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Preface

The Semantic Web is now a maturing field with a significant and growing adop-
tion of semantic technologies in a variety of commercial, public sector, and sci-
entific fields. Linked Data is pervasive: from enabling government transparency,
to helping integrate data in life sciences and enterprises, to publishing data
about museums, and integrating bibliographic data. Significantly, major compa-
nies, such as Google, Yahoo, Microsoft, and Facebook, have created their own
“knowledge graphs” that power semantic searches and enable smarter processing
and delivery of data: The use of these knowledge graphs is now the norm rather
than the exception. The schema.org effort led by the major search companies
illustrates the industry interest and support of the Semantic Web. Commercial
players such as IBM, Siemens, BestBuy, and Walmart are seeing the value of
semantic technologies and are regular presenters at Semantic Web conferences.
The papers and the research topics covered in these proceedings follow directly
from the requirements of this large adoption, and contribute greatly to the con-
tinuing success of the field.

The International Semantic Web Conference is the premier forum for Se-
mantic Web research, where cutting-edge scientific results and technological in-
novations are presented, where problems and solutions are discussed, and where
the future of this vision is being developed. It brings together specialists in
fields such as artificial intelligence, databases, social networks, distributed com-
puting, Web engineering, information systems, human–computer interaction,
natural language processing, and the social sciences for tutorials, workshops,
presentations, keynotes, and ample time for detailed discussions.

This volume contains the main proceedings of the 13th International Seman-
tic Web Conference (ISWC 2014), which was held in Riva del Garda, Trentino,
Italy, in October 2014. We received tremendous response to our calls for papers
from a truly international community of researchers and practitioners. Indeed,
several tracks of the conference received a record number of submissions this
year. The careful nature of the review process, and the breadth and scope of
the papers finally selected for inclusion in this volume, speak to the quality of
the conference and to the contributions made by researchers whose work is pre-
sented in these proceedings. As such, we were all honored and proud that we
were invited to serve the community in the stewardship of this edition of ISWC.

The proceedings include papers from four different tracks: the Research Track,
the Semantic Web In-Use Track, the newly added Replication, Benchmark, Data
and Software (RBDS) Track, and a selection of Doctoral Consortium papers. For
the first time since we started publishing the LNCS proceedings, the papers are
organized by their topic rather than by their track and correspond closely to
the sessions in the conference schedule. The topics of the accepted papers reflect
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the broad coverage of the Semantic Web research and application: Linked Data,
its quality, link discovery, and application in the life sciences; data integration,
search and query answering, SPARQL, ontology-based data access and query
rewriting and reasoning; natural language processing and information extraction;
user interaction and personalization, and social media; ontology alignment and
modularization; and sensors and streams.

Creating the program for ISWC 2014 would not have been possible without
the tireless and fantastic work of the Senior Program Committees (SPC), the
Program Committees (PC), as well as of the many sub-reviewers in the different
tracks, several of whom volunteered to provide high-quality emergency reviews.
To acknowledge this work, the Research Track and the Semantic Web In-Use
Track each offered a best reviewer award. The decision on the awards was taken
with the input of the SPC members, of the fellow reviewers from the PC, of
the authors, and also using objective measures about the reviews provided by
EasyChair, the conference management system.

The Research Track of the conference attracted 180 submissions, 38 of which
were accepted, resulting in a 21% acceptance rate. Each paper received at least
three, and sometimes as many as five, reviews from members of the PC. After the
first round of reviews, authors had the opportunity to submit a rebuttal, leading
to further discussions among the reviewers, a metareview and a recommendation
from a member of the SPC. The SPC held a 10-hour virtual meeting in order
to select the final set of accepted papers, paying special attention to papers
that were borderline or had at least one recommendation for acceptance. In
many cases, additional last-minute reviews were sought out to better inform the
SPC’s decision.

The best paper nominations for the Research Track reflect the broad range
of topics that were submitted to this track:

Best paper nominations:

– AGDISTIS - “Graph-Based Disambiguation of Named Entities Using Linked
Data” by Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Michael Röder,
Daniel Gerber, Sandro Athaide Coelho, Sören Auer and Andreas Both

– “Expressive and Scalable Query-based Faceted Search over SPARQL End-
points” by Sébastien Ferré

– “Explass: Exploring Associations Between Entities via Top-K Ontological
Patterns and Facets” by Gong Cheng, Yanan Zhang and Yuzhong Qu

– “Querying Factorized Probabilistic Triple Databases” by Denis Krompaß,
Maximilian Nickel and Volker Tresp

Best student paper nominations:

– “OBDA: Query Rewriting or Materialization? In Practice, Both!” by Juan
F. Sequeda, Marcelo Arenas and Daniel P. Miranker

– “SYRql: A Dataflow Language for Large Scale Processing of RDF Data” by
Fadi Maali, Padmashree Ravindra, Kemafor Anyanwu and Stefan Decker

– “Pushing the Boundaries of Tractable Ontology Reasoning” by David Carral,
Cristina Feier, Bernardo Cuenca Grau, Pascal Hitzler and Ian Horrocks
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The Semantic Web In-Use Track received 46 submissions. Fifteen papers were
accepted – a 33% acceptance rate. The papers demonstrated how semantic tech-
nologies are applied in a variety of domains, including: biomedicine and drug
discovery, smart cities, sensor streams, multimedia, visualization, link genera-
tion, and ontology development. The application papers demonstrated how se-
mantic technologies are applied in diverse ways, starting from using linked data
in mobile environments to employing fully fledged artificial intelligence meth-
ods in real-time use cases. At least three members of the In-Use PC provided
reviews for each paper. After the first round of reviews, authors had the oppor-
tunity to submit a rebuttal, leading to further discussions among the reviewers,
a metareview and a recommendation from a member of the SPC.

The best paper nominations for the Semantic Web In-Use Track are:

– “Web Browser Personalization with the Client Side Triplestore” by Hitoshi
Uchida, Ralph Swick and Andrei Sambra

– “Semantic Traffic Diagnosis with STAR-CITY: Architecture and Lessons
Learned from Deployment in Dublin, Bologna, Miami and Rio”, by Freddy
Lecue, Robert Tucker, Simone Tallevi-Diotallevi, Rahul Nair, Yiannis Gko-
ufas, Giuseppe Liguori, Mauro Borioni, Alexandre Rademaker and Luciano
Barbosa

– “Adapting Semantic Sensor Networks for Smart Building Analytics” by Jo-
ern Ploennigs, Anika Schumann and Freddy Lecue

This year we introduced the Replication, Benchmark, Data and Software
(RBDS) track that provides an outlet for papers of these four categories. It ex-
tended and transformed last year’s evaluations and experiments track to incor-
porate new categories of contributions. The four types of papers had very clearly
specified scope and reviewing criteria that were described in the Call for Papers:
(1) Replication papers focus on replicating a previously published approach in
order to shed light on some important, possibly overlooked aspect; (2) bench-
mark papers make available to the community a new class of resources, metrics
or software that can be used to measure the performance of systems in some
dimension; (3) data papers introduce an important data set to the community;
and (4) software framework papers advance science by sharing with the commu-
nity software that can easily be extended or adapted to support scientific study
and experimentation. The RBDS track received 39 submissions (18 benchmark
studies, eight data papers, eight software framework papers, and four replication
studies), and accepted 16 papers (five benchmark studies, five data papers, four
software framework papers, and two replication studies), corresponding to an
acceptance rate of 41%. Each paper was reviewed by at least three members
of the PC and discussed thoroughly. The papers address a range of areas, such
as linked stream data, federated query processing, tag recommendation, entity
summarization, and mobile semantic web.
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The Doctoral Consortium is a key event at the ISWC conference. PhD stu-
dents in the Semantic Web field get an opportunity to present their thesis pro-
posals and to interact with leading academic and industrial scientists in the field,
who act as their mentors. The Doctoral Consortium received 41 submissions, a
record number compared to previous years. Each paper received two reviews,
one from an SPC member, and one from a co-chair. Out of 41 submissions, six
were selected to be both included in these proceedings and for presentation at
the Doctoral Consortium, while an additional 11 were selected for presentation.
The Doctoral Consortium day is organized as a highly interactive event, in which
students present their proposals and receive extensive feedback and comments
from mentors as well as from their peers.

A unique aspect of the ISWC conference is the Semantic Web Challenge, now
in its 12th year, with the goal of demonstrating practical progress toward achiev-
ing the vision of the Semantic Web. The overall objective of the challenge is to
apply Semantic Web techniques in building online end-user applications that
integrate, combine, and deduce information needed to assist users in performing
tasks. Organized this year by Andreas Harth and Sean Bechhofer, the compe-
tition enables practitioners and scientists to showcase leading-edge real-world
applications of Semantic Web technology. The Semantic Web Challenge is ad-
vised by a board of experts working at universities and in industry. The advisory
board also acts as a jury and awards the best applications at the conference.

The keynote talks given by leading scientists or practitioners in their field
further enriched the ISWC program. Prabhakar Raghavan, Vice-President of
Engineering at Google, discussed “Web Search – From the Noun to the Verb.”
Paolo Traverso, Director of the Center for Information Technology at Fondazione
Bruno Kessler, talked about “To Be or to Do?: The Semantics for Smart Cities
and Communities.” Yolanda Gil, Associate Director of the Intelligent Systems
Division at ISI University of South California, discussed the “Semantic Chal-
lenges in Getting Work Done” addressing the application of semantics to sci-
entific tasks. The industry track featured a plenary keynote on “The Semantic
Web in an Age of Open Data” by Sir Nigel Shadbolt, Chairman and Co-Founder
of the UK’s Open Data Institute and Professor of Artificial Intelligence at the
University of Southampton.

As in previous ISWC editions, the conference included an extensive tuto-
rial and workshop program. Johanna Völker and Lora Aroyo, the chairs of this
track, created a stellar and diverse collection of eight tutorials and 23 workshops,
where the only problem that the participants faced was which of the many ex-
citing workshops and tutorials to attend. This year, we hosted for the first time
the Developers’ Workshop, a dedicated event for software developers discussing
implementations, methods, techniques, and solutions to practical problems of
Semantic Web and Linked Data. The main topic of the Developers’ Workshop
was “Semantic Web in a Browser.”
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We would like to thank Matthew Horridge, Marco Rospocher, and Jacco
van Ossenbruggen for organizing a lively poster and demo session. This year,
the track got a record 156 submissions, a 50% increase compared with previous
years. Moreover, 71 posters and 50 demos were introduced in a “minute madness
session,” where each presenter got 45 seconds to provide a teaser for their poster
or demo. Axel Polleres, Alexander Castro, and Richard Benjamins coordinated
an exciting Industry Track with presentations both from younger companies
focusing on semantic technologies and from large enterprises, such as British
Telecom, IBM, Oracle, and Siemens, just to name a few. With a record number
of 39 submissions (seven of which were selected for full presentations and 23 for
short lightning talks) in the industry track this year, the mix of presentations
demonstrated the success and maturity of semantic technologies in a variety of
industry- and business-relevant domains. The extended abstracts for posters,
demos, and industry talks will be published in separate companion volumes in
the CEUR workshop proceedings series.

We are indebted to Krzysztof Janowicz, our proceedings chair, who provided
invaluable support in compiling the volume that you now hold in your hands
(or see on your screen) and who put in many hours of additional work to cre-
ate a completely new structure for these proceedings based on the topic rather
than the tracks, as in previous years. Many thanks to Oscar Corcho and Miriam
Fernandez, the student coordinators, for securing and managing the distribution
of student travel grants and thus helping students who might not have other-
wise attended the conference to come to Riva. Roberta Cuel, Jens Lehmann,
and Vincenzo Maltese were tireless in their work as sponsorship chairs, knock-
ing on every conceivable virtual “door” and ensuring an unprecedented level of
sponsorship this year. We are especially grateful to all the sponsors for their
generosity.

As has been the case in the past, ISWC 2014 also contributed to the Linked
Data cloud by providing semantically annotated data about many aspects of the
conference. This contribution would not have been possible without the efforts
of Li Ding and Jie Bao, our metadata chairs.

Mauro Dragoni, our publicity chair, tirelessly tweeted, sent old-fashioned an-
nouncements on the mailing lists, and updated the website, creating more lively
“buzz” than ISWC has had before.

Our very special thanks go to the local organization team, led by Luciano
Serafini and Chiara Ghidini. They did a fantastic job of handling local arrange-
ments, thinking of every potential complication way before it arose, often doing
things when members of the Organizing Committee were only beginning to think
about asking for them. Many thanks to the Rivatour Agency for providing great
service for local arrangements.
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Finally, we would like to thank all members of the ISWC Organizing Com-
mittee not only for handling their tracks superbly, but also for their wider contri-
bution to the collaborative decision-making process in organizing the conference.

October 2014 Peter Mika
Tania Tudorache

Abraham Bernstein
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Paul Groth
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Krzysztof Janowicz
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Philippe Cudré-Mauroux University of Fribourg, Switzerland

Claudio Gutierrez Chile University, Chile
Jeff Heflin Lehigh University, USA
Ian Horrocks University of Oxford, UK
Lalana Kagal MIT, USA
David Karger MIT, USA
Spyros Kotoulas IBM Research, Ireland
Diana Maynard University of Sheffield, UK
Natasha Noy Google, USA
Jeff Pan University of Aberdeen, UK

Terry Payne University of Liverpool, UK
Marta Sabou MODUL University Vienna, Austria
Uli Sattler The University of Manchester, UK
Steffen Staab University of Koblenz-Landau, Germany
Hideaki Takeda National Institute of Informatics, Japan

Program Committee – Research

Karl Aberer
Sudhir Agarwal
Faisal Alkhateeb
Pramod Anantharam
Sofia Angeletou
Kemafor Anyanwu
Marcelo Arenas
Manuel Atencia
Medha Atre
Isabelle Augenstein
Nathalie Aussenac-Gilles
Jie Bao
Payam Barnaghi
Sean Bechhofer
Klaus Berberich
Christian Bizer
Roi Blanco
Eva Blomqvist
Kalina Bontcheva

Paolo Bouquet
Loris Bozzato
John Breslin
Christopher Brewster
Paul Buitelaar
Gregoire Burel
Andrea Cal̀ı
Diego Calvanese
Amparo E. Cano
Iván Cantador
Soumen Chakrabarti
Pierre-Antoine Champin
Gong Cheng
Key-Sun Choi
Smitashree Choudhury
Michael Compton
Isabel Cruz
Bernardo Cuenca Grau
Claudia D’Amato



XIV Conference Organization

Mathieu D’Aquin
Danica Damljanovic
Stefan Decker
Stefan Dietze
John Domingue
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Estefańıa Serral Asensio
Andrew Bate
Wouter Beek
Konstantina Bereta
David Berry
Nicola Bertolin
Leopoldo Bertossi
Dimitris Bilidas
Stefano Bortoli
Adrian Brasoveanu
Volha Bryl
Jean-Paul Calbimonte
Diego Calvanese

Delroy Cameron
Michele Catasta
Sam Coppens
Julien Corman
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Web Search - From the Noun to the Verb

(Keynote Talk)

Prabhakar Raghavan

Vice President Engineering

Google, USA

Abstract. This talk examines the evolution of web search experiences
over 20 years, and their impact on the underlying architecture. Early
web search represented the adaptation of methods from classic Infor-
mation Retrieval to the Web. Around the turn of this century, the focus
shifted to triaging the need behind a query - whether it was Navigational,
Informational or Transactional; engines began to customize their experi-
ences depending on the need. The next change arose from the recognition
that most queries embodied noun phrases, leading to the construction of
knowledge representations from which queries could extract and deliver
information regarding the noun in the query. Most recently, three trends
represent the next step beyond these “noun engines”: (1) “Queryless en-
gines” have begun surfacing information meeting a user’s need based on
the user’s context, without explicit querying; (2) Search engines have
actively begun assisting the user’s task at hand - the verb underlying
the noun query; (3) increasing use of speech recognition is changing the
distribution of queries.



“To Be or to DO?”: The Semantics for Smart

Cities and Communities
(Keynote Talk)

Paolo Traverso

Director
Center for Information Technology

Fondazione Bruno Kessler, Italy

Abstract. The major challenge for so-called smart cities and commu-
nities is to provide people with value added services that improve their
quality of life. Massive individual and territorial data sets – (open) public
and private data, as well as their semantics which allows us to transform
data into knowledge about the city and the community, are key enablers
to the development of such solutions. Something more however is needed.
A “smart” community needs “to do things” in a city, and the people need
to act within their own community. For instance, not only do we need to
know where we can find a parking spot, which cultural event is happen-
ing tonight, or when the next bus will arrive, but we also need to actually
pay for parking our car, buy a bus ticket, or reserve a seat in the the-
ater. All these activities (paying, booking, buying, etc.) need semantics
in the same way as data does, and such a semantics should describe all
the steps needed to perform such activities. Moreover, such a semantics
should allow us to define and deploy solutions that are general and ab-
stract enough to be “portable” across the details of the different ways
in which activities can be implemented, e.g., by different providers, or
for different customers, or for different cities. At the same time, in order
to actually “do things”, we need a semantics that links general and ab-
stract activities to the possibly different and specific ICT systems that
implement them. In my talk, I will present some of the main problems
for realizing the concept of smart city and community, and the need for
semantics for both understanding data and “doing things”. I will discuss
some alternative approaches, some lessons learned from applications we
have been working with in this field, and the still many related open
research challenges.



Semantic Challenges in Getting Work Done

(Keynote Talk)

Yolanda Gil

Associate Director
Information Sciences Institute and Department of Computer Science

University of Southern California, USA

Abstract. In the new millennium, work involves an increasing amount
of tasks that are knowledge-rich and collaborative. We are investigating
how semantics can help on both fronts. Our focus is scientific work, in
particular data analysis, where tremendous potential resides in combin-
ing the knowledge and resources of a highly fragmented science commu-
nity. We capture task knowledge in semantic workflows, and use skeletal
plan refinement algorithms to assist users when they specify high-level
tasks. But the formulation of workflows is in itself a collaborative ac-
tivity, a kind of meta-workflow composed of tasks such as finding the
data needed or designing a new algorithm to handle the data available.
We are investigating ”organic data science”, a new approach to collab-
oration that allows scientists to formulate and resolve scientific tasks
through an open framework that facilitates ad-hoc participation. With a
design based on social computing principles, our approach makes scien-
tific processes transparent and incorporates semantic representations of
tasks and their properties. The semantic challenges involved in this work
are numerous and have great potential to transform the Web to help us
do work in more productive and unanticipated ways.



