HELIOS - Execution Optimization for Link Discovery

Axel-Cyrille Ngonga Ngomo'!

Department of Computer Science
University of Leipzig
Johannisgasse 26, 04103 Leipzig
ngonga@informatik.uni-leipzig.de,
WWW home page: http://limes.sf.net

Abstract. Links between knowledge bases build the backbone of the Linked
Data Web. In previous works, the combination of the results of time-efficient
algorithms through set-theoretical operators has been shown to be very time-
efficient for Link Discovery. However, the further optimization of such link spec-
ifications has not been paid much attention to. We address the issue of further
optimizing the runtime of link specifications by presenting HELIOS, a runtime
optimizer for Link Discovery. HELIOS comprises both a rewriter and an exe-
cution planner for link specifications. The rewriter is a sequence of fixed-point
iterators for algebraic rules. The planner relies on time-efficient evaluation func-
tions to generate execution plans for link specifications. We evaluate HELIOS on
17 specifications created by human experts and 2180 specifications generated au-
tomatically. Our evaluation shows that HELIOS is up to 300 times faster than a
canonical planner. Moreover, HELIOS’ improvements are statistically significant.

1 Introduction

Link Discovery (LD) plays a central role in the realization of the Linked Data paradigm.
Several frameworks such as LIMES [9] and SILK [5] have been developed to address
the time-efficient discovery of links. These frameworks take a link specification (short:
LS, also called linkage rule [5]) as input. Each LS is converted internally into a sequence
of operations which is then executed. While relying on time-efficient algorithms (e.g.,
PPJoin+ [17] and HR? [7]) for single operations has been shown to be very time-
efficient [9], the optimization of the execution of whole LS within this paradigm has
been payed little attention to.

In this paper, we address this problem by presenting HELIOS, the (to the best of our
knowledge) first execution optimizer for LD. HELIOS aims to reduce the costs necessary
to execute a LS. To achieve this goal, our approach relies on two main components: a
rewriter and a planner. The rewriter relies on algebraic operations to transform an input
specification into an equivalent specification deemed less time-consuming to execute.
The planner maps specifications to execution plans, which are sequences of operations
from which a mapping results. HELIOS’ planner relies on time-efficient evaluation func-

tions to generate possible plans, approximate their runtime and return the one that is
likely to be most time-efficient.! Our contributions are:

We present a novel generic representation of LS as bi-partite trees.

We introduce a novel approach to rewriting LS efficiently.

We explicate a novel planning algorithm for LS.

We evaluate HEL10S on 2097 LS (17 manually and 2080 automatically generated)
and show that it outperforms the state of the art by up to two orders of magnitude.

bl

The rest of this paper is structured as follows: First, we present a formal specifi-
cation of LS and execution plans for LS. Then, we present HELIOS and its two main
components. Then, we evaluate HELIOS against the state of the art. Finally, we give a
brief overview of related work and conclude.

2 Formal Specification

In the following, we present a graph grammar for LS. We employ this grammar to de-
fine a normal form (NF) for LS that will build the basis for the rewriter and planner of
HELIOS. Thereafter, we present execution plans for LS, which formalize the sequence
of operations carried out by execution engines to generate links out of specifications.
As example, we use the RDF graphs shown in Table 1, for which the perfect LD re-
sults is {(ex1:P1, ex2:P1), (ex1:P2, ex2:P2), (ex1:P3, ex2:P3), (exl:P4,
ex2:P4)}.

2.1 Normal Form for Link Specifications

Formally, most LD tools aim to discover the set {(s,t) € S x T : R(s,t)} provided
an input relation R (e.g., owl : sameAs), a set S of source resources (for example de-
scriptions of persons) and a set T of target resources. To achieve this goal, declarative
LD frameworks rely on LS, which describe the conditions under which R(s,) can be
assumed to hold for a pair (s,t) € S xT. Several grammars have been used for describ-
ing LS in previous works [7, 5, 10]. In general, these grammars assume that LS consist
of two types of atomic components: similarity measures m, which allow comparing
property values of input resources and operators op, which can be used to combine
these similarities to more complex specifications.

Without loss of generality, a similarity measure m can be defined as a function
m: S xT — [0,1]. We use mappings M C S x T x [0,1] to store the results of
the application of a similarity function to .S x T or subsets thereof. We also store the
results of whole link specifications in mappings. The set of all mappings is denoted by
M. We call a measure atomic iff it relies on exactly one similarity measure o (e.g.,
the edit similarity, dubbed edit)? to compute the similarity of a pair (s,t) € S x T

"' HELIOS was implemented in the LIMES framework. All information to the tool can be found
at http://limes.sf.net. A graphical user interface for the tool can be accessed via the SAIM
interface at http://aksw.org/projects/SAIM.

% We define the edit similarity of two strings s and ¢ as (1 4 lewv(s,t)) ™", where lev stands for
the Levenshtein distance.

Table 1. Examplary graphs.

