store [11] are specialized distributed RDF stores. How-
ever, they require a dedicated infrastructure and pose additional installation and



management overhead whereas our approach builds upon the idea to use existing
platforms that are open-source, well-known and widely used. Moreover, as we do
not require any changes to Hadoop, Sempala runs on any existing Hadoop cluster
or cloud service (Impala is also supported by Amazon Elastic MapReduce).

6 Conclusion

In recent years, the Hadoop ecosystem has become a de-facto standard for dis-
tributed storage and processing of Big Data. A core idea of Hadoop is to have a
common data pool while providing various applications on top of it. This makes
it also an attractive choice to store and query semantic data at web-scale. How-
ever, while existing approaches for SPARQL-on-Hadoop have proven very good
scalability, they fail to provide interactive query runtimes.

In this paper, we presented Sempala, a SPARQL query processor for Hadoop
based on Impala. Combining a state-of-the-art columnar file format to store
RDF data in HDFS with a massive parallel processing engine integrated seam-
lessly into the Hadoop stack provides an elegant and at the same time efficient
approach to query large volumes of RDF data. Our comprehensive evaluation
demonstrated that Sempala is a big step towards interactive-time SPARQL query
processing on Hadoop. For future work, we plan to refine our RDF data layout of
Sempala by incorporating nested data structures that will be introduced in Im-
pala 2.0 and to add support for features beyond SPARQL 1.0 such as subqueries
and aggregations.
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