The Semantic Web in an Age of Open Data

(Keynote Talk)

Nigel Shadbolt

Professor of Artificial Intelligence
The University of Southampton

and

Chairman of the Open Data Institute

Abstract. The last five years have seen increasing amounts of open
data being published on the Web. In particular, governments have made
data available across a wide range of sectors: spending, crime and jus-
tice, education, health, transport, geospatial, environmental and much
more. The data has been published in a variety of formats and has been
reused with varying degrees of success. Commercial organisations have
begun to exploit this resource and in some cases elected to release their
own open data. Only a relatively small amount of the data published has
been linked data. However, the methods and techniques of the semantic
web could significantly enhance the value and utility of open data. What
are the obstacles and challenges that prevent the routine publication of
these resources as semantically enriched open data? What can be done
to improve the situation? Where are the examples of the successful pub-
lication and exploitation of semantically enriched content? What lessons
should we draw for the future?
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Luis-Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Olivier Corby

Transferring Semantic Categories with Vertex Kernels:
Recommendations with SemanticSVD++ . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Matthew Rowe

Detecting Errors in Numerical Linked Data Using Cross-Checked
Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Daniel Fleischhacker, Heiko Paulheim, Volha Bryl,
Johanna Völker, and Christian Bizer

Noisy Type Assertion Detection in Semantic Datasets . . . . . . . . . . . . . . . . 373
Man Zhu, Zhiqiang Gao, and Zhibin Quan

Mobile Reasoning and SPARQL Updates

A Cross-Platform Benchmark Framework for Mobile Semantic Web
Reasoning Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

William Van Woensel, Newres Al Haider, Ahmad Ahmad, and
Syed S.R. Abidi

A Power Consumption Benchmark for Reasoners on Mobile Devices . . . . 409
Evan W. Patton and Deborah L. McGuinness

Dynamic Provenance for SPARQL Updates . . . . . . . . . . . . . . . . . . . . . . . . . 425
Harry Halpin and James Cheney

Updating RDFS ABoxes and TBoxes in SPARQL . . . . . . . . . . . . . . . . . . . . 441
Albin Ahmeti, Diego Calvanese, and Axel Polleres



XXX Table of Contents – Part I

Natural Language Processing and Information
Extraction

AGDISTIS - Graph-Based Disambiguation of Named Entities Using
Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Michael Röder,
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Querying Heterogeneous Personal Information on the Go . . . . . . . . . . . . . . 454
Danh Le-Phuoc, Anh Le-Tuan, Gregor Schiele, and
Manfred Hauswirth

The Web Browser Personalization with the Client Side Triplestore . . . . . 470
Hitoshi Uchida, Ralph Swick, and Andrei Sambra



XXXIV Table of Contents – Part II

CrowdTruth: Machine-Human Computation Framework for Harnessing
Disagreement in Gathering Annotated Data . . . . . . . . . . . . . . . . . . . . . . . . . 486

Oana Inel, Khalid Khamkham, Tatiana Cristea,
Anca Dumitrache, Arne Rutjes, Jelle van der Ploeg,
Lukasz Romaszko, Lora Aroyo, and Robert-Jan Sips

Doctoral Consortium

Joint Information Extraction from the Web Using Linked Data . . . . . . . . 505
Isabelle Augenstein

Entity Linking with Multiple Knowledge Bases: An Ontology
Modularization Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

Bianca Pereira

Populating Entity Name Systems for Big Data Integration . . . . . . . . . . . . 521
Mayank Kejriwal

Semantic Complex Event Processing for Decision Support . . . . . . . . . . . . . 529
Robin Keskisärkkä
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CAMO: Integration of Linked Open Data

for Multimedia Metadata Enrichment
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Abstract. Metadata is a vital factor for effective management, organi-
zation and retrieval of multimedia content. In this paper, we introduce
CAMO, a new system developed jointly with Samsung to enrich multi-
media metadata by integrating Linked Open Data (LOD). Large-scale,
heterogeneous LOD sources, e.g., DBpedia, LinkMDB and MusicBrainz,
are integrated using ontology matching and instance linkage techniques.
A mobile app for Android devices is built on top of the LOD to improve
multimedia content browsing. An empirical evaluation is conducted to
demonstrate the effectiveness and accuracy of the system in the multi-
media domain.

Keywords: Linked Data, multimedia, semantic data integration.

1 Introduction

Multimedia metadata and semantic annotation are vital to improve services on
multimedia content [21]. The search, browsing and management of multimedia
content become very difficult if no or only limited metadata and annotations are
provided. Driven by the Linking Open Data Initiative, plenty of open datasets
are published and interlinked, in order to enable users to make use of such rich
source of information [22].

Looking at the existing multimedia metadata models and standards, they do
not provide formal semantics and typically focus on a single media type. For
example, EXIF is widely used for image description, but it is incompatible with
MPEG-7 [21]. In real world, different media types often coexist in a multimedia
presentation, where for example a movie may have a theme music and a poster.
We believe that a unified, well-defined ontology (with its mappings to others) is
needed in many multimedia application scenarios to gain interoperability. Ad-
ditionally, metadata from diverse data sources can denote the same multimedia
content. Linking and integrating these heterogeneous datasets are challenging,
especially when meeting legacy data reserved in relational databases (RDBs) or
on the Deep Web. Thus, accurate methods are desired to (semi-)automatically
link the overlapping parts of the datasets. The integrated metadata can provide
benefits to many multimedia applications like mobile devices, whose market is
expected to rise to $9.5 billion by 2014 [7].

P. Mika et al. (Eds.) ISWC 2014, Part I, LNCS 8796, pp. 1–16, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. An example of integrating LOD for multimedia metadata enrichment

A motivating example. Fig. 1 illustrates a real-world example about the movie
Beauty and the Beast. The original video already has a few low-level metadata
like runtime and location. By integrating LOD, e.g., LinkedMDB [10] and DBpe-
dia [17], the description of this movie would be enriched significantly. However,
LinkedMDB and DBpedia use different but related ontologies for movie descrip-
tion, thus creating mappings between their classes and properties is important
for integrating the descriptions into the movie metadata. Additionally, DBpe-
dia and LinkedMDB refer to the same movie by using different instances, e.g.,
dbpedia:Beauty and the Beast (1991 film) and linkedmdb:330 in this ex-
ample. But it may not be sufficient and accurate to only match their titles/labels,
where for example a music dbpedia:Beauty and the Beast (Soundtrack)with
exactly the same label should not be linked. �
In this paper, we describe CAMO, a system developed jointly with Samsung
for enriching multimedia metadata via integrating LOD. CAMO achieves this
by using our ontology matching and instance linkage techniques and adapting
them to the multimedia domain. The technical contributions of this paper are
threefold: (i) CAMO selects the DBpedia ontology as the mediation model and
matches with other ontologies; (ii) CAMO links the instances in DBpedia with
other sources and aggregates their descriptions; (iii) CAMO incorporates RDBs
with DBpedia to cope with legacy data. We hope that our methods and system
can provide reusable experience for applications consuming Linked Data.

We develop a mobile app for browsing and searching multimedia content on
Android devices. We perform a user-centered evaluation of CAMO to measure
how well it compares with existing apps, in particular with Last.fm, IMDb and
Wikipedia mobile apps. We also conduct an experiment on the accuracy of the
ontology matching and instance linkage in the multimedia domain. The results
demonstrate the advantages of integrating LOD into multimedia metadata for
improving the quality of multimedia content services. More information about
CAMO is available at http://ws.nju.edu.cn/camo/.
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The remainder of this paper is structured as follows. Section 2 outlines the
system architecture of CAMO and the used LOD sources. In Section 3 and 4,
we present the methods to match ontologies and link instances with DBpedia,
respectively. Section 5 describes the approach for incorporating legacy RDBs.
Evaluation is reported in Section 6 and related work is discussed in Section 7.
Finally, we conclude this paper and summarize the lessons learned.

2 System Architecture

The architecture of CAMO is illustrated in Fig. 2, which follows a widely-used
Client-Server paradigm providing the system with high bandwidth, processing
and storage on a large amount of data. For the server side, we choose the DBpe-
dia 3.6 ontology as the mediation and use the Global-as-View solution of data
integration, because it is efficient for query rewriting and the used LOD sources
are relatively stable. Various LOD sources are all integrated with DBpedia by
the ontology matching and instance linkage techniques. The used LOD sources
are chosen in terms of popularity. Due to the unstable availability of SPARQL
endpoints [4], we currently materialize the original data from their dump files.

DBpedia. DBpedia [17] is a crowd-sourced community effort to extract struc-
tured, multi-lingual information from Wikipedia and make this information
available on the Web. The reason to choose the DBpedia ontology is that it is
generic enough to encapsulate various kinds of multimedia domains and can
be matched with a large number of ontologies [14]. Besides the ontology, the
instances itself are also comprehensive. This is another reason for choosing
it rather than other ontologies such as M3O [21].

DBTune. DBTune1 is a non-commercial site, which hosts a number of servers
providing access to music-related structured data in a Linked Data fashion.
We choose three datasets, namely Jamendo, Magnatune and BBC John Peel
session, from DBTune because they already provide links to DBpedia. Note
that our approaches are also ready for integrating other datasets.

LinkedMDB. The LinkedMDB project [10] aims at publishing an open Seman-
tic Web database for movies, including a large quantity of links to several
datasets on the LOD cloud and references to related webpages.

DBTropes. DBTropes2 transforms numerous movies, books and other pages
to RDF with the Skipinions ontology.

MusicBrainz. MusicBrainz3 is an open music encyclopedia that collects music
metadata and makes it available to the public. Different from other sources
providing data in RDF, the MusicBrainz Database is built on RDB (although
the LinkedBrainz project4 helps MusicBrainz transform to Linked Data). We
will present how to integrate it in Section 5.

1 http://dbtune.org/
2 http://dbtropes.org/
3 http://musicbrainz.org/
4 http://linkedbrainz.org/
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Fig. 2. System architecture of CAMO

For the client side, we build the client on Android-based mobile devices5 and
integrate it with a multimedia player. General users can search and browse mul-
timedia content with the enriched metadata, and the metadata is displayed in
an integrated view. Additionally, we provide several value-added functionalities,
e.g., a Horn-rule based friendship recommendation based on users’ favorites and
play histories. The recommendation rules are customizable in terms of applica-
tion requirements, and we implement a rule-based inference engine by ourselves.
We omit the details of this rule-based recommendation engine in this paper.

3 Matching Ontologies with DBpedia

Different LOD sources have different preferences on ontologies, some of which
prefer to develop their own ontologies from scratch to meet their requirements
rather than reuse existing ones. Among the LOD sources integrated in CAMO,
LinkedMDB and DBTropes define their own ontologies. Meanwhile, other LOD
sources reuse some famous ontologies as their conceptual models. For example,
the Music Ontology [19] is chosen as the underlying ontology by Jamendo, Mag-
natune and BBC John Peel. Whichever ontology a data source uses, in order to
query and browse the distributed multimedia metadata, a necessary phase is to
match ontologies for resolving the heterogeneity between them.

To match ontologies with DBpedia, we use Falcon-AO [12], which is an auto-
matic ontology matching system. The methodological steps of matching ontolo-
gies with DBpedia are depicted in Fig. 3, where the output is a set of mappings
between the classes or properties in two ontologies. The strength of Falcon-AO is
that it leverages various powerful matchers, not only the linguistic matchers like
V-Doc but also the structural matcher GMO. S-Match [9] is an alternative sys-
tem for this purpose. We extend Falcon-AO with domain knowledge to support
synonym identification in the multimedia domain, e.g., track and song.

Before the matching step, an optional partitioning step is involved to cope with
large ontologies. We propose a divide-and-conquer approach for generating block

5 Also because Samsung is a leading company in Android-based mobile devices.
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Fig. 3. Methodological steps of matching ontologies with DBpedia

mappings between large ontologies, which has two main advantages: (i) it avoids
the matching algorithms suffering from the lack of memory; and (ii) it decreases
the running time without much loss of accuracy, since it is likely that large
portions of one or both ontologies have no matched counterparts. Specifically,
all the classes and properties of an ontology are firstly partitioned into a set of
small blocks based on the structural proximity (e.g., the distance between classes
in the hierarchy, the overlapping between the domains of properties). Then, the
blocks are matched using some prefound mappings between classes or properties;
only the block pairs with high similarity are further matched with the linguistic
and structural matchers.

Linguistic features are widely used for matching ontologies. We employ two
linguistic matchers, V-Doc and I-Sub, to calculate the linguistic similarity. V-
Doc is a TF-IDF based matcher, representing each class or property as a virtual
document (a bag of weighted words). Local descriptions LD() and neighboring
information are both considered in V-Doc. For a literal, its description is a
collection of words derived from the lexical form; for a named class or property, it
is a collection of words extracted from the local name of its URI, rdfs:label(s),
rdfs:comment(s) and other annotations; and for a blank node, it is a collection
of words extracted from the information originated from the forward neighbors.
To incorporate the descriptions of neighbors in virtual documents, we use three
neighboring operations to cover different kinds of neighbors: subject neighbors
SN(), predicate neighbors PN() and object neighbors ON(). Also, synonyms
are replaced to refine the documents. Let e be a named class or property. The
virtual document of e, denoted by V D(e), is defined as follows:

V D(e) = LD(e)

+ γs ∗
∑

e′∈SN(e)

LD(e′) + γp ∗
∑

e′∈PN(e)

LD(e′) + γo ∗
∑

e′∈ON(e)

LD(e′), (1)

where γs, γp, γo are in [0, 1]. The measure in V-Doc to determine if two classes
or properties are similar is the cosine similarity of their virtual documents.

I-Sub [24] is an improved string matcher considering not only the commonal-
ities between the descriptions of classes or properties but also their differences.

V-Doc and I-Sub are combined linearly. We find that setting the weightings
to 0.8 and 0.2 for V-Doc and I-Sub respectively achieves a good accuracy.

Another popular type of matchers is structure-based. A graph-based matcher
GMO is employed in Falcon-AO. GMO transforms each ontology into a directed
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bipartite graph and measures the structural similarity between the two graphs.
GMO accepts as input the mappings that are prefound by the linguistic match-
ers, and iteratively yields more mappings through similarity propagation on the
graphs as output.

To meet different matching scenarios, we design a flexible similarity combina-
tion strategy based on the measures of both linguistic and structural compara-
bility. The linguistic comparability is assumed to be more reliable, specifically,
if the linguistic comparability is high enough, indicating the matching is almost
done, there is no need to run the structural matcher any longer. Nevertheless,
when the two linguistic matchers fail to find enough candidates, the structural
matcher becomes the primary choice.

4 Linking Instances with DBpedia

Matching ontologies with DBpedia enables it to query and browse multimedia
metadata from the global view. However, overlaps among the LOD sources at
the instance level are inevitable, due to the distributed nature of the Semantic
Web. Hence, instance linkage is helpful to merge all the descriptions in different
sources that refer to the same multimedia content. Complementary information
from distributed sources helps understand the content more comprehensively.

As of today, a portion of instances among LOD sources have been explicitly
interlinked with owl:sameAs, however, there still exist plenty of instances that
potentially denote the same real-world objects without being linked yet. Linking
them manually is an uphill work. Therefore, we propose an automatic method to
learn instance links between DBpedia and other LOD sources based on a set of
important properties for characterizing instances (referred to as discriminative
properties) [11]. The methodological steps are depicted in Fig. 4.

The first step is to construct a training set automatically. Five vocabulary
elements, i.e., owl:sameAs, skos:exactMatch, inverse functional property (IFP),
functional property (FP) and (max-)cardinality, are considered, which are widely
used to infer the equivalence relation in many instance linkage systems [13]. We
implement the Floyd-Warshall algorithm to obtain the transitive closure of the
equivalence relation between instances, which contribute “positive examples” to
the training set. As reported in [11], an instance only links to a small number of
others, so finding positive examples is computationally cheap at large scale.

Training set
construction

LOD
training
examples

Class-based
discriminative
property learning

Instance linkage
with discriminative
property pairs

{p1, p2} c1
vs. {p3, p4} c2

{p1, p3} c1
vs. {p5, p6} c3

21 3

discriminative
property pairs

Domain knowledge

Fig. 4. Methodological steps of linking instances with DBpedia
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The instances, which do not hold the equivalence relation, are useful to learn
non-discriminative properties as well. However, the number of instances explic-
itly claimed as different using the vocabulary elements like owl:differentFrom
is small, which is inadequate for a reasonable-sized training set. Therefore, we
approximately regard instance pairs that cannot infer the equivalence relation as
denoting different real-world objects. However, this way generates tremendous
“negative examples” and most of them are totally orthogonal. Hence, a tailoring
strategy is introduced to eliminate superfluous negative examples. Besides, this
approximation may involve wrong negative examples to some extent, because
positive examples include false negatives. But considering the significant differ-
ence between the sizes of positive and negative examples, the number of wrong
negatives is typically rare.

Discriminative properties are important to link instances, which are learned
with a class-based way from the training set. We extract the descriptions of the
instances in the training set and pairwise compare them with V-Doc. The dis-
criminability of a property pair is measured by information gain, which computes
the change in information entropy from the original state of the training set to
a state that uses the properties to identify instance links. The information gain
measure is widely used for classification. The discriminability of a property pair
is refined w.r.t. different classes due to the different preferences of data publishers
on the use of properties, and domain knowledge is used for reasoning types. Let
D be the training set (including both positive and negative examples) satisfying
that the types of the instances in each instance pair are ci and cj , respectively.
For a property pair (pi, pj), we select all instance pairs (ui, uj) in D, denoted by
D(pi,pj), where ui involves pi, and uj involves pj . The discriminability of (pi, pj)
in D w.r.t. (ci, cj) is measured by the information gain IG() as follows:

IG(pi, pj) = H(D)−H(D(pi,pj)), (2)

where H(D) measures the information entropy of D, while H(D(pi,pj)) measures
the information entropy using (pi, pj) to classify instance pairs in D.