Persons1 graph Persons2 graph

ex1:P1 ex:label "Anna"@en . ex2:P1l ex:label "Ana"@en .

ex1:P1 ex:age "12"""xsd:integer . ex2:P1 ex:age "12"""xsd:integer .
exl:P1 a ex:Person . ex2:P1l a ex:Person .

ex1:P2 ex:label "Jack"@en . ex2:P2 ex:label "Jack"@en .
exl:P2 ex:age "15"""xsd:integer . ex2:P2 ex:age "14""“xsd:integer .
exl:P2 a ex:Person . ex2:P2 a ex:Person .

ex1:P3 ex:label "John"@en . ex2:P3 ex:label "Joe"@en .

exl:P3 ex:age "16" " “xsd:integer . ex2:P3 ex:age "16""“"xsd:integer .
ex1:P3 a ex:Person . ex2:P3 a ex:Person .

ex1:P4 ex:label "John"Gen . ex2:P4 ex:label "John"Ren .
ex1:P4 ex:age "19"""xsd:integer . ex2:P4 ex:age "19"""xsd:integer .
exl:P4 a ex:Person . ex2:P4 a ex:Person .

with respect to the (list of) properties p; of s and p; of ¢ and write m = o(ps,pt). A
similarity measure m is either an atomic similarity measure or the combination of two
similarity measures via a metric operator such as max, min or linear combinations.
For example, edit(s.label, t.label) is an atomic measure while max(edit(s.label,
t.label), edit(s.age, t.age)) is a complex similarity measure.

We define a filter as any function which maps a mapping M to another mapping M.
Similarity filters f(m, 0) return f(m, 0, M) = {(s,t,r")|3r : (s,t,r) € M Am(s,t) >
0 A" = min{m(s,t),r}}. Threshold filters i(6) return (6, M) = {(s,t,7) € M :
r > 6}. Note that ¢(0, M) = M and that we sometimes omit M from similarity filters
for the sake of legibility.

We call a specification atomic when it consists of exactly one filtering function.
For example, applying the atomic specification f(edit(ex:label,ex:label), 1) to
our input data leads to the mapping {(ex1:P3, ex2:P4, 1), (ex1:P2, ex2:P2, 1),
(ex1:P4, ex2:P4, 1)}. A complex specification can be obtained by combining two
specifications L; and Ly by (1) a mapping operator (that allows merging the mappings
which result from L, and L) and (2) a subsequent filter that allows postprocessing the
results of the merging.? In the following, we limit ourselves to the operators based on
U, Nand \ (set difference), as they are sufficient to describe any operator based on set
operators. We extend these operators to mappings as follows:

- MyNMy={(s,t,r):Ja,b(s,t,a) € M1 A(s,t,b) € My Ar =min(a,b)}.

- My UMy = {(s,t,7) : (=3(s,t,a) € My A (s, t,7) € M)V (=3(s,t,b) €
My A (s,t,r) € My) Vv (3(s,t,a) € My A3(s,t,b) € Mo Ar =max(a,b))}.

- Mi\My = {(s,t,7) € My : =3(s,t,a) € Ma}.

For example, if M; = {(ex1:P1, ex2:P2, 1), (ex1:P1, ex2:P3, 1)} and My =
{(exl:Pl, ex2:P2, 05)} then M1 U M2 = Ml, M1 n M2 = M2 and Ml\MQ =
{(ex1:P1,ex2:P3,)}.

Based on this grammar, we can regard all LS as bi-partite directed trees L =
(V(L), E(L)) which abide by the following restrictions:

3 We rely on binary operators throughout this paper because n-ary set operators can always be
mapped to a sequence of binary operators.

1. The vertices of L can be either filter nodes f € F or operator nodes op € OP, i.e.,
V(L) = F U OP. The leaves and the root of L are always filter nodes. The leaves
are filters thatrunon S x T

2. Edges in L can only exist between filters and operators, i.e., E(L) C (F x OP) U
(OP x F).

An example of a LS is shown in Figure 1. We call this representation of LS their NF. In
the rest of this paper, we deal exclusively with finite specifications, i.e., specifications
such that their NF contains a finite number of nodes. We call the number of filter nodes
of a specification L the size of L and denote it | L|. For example, the size of the specifica-
tion in Figure 1 is 3. We dub the direct child of L’s root the operator of L. For example,
the operator of the specification in Figure 1 is N. We call a LS L’ a sub-specification
of L (denoted L’ C L) if L'’s NF is a sub-tree of L’s NF that abides by the definition
of a specification (i.e., if the root of L’’s NF is a filter node and the NF of L’ contains
all children of I’ in L). For example, f(edit(label,label),0.3) is a sub-specification
of our example. We call a L’ a direct sub-specification of L (denoted L' Cy L) if L’
is a sub-specification of L whose root node a grandchild of the L’s root. For example,
f(edit(label,label),0.3) is a direct sub-specification of the LS shown in Figure 1.
Finally, we transliterate LS by writing f(m, 0, op(L1, L2)) where f(m,8) is L’s root,
opis L’s operator, 1 Cy L and Lo Cy L.

[edit(label, label), 0.3 | |euc1(age, age), 0.5 |

identity, 0.5

Fig. 1. A LS for linking the datasets Personl and Person2. The filter nodes are rectangles while
the operator nodes are circles. eucl(s.age, t.age) = (1 + |s.age — t.age|) ™. This LS can be
transliterated «(N(f(edit (label, label),0.3), f(eucl(age, age),0.5)),0.5).

2.2 Execution Plans

We define an execution plan P as a sequence of processing steps p1, ..., pn of which
each is drawn from the set A x X x 7 x M x M, where:

1. A is the set of all actions that can be carried out. This set models all the processing

operations that can be carried out when executing a plan. These are:

(a) run, which runs the computation of filters f(m, §) where m is an atomic mea-
sure. This action can make use of time-efficient algorithms such as HR>.

(b) filter, which runs filters f(m, #) where m is a complex measure.

(c) filterout, which runs the negation of f(m,6).

(d) Mapping operations such as union, intersection and minus (mapping
difference) and

(e) return, which terminates the execution and returns the final mapping.
The result of each action (and therewith of each processing step) is a mapping.

2. Nis the set of all complex measures as described above united with the (-measure,
which is used by actions that do not require measures (e.g., return).

3. T is the set of all possible thresholds (generally [0, 1]) united with the (}-threshold
for actions that do not require any threshold (e.g., union) and

4. M is the set of all possible mappings, i.e., the powerset of S x T x [0, 1].

We call the plan P atomic if it consists of exactly one processing step. An execution
planner E P is a function which maps a LS to an execution plan P. The canonical plan-
ner E Py is the planner that runs specification in postorder, i.e., by traversing the NF
of LS in the order left-right-root. The approach currently implemented by LIMES [9]
is equivalent to E'Fy. For example, the plan generated by E'F, for Figure 1 is shown
in the left column of Table 2. For the sake of brevity and better legibility, we will use
abbreviated versions of plans that do not contain () symbols. The abbreviated version
of the plan generated by E P, for the specification in Figure 1 is shown in the right
column of Table 2. We call two plans equivalent when they return the same results for
all possible .S and T'. We call a planner complete when it always returns plans that are
equivalent to those generated by F' F.

Table 2. Plans for the specification shown in Figure 1

Canonical Plan Abbreviated Canonical Plan

M= (run,edit (label, label),0.3,0,0) Mj=(run,edit (label, label), 0.3)

M= (run, eucl (age, age),0.5,0,0) Ms=(run, eucl (age, age), 0.5)
M3=(intersection, ®, 0, My, Ms) M3=(intersection, M1, Ms)
My=(return,®,®, M3, D) My=(return, M3)

Alternative Planl (abbreviated) Alternative Plan2 (abbreviated)

M= (run,edit (label, label),0.3) Mi=(run, eucl (age, age),0.5)
Ms=(filter,eucl (age,age), 0.5, M) Ms=(filter,edit (label, label), 0.3, M)
Ms=(return, Ms) Ms=(return, Ms)

The insight behind our paper is that equivalent plans can differ significantly with
respect to their runtime. For example, the canonical plan shown in Table 2 would lead
to 32 similarity computations (16 for edit and 16 for euclidean) and one mapping
intersection, which can be computed by using 16 lookups. If we assume that each op-
eration requires 1ms, the total runtime of this plan would be 48ms. The alternative plan
1 shown in Table 2 is equivalent to the plans in Table 2 but only runs 16 computations
of edit (leading to M; of size 6) and 6 computations of euclidean on the data
contained in M;. The total runtime of this plan would thus be 22ms. Detecting such
runtime-efficient and complete plans is the goal of HELIOS.

3 HELIOS

HELIOS is an optimizer for LS which consists of two main components: a rewriter
(denoted RW) and a planner (denoted HP). Each LS L to be processed is first forwarded

to RW, which applies several algebraic transformation rules to transform L into an
equivalent LS L’ that promises to be more efficient to execute. The aim of HP is then to
derive a complete plan P for L'. This plan is finally sent to the execution engine, which
runs the plan and returns a final mapping. In the following, we present each of these
components.* Throughout the formalization, we use — for logical implications and =
to denote rules.

3.1 The HELIOS Rewriter

RW implements an iterative rule-based approach to rewriting. Each iteration consists of
three main steps that are carried out from leaves towards the root of the input specifica-
tion. In the first step, sub-graphs of the input specification L are replaced with equivalent
sub-graphs which are likely to be more efficient to run. In a second step, dependency
between nodes in L are determined and propagated. The third step consists of removing
portions of L which do not affect the final results of L’s execution. These three steps
are iterated until a fixpoint is reached.

Step 1: Rewriting Given a LS L, RW begins by rewriting the specification using
algebraic rules dubbed leaf generation rules.

o— 0—a
[2] et

[om +Bmad] = [am +Ama]

Fig. 2. Leaf generation rule for linear combinations.

The leaf generation rules (LR) make use of relations between metric operators
and specification operators to transform leaf nodes with complex measures into graphs
whose leaves contain exclusively atomic measures. For example, the rule shown in Fig-
ure 2 transforms a filter that relies on the linear combinations of 2 measures into a LS
with three filters whose leaves only contain atomic measures as described in [9]. While
it might seem absurd to alter the original filter in this manner, the idea here is that we
can now run specialized algorithms for m; and ms, then compute the intersection M of
the resulting mapping and finally simply check each of the (s, t) with 3r : (s,¢,7) € M
for whether it abides by the linear combination in the root filter. This approach is usually
more time-efficient than checking each (s, t) € S x T for whether it abides by the lin-
ear combination in the original specification. Similar rules can be devised for min (see
Figure 3), max and the different average functions used in LD frameworks. After L has
been rewritten by the rules in LR, each of its leaves is a filter with atomic measures.

* Due to space restrictions, some of the details and proofs pertaining to the rewriter and planner
are omitted. Please consult http://limes.sf.net for more details.