With discriminative properties, the instance linkage phase can be conducted
online. Given two instances to be linked, the first step is to retrieve the types of
them. Then, the most discriminative properties w.r.t. the types are queried out
(this can be treated as a blocking step). Finally, a link is generated if the linear
aggregation of the similarity of the values from the discriminative properties is
greater than a pre-fixed threshold.

Element types
classification

Schema
matching

Instance
linkage

DBepdia

relational
database

1 2 3

Fig. 5. Methodological steps of integrating RDBs with DBpedia
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The descriptions of linked instances in different sources are integrated and
displayed in a structured and compressed way. Firstly, the linked instances are
grouped and all their descriptions are retrieved. Then, the properties with the
same value are clustered together. For the properties matched in the ontology
matching phase, their values are merged if matched, and we preferentially show
the properties and values in DBpedia. But the descriptions can also be enriched
by other data sources. Additionally, with the provenance information for each
value, users are capable of determining which source is more trustworthy when
encountering inconsistency.

5 Integrating Legacy Relational Databases

Despite the amount of multimedia-related sources in the LOD cloud is consid-
erable, there are still a great deal of legacy data stored in RDBs, such as from
the multimedia content providers in Samsung for years, as well as MusicBrainz.
Moreover, some data sources (e.g., LinkedMDB and LinkedBrainz) in LOD are
published as Linked Data from their relational versions. To address legacy mul-
timedia metadata using the relational model, we propose a lightweight method
to integrate RDBs with DBpedia [15]. Fig. 5 shows the methodological steps.

Due to the differences in data models, in the first step an element classifier
takes as input an ontology and a relational schema, and classifies the elements
in them into different categories. Tables in a relational schema are categorized
in two types in terms of their primary keys and foreign keys: entity table and
relationship table. An entity table is used to represent a class of instances, and
can match a class in the ontology intuitively. A relationship table, which connects
entity tables to reveal their relationships, can match an object property in the
ontology. Columns in an entity table can be regarded as non-foreign keys and
foreign keys. Non-foreign keys can match datatype properties, while foreign keys
can match object properties. This step is also called reverse engineering.

The next step is to match the elements in each category by reusing the V-Doc
matcher. As mentioned before, V-Doc is a linguistic matcher considering both
local descriptions and neighboring information. The virtual documents of the
elements in the relational schema and the ontology are built and compared with
the cosine similarity measure. The elements holding the similarity greater than a
pre-defined threshold are considered as element mappings, which are expressed
using the W3C R2RML language.

Instances in the RDB are linked using a similar way to that for LOD. The
tables and columns matched in the previous schema matching step are treated
as classes and properties. Then, instance links are generated by comparing the
values of class-based discriminative properties and aggregating their similarity.
This step can also be online as long as the discriminative properties are learned.

There are also some existing systems, e.g., D2RQ,6 which support SPARQL
queries against non-RDF databases; however, they are not well suitable for

6 http://d2rq.org/
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integrating heterogeneous data sources. Additionally, D2R is an alternative sys-
tem that requires user-defined mappings to match with RDBs.

6 Evaluation

CAMO is a system to integrate LOD for multimedia metadata enrichment. To
evaluate its effectiveness and accuracy, we conduct two kinds of experiments: (i)
the usability and effectiveness of the mobile app of CAMO are compared with
several popular apps in a user-centered way, and (ii) the integration accuracy is
evaluated in the multimedia domain using the well-known precision and recall.

The mobile app is deployed on a Samsung Galaxy S3 with 4.8 inch screen,
1GB RAM and Android OS 4.0, and the data are stored on a server with two
Xeon E7440 2.4GHz CPUs and 4GB memory for JVM, using Apache Jena and
PostgreSQL. The integration approaches also run on the server. The user inter-
face of CAMO is shown in Fig. 6, where the integrated metadata for the movie
Beauty and the Beast is displayed with the provenance.

Fig. 6. User interface of CAMO on a mobile phone

6.1 Evaluation on Usability and Effectiveness

Experimental Methodology. We choose three mobile apps in the Google Play app
store for comparison: Last.fm, IMDb and Wikipedia, whose underlying datasets
are very similar to those integrated in CAMO (see Section 2). We introduce the
three apps briefly as follows:
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– Last.fm provides a mobile app that has the capability to learn about users’
favorite artists, find nearby concerts and share music tastes with the Last.fm
library. Last.fm uses the FOAF ontology for user profiles and MusicBrainz
for music metadata.

– IMDb is a database of movie, TV and celebrity information. There are more
than two million movie and TV titles in IMDb. The IMDb Android app has
the features like search, rating and browsing.

– The Wikipedia Android app is open-sourced and developed mainly by Java-
Script. Users of supported mobile devices are automatically redirected to the
mobile version of Wikipedia.

We design six testing tasks of three groups: music, movie and cross-domain,
which are listed in Table 1. Users are asked to use the four mobile apps afore-
mentioned to complete a randomly designated task of each group. The tasks in
the music group are performed on Last.fm and CAMO, while the tasks in the
movie group are assigned to compare IMDb and CAMO. Cross-domain tasks
regarding both music and movie are accomplished by Wikipedia and CAMO.
The cross-domain tasks may also be done by the collaboration of Last.fm and
IMDb, but it is burdensome for users, so we leave this out of consideration. The
tasks are chosen due to their high popularity among university students.

Table 1. Tasks for usability and effectiveness assessment

Domain Task description

Music

T1. X is a Lady Gaga’s song whose name is started with letter “P”. Please
find the album of X.

T2. X is a Coldplay ’s song whose name is started with letter “Y”. Please
find the writer of X.

Movie

T3. X is the producer of The Godfather. Please find X’s name and any
two films for which X won the Academy Award.

T4. X is the music composer of The Terminator. Please find X’s name
and any two films of which X was also the music composer.

Cross-
domain

T5. X is the director of Michael Jackson’s movie Michael Jackson’s That
Is It, and Y is the album of Michael Jackson’s song Beat It. Please
find the names of X and Y , respectively.

T6. X is the distributor of Will Smith’s movie The Pursuit of Happiness,
and Y is an Will Smith’s album named “Born to Reign”. Please find
X’s name and the release date of Y .

We invite 50 users to participate in the evaluation. 10 of them are graduate
students in our group and have adequate knowledge of the Semantic Web and
LOD; another 22 users are undergraduate students randomly picked up in our
university; the rest 18 users are software engineers in Samsung. The users with
different backgrounds reflect diversity.

Before starting a task, the users are asked to score the familiarity and difficulty
about the task. The time limit for each task is 5 minutes. When finishing the task,
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a user is required to fill a System Usability Scale (SUS) questionnaire and a post-
task questionnaire. SUS is a reliable and low-cost way to assess system usability.
The post-task questionnaire is shown in Table 2. These questions are designed
to evaluate the quality, diversity and coverage of the underlying metadata for
the four mobile apps.

Table 2. Post-task questionnaire

Question description Score (1–5)

Q1. The app has an accurate description about content.
1 for strongly
disagree, and
5 for strongly
agree.

Q2. The app has a comprehensive coverage about content.
Q3. The app helps me easily find content that I am interested in.
Q4. The app provides few redundant and irrelevant information.
Q5. The app often shows me some unexpected facts in browsing.

Table 3. Scores of SUS

CAMO 87.88
Last.fm 79.81
IMDb 89.62
Wikipedia 84.04

Table 4. Scores of post-task questionnaire

Music Movie Cross-domain
CAMO Last.fm CAMO IMDb CAMO Wikipedia

Q1. 4.92 4.53 5.00 4.92 5.00 5.00
Q2. 4.69 2.38 4.46 4.38 4.62 4.69
Q3. 4.69 2.92 4.62 3.46 4.77 3.23
Q4. 4.31 4.23 4.38 3.77 4.54 3.31
Q5. 3.61 2.54 3.54 4.00 3.85 4.15

Results and discussions. Table 3 lists the average SUS scores of CAMO, Last.
fm, IMDb and Wikipedia respectively: 87.88 (SD = 8.28,median = 90), 79.81
(SD = 5.44,median = 80), 89.62 (SD = 5.67,median = 90) and 84.04 (SD =
4.95,median = 85). Repeated measures ANOVA indicates that the differences
are statistically significant (p < 0.01). LSD post-hoc tests (p < 0.05) indicate
that IMDb and CAMO are more usable than Wikipedia, and Wikipedia is more
usable than Last.fm. Although SUS is not an absolute and overall criterion, this
result reflects that CAMO is user-friendly in a sense. Besides, all the users are
very familiar with the tasks and think them easy.

The result of post-task questionnaire is shown in Table 4. Due to the high-
quality multimedia metadata, the scores of all the apps in Q1 are close to each
other. Last.fm gets the lowest score in Q1 and Q2 because it gives only limited
information about artists. Additionally, 35 users (70%) tell that they are very
confused when clicking a song leads to browse the artist of the song rather than
the song itself. The competitive performance of CAMO in Q1 and Q2 reflects
the advantages of integrating multimedia metadata from multiple sources.

CAMO outperforms the other apps in Q3 and repeated measures ANOVA
reveals that the difference is statistically significant (p < 0.01). 42 users (84%)
think that they can find information that they want from CAMO without much
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effort. Although all the four apps are capable of keyword search, some features
of CAMO makes it more prone to locate content. The first feature is browsing
between content via links, which is not implemented in Last.fm. In contrast to
Wikipedia, CAMO organizes and displays multimedia metadata in a structured
way. Moreover, the properties in CAMO are more plentiful than those of IMDb.

By taking benefits from the structured nature of RDF data, CAMO achieves
a higher score in Q4. CAMO performs better than Last.fm in Q5 but not as well
as IMDb and Wikipedia. 28 users (56%) tell that IMDb contains a large amount
of interesting, user-generated content like movie reviews and ratings, which are
not considered in the current version of CAMO.

We also analyze the result of questionnaire according to the typology of the
users. Generally, we see that different users have different focuses. The software
engineers are more interested in the usability and performance of the apps, while
the students pay more attention to the content quality. Also, the students with
different background hold diverse opinions. Taking Q2 for example, 12 students
(10 graduate students and 2 undergraduates) having Semantic Web knowledge
approve that CAMO has a better coverage of integrated data than the others.
On the contrary, the rest 20 students neglect this advantage more or less.

6.2 Evaluation on Integration Accuracy

We also carry out two experiments to test the integration accuracy of CAMO:
one for ontology matching, while the other for instance linkage. In our previous
works [11,12,15], we verify the underlying methods of CAMO systematically on
a number of widely-used benchmarks from OAEI, and the results demonstrate
the effectiveness of these methods. In this evaluation, we particularly focus on
assessing them in the multimedia domain. Due to the lack of “golden standard”,
the generated results are judged manually by two software engineers in Samsung
from a practical viewpoint. It is worth mentioning that the evaluation process is
time-consuming, error-inevitable and even subjective sometimes. Still, we believe
the evaluation is important to make progress in real use.

CAMO discovers 78 mappings between DBpedia and the other ontologies
within about 4 minutes, including 18 mappings between DBpedia and the Mu-
sicBrainz relational schema. The precision and recall are in Fig. 7(a), where for
LinkedMDB and DBTropes, only the classes and properties instantiated in the
RDF data are matched because of the unavailability of their ontologies, but this
causes the complete semantics loss and narrows the searching space. As com-
pared with the accuracy of BLOOMS [14] on matching DBepdia with the Music
Ontology (precision = 0.39, recall = 0.62), CAMO achieves a better accuracy
(precision = 0.83, recall = 0.89). Note that this comparison is for reference only,
because the results are judged by different people. It is also shown that CAMO
finds a bulk of correct mappings between DBpedia and MusicBrainz. We also
receives feedback from the judges that a small amount of mappings holding the
subclass relationship should be involved to support query reformulation.

For instance linkage, CAMO spends nearly a whole day to generate more
than 60 thousand links, where a half of them come from the owl:sameAs links
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Fig. 7. Integration accuracy of CAMO

that already exist in the LOD sources. Notice that the instance linkage phase
is done online for the actual system. Since there are too many instance links to
evaluate the recall, only the precision is measured on 100 sample links between
DBpedia and each LOD source at present. The result is shown in Fig. 7(b). As
compared to the precision of the system [10] on linking DBpedia with Linked-
MDB (precision = 0.98), CAMO gets a slightly worse result (precision = 0.94).
The reason may be that the result in [10] is made by carefully adjusting the
threshold, while CAMO has to balance the threshold for the whole multimedia
domain. We estimate that the recalls of the two systems are close, because they
find a similar number of links. It is also observed that the most discriminative
properties for DBpedia are rdfs:label and dbpedia:releaseDate.

7 Related Work

Roughly speaking, a semantic data integration process consists of three phases:
ontology matching, instance linkage and data fusion [3]. A number of works have
been proposed to address the issues in each phase [6,5,3], which exploit many
kinds of features in ontologies and instances. Recent works also apply machine
learning and crowdsourcing to complex data integration tasks [13]. We discuss
the semantic data integration works relevant to the multimedia domain.

The survey in [22] investigates the techniques to generate, expose, discover,
and consume Linked Data in the context of multimedia metadata, and discusses
representative applications and open issues with the goal of bringing the fields
of multimedia and Linked Data together. BLOOMS [14] is a system to generate
schema-level links between LOD datasets based on the idea of bootstrapping
information already in the LOD cloud. It conducts a comprehensive evaluation
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on many LOD datasets, and our system achieves comparable accuracy in multi-
media ontology matching.

To link open multimedia data, the LinkedMDB project [10] is a movie data
triplification project and supplies a high quality source of RDF data that links
to several well-known LOD sources. The work in [20] introduces an automatic
method to interlink music datasets on the Web by taking both the similarity of
web resources and of their neighbors into account. Multipedia [8] studies how to
enrich ontology instances with candidate images retrieved from search engines.
The work in [23] analyzes the relationship between instance linkage and ontology
matching and describes a framework for instance linkage taking advantages of
ontology matching, which inspires our study. By using DBpedia and LOD, BBC
integrates data and links documents to build more meaningful navigation paths
across BBC domains, such as BBC Music [16]. Along the same lines as BBC, we
develop a set of sophisticated methods to match ontologies, link instances and
integrate legacy RDBs in the multimedia domain.

Tabulator [2] and Sig.ma [25] are two representative “desktop” browsers for
Linked Data, which provide integrated data views for general users. As mobile
devices penetrate everyone’s life, more and more mobile apps emerge to exploit
Linked Data. DBpedia Mobile [1] is a location-aware client, which supports users
to discover, search and publish Linked Data using mobile devices. dbrec [18] is
a music recommender system built on top of DBpedia. Additionally, LinkedTV,
seevl.fm, wayOU, Who’s Who and many others in AI Mashup Challenges give
us valuable experiences for developing CAMO.

8 Conclusion and Lessons Learned

In this paper, we describe how LOD is integrated for multimedia metadata en-
richment. We develop CAMO, a system that leverages ontology matching and
instance linkage techniques for data integration and supports users to browse
and search multimedia content on mobile devices. We perform an empirical test
to evaluate how CAMO competes with three relevant mobile apps. At the time of
writing this paper, we are working on combining the proposed approaches with
Samsung Hub to make it better to find and browse multimedia content from a
simple, seamless app. During the development and use of CAMO, three specific
lessons are learned, and we would like to share them with the community:

Ontology matters. The first lesson learned concerns the importance of ontol-
ogy. Ontologies stay at the heart of semantic data integration, and in our
architecture the global ontology gives a conceptual view over the schemati-
cally heterogeneous source schemas. To support high-level query reformula-
tion, a trade-off exists between the ontology’s expressiveness and ease of use.
Furthermore, the global ontology must cover a wide range of application do-
mains. We use DBpedia in the system, but we want to extend it compatible
with existing multimedia metadata models and standards.

Data integration quality. Another lesson learned is about the quality of LOD
and the accuracy of integration. The LOD cloud is far from perfect to build
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applications using it directly. The situation becomes even worse when inte-
grating legacy RDBs. The ambiguous semantics and incorrect/missing data
affect the accuracy of integration. Furthermore, all ontology matching and
instance linkage techniques have strengths and weaknesses. So, we have to
resort to domain experts to establish some links manually. However, human
interaction is expensive and often difficult to perform at large scale. Machine
learning is a possible way to leverage human computation for improving the
accuracy and adaptability of data integration. Additionally, semantic query
reformation may require complex mappings, which is not well supported in
the current system.

Mobile app design. As is often the case with mobile devices, a limited screen
size makes it difficult to efficiently present information and help users view
the information. Therefore, a concise and aggregated description of multi-
media content is very important. Although we merge the values of matched
properties, the method is somehow straightforward without considering in-
consistency, and the ranking scheme of properties and values still needs to
be studied. Also, user feedback indicates that a user-friendly interface and
content are vital to attract users’ interests. In the current version of CAMO,
we do not expand into NLP, but integrating user-generated content should
be considered in the future.
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Abstract. Links between knowledge bases build the backbone of the Linked
Data Web. In previous works, the combination of the results of time-efficient
algorithms through set-theoretical operators has been shown to be very time-
efficient for Link Discovery. However, the further optimization of such link spec-
ifications has not been paid much attention to. We address the issue of further
optimizing the runtime of link specifications by presenting HELIOS, a runtime
optimizer for Link Discovery. HELIOS comprises both a rewriter and an exe-
cution planner for link specifications. The rewriter is a sequence of fixed-point
iterators for algebraic rules. The planner relies on time-efficient evaluation func-
tions to generate execution plans for link specifications. We evaluate HELIOS on
17 specifications created by human experts and 2180 specifications generated au-
tomatically. Our evaluation shows that HELIOS is up to 300 times faster than a
canonical planner. Moreover, HELIOS’ improvements are statistically significant.