] =

Fig. 3. Rule for minimum. In the corresponding rule for maximum, the mapping union is used.

Step 2: Dependency Detection and Propagation The idea behind the use of de-
pendencies is to detect and eliminate redundant portions of the specification. Conse-
quently, RWW implements two types of dependency-based rules: dependency detection
rules and dependency propagation rules. Formally, we say that L depends on Lo (de-
noted depends(Ly, Ls)) if the mapping resulting from L; is a subset of the mapping
resulting from L, for all possible S and 7. RW generates dependencies between leaves
(which now only contain atomic measures) by making use of

Ly = f(m,01) A Ly = f(m,02) A0y > 05 = depends(Ly, Lz). (D

Moreover, RW makes use of dependencies have been shown to apply between several
similarity and distance measures that are commonly used in literature. For example,the
authors of [17] show that for two non-empty strings and y, jaccard(z,y) > 0 —
overlap(z,y) > 1fr—e(|yc| + |y|). Given that || > 1 and |y| > 1, we can infer that

) > 20
146

Thus, if L; = f(jaccard(ps,pt),01) and Ly = f(overlap(ps,pt),f2) with O <
12+951 , then depends(L1, Lo) holds. Currently, RW implements dependencies between
the overlap, trigrams and the jaccard similarities discussed in [17].

Leaf-level dependencies can be propagated towards the root of the specification
based on the following rules:

p1: L =1i(0,0p(L1, L2))ALy = f(m,01,0p1(L11, L12))ALa = f(m, 02,0p2(La1, Laz))A
01> 0N0 > 0) = L :=1i(0,0p(L1, Ly)) (if the threshold of the father of any
operator is smaller than that of all its children and the father node is an identity
filter, then the threshold of the father can be set to 0).

p2: depends(Ly, L") Adepends(La, L')AL = f(m,0,N(L1, La)) = depends(L, L")
(if all children of a conjunction depend on L’ then the father of this conjunction
depends on L/).

p3: L= f(m,0,U(L1, L2))A(depends(L’, Ly)Vdepends(L', L)) = depends(L’, L)
(if L' depends on one child of a disjunction and the father of the disjunction has the
threshold O then L’ depends on the father of the disjunction).

jaccard(z,y) > 0 — overlap(z,y 2)

Step 3: Reduction Given two specifications L1 Cy L and Ly Cy L with depends(L1, Lo),
we can now reduce the size of L = filter(m,0,0p(Ly1, Ls)) by using the following
rules:

ri: L' = filter(m,0,N(Ly, Ly)) A depends(Ly, Lo) = L' := filter(m, 0, L)),

ro: L' = filter(m,0,U(Ly, Ly)) A depends(Ly, Ls) = L' := filter(m, 6, L)),

rg: L' = filter(m,0,\(L1, L2)) A depends(L1, Ly) = L' := () where := stands for
overwriting.

An example that elucidates the ideas behind DR is given in Figure 4. Set operators
applied to one mapping are assumed to not alter the mapping.

The leaf generation terminates after at most as many iterations as the total number
of atomic specifications used across all leaves of the input LS L. Consequently, this step
has a complexity of O(|L'|) where L' = LR(L). The generation of dependencies re-
quires O(|L’|?) node comparisons. Each time a reduction rule is applied, the size of the
L’ decreases, leading to reduction rules being applicable at most |L’| times. The com-
plexity of the reduction is thus also O(|L'|). In the worst case of a left- or right-linear
specification, the propagation of dependencies can reach the complexity O(|L’|?). All
three steps of each iteration thus have a complexity of at most O(|L|"?) and the spec-
ification is at least one node smaller after each iteration. Consequently, the worst-case
complexity of the rewriter is O(|L'|?).

— @4l

Fig. 4. Example of propagation of dependencies. The dashed arrows represent dependencies. The
dependencies from the left figure are first (using rule p1). Then, the reduction rule r; is carried
out, leading to the specification on the right.

3.2 The HELIOS Planner

The goal of the HELIOS planner HP is to convert a given LS into a plan. Previous work
on query optimization for databases have shown that finding the optimal plan for a given
query is exponential in complexity [15]. The complexity of finding the perfect plan for
a LS is clearly similar to that of finding a play for a given query. To circumvent the
complexity problem, we rely on the following optimality assumption: Given Ly C; L
and Ly Cy L with L = f(m,0,0p(L1, L)), a good plan for L can be derived from
plans for L; and L,. In the following, we begin by explaining core values that HP needs
to evaluate a plan. In particular, we explain how HP evaluates atomic and complex
plans. Thereafter, we present the algorithm behind HP and analyze its complexity.

Plan Evaluation HP uses two values to characterize any plan P: (1) the approximate
runtime of P (denoted v(P)) and (2) the selectivity of P (dubbed s(P)), which encodes
the size of the mapping returned by P as percentage of |\S' x T'|.

Computing v(P) and s(P) for atomic LS: Several approaches can be envisaged to
achieve this goal. In our implementation of HP, we used approximations based on sam-
pling. The basic assumption behind our feature choice was that LD frameworks are
usually agnostic of S and T before the beginning of the LD. Thus, we opted for ap-
proximating the runtime of atomic plans P by using |S| and |T'| as parameters. We
chose these values because they be computed in linear time.> To approximate ~(P) for
atomic plans, we generated source and target datasets of sizes 1000, 2000, . .., 10000
by sampling data from the English labels of DBpedia 3.8. We then stored the runtime
of the measures implemented by our framework for different thresholds 6 between 0.5
and 1.° The runtime of the i*" experiment was stored in the row %; of a column vector
Y . The corresponding experimental parameters (1, | S|, |T|, 8) were stored in the row r;
of a four-column matrix R. Note that the first entry of all r; is 1 to ensure that we can
learn possible constant factors. We finally computed the vector I' = (70, v1,Y2,73) "
such that

Y(P) =0 +1|S| + 72| T| + v36. 3)

To achieve this goal, we used the following exact solution to linear regression: I" =
(RTR)~'RTY. The computation of s(P) was carried out similarly with the sole differ-
ence that the entries y; for the computation of s(P) were %, where M; is the size
of the mapping returned by the it" experiment. Figure 5 shows a sample of the results
achieved by different algorithms in our experiments. The plan returned for the atomic

LSf(m,0)is (run, m,).

Computing ~(P) and s(P) for complex LS: The computation of the costs associated
with atomic filter, filterout and operators was computed analogously to the
computation of runtimes for atomic LS. For filters, the feature was the size of the input
mapping. For non-atomic plans P, we computed v(P) by summing up the ~y(p;) for all
the steps p; included in the plan. The selectivity of operators was computed based on
the selectivity of the mappings that served as input for the operators. To achieve this
goal, we assumed that the selectivity of a plan P to be the probability that a pair (s, t)
is returned after the execution of P. Moreover, we assumed the input mappings M;
(selectivity: s1) resp. Mo (selectivity: s2) to be the results of independent computations.
Based on these assumptions, we derived the following selectivities for op(M7, Ma):

3 Other values can be used for this purpose but our results suggest that using |S| and |T'| is
sufficient in most cases.
® We used the same hardware as during the evaluation.

=}
=}

=
=1

=1

a

=

10000
8000

6000
4000 g

2000
0 0

1
1
8
B
4
2 20
2 4 [8 10

(a) Runtimes for trigrams. (b) Heatmap for trigrams.

. i
1
&
2 4 6 8 10

(c) Runtimes for levenshtein. (d) Heatmap for levenshtein.

=
S
S

I
S

=
=1

=]

Fig. 5. Runtimes achieved by PPJoin+ (t rigrams) and EDJoin (Levenshtein) for 6 = 0.5.
The x-axis of the heatmap show |S| in thousands, while the y-axis shows |7’| in thousands. The
color bars show the runtime in ms.

The HP algorithm The core of the approach implemented by HP is shown in Algo-
rithm 1. For atomic specifications f(m, 8), HP simply returns (run, m,) (GETBESTPLAN
method in Algorithm 1). If different algorithms which allow running m efficiently are
available, HP chooses the implementation that leads to the smallest runtime ~(P). Note

that the selectivity of all algorithms that allow running m is exactly the same given that
they must return the same mapping. If the specification L = (m, 6, 0p(L1, L2)) is not
atomic, HP’s core approach is akin to a divide-and-conquer approach. It first devises a
plan for L, and Ly and then computes the costs of different possible plans for op. For

N for example, the following three plans are equivalent:

1. Canonical plan. This plan simply consists of merging (via the CONCATENATE
method in Algorithm 1) the results of the best plans for L; and Ls. Consequently,
the plan consists of (1) running the best plan for L; (i.e., @1 in Algorithm 1),
(2) running the best plan for Lo(i.e., Q2 in Algorithm 1), then (3) running the
intersection action over the results of (J; and) and finally (4) running
filter over the result of the intersection action.

2. Filter-right plan. This plan uses f(ms, 62) as a filter over the results of ¢);. Con-
sequently, the plan consists of (1) running the best plan for L, then (2) running the
filter action with measure mo and threshold 85 over the results of ()1 and finally
(3) running £ilter with measure m and threshold 6 over the previous result.

3. Filter-left plan. Analogous to the filter-right plan with L; and L5 reversed.

Similar approaches can be derived for the operators U and \ as shown in Algorithm 1.
HP now returns the least costly plan as result (GETLEASTCOSTLY method in Algo-
rithm 1). This plan is finally forwarded to the execution engine which runs the plan and
returns the resulting mapping.

Given that the alternative plans generated by HP are equivalent and that HP always
chooses one of this plan, our algorithm is guaranteed to be complete. Moreover, HP
approximates the runtime of at most 3 different plans per operator and at most k dif-
ferent plans for each leaf of the input specification (where k is the maximal number of
algorithms that implements a measure m in our framework). Consequently, the runtime
complexity of HP is O(max{k, 3} x |L|).