1 Introduction

Link Discovery (LD) plays a central role in the realization of the Linked Data paradigm.
Several frameworks such as LIMES [9] and SILK [5] have been developed to address
the time-efficient discovery of links. These frameworks take a link specification (short:
LS, also called linkage rule [5]) as input. Each LS is converted internally into a sequence
of operations which is then executed. While relying on time-efficient algorithms (e.g.,
PPJoin+ [17] and HR3 [7]) for single operations has been shown to be very time-
efficient [9], the optimization of the execution of whole LS within this paradigm has
been payed little attention to.

In this paper, we address this problem by presenting HELIOS, the (to the best of our
knowledge) first execution optimizer for LD. HELIOS aims to reduce the costs necessary
to execute a LS. To achieve this goal, our approach relies on two main components: a
rewriter and a planner. The rewriter relies on algebraic operations to transform an input
specification into an equivalent specification deemed less time-consuming to execute.
The planner maps specifications to execution plans, which are sequences of operations
from which a mapping results. HELIOS’ planner relies on time-efficient evaluation func-
tions to generate possible plans, approximate their runtime and return the one that is
likely to be most time-efficient.1 Our contributions are:

1 HELIOS was implemented in the LIMES framework. All information to the tool can be found
at http://limes.sf.net. A graphical user interface for the tool can be accessed via the
SAIM interface at http://aksw.org/projects/SAIM

P. Mika et al. (Eds.) ISWC 2014, Part I, LNCS 8796, pp. 17–32, 2014.
c© Springer International Publishing Switzerland 2014
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1. We present a novel generic representation of LS as bi-partite trees.
2. We introduce a novel approach to rewriting LS efficiently.
3. We explicate a novel planning algorithm for LS.
4. We evaluate HELIOS on 2097 LS (17 manually and 2080 automatically generated)

and show that it outperforms the state of the art by up to two orders of magnitude.

The rest of this paper is structured as follows: First, we present a formal specification
of LS and execution plans for LS. Then, we present HELIOS and its two main compo-
nents. Then, we evaluate HELIOS against the state of the art. Finally, we give a brief
overview of related work and conclude.

2 Formal Specification

In the following, we present a graph grammar for LS. We employ this grammar to de-
fine a normal form (NF) for LS that will build the basis for the rewriter and planner of
HELIOS. Thereafter, we present execution plans for LS, which formalize the sequence
of operations carried out by execution engines to generate links out of specifications.
As example, we use the RDF graphs shown in Table 1, for which the perfect LD re-
sults is {(ex1:P1, ex2:P1), (ex1:P2, ex2:P2), (ex1:P3, ex2:P3), (ex1:P4,
ex2:P4)}.

2.1 Normal Form for Link Specifications

Formally, most LD tools aim to discover the set {(s, t) ∈ S × T : R(s, t)} provided
an input relation R (e.g., owl:sameAs), a set S of source resources (for example de-
scriptions of persons) and a set T of target resources. To achieve this goal, declarative
LD frameworks rely on LS, which describe the conditions under which R(s, t) can be
assumed to hold for a pair (s, t) ∈ S×T . Several grammars have been used for describ-
ing LS in previous works [7,5,10]. In general, these grammars assume that LS consist of
two types of atomic components: similarity measures m, which allow comparing prop-
erty values of input resources and operators op, which can be used to combine these
similarities to more complex specifications.

Table 1. Examplary graphs

Persons1 graph Persons2 graph
ex1:P1 ex:label "Anna"@en .
ex1:P1 ex:age "12"ˆˆxsd:integer .
ex1:P1 a ex:Person .
ex1:P2 ex:label "Jack"@en .
ex1:P2 ex:age "15"ˆˆxsd:integer .
ex1:P2 a ex:Person .
ex1:P3 ex:label "John"@en .
ex1:P3 ex:age "16"ˆˆxsd:integer .
ex1:P3 a ex:Person .
ex1:P4 ex:label "John"@en .
ex1:P4 ex:age "19"ˆˆxsd:integer .
ex1:P4 a ex:Person .

ex2:P1 ex:label "Ana"@en .
ex2:P1 ex:age "12"ˆˆxsd:integer .
ex2:P1 a ex:Person .
ex2:P2 ex:label "Jack"@en .
ex2:P2 ex:age "14"ˆˆxsd:integer .
ex2:P2 a ex:Person .
ex2:P3 ex:label "Joe"@en .
ex2:P3 ex:age "16"ˆˆxsd:integer .
ex2:P3 a ex:Person .
ex2:P4 ex:label "John"@en .
ex2:P4 ex:age "19"ˆˆxsd:integer .
ex2:P4 a ex:Person .
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Without loss of generality, a similarity measure m can be defined as a function m :
S × T → [0, 1]. We use mappings M ⊆ S × T × [0, 1] to store the results of the
application of a similarity function to S×T or subsets thereof. We also store the results
of whole link specifications in mappings. The set of all mappings is denoted by M.
We call a measure atomic iff it relies on exactly one similarity measure σ (e.g., the
edit similarity, dubbed edit)2 to compute the similarity of a pair (s, t) ∈ S × T
with respect to the (list of) properties ps of s and pt of t and write m = σ(ps, pt). A
similarity measure m is either an atomic similarity measure or the combination of two
similarity measures via a metric operator such as max, min or linear combinations.
For example, edit(s.label, t.label) is an atomic measure while max(edit(s.label,
t.label), edit(s.age, t.age)) is a complex similarity measure.

We define a filter as any function which maps a mappingM to another mappingM ′.
Similarity filters f(m, θ) return f(m, θ,M) = {(s, t, r′)|∃r : (s, t, r) ∈M∧m(s, t) ≥
θ ∧ r′ = min{m(s, t), r}}. Threshold filters i(θ) return i(θ,M) = {(s, t, r) ∈ M :
r ≥ θ}. Note that i(0,M) = M and that we sometimes omit M from similarity filters
for the sake of legibility.

We call a specification atomic when it consists of exactly one filtering function.
For example, applying the atomic specification f(edit(ex:label,ex:label), 1) to
our input data leads to the mapping {(ex1:P3, ex2:P4, 1), (ex1:P2, ex2:P2, 1),
(ex1:P4, ex2:P4, 1)}. A complex specification can be obtained by combining two
specifications L1 and L2 by (1) a mapping operator (that allows merging the mappings
which result from L1 and L2) and (2) a subsequent filter that allows postprocessing the
results of the merging.3 In the following, we limit ourselves to the operators based on
∪, ∩ and \ (set difference), as they are sufficient to describe any operator based on set
operators. We extend these operators to mappings as follows:

– M1 ∩M2 = {(s, t, r) : ∃a, b (s, t, a) ∈M1 ∧ (s, t, b) ∈M2 ∧ r = min(a, b)}.
– M1 ∪ M2 = {(s, t, r) : (¬∃(s, t, a) ∈ M1 ∧ (s, t, r) ∈ M2) ∨ (¬∃(s, t, b) ∈
M2 ∧ (s, t, r) ∈M1) ∨ (∃(s, t, a) ∈M1 ∧ ∃(s, t, b) ∈M2 ∧ r = max(a, b))}.

– M1\M2 = {(s, t, r) ∈M1 : ¬∃(s, t, a) ∈M2}.

For example, if M1 = {(ex1:P1, ex2:P2, 1), (ex1:P1, ex2:P3, 1)} and M2 =
{(ex1:P1, ex2:P2, 0.5)} then M1 ∪M2 = M1, M1 ∩M2 = M2 and M1\M2 =
{(ex1:P1, ex2:P3, 1)}.

Based on this grammar, we can regard all LS as bi-partite directed trees
L = (V (L), E(L)) which abide by the following restrictions:

1. The vertices of L can be either filter nodes f ∈ F or operator nodes op ∈ OP , i.e.,
V (L) = F ∪OP . The leaves and the root of L are always filter nodes. The leaves
are filters that run on S × T .

2. Edges in L can only exist between filters and operators, i.e., E(L) ⊆ (F ×OP ) ∪
(OP × F ).

2 We define the edit similarity of two strings s and t as (1 + lev(s, t))−1, where lev stands for
the Levenshtein distance.

3 We rely on binary operators throughout this paper because n-ary set operators can always be
mapped to a sequence of binary operators.
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An example of a LS is shown in Figure 1. We call this representation of LS their NF. In
the rest of this paper, we deal exclusively with finite specifications, i.e., specifications
such that their NF contains a finite number of nodes. We call the number of filter nodes
of a specificationL the size ofL and denote it |L|. For example, the size of the specifica-
tion in Figure 1 is 3. We dub the direct child of L’s root the operator of L. For example,
the operator of the specification in Figure 1 is ∩. We call a LS L′ a sub-specification
of L (denoted L′ ⊆ L) if L′’s NF is a sub-tree of L’s NF that abides by the definition
of a specification (i.e., if the root of L′’s NF is a filter node and the NF of L′ contains
all children of L′ in L). For example, f(edit(label, label), 0.3) is a sub-specification
of our example. We call a L′ a direct sub-specification of L (denoted L′ ⊂1 L) if L′

is a sub-specification of L whose root node a grandchild of the L’s root. For example,
f(edit(label, label), 0.3) is a direct sub-specification of the LS shown in Figure 1.
Finally, we transliterate LS by writing f(m, θ, op(L1, L2)) where f(m, θ) is L’s root,
op is L’s operator, L1 ⊂1 L and L2 ⊂1 L.

identity, 0.5

∩

eucl(age, age), 0.5edit(label, label), 0.3

Fig. 1. A LS for linking the datasets Person1 and Person2. The filter nodes are rectangles while
the operator nodes are circles. eucl(s.age, t.age) = (1 + |s.age − t.age|)−1. This LS can be
transliterated i(∩(f(edit(label, label), 0.3), f(eucl(age, age), 0.5)), 0.5).

2.2 Execution Plans

We define an execution plan P as a sequence of processing steps p1, ..., pn of which
each is drawn from the set A× ℵ× T ×M×M, where:

1. A is the set of all actions that can be carried out. This set models all the processing
operations that can be carried out when executing a plan. These are:
(a) run, which runs the computation of filters f(m, θ) wherem is an atomic mea-

sure. This action can make use of time-efficient algorithms such asHR3.
(b) filter, which runs filters f(m, θ) wherem is a complex measure.
(c) filterout, which runs the negation of f(m, θ).
(d) Mapping operations such as union, intersection and minus (mapping

difference) and
(e) return, which terminates the execution and returns the final mapping.
The result of each action (and therewith of each processing step) is a mapping.

2. ℵ is the set of all complex measures as described above united with the ∅-measure,
which is used by actions that do not require measures (e.g., return).

3. T is the set of all possible thresholds (generally [0, 1]) united with the ∅-threshold
for actions that do not require any threshold (e.g., union) and

4. M is the set of all possible mappings, i.e., the powerset of S × T × [0, 1].
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We call the plan P atomic if it consists of exactly one processing step. An execution
plannerEP is a function which maps a LS to an execution plan P . The canonical plan-
ner EP 0 is the planner that runs specification in postorder, i.e., by traversing the NF
of LS in the order left-right-root. The approach currently implemented by LIMES [9]
is equivalent to EP0. For example, the plan generated by EP0 for Figure 1 is shown
in the left column of Table 2. For the sake of brevity and better legibility, we will use
abbreviated versions of plans that do not contain ∅ symbols. The abbreviated version
of the plan generated by EP0 for the specification in Figure 1 is shown in the right
column of Table 2. We call two plans equivalent when they return the same results for
all possible S and T . We call a planner complete when it always returns plans that are
equivalent to those generated by EP0.

Table 2. Plans for the specification shown in Figure 1

Canonical Plan Abbreviated Canonical Plan

M1=(run,edit(label,label),0.3,∅,∅) M1=(run,edit(label,label),0.3)
M2=(run,eucl(age,age),0.5,∅,∅) M2=(run,eucl(age,age),0.5)
M3=(intersection,∅,∅,M1,M2) M3=(intersection,M1,M2)
M4=(return,∅,∅,M3,∅) M4=(return,M3)

Alternative Plan1 (abbreviated) Alternative Plan2 (abbreviated)

M1=(run,edit(label,label),0.3) M1=(run,eucl(age,age),0.5)
M2=(filter,eucl(age,age),0.5,M1) M2=(filter,edit(label,label),0.3,M1)
M3=(return,M2) M3=(return,M2)

The insight behind our paper is that equivalent plans can differ significantly with
respect to their runtime. For example, the canonical plan shown in Table 2 would lead
to 32 similarity computations (16 for edit and 16 for euclidean) and one mapping
intersection, which can be computed by using 16 lookups. If we assume that each op-
eration requires 1ms, the total runtime of this plan would be 48ms. The alternative plan
1 shown in Table 2 is equivalent to the plans in Table 2 but only runs 16 computations
of edit (leading to M1 of size 6) and 6 computations of euclidean on the data
contained in M1. The total runtime of this plan would thus be 22ms. Detecting such
runtime-efficient and complete plans is the goal of HELIOS.

3 HELIOS

HELIOS is an optimizer for LS which consists of two main components: a rewriter
(denoted RW) and a planner (denoted HP). Each LSL to be processed is first forwarded
to RW, which applies several algebraic transformation rules to transform L into an
equivalent LS L′ that promises to be more efficient to execute. The aim of HP is then to
derive a complete plan P for L′. This plan is finally sent to the execution engine, which
runs the plan and returns a final mapping. In the following, we present each of these
components.4 Throughout the formalization, we use→ for logical implications and ⇒
to denote rules.

4 Due to space restrictions, some of the details and proofs pertaining to the rewriter and planner
are omitted. Please consult http://limes.sf.net for more details.
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3.1 The HELIOS Rewriter

RW implements an iterative rule-based approach to rewriting. Each iteration consists of
three main steps that are carried out from leaves towards the root of the input specifica-
tion. In the first step, sub-graphs of the input specificationL are replaced with equivalent
sub-graphs which are likely to be more efficient to run. In a second step, dependency
between nodes in L are determined and propagated. The third step consists of removing
portions of L which do not affect the final results of L’s execution. These three steps
are iterated until a fixpoint is reached.

Step 1: Rewriting Given a LS L, RW begins by rewriting the specification using
algebraic rules dubbed leaf generation rules.

αm1 + βm2, θ ⇒ αm1 + βm2, θ

∩

m2,
θ−α
βm1,

θ−β
α

Fig. 2. Leaf generation rule for linear combinations

The leaf generation rules (LR) make use of relations between metric operators and
specification operators to transform leaf nodes with complex measures into graphs
whose leaves contain exclusively atomic measures. For example, the rule shown in Fig-
ure 2 transforms a filter that relies on the linear combinations of 2 measures into a LS
with three filters whose leaves only contain atomic measures as described in [9]. While
it might seem absurd to alter the original filter in this manner, the idea here is that we
can now run specialized algorithms form1 andm2, then compute the intersectionM of
the resulting mapping and finally simply check each of the (s, t) with ∃r : (s, t, r) ∈M
for whether it abides by the linear combination in the root filter. This approach is usually
more time-efficient than checking each (s, t) ∈ S × T for whether it abides by the lin-
ear combination in the original specification. Similar rules can be devised for min (see
Figure 3), max and the different average functions used in LD frameworks. After L has
been rewritten by the rules in LR, each of its leaves is a filter with atomic measures.

min(m1,m2), θ ⇒ identity, θ

∩

m2, θm1, θ

Fig. 3. Rule for minimum. In the corresponding rule for maximum, the mapping union is used.
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Step 2: Dependency Detection and Propagation. The idea behind the use of de-
pendencies is to detect and eliminate redundant portions of the specification. Conse-
quently, RW implements two types of dependency-based rules: dependency detection
rules and dependency propagation rules. Formally, we say that L1 depends on L2 (de-
noted depends(L1, L2)) if the mapping resulting from L1 is a subset of the mapping
resulting from L2 for all possible S and T . RW generates dependencies between leaves
(which now only contain atomic measures) by making use of

L1 = f(m, θ1) ∧ L2 = f(m, θ2) ∧ θ1 ≥ θ2 ⇒ depends(L1, L2). (1)

Moreover, RW makes use of dependencies have been shown to apply between several
similarity and distance measures that are commonly used in literature. For example,the
authors of [17] show that for two non-empty strings x and y, jaccard(x, y) ≥ θ →
overlap(x, y) ≥ θ

1+θ (|x| + |y|). Given that |x| ≥ 1 and |y| ≥ 1, we can infer that

jaccard(x, y) ≥ θ → overlap(x, y) ≥ 2θ

1 + θ
. (2)

Thus, if L1 = f(jaccard(ps, pt), θ1) and L2 = f(overlap(ps, pt), θ2) with θ2 ≤
2θ1
1+θ1

, then depends(L1, L2) holds. Currently, RW implements dependencies between
the overlap, trigrams and the jaccard similarities discussed in [17].

Leaf-level dependencies can be propagated towards the root of the specification
based on the following rules:

p1: L = i(θ, op(L1, L2)) ∧ L1 = f(m, θ1, op1(L11, L12)) ∧ L2 = f(m, θ2, op2(L21,
L22))∧θ1 ≥ θ∧θ2 ≥ θ)⇒ L := i(0, op(L1, L2)) (if the threshold of the father of
any operator is smaller than that of all its children and the father node is an identity
filter, then the threshold of the father can be set to 0).

p2: depends(L1, L
′)∧depends(L2, L

′)∧L = f(m, θ,∩(L1, L2))⇒ depends(L,L′)
(if all children of a conjunction depend on L′ then the father of this conjunction
depends on L′).

p3: L = f(m, 0,∪(L1, L2))∧ (depends(L′, L1)∨ depends(L′, L2))⇒ depends(L′,
L) (if L′ depends on one child of a disjunction and the father of the disjunction has
the threshold 0 then L′ depends on the father of the disjunction).

Step 3: Reduction. Given two specifications L1 ⊂1 L and L2 ⊂1 L with depends
(L1, L2), we can now reduce the size of L = filter(m, θ, op(L1, L2)) by using the
following rules:

r1: L′ = filter(m, θ,∩(L1, L2)) ∧ depends(L1, L2)⇒ L′ := filter(m, θ, L1)),
r2: L′ = filter(m, θ,∪(L1, L2)) ∧ depends(L1, L2)⇒ L′ := filter(m, θ, L2)),
r3: L′ = filter(m, θ, \(L1, L2)) ∧ depends(L1, L2)⇒ L′ := ∅ where := stands for

overwriting.

An example that elucidates the ideas behind DR is given in Figure 4. Set operators
applied to one mapping are assumed to not alter the mapping.

The leaf generation terminates after at most as many iterations as the total number of
atomic specifications used across all leaves of the input LS L. Consequently, this step
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has a complexity of O(|L′|) where L′ = LR(L). The generation of dependencies re-
quiresO(|L′|2) node comparisons. Each time a reduction rule is applied, the size of the
L′ decreases, leading to reduction rules being applicable at most |L′| times. The com-
plexity of the reduction is thus also O(|L′|). In the worst case of a left- or right-linear
specification, the propagation of dependencies can reach the complexity O(|L′|2). All
three steps of each iteration thus have a complexity of at most O(|L|′2) and the spec-
ification is at least one node smaller after each iteration. Consequently, the worst-case
complexity of the rewriter is O(|L′|3).

m0, θ0

∪

m1, θ1m2, θ2

∩

m3, θ3m4, θ4

→ m0, θ0

∪

m1, θ1m2, θ2

∩

m3, θ3m4, θ4

→ m0, θ0

∪

m2, θ2

Fig. 4. Example of propagation of dependencies. The dashed arrows represent dependencies. The
dependencies from the left figure are first (using rule p1). Then, the reduction rule r2 is carried
out, leading to the specification on the right.

3.2 The HELIOS Planner

The goal of the HELIOS planner HP is to convert a given LS into a plan. Previous work
on query optimization for databases have shown that finding the optimal plan for a given
query is exponential in complexity [15]. The complexity of finding the perfect plan for
a LS is clearly similar to that of finding a play for a given query. To circumvent the
complexity problem, we rely on the following optimality assumption: Given L1 ⊂1 L
and L2 ⊂1 L with L = f(m, θ, op(L1, L2)), a good plan for L can be derived from
plans forL1 and L2. In the following, we begin by explaining core values that HP needs
to evaluate a plan. In particular, we explain how HP evaluates atomic and complex
plans. Thereafter, we present the algorithm behind HP and analyze its complexity.

Plan Evaluation. HP uses two values to characterize any plan P : (1) the approximate
runtime of P (denoted γ(P )) and (2) the selectivity of P (dubbed s(P )), which encodes
the size of the mapping returned by P as percentage of |S × T |.

Computing γ(P ) and s(P ) for atomic LS: Several approaches can be envisaged to
achieve this goal. In our implementation of HP, we used approximations based on sam-
pling. The basic assumption behind our feature choice was that LD frameworks are
usually agnostic of S and T before the beginning of the LD. Thus, we opted for ap-
proximating the runtime of atomic plans P by using |S| and |T | as parameters. We
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chose these values because they be computed in linear time.5 To approximate γ(P ) for
atomic plans, we generated source and target datasets of sizes 1000, 2000, . . . , 10000
by sampling data from the English labels of DBpedia 3.8. We then stored the runtime
of the measures implemented by our framework for different thresholds θ between 0.5
and 1.6 The runtime of the ith experiment was stored in the row yi of a column vector
Y . The corresponding experimental parameters (1, |S|, |T |, θ) were stored in the row ri
of a four-column matrix R. Note that the first entry of all ri is 1 to ensure that we can
learn possible constant factors. We finally computed the vector Γ = (γ0, γ1, γ2, γ3)

T

such that
γ(P ) = γ0 + γ1|S|+ γ2|T |+ γ3θ. (3)

To achieve this goal, we used the following exact solution to linear regression: Γ =
(RTR)−1RTY. The computation of s(P ) was carried out similarly with the sole differ-
ence that the entries yi for the computation of s(P ) were |Mi|

|S|×|T | , where Mi is the size

of the mapping returned by the ith experiment. Figure 5 shows a sample of the results
achieved by different algorithms in our experiments. The plan returned for the atomic
LSf(m, θ) is (run,m,θ).

Computing γ(P ) and s(P ) for complex LS: The computation of the costs associated
with atomic filter, filterout and operators was computed analogously to the
computation of runtimes for atomic LS. For filters, the feature was the size of the input
mapping. For non-atomic plans P , we computed γ(P ) by summing up the γ(pi) for all
the steps pi included in the plan. The selectivity of operators was computed based on
the selectivity of the mappings that served as input for the operators. To achieve this
goal, we assumed that the selectivity of a plan P to be the probability that a pair (s, t)
is returned after the execution of P . Moreover, we assumed the input mappings M1

(selectivity: s1) resp.M2 (selectivity: s2) to be the results of independent computations.
Based on these assumptions, we derived the following selectivities for op(M1,M2):

– op = ∩ → s(op) = s1s2.
– op = ∪ → s(op) = 1− (1 − s1)(1− s2).
– op = \ → s(op) = s1(1− s2).

The HP Algorithm. The core of the approach implemented by HP is shown in Algo-
rithm 1. For atomic specifications f(m, θ), HP simply returns (run,m,θ)
(GETBESTPLAN method in Algorithm 1). If different algorithms which allow running
m efficiently are available, HP chooses the implementation that leads to the small-
est runtime γ(P ). Note that the selectivity of all algorithms that allow running m is
exactly the same given that they must return the same mapping. If the specification
L = (m, θ, op(L1, L2)) is not atomic, HP’s core approach is akin to a divide-and-
conquer approach. It first devises a plan for L1 and L2 and then computes the costs
of different possible plans for op. For ∩ for example, the following three plans are
equivalent:

5 Other values can be used for this purpose but our results suggest that using |S| and |T | is
sufficient in most cases.

6 We used the same hardware as during the evaluation.
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(a) Runtimes for trigrams. (b) Heatmap for trigrams.

(c) Runtimes for levenshtein. (d) Heatmap for levenshtein.

Fig. 5. Runtimes achieved by PPJoin+ (trigrams) and EDJoin (levenshtein) for θ = 0.5.
The x-axis of the heatmap show |S| in thousands, while the y-axis shows |T | in thousands. The
color bars show the runtime in ms.

1. Canonical plan. This plan simply consists of merging (via the CONCATENATE

method in Algorithm 1) the results of the best plans for L1 and L2. Consequently,
the plan consists of (1) running the best plan for L1 (i.e., Q1 in Algorithm 1),
(2) running the best plan for L2(i.e., Q2 in Algorithm 1), then (3) running the
intersection action over the results of Q1 and Q2 and finally (4) running
filter over the result of the intersection action.

2. Filter-right plan. This plan uses f(m2, θ2) as a filter over the results of Q1. Con-
sequently, the plan consists of (1) running the best plan for L1, then (2) running the
filter action with measurem2 and threshold θ2 over the results ofQ1 and finally
(3) running filter with measurem and threshold θ over the previous result.

3. Filter-left plan. Analogous to the filter-right plan with L1 and L2 reversed.

Similar approaches can be derived for the operators ∪ and \ as shown in Algorithm 1.
HP now returns the least costly plan as result (GETLEASTCOSTLY method in Algo-
rithm 1). This plan is finally forwarded to the execution engine which runs the plan and
returns the resulting mapping.

Given that the alternative plans generated by HP are equivalent and that HP always
chooses one of this plan, our algorithm is guaranteed to be complete. Moreover, HP
approximates the runtime of at most 3 different plans per operator and at most k dif-
ferent plans for each leaf of the input specification (where k is the maximal number of
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algorithms that implements a measurem in our framework). Consequently, the runtime
complexity of HP is O(max{k, 3} × |L|).

Algorithm 1. The PLAN method
if L is atomic then

P = GETBESTPLAN(L);
else

if L = f(m, θ, op(L1)) then
P := GETBESTPLAN(L1 )

else
Q1 := PLAN(L1 )
Q2 := PLAN(L2 )
if L = f(m, θ,∩(L1, L2)) then

P0 := CONCATENATE(intersection, Q1, Q2)
P1 := CONCATENATE(filter(m1 , θ1), Q2)
P2 := CONCATENATE(filter(m2 , θ2), Q1)
P := GETLEASTCOSTLY(P0, P1, P2)

else if L = f(m, θ,∪(L1, L2)) then
P0 := CONCATENATE(union, Q1, Q2)
P1 := CONCATENATE(union, filter(m2, θ2, S × T ) , Q2)
P2 := CONCATENATE(union, filter(m1, θ1, S × T ) , Q1)
P := GETLEASTCOSTLY(P0, P1, P2)

else if L = f(m, θ, \(L1, L2)) then
P0 := CONCATENATE(minus, Q1, Q2)
P1 := CONCATENATE(filterout(m2 , θ2), Q2)
P := GETLEASTCOSTLY(P0, P1)

end if
end if
a0 = filter(m, θ)
P = CONCATENATE(a0, P )

end if
return P

4 Evaluation

4.1 Experimental Setup

The aim of our evaluation was to measure the runtime improvement of HELIOS the
overall runtime of LS. We thus compared the runtimes of EP0 (i.e., LIMES), RW (i.e.,
RW + EP0), HP and HELIOS (i.e., RW +HP) in our experiments. We chose LIMES
because it has been shown to be very time-efficient in previous work [9]. We considered
manually created and automatically generated LS. All experiments were carried out on
server running Ubuntu 12.04. In each experiment, we used a single kernel of a 2.0GHz
AMD Opteron processor with 10GB RAM.

The manually created LS were selected from the LATC repository.7 We selected 17
LS which relied on SPARQL endpoints that were alive or on data dumps that were
available during the course of the experiments. The specifications linked 18 different
datasets and had sizes between 1 and 3. The small sizes were due to humans tending to
generate small and non-redundant specifications.

7 https://github.com/LATC/24-7-platform/tree/master/
link-specifications
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The automatic specifications were generated during a single run of specification
learning algorithm EAGLE [8] on four different benchmark datasets described in Ta-
ble 4.8 The mutation and crossover rates were set to 0.6 while the number of inquiries
per iteration was set to 10. The population size was set to 10. The sizes of the spec-
ifications generated by EAGLE varied between 1 and 11. We compared 1000 LS on
the OAEI 2010 Restaurant and the DBLP-ACM dataset each, 80 specifications on the
DBLP-Scholar dataset and 100 specifications on LGD-LGD. We chose to use bench-
mark datasets to ensure that the specifications used in the experiments were of high-
quality w.r.t. the F-measure they led to. Each specification was executed 10 times. No
caching was allowed. We report the smallest runtimes over all runs for all configurations
to account for possible hardware and I/O influences.9

4.2 Results on Manual Specifications

The results of our experiments on manual specifications are shown in Table 3 and allow
deriving two main insights: First, HELIOS can improve the runtime of atomic specifica-
tions (which made up 62.5% of the manual LS). This result is of tremendous importance
as it suggests that the overhead generated by HELIOS is mostly insignificant, even for
specifications which lead to small runtimes (e.g., DBP-DataGov requires 8ms). More-
over, our experiments reveal that HELIOS achieves a significant improvement of the
overall runtime of specifications with sizes larger than 1 (37.5% of the manual LS). In
the best case, HELIOS is 49.5 times faster than EP0 and can reduce the runtime of the
LS LDG-DBP (A) from 52.7s to 1.1s by using a filter-left plan. Here, we see that the
gain in runtime generated by HELIOS grows with |S| × |T |. This was to be expected as
a good plan has more effect when large datasets are to be processed. Overall, HELIOS

outperforms LIMES’ canonical planner on all non-atomic specifications. On average,
HELIOS is 4.3 times faster than the canonical planner on LS of size 3.

4.3 Results on Automatic Specifications

Overall, our results on automatic specifications show clearly that HELIOS outperforms
the state of the art significantly. In Table 4, we show the average runtime of EP0, RW,
HP and HELIOS on four different datasets of growing sizes. The overall runtime of
HELIOS is clearly superior to that of EP0 on all datasets. As expected, the gain ob-
tained by using HELIOS grows with the size of |S| × |T |. In particular, the results on
the very small Restaurant dataset support the results achieved on the manual specifica-
tions. While HP alone does not lead to a significant improvement, HELIOS leads to an
improvement of the overall runtime by 6.35%. This improvement is mostly due to RW
eliminating filters and therewith altering the plans generated by HP. These alterations
allow for shorter and more time-efficient plans.

8 The Restaurant data is available at http://oaei.ontologymatching.org/2010/
DBLP-ACM and DBLP-Scholar are at http://dbs.uni-leipzig.de/en/
research/projects/object matching/
fever/benchmark datasets for entity resolution

9 All evaluation results can be found at https://github.com/AKSW/LIMES
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Table 3. Comparison of runtimes on manual specifications. The top portion of the table shows
runtimes of specifications of size 1 while the bottom part shows runtimes on specifications of size
3. EVT stands for Eventseer, DF for DogFood, (P) stands for person, (A) stands for airports, (U)
stands for universities, (E) stands for events. The best runtimes are in bold.

Source - Target |S| × |T | EP0 RW HP HELIOS Gain
(ms) (ms) (ms) (ms) (ms)

DBP - Datagov 1.7 × 103 8 8 8 8 0
RKB - DBP 2.2 × 103 1 1 1 1 0
Epo - DBP 73.0 × 103 54 53 54 53 1
Rail - DBP 133.2 × 103 269 268 268 268 1
Stad - Rmon 341.9 × 103 25 23 15 14 11
EVT - DF (E) 531.0 × 103 893 906 909 905 -12
Climb - Rail 1.9 × 106 41 40 40 40 1
DBLP - DataSW 92.2 × 106 59 59 58 54 5
EVT - DF (P) 148.4 × 106 2,477 2,482 2,503 2,434 43
EVT - DBLP 161.0 × 106 9,654 9,575 9,613 9,612 42

DBP - OpenEI 10.9 × 103 2 2 2 2 0
DBP - GSpecies 94.2 × 103 120 119 120 119 1
Climb - DBP 312.4 × 103 55 55 55 55 0
DBP - LGD (E) 34.1 × 106 2,259 2,133 1,206 1,209 1,050
Climb - LGD 215.0 × 106 24,249 24,835 3,497 3,521 20,728
DBP - LGD (A) 383.8 × 106 52,663 59,635 1,066 1,064 51,599
LGD - LGD 509.3 × 109 46,604 38,560 32,831 22,497 24,107

On the larger DBLP-ACM dataset, HELIOS achieve a runtime that is up to 185.8
times smaller than that of EP0 (e.g., for f (∩(f (jaccard(authors, authors), 0.93),
f (edit(venue, venue), 0.93)),0.53)). Yet, given that the runtime approximations are
generic, HELIOS sometimes generated plans that led to poorer runtimes. In the worst
case, a plan generated by HELIOS was 6.5 times slower than the plan generated byEP0

(e.g., for f (∩(f (edit(authors, authors), 0.59), f (cosine(venue,venue),0.73)),0.4)).
On average, HELIOS is 38.82% faster than EP0. Similar results can be derived from
DBLP-Scholar, where HELIOS is 29.61% faster despite having run on only 80 specifi-
cations. On our largest dataset, the time gain is even larger with HELIOS being 46.94%
faster. Note that this improvement is very relevant for end users, as it translates to ap-
proximately 1h of runtime gain for each iteration of our experiments. Here, the best

(a) DBLP-ACM (b) LGD-LGD

Fig. 6. Cumulative runtimes on DBLP-ACM and LGD-LGD



30 A.-C. Ngonga Ngomo

Table 4. Summary of the results on on automatically generated specifications. |L| shows for
the average size ± standard deviation of the specifications in the experiment. F1 shows the F-
measure achieved by EAGLE on the dataset. The runtimes in four rightmost columns are the
average runtimes in seconds.

|S| × |T | |L| F1 EP0 RW HP HELIOS

Restaurants 72.3 × 103 4.44±1.79 0.89 0.15 0.15 0.15 0.14
DBLP-ACM 6.0 × 106 6.61±1.32 0.99 1.38 1.37 1.00 0.99
DBLP-Scholar 168.1 × 106 6.42±1.47 0.91 17.44 17.41 13.54 13.46
LGD-LGD 5.8 × 109 3.54±2.15 0.98 102.33 97.40 72.19 69.64

plan generated by HELIOS is 314.02 times faster than EP0. Moreover, we can clearly
see the effect of RW with average runtime improvement of 5.1% (see Figure 6).

We regard our overall results as very satisfactory given that the algorithms underlying
EP0 are in and of themselves already optimized towards runtime. Still, by combining
them carefully, HELIOS can still cut down the overall runtime of learning algorithms
and even of manually created link specifications. To ensure that our improvements are
not simply due to chance, we compared the distribution of the cumulative runtimes of
EP0 and RW, HP and HELIOS as well EP0 and HELIOS by using a Wilcoxon paired
signed rank test at a significance level of 95%. On all datasets, all tests return signifi-
cant results, which shows that the RW, HP and HELIOS lead to statistically significant
runtime improvements.

5 Related Work

The task we address shares some similarities with the task of query optimization in
databases [15]. A large spectrum of approaches have been devised to achieve this goal
including System R’s dynamic programming query optimization [13], cost-based opti-
mizers and heuristic optimizers [6] and approaches based on genetic programming [1].
HELIOS is most tightly related to heuristic optimizers as it relies on an optimality as-
sumption to discover plans in polynomial time. Overviews of existing approaches can
be found in [2,15]. The main difference between the task at hand and query optimiza-
tion for databases are as follows: First, databases can store elaborate statistics on the
data they contain and use these to optimize their execution plan. LD frameworks do not
have such statistics available when presented with a novel LS as they usually have to
access remote data sources. Thus, HELIOS must rely on statistics that can be computed
efficiently while reading the data. Moreover, our approach also has to rely on generic
approximations for the costs and selectivity of plans. Still, we reuse the concepts of
selectivity, rewriting and planning as known from query optimization in databases.