Algorithm 1 The PLAN method

if L is atomic then
P = GETBESTPLAN(L);
else
if L = f(m,0,0p(L1)) then
P := GETBESTPLAN(L)
else
Q1 :=PLAN(Lq)
Q2 :=PLAN(L3)
if L = f(m,0,N(L1, L2)) then
Py := CONCATENATE(intersection, Q1, Q2)
Py := CONCATENATE(filter(m, 01), Q2)
Py := CONCATENATE(filter(ma, 62), Q1)
P := GETLEASTCOSTLY (Py, Py, P2)
elseif L = f(m,0,U(L1, L2)) then
Py := CONCATENATE(union, Q1, Q2)
Py := CONCATENATE(union, filter(mas, 02, S X T), Q2)
P5 := CONCATENATE(union, filter(m1,601,S X T), Q1)
P := GETLEASTCOSTLY (Py, Py, P2)
elseif L = f(m, 0, \(L1, L2)) then
Py := CONCATENATE(minus, Q1, Q2)
P := CONCATENATE(filterout(maz, 02), Q2)
P := GETLEASTCOSTLY (P, P1)
end if
end if
ag = filter(m,)
P = CONCATENATE(ag, P)
end if
return P

4 Evaluation

4.1 Experimental Setup

The aim of our evaluation was to measure the runtime improvement of HELIOS the
overall runtime of LS. We thus compared the runtimes of E P, (i.e., LIMES), RW (i.e.,
RW + EFRy), HP and HELIOS (i.e., RW +HP) in our experiments. We chose LIMES
because it has been shown to be very time-efficient in previous work [9]. We considered
manually created and automatically generated LS. All experiments were carried out on

server running Ubuntu 12.04. In each experiment, we used a single kernel of a 2.0GHz
AMD Opteron processor with 10GB RAM.

The manually created LS were selected from the LATC repository.” We selected
17 LS which relied on SPARQL endpoints that were alive or on data dumps that were
available during the course of the experiments. The specifications linked 18 different
datasets and had sizes between 1 and 3. The small sizes were due to humans tending to
generate small and non-redundant specifications.

The automatic specifications were generated during a single run of specification
learning algorithm EAGLE [8] on four different benchmark datasets described in Ta-
ble 4.8 The mutation and crossover rates were set to 0.6 while the number of inquiries
per iteration was set to 10. The population size was set to 10. The sizes of the spec-
ifications generated by EAGLE varied between 1 and 11. We compared 1000 LS on
the OAEI 2010 Restaurant and the DBLP-ACM dataset each, 80 specifications on the
DBLP-Scholar dataset and 100 specifications on LGD-LGD. We chose to use bench-
mark datasets to ensure that the specifications used in the experiments were of high-
quality w.r.t. the F-measure they led to. Each specification was executed 10 times. No
caching was allowed. We report the smallest runtimes over all runs for all configurations
to account for possible hardware and I/0 influences.’

4.2 Results on Manual Specifications

The results of our experiments on manual specifications are shown in Table 3 and allow
deriving two main insights: First, HELIOS can improve the runtime of atomic specifica-
tions (which made up 62.5% of the manual LS). This result is of tremendous importance
as it suggests that the overhead generated by HELIOS is mostly insignificant, even for
specifications which lead to small runtimes (e.g., DBP-DataGov requires 8ms). More-
over, our experiments reveal that HELIOS achieves a significant improvement of the
overall runtime of specifications with sizes larger than 1 (37.5% of the manual LS). In
the best case, HELIOS is 49.5 times faster than E' P, and can reduce the runtime of the
LS LDG-DBP (A) from 52.7s to 1.1s by using a filter-left plan. Here, we see that the
gain in runtime generated by HELI10S grows with |S| x |T'|. This was to be expected as
a good plan has more effect when large datasets are to be processed. Overall, HELIOS
outperforms LIMES’ canonical planner on all non-atomic specifications. On average,
HELI10S is 4.3 times faster than the canonical planner on LS of size 3.

4.3 Results on Automatic Specifications

Overall, our results on automatic specifications show clearly that HELIOS outperforms
the state of the art significantly. In Table 4, we show the average runtime of £ Py, RW,
HP and HELIOS on four different datasets of growing sizes. The overall runtime of

7 https://github.com/LATC/24-7-platform/tree/master/link-specifications

8 The Restaurant data is available at http://oaei.ontologymatching.org/2010/. DBLP-ACM
and DBLP-Scholar are at http://dbs.uni-leipzig.de/en/research/projects/object_matching/
fever/benchmark_datasets_for_entity_resolution.

® All evaluation results can be found at https://github.com/AKSW/LIMES.

Table 3. Comparison of runtimes on manual specifications. The top portion of the table shows
runtimes of specifications of size 1 while the bottom part shows runtimes on specifications of size
3. EVT stands for Eventseer, DF for DogFood, (P) stands for person, (A) stands for airports, (U)

stands for universities, (E) stands for events. The best runtimes are in bold.

Source - Target |S| x |T| EP, RW HP HELIOS Gain

(ms) (ms) (ms) (ms) (ms)
DBP - Datagov 1.7 x 10° 8 8 8 8 0
RKB - DBP 2.2 x 10° 1 1 1 1 0
Epo - DBP 73.0 x 10® 54 53 54 53 1
Rail - DBP 133.2 x 103 269 268 268 268 1
Stad - Rmon 341.9 x 10® 25 23 15 14 11
EVT - DF (E) 531.0 x 10° 893 906 909 905 -12
Climb - Rail 1.9 x 10° 41 40 40 40 1
DBLP - DataSW 92.2 x 10° 59 59 58 54 5
EVT - DF (P) 148.4 x 10° 2,477 2,482 2,503 2,434 43
EVT - DBLP 161.0 x 10° 9,654 9,575 9,613 9,612 42
DBP - OpenEI 10.9 x 103 2 2 2 2 0
DBP - GSpecies 94.2 x 10° 120 119 120 119 1
Climb - DBP 312.4 x 10° 55 55 55 55 0
DBP - LGD (E) 34.1 x 108 2,259 2,133 1,206 1,209 1,050
Climb - LGD 215.0 x 108 24,249 24,835 3,497 3,521 20,728
DBP - LGD (A) 383.8 x 108 52,663 59,635 1,066 1,064 51,599
LGD - LGD 509.3 x 10° 46,604 38,560 32,831 22,497 24,107