This work is a contribution to the research area of LD. Several frameworks have
been developed to achieve this goal. The LIMES framework [9], in which HELIOS

is embedded, provides time-efficient algorithms for running specific atomic measures
(e.g., PPJoin+ [17] andHR3 [7]) and combines them by using set operators and filters.
While LIMES relied on graph traversal until now, most other systems rely on block-
ing. For example, SILK [5] relies on MultiBlock to execute LS efficiently. Multiblock
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allows mapping a whole link specification in a space that can be segmented to overlap-
ping blocks. The similarity computations are then carried out within the blocks only. A
similar approach is followed by the KnoFuss system [10]. Other time-efficient systems
include [16] which present a lossy but time-efficient approach for the efficient process-
ing of LS. Zhishi.links on the other hand relies on a pre-indexing of the resources to
improve its runtime [11]. CODI uses a sampling-based approache to compute anchor
alignments to reduce the its runtime [4]. Other systems descriptions can be found in the
results of the Ontology Alignment Evaluation Initiative [3].10 The idea of optimizing
the runtime of schema matching has also been considered in literature [14]. For exam-
ple, [12] presents an approach based on rewriting. Still, to the best of our knowledge,
HELIOS is the first optimizer for link discovery that combines rewriting and planning
to improve runtimes.

6 Conclusion and Future Work

We presented HELIOS, the (to the best of our knowledge) first execution optimizer for
LS. We evaluated our approach in manually created and automatically generated LS.
Our evaluation shows that HELIOS outperforms the canonical execution planner im-
plemented in LIMES by up to two orders of magnitude. Our approach was intended
to be generic. Thus, we used generic evaluation functions that allowed to detect plans
that should generally work. Our results suggest that using more dataset-specific features
should lead to even better runtimes and higher improvements. We thus regard HELIOS

as the first step in a larger agenda towards creating a new generation of self-configuring
and self-adapting LD frameworks. During the development of HELIOS, we noticed in-
teresting differences in the behaviour of LD algorithms for different languages. For
example, the Γ vector for the different measures differs noticeably for French, English
and German. We will investigate the consequences of these differences in future work.
Moreover, we will investigate more elaborate features for approximating the selectivity
and runtime of different algorithms.

Acknowledgement. This work was partially financed the EU FP7 project GeoKnow
(GA: 318159) and the DFG project LinkingLOD.
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Abstract. Exploiting identity links among RDF resources allows appli-
cations to efficiently integrate data. Keys can be very useful to discover
these identity links. A set of properties is considered as a key when its
values uniquely identify resources. However, these keys are usually not
available. The approaches that attempt to automatically discover keys
can easily be overwhelmed by the size of the data and require clean data.
We present SAKey, an approach that discovers keys in RDF data in an
efficient way. To prune the search space, SAKey exploits characteristics
of the data that are dynamically detected during the process. Further-
more, our approach can discover keys in datasets where erroneous data or
duplicates exist (i.e., almost keys). The approach has been evaluated on
different synthetic and real datasets. The results show both the relevance
of almost keys and the efficiency of discovering them.

Keywords: Keys, Identity Links, Data Linking, RDF, OWL2.

1 Introduction

Over the last years, the Web of Data has received a tremendous increase, con-
taining a huge number of RDF triples. Integrating data described in different
RDF datasets and creating semantic links among them, has become one of the
most important goals of RDF applications. These links express semantic corre-
spondences between ontology entities, or semantic links between data such as
owl:sameAs links. By comparing the number of resources published on the Web
with the number of owl:sameAs links, the observation is that the goal of building
a Web of data is not accomplished yet.

Even if many approaches have been already proposed to automatically dis-
cover owl:sameAs links (see [5] for a survey), only some are knowledge-based. In
[16,1], this knowledge can be expressive and specific linking rules can be learnt
from samples of data. [13,10] exploit key constraints, declared by a domain ex-
pert, as knowledge for data linking. A key expresses a set of properties whose
values uniquely identify every resource of a dataset. Keys can be used as logical
rules to clean or link data when a high precision is needed, or to construct more
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complex similarity functions [13,7,16]. Nevertheless, in most of the datasets pub-
lished on the Web, the keys are not available and it can be difficult, even for an
expert, to determine them.

Key discovery approaches have been proposed recently in the setting of the
Semantic Web [3,11]. [3] discovers pseudo keys, keys that do not follow the OWL2
semantics [12] of a key. This type of keys appears to be useful when a local
completeness of data is known. [11] discovers OWL2 keys in clean data, when
no errors or duplicates exist. However, this approach cannot handle the huge
amount of data found on the Web.

Data published on the Web are usually created automatically, thus may con-
tain erroneous information or duplicates. When these data are exploited to dis-
cover keys, relevant keys can be lost. For example, let us consider a “dirty”
dataset where two different people share the same social security number (SSN).
In this case, SSN will not be considered as a key, since there exist two people
sharing the same SSN. Allowing some exceptions can prevent the system from
losing keys. Furthermore, the number of keys discovered in a dataset can be few.
Even if a set of properties is not a key, it can lead to generate many correct
links. For example, in most of the cases the telephone number of a restaurant is
a key. Nevertheless, there can be two different restaurants located in the same
place sharing phone numbers. In this case, even if this property is not a key, it
can be useful in the linking process.

In this paper we present SAKey, an approach that exploits RDF datasets to
discover almost keys that follow the OWL2 semantics. An almost key represents
a set of properties that is not a key due to few exceptions (i.e., resources that do
not respect the key constraint). The set of almost keys is derived from the set
of non keys found in the data. SAKey can scale on large datasets by applying a
number of filtering and pruning techniques that reduce the requirements of time
and space. More precisely, our contributions are as follows:
1. the use of a heuristic to discover keys in erroneous data
2. an algorithm for the efficient discovery of non keys
3. an algorithm for the efficient derivation of almost keys from non keys

The paper is organized as follows. Section 2 discusses the related works on
key discovery and Section 3 presents the data and ontology model. Sections 4
and 5 are the main part of the paper, presenting almost keys and their discovery
using SAKey. Section 6 presents our experiments before Section 7 concludes.

2 Related Work

The problem of discovering Functional Dependencies (FD) and keys has been
intensively studied in the relational databases field. The key discovery problem
can be viewed as a sub-problem of Functional Dependency discovery. Indeed,
a FD states that the value of one attribute is uniquely determined by the val-
ues of some other attributes. To capture the inherent uncertainty, due to data
heterogeneity and data incompleteness, some approaches discover approximate
keys and FDs instead of exact keys and FDs only. In [17], the authors propose
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a way of retrieving non composite probabilistic FDs from a set of datasets. Two
strategies are proposed: the first merges the data before discovering FDs, while
the second merges the FDs obtained from each dataset. TANE [8] discovers ap-
proximate FDs, i.e., FDs that almost hold. Each approximate FD is associated
to an error measure which is the minimal fraction of tuples to remove for the FD
to hold in the dataset. For the key discovery problem, in relational context, Gor-
dian method [14] allows discovering exact composite keys from relational data
represented in a prefix-tree. To avoid scanning all the data, this method discov-
ers first the maximal non keys and use them to derive the minimal keys. In [6],
the authors propose DUCC, a hybrid approach for the discovery of minimal keys
that exploits both the monotonic characteristic of keys and the anti-monotonic
characteristic of non keys to prune the search space. To improve the efficiency
of the approach, DUCC uses parallelization techniques to test different sets of
attributes simultaneously.

In the setting of Semantic Web where data can be incomplete and may contain
multivalued properties, KD2R [11] aims at deriving exact composite keys from
a set of non keys discovered on RDF datasets. KD2R, extends [14] to be able
to exploit ontologies and consider incomplete data and multivalued properties.
Nevertheless, even if KD2R [11] is able to discover composite OWL2 keys, it can
be overwhelmed by large datasets and requires clean data. In [3], the authors have
developed an approach based on TANE [8], to discover pseudo-keys (approximate
keys) for which a set of few instances may have the same values for the properties
of a key. The two approaches [11] and [3] differ on the semantics of the discovered
keys in case of identity link computation. Indeed, the first considers the OWL2
[12] semantics, where in the case of multivalued properties, to infer an identity
link between two instances, it suffices that these instances share at least one
value for each property involved in the key, while in [3], the two instances have to
share all the values for each property involved in the key, i.e., local completeness
is assumed for all the properties (see [2] for a detailed comparison). In [15], to
develop a data linking blocking method, discriminating data type properties (i.e.,
approximate keys) are discovered from a dataset. These properties are chosen
using unsupervised learning techniques and keys of specific size are explored only
if there is no smaller key with a high discriminative power. More precisely, the
aim of [15] is to find the best approximate keys to construct blocks of instances
and not to discover the complete set of valid minimal keys that can be used to
link data.

Considering the efficiency aspect, different strategies and heuristics can be
used to optimize either time complexity or space complexity. In both relational
or Semantic Web settings, approaches can exploit monotonicity property of keys
and the anti-monotonicity property of non keys to optimize the data exploration.

3 Data Model

RDF (Resource Description Framework) is a data model proposed by W3C
used to describe statements about web resources. These statements are usually
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represented as triples <subject, property, object>. In this paper, we use a logical
notation and represent a statement as property(subject, object).

An RDF dataset D can be associated to an ontology which represents the
vocabulary that is used to describe the RDF resources. In our work, we consider
RDF datasets that conform to OWL2 ontologies. The ontology O is presented
as a tuple (C, P , A) where C is a set of classes1, P is a set of properties and A
is a set of axioms.

In OWL22, it is possible to declare that a set of properties is a key for a given
class. More precisely, hasKey(CE(ope1, . . . , opem) (dpe1, . . . , dpen)) states that
each instance of the class expression CE is uniquely identified by the object
property expressions opei and the data property expressions dpej . This means
that there is no couple of distinct instances of CE that share values for all the
object property expressions opei and all the data type property expressions dpej3
involved. The semantics of the construct owl:hasKey are defined in [12].

4 Preliminaries

4.1 Keys with Exceptions

RDF datasets may contain erroneous data and duplicates. Thus, discovering keys
in RDF datasets without taking into account these data characteristics may lead
to lose keys. Furthermore, there exist sets of properties that even if they are not
keys, due to a small number of shared values, they can be useful for data linking
or data cleaning. These sets of properties are particularly needed when a class
has no keys.

In this paper, we define a new notion of keys with exceptions called n-almost
keys. A set of properties is a n-almost key if there exist at most n instances that
share values for this set of properties.

To illustrate our approach, we now introduce an example. Fig. 1 contains
descriptions of films. Each film can be described by its name, the release date,
the language in which it is filmed, the actors and the directors involved.

One can notice that the property d1:hasActor is not a key for the class
Film since there exists at least one actor that plays in several films. Indeed,
“G. Clooney” plays in films f2, f3 and f4 while “M. Daemon” in f1, f2 and
f3. Thus, there exist in total four films sharing actors. Considering each film
that shares actors with other films as an exception, there exist 4 exceptions for
the property d1:hasActor. We consider the property d1:hasActor as a 4-almost
key since it contains at most 4 exceptions.

Formally, the set of exceptions EP corresponds to the set of instances that
share values with at least one instance, for a given set of properties P .
1 c(i) will be used to denote that i is an instance of the class c where c ∈ C.
2 http://www.w3.org/TR/owl2-overview
3 We consider only the class expressions that represent atomic OWL classes. An object

property expression is either an object property or an inverse object property. The only
allowed data type property expression is a data type property.
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Dataset D1:

d1:Film(f1), d1:hasActor(f1,′′ B.Pitt′′), d1:hasActor(f1,′′ J.Roberts′′),
d1:director(f1,′′ S.Soderbergh′′), d1:releaseDate(f1,′′ 3/4/01′′), d1:name(f1,′′ Ocean′s 11′′),
d1:Film(f2), d1:hasActor(f2,′′ G.Clooney′′), d1:hasActor(f2,′′ B.Pitt′′),
d1:hasActor(f2,′′ J.Roberts′′), d1:director(f2,′′ S.Soderbergh′′), d1:director(f2,′′ P.Greengrass′′),
d1:director(f2,′′ R.Howard′′), d1:releaseDate(f2,′′ 2/5/04′′), d1:name(f2,′′ Ocean′s 12′′)
d1:Film(f3), d1:hasActor(f3,′′ G.Clooney′′), d1:hasActor(f3,′′ B.Pitt′′)
d1:director(f3,′′ S.Soderbergh′′), d1:director(f3,′′ P.Greengrass′′), d1:director(f3,′′ R.Howard′′),
d1:releaseDate(f3,′′ 30/6/07′′), d1:name(f3,′′ Ocean′s 13′′),
d1:Film(f4), d1:hasActor(f4,′′ G.Clooney′′), d1:hasActor(f4,′′ N.Krause′′),
d1:director(f4,′′ A.Payne′′), d1:releaseDate(f4,′′ 15/9/11′′), d1:name(f4,′′ The descendants′′),
d1:language(f4,′′ english′′)
d1:Film(f5),d1:hasActor(f5,′′ F.Potente′′), d1:director(f5,′′ P.Greengrass′′),
d1:releaseDate(f5,′′ 2002′′), d1:name(f5,′′ The bourne Identity′′), d1:language(f5,′′ english′′)
d1:Film(f6),d1:director(f6,′′ R.Howard′′), d1:releaseDate(f6,′′ 2/5/04′′),
d1:name(f6,′′ Ocean′s twelve′′)

Fig. 1. Example of RDF data

Definition 1. (Exception set). Let c be a class (c ∈ C) and P be a set of
properties (P ⊆ P). The exception set EP is defined as:

EP = {X | ∃Y (X �= Y ) ∧ c(X) ∧ c(Y ) ∧ (
∧
p∈P

∃Up(X,U) ∧ p(Y, U))}

For example, in D1 of Fig. 1 we have: E{d1:hasActor} = {f1, f2, f3, f4},
E{d1:hasActor, d1:director} = {f1, f2, f3}.
Using the exception set EP , we give the following definition of a n-almost key.

Definition 2. (n-almost key). Let c be a class (c ∈ C), P be a set of properties
(P ⊆ P) and n an integer. P is a n-almost key for c if |EP | ≤ n.

This means that a set of properties is considered as a n-almost key, if
there exist from 1 to n exceptions in the dataset. For example, in D1
{d1:hasActor, d1:director} is a 3-almost key and also a n-almost key for each
n ≥ 3. By definition, if a set of properties P is a n-almost key, every superset
of P is also a n-almost key. We are interested in discovering only minimal n-
almost keys, i.e., n-almost keys that do not contain subsets of properties that
are n-almost keys for a fixed n.

4.2 Discovery of n-Almost Keys from n-non Keys

To check if a set of properties is a n-almost key for a class c in a dataset D, a
naive approach would scan all the instances of a class c to verify if at most n
instances share values for these properties. Even when a class is described by few
properties, the number of candidate n-almost keys can be huge. For example, if
we consider a class c that is described by 60 properties and we aim to discover
all the n-almost keys that are composed of at most 5 properties, the number of
candidate n-almost keys that should be checked will be more than 6 millions.
An efficient way to obtain n-almost keys, as already proposed in [14,11], is to
discover first all the sets of properties that are not n-almost keys and use them



38 D. Symeonidou et al.

to derive the n-almost keys. Indeed, to show that a set of properties is not a
n-almost key, it is sufficient to find only (n+1) instances that share values for
this set. We call the sets that are not n-almost keys, n-non keys.

Definition 3. (n-non key). Let c be a class (c ∈ C), P be a set of properties
(P ⊆ P) and n an integer. P is a n-non key for c if |EP | ≥ n.

For example, the set of properties {d1:hasActor, d1:director} is a 3-non key (i.e.,
there exist at least 3 films sharing actors and directors). Note that, every subset
of P is also a n-non key since the dataset also contains n exceptions for this
subset. We are interested in discovering only maximal n-non keys, i.e., n-non
keys that are not subsets of other n-non keys for a fixed n.

5 The SAKey Approach

The SAKey approach is composed of three main steps: (1) the preprocessing
steps that allow avoiding useless computations (2) the discovery of maximal
(n+1)-non keys (see Algorithm 1) and finally (3) the derivation of n-almost keys
from the set of(n+1)-non keys (see Algorithm 2).

5.1 Preprocessing Steps

Initially we represent the data in a structure called initial map. In this map, every
set corresponds to a group of instances that share one value for a given property.
Table 1 shows the initial map of the dataset D1 presented in Fig. 1. For example,
the set {f2, f3, f4} of d1:hasActor represents the films that “G.Clooney” has
played in.

Table 1. Initial map of D1

d1:hasActor {{f1, f2, f3}, {f2, f3, f4}, {f1, f2}, {f4}, {f5}, {f6}}
d1:director {{f1,f2,f3}, {f2, f3, f5}, {f2, f3, f6}, {f4}}
d1:releaseDate {{f1}, {f2, f6}, {f3}, {f4}, {f5}}
d1:language {{f4, f5}}
d1:name {{f1}, {f2}, {f3}, {f4}, {f5}, {f6}}

Data Filtering. To improve the scalability of our approach, we introduce two
techniques to filter the data of the initial map.

1. Singleton Sets Filtering. Sets of size 1 represent instances that do not
share values with other instances for a given property. These sets cannot lead
to the discovery of a n-non key, since n-non keys are based on instances that
share values among them. Thus, only sets of instances with size bigger than 1
are kept. Such sets are called v-exception sets.

Definition 4. (v-exception set Ev
p). A set of instances {i1, . . . , ik} of the

class c is a Ev
p for the property p ∈ P and the value v iff {p(i1, v), . . . , p(ik, v)} ⊆

D and |{i1, . . . , ik}| > 1.
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We denote by Ep the collection of all the v-exception sets of the property p.

Ep = {Ev
p}

For example, in D1, the set {f1, f2, f3} is a v-exception set of the property
d1:director.