HELIOS is clearly superior to that of E'F, on all datasets. As expected, the gain ob-
tained by using HELIOS grows with the size of |\S| x |T'|. In particular, the results on
the very small Restaurant dataset support the results achieved on the manual specifica-
tions. While HP alone does not lead to a significant improvement, HELIOS leads to an
improvement of the overall runtime by 6.35%. This improvement is mostly due to RW
eliminating filters and therewith altering the plans generated by HP. These alterations
allow for shorter and more time-efficient plans.

1400 12x103
EPO
1200 4 —--—-- RW 3|
—_—— HP 10x10
10004 | —..—... HELIOS
o 7 % 8x10%4
o 800 p— s
£ — E 6x1031
€ 600 — =
S o~ Z 3
< o & 4x103
400 - 7
- 3
4 - 2x10°
200 -~
0 T T T T T T T J 0
200 400 600 800 1000 0
Number of specifications Number of specifications

(a) DBLP-ACM

(b) LGD-LGD

Fig. 6. Cumulative runtimes on DBLP-ACM and LGD-LGD.

On the larger DBLP-ACM dataset, HELIOS achieve a runtime that is up to 185.8
times smaller than that of EFy (e.g., for f(N(f(jaccard(authors, authors), 0.93),

Table 4. Summary of the results on on automatically generated specifications. |L| shows for
the average size £ standard deviation of the specifications in the experiment. F; shows the F-
measure achieved by EAGLE on the dataset. The runtimes in four rightmost columns are the
average runtimes in seconds.

|S| x |T| |L| Fy EPy RW HP HELIOS
Restaurants 72.3 x 103 4.44£1.79 0.89 0.15 0.15 0.15 0.14
DBLP-ACM 6.0 x 10° 6.611+1.32 0.99 1.38 1.37 1.00 0.99
DBLP-Scholar 168.1 x 10° 6.42+1.47 0.91 17.44 17.41 13.54 13.46
LGD-LGD 5.8 x 10° 3.54+2.15 0.98 102.33 97.40 72.19 69.64

f(edit(venue, venue), 0.93)),0.53)). Yet, given that the runtime approximations are
generic, HELIOS sometimes generated plans that led to poorer runtimes. In the worst
case, a plan generated by HELIOS was 6.5 times slower than the plan generated by £ P,
(e.g., for f(N(f(edit(authors, authors), 0.59), f(cosine(venue,venue),0.73)),0.4)).
On average, HELIOS is 38.82% faster than E'F,. Similar results can be derived from
DBLP-Scholar, where HELIOS is 29.61% faster despite having run on only 80 specifi-
cations. On our largest dataset, the time gain is even larger with HELIOS being 46.94%
faster. Note that this improvement is very relevant for end users, as it translates to ap-
proximately 1h of runtime gain for each iteration of our experiments. Here, the best
plan generated by HELIOS is 314.02 times faster than E'Fy. Moreover, we can clearly
see the effect of RW with average runtime improvement of 5.1% (see Figure 6).

We regard our overall results as very satisfactory given that the algorithms underly-
ing E'P, are in and of themselves already optimized towards runtime. Still, by combin-
ing them carefully, HELIOS can still cut down the overall runtime of learning algorithms
and even of manually created link specifications. To ensure that our improvements are
not simply due to chance, we compared the distribution of the cumulative runtimes of
EPy and RW, HP and HELI1OS as well E'F, and HELIOS by using a Wilcoxon paired
signed rank test at a significance level of 95%. On all datasets, all tests return signifi-
cant results, which shows that the RW, HP and HELIOS lead to statistically significant
runtime improvements.

5 Related Work

The task we address shares some similarities with the task of query optimization in
databases [15]. A large spectrum of approaches have been devised to achieve this goal
including System R’s dynamic programming query optimization [13], cost-based opti-
mizers and heuristic optimizers [6] and approaches based on genetic programming [1].
HELIO0S is most tightly related to heuristic optimizers as it relies on an optimality as-
sumption to discover plans in polynomial time. Overviews of existing approaches can
be found in [2, 15]. The main difference between the task at hand and query optimiza-
tion for databases are as follows: First, databases can store elaborate statistics on the
data they contain and use these to optimize their execution plan. LD frameworks do not
have such statistics available when presented with a novel LS as they usually have to
access remote data sources. Thus, HEL1IOS must rely on statistics that can be computed

efficiently while reading the data. Moreover, our approach also has to rely on generic
approximations for the costs and selectivity of plans. Still, we reuse the concepts of
selectivity, rewriting and planning as known from query optimization in databases.

This work is a contribution to the research area of LD. Several frameworks have
been developed to achieve this goal. The LIMES framework [9], in which HELIOS
is embedded, provides time-efficient algorithms for running specific atomic measures
(e.g., PPJoin+ [17] and HR3 [7]) and combines them by using set operators and filters.
While LIMES relied on graph traversal until now, most other systems rely on block-
ing. For example, SILK [5] relies on MultiBlock to execute LS efficiently. Multiblock
allows mapping a whole link specification in a space that can be segmented to overlap-
ping blocks. The similarity computations are then carried out within the blocks only. A
similar approach is followed by the KnoFuss system [10]. Other time-efficient systems
include [16] which present a lossy but time-efficient approach for the efficient process-
ing of LS. Zhishi.links on the other hand relies on a pre-indexing of the resources to
improve its runtime [11]. CODI uses a sampling-based approache to compute anchor
alignments to reduce the its runtime [4]. Other systems descriptions can be found in the
results of the Ontology Alignment Evaluation Initiative [3].1° The idea of optimizing
the runtime of schema matching has also been considered in literature [14]. For exam-
ple, [12] presents an approach based on rewriting. Still, to the best of our knowledge,
HELIOS is the first optimizer for link discovery that combines rewriting and planning
to improve runtimes.

6 Conclusion and Future Work

We presented HELIOS, the (to the best of our knowledge) first execution optimizer for
LS. We evaluated our approach in manually created and automatically generated LS.
Our evaluation shows that HELIOS outperforms the canonical execution planner im-
plemented in LIMES by up to two orders of magnitude. Our approach was intended
to be generic. Thus, we used generic evaluation functions that allowed to detect plans
that should generally work. Our results suggest that using more dataset-specific features
should lead to even better runtimes and higher improvements. We thus regard HELIOS
as the first step in a larger agenda towards creating a new generation of self-configuring
and self-adapting LD frameworks. During the development of HELIOS, we noticed in-
teresting differences in the behaviour of LD algorithms for different languages. For
example, the I" vector for the different measures differs noticeably for French, English
and German. We will investigate the consequences of these differences in future work.
Moreover, we will investigate more elaborate features for approximating the selectivity
and runtime of different algorithms.

Acknowledgement

This work was partially financed the EU FP7 project GeoKnow (GA: 318159) and the
DFG project LinkingL.OD.

10 http://ontologymatching.org

References

10.

11.

12.

13.

14.

15.

16.

17.

. Kiristin Bennett, Michael C. Ferris, and Yannis E. Ioannidis. A genetic algorithm for database

query optimization. In In Proceedings of the fourth International Conference on Genetic
Algorithms, pages 400-407, 1991.

. Surajit Chaudhuri. An overview of query optimization in relational systems. In Proceedings

of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, PODS °98, pages 34-43. ACM, 1998.

. Jérdme Euzenat, Alfio Ferrara, Willem Robert van Hage, Laura Hollink, Christian Meil-

icke, Andriy Nikolov, Dominique Ritze, Francois Scharffe, Pavel Shvaiko, Heiner Stuck-
enschmidt, Ondrej Svab-Zamazal, and Céssia Trojahn dos Santos. Results of the ontology
alignment evaluation initiative 2011. In OM, 2011.

. Jakob Huber, Timo Sztyler, Jan NofBner, and Christian Meilicke. Codi: Combinatorial opti-

mization for data integration: results for oaei 2011. In OM, 2011.

. R.Isele, A. Jentzsch, and C. Bizer. Efficient Multidimensional Blocking for Link Discovery

without losing Recall. In WebDB, 2011.

. Carl-Christian Kanne and Guido Moerkotte. Histograms reloaded: the merits of bucket diver-

sity. In Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data, SIGMOD ’ 10, pages 663-674. ACM, 2010.

. Axel-Cyrille Ngonga Ngomo. Link discovery with guaranteed reduction ratio in affine spaces

with minkowski measures. In International Semantic Web Conference (1), pages 378-393,
2012.

. Axel-Cyrille Ngonga Ngomo and Klaus Lyko. Eagle: Efficient active learning of link speci-

fications using genetic programming. In Proceedings of the Extende Semantic Web Confer-
ence, pages 149-163, 2012.

. Axel-Cyrille Ngonga Ngomo. On link discovery using a hybrid approach. Journal on Data

Semantics, 1:203 — 217, December 2012.

Andriy Nikolov, Mathieu D’ Aquin, and Enrico Motta. Unsupervised learning of data linking
configuration. In Proceedings of ESWC, 2012.

Xing Niu, Shu Rong, Yunlong Zhang, and Haofen Wang. Zhishi.links results for oaei 2011.
In OM, 2011.

Eric Peukert, Henrike Berthold, and Erhard Rahm. Rewrite techniques for performance
optimization of schema matching processes. In EDBT, pages 453-464, 2010.

P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access
path selection in a relational database management system. In Proceedings of the 1979 ACM
SIGMOD international conference on Management of data, SIGMOD °79, pages 23-34,
New York, NY, USA, 1979. ACM.

Pavel Shvaiko and Jérome Euzenat. Ontology matching: State of the art and future chal-
lenges. IEEE Trans. Knowl. Data Eng., 25(1):158-176, 2013.

Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database Systems Concepts.
McGraw-Hill, Inc., New York, NY, USA, 5 edition, 2006.

Dezhao Song and Jeff Heflin. Automatically generating data linkages using a domain-
independent candidate selection approach. In ISWC, pages 649-664, 2011.

Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey X. Yu. Efficient similarity joins for near
duplicate detection. In WWW, pages 131-140, 2008.