Given a property p, if all the sets of p are of size 1 (i.e., Ep = ∅), this property
is a 1-almost key (key with no exceptions). Thus, singleton sets filtering allows
the discovery of single keys (i.e., keys composed from only one property). In D1,
we observe that the property d1:name is an 1-almost key.
2. v-exception Sets Filtering. Comparing the n-non keys that can be found
by two v-exception sets Evi

p and Evj
p , where Evi

p ⊆ Evj
p , we can ensure that the

set of n-non keys that can be found using Evi
p , can also be found using Evj

p . To
compute all the maximal n-non keys of a dataset, only the maximal v-exception
sets are necessary. Thus, all the non maximal v-exception sets are removed. For
example, the v-exception set E“J. Roberts′′

d1:hasActor {f1, f2} in the property d1:hasActor
represents the set of films in which the actress “J. Roberts” has played. Since
there exists another actor having participated in more than these two films (i.e.,
“B, P itt” in films f1, f2 and f3), the v-exception set {f1, f2} can be suppressed
without affecting the discovery of n-non keys.

Table 2 presents the data after applying the two filtering techniques on the
data of table 1. This structure is called final map.

Table 2. Final map of D1

d1:hasActor {{f1, f2, f3}, {f2, f3, f4}}
d1:director {{f1,f2,f3}, {f2, f3, f5}, {f2, f3, f6}}
d1:releaseDate {{f2, f6}}
d1:language {{f4, f5}}

Elimination of Irrelevant Sets of Properties. When the properties are nu-
merous, the number of candidate n-non keys is huge. However, in some cases,
some combinations of properties are irrelevant. For example, in the DBpedia
dataset, the properties depth andmountainRange are never used to describe the
same instances of the class NaturalP lace. Indeed, depth is used to describe nat-
ural places that are lakes while mountainRange natural places that are moun-
tains. Therefore, depth and mountainRange cannot participate together in a
n-non key. In general, if two properties have less than n instances in common,
these two properties will never participate together to a n-non key. We denote by
potential n-non key a set of properties sharing two by two, at least n instances.

Definition 5. (Potential n-non key). A set of properties pnkn = {p1, ..., pm}
is a potential n-non key for a class c iff:

∀{pi, pj} ∈ (pnkn × pnkn) | I(pi) ∩ I(pj)| ≥ n

where I(p) is the set of instances that are subject of p.
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To discover all the maximal n-non keys in a given dataset it suffices to find the
n-non keys contained in the set of maximal potential n-non keys (PNK). For
this purpose, we build a graph where each node represents a property and each
edge between two nodes denotes the existence of at least n shared instances
between these properties. The maximal potential n-non keys correspond to the
maximal cliques of this graph. The problem of finding all maximal cliques of a
graph is NP-Complete [9]. Thus, we approximate the maximal cliques using a
greedy algorithm inspired by the min-fill elimination order [4].

In D1, PNK = {{d1:hasActor, d1:director, d1:releaseDate},{d1:language}}
corresponds to the set of maximal potential n-non keys when n=2. By construc-
tion, all the subsets of properties that are not included in these maximal potential
n-non keys are not n-non keys.

5.2 n-Non Key Discovery

We first present the basic principles of the n-non key discovery. Then, we in-
troduce the pruning techniques that are used by the nNonKeyFinder algorithm.
Finally, we present the algorithm and give an illustrative example.

Basic Principles. Let us consider the property d1:hasActor. Since this prop-
erty contains at least 3 exceptions, it is considered as a 3-non key. Intuitively,
the set of properties {d1:hasActor, d1:director} is a 3-non key iff there exist at
least 3 distinct films, such that each of them share the same actor and director
with another film. In our framework, the sets of films sharing the same actor
is represented by the collection of v-exception sets EhasActor, while the sets of
films sharing the same director is represented by the collection of v-exception
sets Edirector. Intersecting each set of films of EhasActor with each set of films of
Edirector builds a new collection in which each set of films has the same actor
and the same director. More formally, we introduce the intersect operator ⊗ that
intersects collections of exception sets only keeping sets greater than one.

Definition 6. (Intersect operator ⊗). Given two collections of v-exception
sets Ep and Ep′ , we define the intersect ⊗ as follow:

Epi ⊗ Epj = {Ev
pi
∩ Ev

pj
| Ev

pi
∈ Epi , E

v
pj
∈ Epj , and |Ev

pi
∩Ev

pj
| > 1}

Given a set properties P , the set of exceptions EP can be computed by applying
the intersect operator to all the collections Ep such that p ∈ P .

EP =
⋃

⊗
p∈P

Ep

For example, for the set of properties P = {d1:hasActor, d1:hasDirector},
EP={{f1, f2, f3}, {f2, f3}} while EP = {f1, f2, f3}

Pruning Strategies. Computing the intersection of all the collections of v-
exception sets represents the worst case scenario of finding maximal n-non keys
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within a potential n-non key. We have defined several strategies to avoid useless
computations. We illustrate the pruning strategies in Fig. 2 where each level
corresponds to the collection Ep of a property p and the edges express the in-
tersections that should be computed in the worst case scenario. Thanks to the
prunings, only the intersections appearing as highlighted edges are computed.

(a) Inclusion Pruning (b) Seen Intersection Pruning (c) example of nNonKeyFinder

Fig. 2. nNonKeyFinder prunings and execution

1. Antimonotonic Pruning. This strategy exploits the anti-monotonic char-
acteristic of a n-non key, i.e., if a set of properties is a n-non key, all its subsets
are by definition n-non keys. Thus, no subset of an already discovered n-non key
will be explored.
2. Inclusion Pruning. In Fig. 2(a), the v-exception set of p1 is included in one
of the v-exception sets of the property p2. This means that the biggest intersec-
tion between p1 and p2 is {i3, i4}. Thus, the other intersections of these two prop-
erties will not be computed and only the subpath starting from the v-exception
set {i3, i4, i5} of p2 will be explored (bold edges in Fig. 2(a)). Given a set of
properties P = {p1, . . . , pj−1, pj , . . . , pn}, when the intersection of p1, . . . , pj−1

is included in any v-exception set of pj only this subpath is explored.
3. Seen Intersection Pruning. In Fig. 2(b), we observe that starting from
the v-exception set of the property p1, the intersection between {i2, i3, i4} and
{i1, i2, i3} or {i2, i3, i5} will be in both cases {i2, i3}. Thus, the discovery using
the one or the other v-exception set of p2 will lead to the same n-almost keys.
More generally, when a new intersection is included in an already computed
intersection, this exploration stops.

nNonkeyFinder Algorithm. To discover the maximal n-non keys, the v-
exception sets of the final map are explored in a depth-first way. Since the
condition for a set of properties P to be a n-non key is EP ≥ n the exploration
stops as soon as n exceptions are found.

The algorithm takes as input a property pi, curInter the current intersection,
curNKey the set of already explored properties, seenInter the set of already
computed intersections, nonKeySet the set of discovered n-non keys, E the set
of exceptions EP for each explored set of properties P , n the defined number of
exceptions and PNK the set of maximal potential n-non keys.

The first call of nNonKeyFinder is: nNonKeyFinder(pi, I, ∅, ∅, ∅, ∅, n, PNK)
where pi is the first property that belongs to at least one potential n-non key
and curInter the complete set of instances I. To ensure that a set of properties
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should be explored, the function uncheckedNonKeys returns the potential n-
non keys that (1) contain this set of properties and (2) are not included in an
already discovered n-non key in the nonKeySet. If the result is not empty, this
set of properties is explored. In Line 3, the Inclusion pruning is applied i.e., if
the curInter is included in one of the v-exception sets of the property pi, the
selectedEp will contain only the curInter. Otherwise, all the v-exception sets of
the property pi are selected. For each selected v-exception set of the property pi,
all the maximal n-non keys using this v-exception set are discovered. To do so,
the current intersection (curInter) is intersected with the selected v-exception
sets of the property pi. If the new intersection (newInter) is bigger than 1 and
has not been seen before (Seen intersection pruning), then pi ∪ curNonKey is
stored in nvNkey. The instances of newInter are added in E for nvNkey using
the update function. If the number of exceptions for a given set of properties is
bigger than n, then this set is added to the nonKeySet. The algorithm is called
with the next property pi+1 (Line 16). When the exploration of an intersection
(newInter) is done, this intersection is added to SeenInter. Once, all the n-
non keys for the property pi have been found, nNonKeyFinder is called for the
property pi+1 with curInter and curNKey (Line 19), forgetting the property
pi in order to explore all the possible combinations of properties.

Table 3 shows the execution of nNonKeyFinder for the example presented
in Fig. 2(c) where PNK = {{d1:hasActor, d1:director, d1:releaseDate}}. We
represent the properties in Table 3 by p1, p2, p3 respectively.

Algorithm 1. nNonKeyFinder
Input: pi, curInter, curNKey, seenInter, nonKeySet, E, n
Output: nonKeySet: set of the non keys

1 uncheckedNonKeys ← unchecked({pi} ∪ curNKey,nonKeySet, PNK)
2 if uncheckedNonKeys 	= ∅//PNK and Antimonotonic Pruning then
3 if (curInter ⊆ Ev

pi
s.t. Ev

pi
∈ Epi

) //Inclusion Pruning then
4 selectedEpi

← {{curInter}}
5 else
6 selectedEpi

← Epi

7 for each Ev
pi

∈ selectedEpi
do

8 newInter ← Ev
pi

∩ curInter

9 if (|newInter| > 1) then
10 if (newInter � k s.t. k ∈ seenInter) //Seen Intersection Pruning then
11 nvNKey ← {pi} ∪ curNKey
12 update(E, nvNKey, newInter)
13 if (|EnvNkey| > n) then
14 nonKeySet ← nonKeySet ∪ {nvNKey}
15 if ((i + 1) < # properties) then
16 nNonKeyFinder(pi+1, newInter, nvNKey, seenInter, nonKeySet, E, n)

17 seenInter ← seenInter ∪ {newInter}

18 if ((i + 1) < # properties) then
19 nNonKeyFinder(pi+1, curInter, curNKey, seenInter, nonKeySet, E, n)
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Table 3. nNonKeyFinder execution on the example of Fig. 2(c)

pi selectedEp Ev
p curInter curNkey seenInter nonKeySet E

p1 {1, 2} 1 {f1, . . . , f6} {} {} {{p1}} {(p1) : (f1, f2, f3)}
p2 {3} 3 {f1, f2, f3} {p1} {} {{p1}, {p1, p2}} {(p1) : (f1, f2, f3)

(p1, p2) : (f1, f2, f3)}
p3 {6} 6 {f1, f2, f3} {p1, p2} {} {{p1}, {p1, p2}} {(p1) : (f1, f2, f3)

(p1, p2) : (f1, f2, f3)}
p3 {6} 6 {f1, f2, f3} {p1} {{f1, f2, f3}} {{p1}, {p1, p2}} {(p1) : (f1, f2, f3)

(p1, p2) : (f1, f2, f3)}
p1 {1, 2} 2 {f1, . . . , f6} {} {{f1, f2, f3}} {{p1}, {p1, p2}} {(p1) : (f1, f2, f3)

(p1, p2) : (f1, f2, f3)}
. . . . . . . . . . . . . . . . . . . . .

p3 {6} 6 {f2, f3, f6} {p2} {{f1, f2, f3} {{p1}, {p1, p2}, {(p1) : (f1, f2, f3)
{f2, f3, f4}} {p2, p3}} (p1, p2) : (f1, f2, f3)}

(p2, p3) : (f2, f6)}

5.3 Key Derivation

In this section we introduce the computation of minimal n-almost keys using
maximal (n+1)-non keys. A set of properties is a n-almost key, if it is not equal
or included to any maximal (n+1)-non key. Indeed, when all the (n+1)-non
keys are discovered, all the sets not found as (n+1)-non keys will have at most
n exceptions (n-almost keys).

Both [14] and [11] derive the set of keys by iterating two steps: (1) computing
the Cartesian product of complement sets of the discovered non keys and (2)
selecting only the minimal sets. Deriving keys using this algorithm is very time
consuming when the number of properties is big. To avoid useless computations,
we propose a new algorithm that derives fast minimal n-almost keys, called key-
Derivation. In this algorithm, the properties are ordered by their frequencies in
the complement sets. At each iteration, the most frequent property is selected
and all the n-almost keys involving this property are discovered recursively. For
each selected property p, we combine p with the properties of the selected com-
plement sets that do not contain p. Indeed, only complement sets that do not
contain this property can lead to the construction of minimal n-almost keys.
When all the n-almost keys containing p are discovered, this property is elimi-
nated from every complement set. When at least one complement set is empty,
all the n-almost keys have been discovered. If every property has a different
frequency in the complement sets, all the n-almost keys found are minimal n-
almost keys. In the case where two properties have the same frequency, additional
heuristics should be taken into account to avoid computations of non minimal
n-almost keys.

Let us illustrate the key derivation algorithm throughout and ex-
ample. Let P= {p1, p2, p3, p4, p5} be the set of properties and
{{p1, p2, p3}, {p1, p2, p4}, {p2, p5}, {p3, p5}} the set of maximal n-non
keys. In this example, the complement sets of n-non keys are {{p1, p2, p4},
{p1, p3, p4}, {p3, p5},{p4, p5}}. The properties of this example are explored
in the following order: {p4, p1, p3, p5, p2}. Starting from the most frequent
property, p4, we calculate all the n-almost keys containing this property. The
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selected complement set that does not contain this property is {p3, p5}. The
property p4 is combined with every property of this set. The set of n-almost
keys is now {{p3, p4}, {p4, p5}}. The next property to be explored is p1. The
selected complement sets are {p5} and {p3, p5}. To avoid the discovery of
non-minimal n-almost keys, we order the properties of the selected complement
sets, according to their frequency (i.e., {p5, p3}). To discover n-almost keys
containing p1 and p5, we only consider the selected complement sets that do
not contain p5. In this case, no complement set is selected and the key {p1, p5}
is added to the n-almost keys. p5 is locally suppressed for p1. Since there is an
empty complement set, all the n-almost keys containing p1 are found and p1 is
removed from the complement sets. Following these steps, the set of minimal
n-almost keys in the end will be {{p1, p5}, {p2, p3, p5}, {p3, p4}, {p4, p5}}.

Algorithm 2. keyDerivation
Input: compSets: set of complement sets
Output: KeySet: set of n-almost keys

1 KeySet ← ∅
2 orderedProperties = getOrderedProperties(compSets)
3 for each pi ∈ orderedProperties do
4 selectedCompSets ← selectSets(pi, compSets)
5 if (selectedCompSets == ∅) then
6 KeySet = KeySet ∪ {{pi}}
7 else
8 KeySet = KeySet ∪ {pi×keyDerivation(selectedCompSets)}
9 compSets = remove(compSets, pi)

10 if ( ∃ set ∈ compSet s.t. set == ∅ ) then
11 break

12 return KeySet

6 Experiments

We evaluated SAKey using 3 groups of experiments. In the first group, we demon-
strate the scalability of SAKey thanks to its filtering and pruning techniques. In
the second group we compare SAKey with KD2R, the only approach that dis-
covers composite OWL2 keys. The two approaches are compared in two steps.
First, we compare the runtimes of their non key discovery algorithms and second,
the runtimes of their key derivation algorithms. Finally, we show how n-almost
keys can improve the quality of data linking. The experiments are executed on
3 different datasets, DBpedia4, YAGO5 and OAEI 20136.

The execution time of each experiment corresponds to the average time of 10
repetitions. In all experiments, the data are stored in a dictionary-encoded map,
4 http://wiki.dbpedia.org/Downloads39
5 http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
6 http://oaei.ontologymatching.org/2013
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where each distinct string appearing in a triple is represented by an integer. The
experiments have been executed on a single machine with 12GB RAM, processor
2x2.4Ghz, 6-Core Intel Xeon and runs Mac OS X 10.8.

6.1 Scalability of SAKey

SAKey has been executed in every class of DBpedia. Here, we present the
scalability on the classes DB:NaturalP lace, DB:BodyOfWater and DB:Lake
of DBpedia (see Fig. 3(b) for more details) when n = 1. We first compare the
size of data before and after the filtering steps (see Table 4), and then we run
SAKey on the filtered data with and without applying the prunings (see Table 5).

Data Filtering Experiment. As shown in Table 4, thanks to the filtering
steps, the complete set of n-non keys can be discovered using only a part of
the data. We observe that in all the three datasets more than 88% of the sets
of instances of the initial map are filtered applying both the singleton filtering
and the v-exception set filtering. Note that more than 50% of the properties are
suppressed since they are single 1-almost keys (singleton filtering).

Table 4. Data filtering results on different DBpedia classes

class # Initial sets # Final sets # Singleton sets # Ev
p filtered Suppressed Prop.

DB:Lake 57964 4856(8.3%) 50807 2301 78 (54%)
DB:BodyOfWater 139944 14833(10.5%) 120949 4162 120 (60%)
DB:NaturalP lace 206323 22584(11%) 177278 6461 131 (60%)

Prunings of SAKey. To validate the importance of our pruning techniques, we
run nNonKeyFinder on different datasets with and without prunings. In Table 5,
we show that the number of calls of nNonKeyFinder decreases significantly using
the prunings. Indeed, in the class DB:Lake the number of calls decreases to half.
Subsequently, the runtime of SAKey is significantly improved. For example, in
the class DB:NaturalP lace the time decreases by 23%.

Table 5. Pruning results of SAKey on different DBpedia classes

class without prunings with prunings
Calls Runtime Calls Runtime

DB:Lake 52337 13s 25289 (48%) 9s
DB:BodyOfWater 443263 4min28s 153348 (34%) 40s
DB:NaturalP lace 1286558 5min29s 257056 (20%) 1min15s

To evaluate the scalability of SAKey when n increases, nNonKeyFinder
has been executed with different n values. This experiment has shown that
nNonKeyFinder is not strongly affected by the increase of n. Indeed, allow-
ing 300 exceptions (n=300) for the class DB:NaturalP lace, the execution time
increases only by 2 seconds.
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# # # KD2R SAKey
class triples instances prop. Runtime Runtime
DB:Lake 409016 9438 111 outOfMem. 8s
DB:BodyOfWater 1068428 34000 200 outOfMem. 37s
DB:NaturalP lace 1604348 49913 243 outOfMem. 1min10s
Y A:Building 114783 54384 17 26s 9s
Y A:SportsSeason 83944 17839 35 2min 9s
DB:Website 8506 2870 66 13min 1s
DB:Mountain 115796 12912 124 191min 11s

(a) nNonKeyFinder on DB:NaturalP lace (b) nNonKeyFinder in different classes

Fig. 3. nNonKeyFinder runtime for DBpedia and YAGO classes

6.2 KD2R vs. SAKey: Scalability Results

In this section, we compare SAKey with KD2R in two steps. The first experi-
ment compares the efficiency of SAKey against KD2R in the non key discovery
process. Given the same set of non keys, the second experiment compares
the key discovery approach of KD2R against the one of SAKey. Note that,
to obtain the same results from both KD2R and SAKey, the value of n is set to 1.

n-non key Discovery. In Fig. 3(a), we compare the runtimes of the non key
discovery of both KD2R and SAKey for the class DB:NaturalP lace. Starting
from the 10 most frequent properties, properties are added until the whole set
of properties is explored. We observe that KD2R is not resistant to the number
of properties and its runtime increases exponentially. For example, when the
50 most frequent properties are selected, KD2R takes more than five hours to
discover the non keys while SAKey takes only two minutes. Moreover, we notice
that SAKey is linear in the beginning and almost constant after a certain size
of properties. This happens since the class DB:NaturalP lace contains many
single keys and unlike KD2R, SAKey is able to discover them directly using
the singleton sets pruning. In Fig. 3(b), we observe that SAKey is orders of
magnitude faster than KD2R in classes of DBpedia and YAGO. Moreover,
KD2R runs out of memory in classes containing many properties and triples.

n-almost key Derivation. We compare the runtimes of the key derivation of
KD2R and SAKey on several sets of non keys. In Fig. 4(a), we present how
the time evolves when the number of non keys of the class DB:BodyOfWater
increases. SAKey scales almost linearly to the number of non keys while the time
of KD2R increases significantly. For example, when the number of non keys is
180, KD2R needs more than 1 day to compute the set of minimal keys while
SAKey less than 1 minute. Additionally, to show the efficiency of SAKey over
KD2R, we compare their runtimes on several datasets (see Fig. 4(b)). In every
case, SAKey outperforms KD2R since it discovers fast the set of minimal keys.

In the biggest class of DBpedia, DB:Person (more than 8 million triples,
9 hundred thousand instances and 508 properties), SAKey takes 19 hours to
compute the n-non keys while KD2R cannot even be applied.
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Class # non keys # keys KD2R SAKey
DB:Website 9 44 1s 1s
Y A:Building 15 34 1s 1s
Y A:SportsSeason 22 175 2s 1s
DB:Lake 50 480 1min10s 1s
DB:Mountain 49 821 8min 1s
DB:BodyOfWater 220 3846 > 1 day 66s
DB:NaturalP lace 302 7011 > 2 days 5min

(a) KeyDerivation on DB:BodyOfWater (b) KeyDerivation on different classes

Fig. 4. KeyDerivation runtime for DBpedia and YAGO classes

6.3 Data Linking with n-Almost Keys

Here, we evaluate the quality of identity links that can be found using n-almost
keys. We have exploited one of the datasets provided by the OAEI’13. The
benchmark contains one original file and five test cases. The second file is taken
from the first test case. Both files contain DBpedia descriptions of persons and
locations (1744 triples, 430 instances, 11 properties). Table 6 shows the results
when n varies from 0 to 18. In Table 6(a), strict equality is used to compare
literal values while in Table 6(b), the Jaro-Winkler similarity measure is used.
The recall, precision and F-measure of our linking results has been computed
using the gold-standard provided by OAEI’13.

Table 6. Data Linking in OAEI 2013

# exceptions Recall Precision F-Measure
0, 1, 2 25.6% 100% 41%
3, 4 47.6% 98.1% 64.2%
5, 6 47.9% 96.3% 63.9%

7, ..., 17 48.1% 96.3% 64.1%
18 49.3% 82.8% 61.8%

# exceptions Recall Precision F-Measure
0, 1, 2 64.4% 92.3% 75.8%
3, 4 73.7% 90.8% 81.3%
5, 6 73.7% 90.8% 81.3%

7, ..., 17 73.7% 90.8% 81.3%
18 74.4% 82.4% 78.2%

(a) Data Linking using strict equality (b) Data Linking using similarity measures

In both tables, we observe that the quality of the data linking improves when
few exceptions are allowed. As expected, when simple similarity measures are
used, the recall increases while the precision decreases, but overall, better F-
measure results are obtained. As shown in [11],using keys to construct complex
similarity functions to link data, such as [13], can increase even more the recall.
Therefore, linking results can be improved when n-almost keys are exploited by
sophisticated data linking tools.

7 Conclusion
In this paper, we present SAKey, an approach for discovering keys on large RDF
data under the presence of errors and duplicates. To avoid losing keys when data
are “dirty”, we discover n-almost keys, keys that are almost valid in a dataset.
Our system is able to scale when data are large, in contrast to the state-of the
art that discovers composite OWL2 keys. Our extensive experiments show that
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SAKey can run on millions of triples. The scalability of the approach is validated
on different datasets. Moreover, the experiments demonstrate the relevance of
the discovered keys.

In our future work, we plan to define a way to automatically set the value of
n, in order to ensure the quality of a n-almost key. Allowing no exceptions might
be very strict in RDF data while allowing a huge number of exceptions might
end up to many false negatives. We also aim to define a new type of keys, the
conditional keys which are keys valid in a subset of the data.

SAKey is available for download at https://www.lri.fr/sakey.

Acknowledgments. This work is supported by the ANR project Qualinca
(QUALINCA-ANR-2012-CORD-012-02).
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Abstract. Wikidata is the central data management platform of Wikipedia. By
the efforts of thousands of volunteers, the project has produced a large, open
knowledge base with many interesting applications. The data is highly interlinked
and connected to many other datasets, but it is also very rich, complex, and not
available in RDF. To address this issue, we introduce new RDF exports that con-
nect Wikidata to the Linked Data Web. We explain the data model of Wikidata
and discuss its encoding in RDF. Moreover, we introduce several partial exports
that provide more selective or simplified views on the data. This includes a class
hierarchy and several other types of ontological axioms that we extract from the
site. All datasets we discuss here are freely available online and updated regularly.

1 Introduction

Wikidata is the community-created knowledge base of Wikipedia, and the central data
management platform for Wikipedia and most of its sister projects [21]. Since its public
launch in late 2012, the site has gathered data on more than 15 million entities, including
over 34 million statements, and over 80 million labels and descriptions in more than 350
languages. This is the work of well over 40 thousand registered users who have actively
contributed so far. Their ceaseless efforts continue to make Wikidata more and more
comprehensive and accurate.

One reason for this strong community participation is the tight integration with Wiki-
pedia: as of today, almost every Wikipedia page in every language incorporates content
from Wikidata. Primarily, this concerns the links to other languages shown on the left
of every page, but Wikipedia editors also make increasing use of the possibility to in-
tegrate Wikidata content into articles using special syntax. Upcoming improvements in
Wikidata’s query capabilities will add more powerful options for doing this, which is
expected to further increase the participation of the Wikipedia communities in Wikidata.

A result of these efforts is a knowledge base that is a valuable resource for practi-
tioners and researchers alike. Like Wikipedia, it spans a wide body of general and spe-
cialised knowledge that is relevant in many application areas. All of the data is freshly
curated by the Wikimedia community, and thus new and original. Naturally, the data is
also completely free and open. More than any other factor, however, it is the richness
of the data that makes Wikidata unique. Many statements come with provenance in-
formation or include additional context data, such as temporal validity; data is strongly
connected to external datasets in many domains; and all of the data is multi-lingual
by design. Moreover, the data is highly dynamic and based on complex community
processes that are interesting in their own right.

P. Mika et al. (Eds.) ISWC 2014, Part I, LNCS 8796, pp. 50–65, 2014.
c© Springer International Publishing Switzerland 2014
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The relevance of Wikidata for researchers in semantic technologies, linked open data,
and Web science thus hardly needs to be argued for. Already the success of DBpedia
[2] and Yago(2) [11] testifies to the utility of Wikipedia-related data in these areas.
Other related projects include Cyc [14] and Freebase [3]. Each of these projects differs
from Wikidata in important aspects [21], and in particular the content of Wikidata is not
covered by any of them. Even the most similar datasets, Freebase and DBpedia, contain
completely different data. For example, less than 10% of Wikidata items are mapped
to objects in Freebase, and even their data is mostly different. Indeed, these differences
are already obvious when considering the vocabulary used in each project: DBpedia,
e.g., has over 18,000 properties while Wikidata has little more than 1,000, including
many that do not correspond to properties in DBpedia. Nevertheless, the success of
such projects hints at the potential of Wikidata.

In spite of all this, Wikidata has hardly been used in the semantic web community so
far. The simple reason is that, until recently, the data was not available in RDF. To change
this, we have developed RDF encodings for Wikidata, implemented a tool for creating
file exports, and set up a site where the results are published. Regular RDF dumps of
the data can now be found at http://tools.wmflabs.org/wikidata-exports/rdf/. This paper
describes the design underlying these exports and introduces the new datasets:

– In Section 2, we introduce the data model of Wikidata, which governs the structure
of the content that we want to export.

– In Section 3, we present the RDF encoding of this content. This includes URI
schemes, our handling of multilingual content, and our use of external vocabularies.

– The rich information in Wikidata also leads to relatively complex RDF encod-
ings. Therefore, in Section 4, we discuss alternative and simplified RDF encodings,
which we provide for applications that do not require access to all aspects of the
data.

– Wikidata also contains interesting schema information which can be expressed nat-
urally using RDFS and OWL. In Section 5, we present several forms of terminolog-
ical information that we obtain from Wikidata, and for which we provide exports
as well.

– The content of Wikidata is strongly connected to external datasets, but rarely uses
URIs to do so. To fully integrate Wikidata with the linked data Web, we translate
many references to external databases into URIs, as explained in Section 6.

– In Section 7, we present the actual export files and provide some statistics about
their current content.

Besides the actual file exports, we also provide all source code that has been used
for creating them. Our implementation is part of Wikidata Toolkit,1 a Java library for
working with Wikidata content that we develop.

2 The Data Model of Wikidata

Like Wikipedia, Wikidata is organised in pages, and this is also how the data is struc-
tured. Every subject on which Wikidata has structured data is called an entity, and ev-
ery entity has a page. The system distinguishes two types of entities so far: items and

1 https://www.mediawiki.org/wiki/Wikidata_Toolkit
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...

...

Fig. 1. Excerpt of a typical Wikidata item page with terms, statements, and site links

properties. In the familiar terms of semantic technologies, items represent individuals
and classes, and Wikidata properties resemble RDF properties. Virtually every Wiki-
pedia article in any language has an associated item that represents the subject of this
article.

Every item has a page where users can view and enter the data. For ex-
ample, the item page for the English writer Douglas Adams can be seen at
https://www.wikidata.org/wiki/Q42; an excerpt is shown in Fig. 1. The title of this page
is “Q42” rather than “Douglas Adams” since Wikidata is a multi-lingual site. There-
fore, items are not identified by a label in a specific language, but by an opaque item
identifier, which is assigned automatically when creating the item and which cannot be
changed later on. Item identifiers always start with “Q” followed by a number. Every
item page contains the following main parts:

– the label (e.g., “Douglas Adams”),
– a short description (e.g., “English writer and humorist”),
– a list of aliases (e.g., “Douglas Noël Adams”),
– a list of statements (the richest part of the data, explicated below),
– the list of site links (links to pages about the item on Wikipedia and other projects).

The first three pieces of data (label, descriptions, aliases) are collectively known as
terms. They are mainly used to find and to display items. An item can have terms in
every language supported by Wikidata. What is displayed on the pages depends on the
language setting of the user.

Site links can be given for any of the 286 language editions of Wikipedia, and for
several sister projects, such as Wikivoyage and Wikimedia Commons. Site links are
functional (at most one link per site) and inverse functional (injective; at most one item
for any site link). As opposed to the former system of Wikipedia language links, site
links should only be used for articles that are exactly about the item, not about a broader,
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Table 1. Wikidata datatypes and their current member fields and field types

Datatype Member fields

Item item id (IRI)
String string
URL URL (IRI)
Commons Media article title (string)
Time point in time (dateTime), timezone offset (int), preferred calendar (IRI),

precision (byte), before tolerance (int), after tolerance (int)
Globe coordinates latitude (decimal), longitude (decimal), globe (IRI), precision (decimal)
Quantity value (decimal), lower bound (decimal), upper bound (decimal)

narrower, or otherwise related topic. Some items do not have any site links, e.g., the item
“female” (Q6581072) which is used as a possible value for the sex of persons.

2.1 Properties and Datatypes

Figure 1 shows a simple example statement, which closely resembles an RDF triple
with subject Douglas Adams (Q42), property date of birth, and value 11 March 1952.
Properties, like items, are described on pages and use opaque identifiers starting with
“P.” For example, date of birth is actually P569. Properties do have terms (labels etc.),
but no statements or site links.2

In addition, Wikidata properties also have a datatype that determines the kind of
values they accept. The datatype of date of birth is time. Table 1 (left) shows the list
of all available datatypes. Most types are self explaining. Commons media is a special
type for referring to media files on the Wikimedia Commons media repository used by
all Wikipedias. Datatypes determine the structure of the values accepted by properties.
A single property value may correspond to a single RDF resource (as for type item) or
to a single RDF literal (as for type string); or it may be a complex value that requires
several elements to be described, as for time, globe coordinates, and quantity. Table 1
(right) shows the essential components of each value, as they would appear in RDF.

Many of the member fields should be clear. For time, we store an additional time-
zone offset (in minutes) and a reference to the calendar model that is preferred for
display (e.g., Julian calendar, Q1985786); our RDF exports always specify dates in
(proleptic) Gregorian calendar. The remaining members of time allow to indicate the
precision to express uncertain values such as “September 1547” or “3rd century.” The
details are beyond the scope of this paper. For the most common types of imprecision
(precision to day, month, year) we use specific XML Schema datatypes (xsd:date,
xsd:gYearMonth, xsd:gYear) to encode this information directly in the literal that
specifies a time point.

For globe coordinates, the only unusual member field is globe, which gives the ce-
lestial body that the coordinates refer to (e.g., Earth, Q2). The remaining members for
globe and quantity are again means of specifying imprecision. Finally, we remark that
it is planned to extend quantities with units of measurement in 2014, which will then
become another member.

2 As of August 2014, support for statements on property pages is under development.
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Fig. 2. Part of a complex statement about the wife of Douglas Adams as displayed in Wikidata

2.2 Complex Statements and References

The full data model of Wikidata statements is slightly more complex than Fig. 1 might
suggest. On the one hand, statements can be enriched with so-called qualifiers, which
provide additional context information for the claim. On the other hand, every statement
can include one or more references, which support the claim. A statement where both
aspects are given is shown in Fig. 2. The main property-value pair in this statement is
“spouse: Jane Belson” (P26: Q14623681), but there is additional context information.

The qualifiers in Fig. 2 are “start date: 25 November 1991” and “end date: 11 May
2011,” which state that Adams has been married to Belson from 1991 till his death
in 2011. As before, we are using properties start date (P580) and end date (P582) of
suitable types (time). These property-value pairs refer to the main part of the statement,
not to the item on the page (Adams). In RDF, we will need auxiliary nodes that the
qualifiers can refer to – the same is true for the references.

Qualifiers are used in several ways in Wikidata. Specifying the validity time of a
claim is the most common usage today, so Fig. 2 is fairly typical. However, Wikidata
uses many other kinds of annotations that provide contextual information on a state-
ment. Examples include the taxon author (P405, essential context for biological taxon
names) and the asteroid taxonomy (P1016, to contextualise the spectral classification of
asteroids). In some cases, qualifiers provide additional arguments of a relationship that
has more than two participants. For example, the property website account on (P553)
specifies a website (such as Twitter, Q918), but is usually used with a qualifier P554
that specifies the account name used by the item on that site. Arguably this is a ternary
relationship, but the boundary between context annotation and n-ary relation is fuzzy.
For example, Star Trek: The Next Generation (Q16290) has cast member (P161) Brent
Spiner (Q311453) with two values for qualifier character role (P453): Data (Q22983)
and Lore (Q2609295). Note that the same property can be used in multiple qualifiers on
the same statement.

The first part of the (single) reference in Fig. 2 is displayed below the qualifiers. Each
reference is simply a list of property-value pairs. Wikidata does not provide a more
restricted schema for references since the requirements for expressing references are
very diverse. References can be classical citations, but also references to websites and
datasets, each of which may or may not be represented by an item in Wikidata. In spite
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of this diversity, references are surprisingly uniform across Wikidata: as of April 2013,
there are 23,225,184 pointers to references in Wikidata statements, but only 124,068
different references. This might be unexpected since Wikidata does not support the re-
use of references, i.e., the system really stores 23,225,184 lists of property-value pairs
which just happen to be the same in many cases. The reason for this uniformity are
community processes (stating how references are to be structured), but also systematic
imports that used one source for many statements.

We have used property-value pairs are used in many places: as main parts of claims,
as qualifiers, and in references. In each of these cases, Wikidata supports two special
“values” for none and some. None is used to say that the given property has no value
as in “Elizabeth I of England had no spouse.” Similar to negation in OWL, this allows
us to state a simple form of negative information to distinguish it from the (frequent)
case that information is simply incomplete. This also allows us to add references for
negative claims. Some is used when we know that a property has a value, but cannot
provide further details, as in “Pope Linus had a date of birth, but it is unknown to us.”
This is similar to the use of blank nodes in RDF and to someValuesFrom restrictions in
OWL. Formally speaking, neither none nor some are values that belong to a particular
datatype. Nevertheless, both of these special “values” can be used in all places where
normal property values are allowed, hence we will usually not mention them explicitly.

2.3 Order and Ranking

All data in Wikidata is ordered – aliases, statements, property-value pairs in a reference,
etc. However, representing order is difficult in RDF, since triples in an RDF graph are
naturally unordered. Fortunately, the ordering information is only used for presentation,
and is not considered meaningful for query answering in Wikidata. It is neither possible
nor planned to have queries that can retrieve data based on, e.g., statement order. Hence,
we ignore this information in our exports, although this means that the RDF export does
not really capture all aspects of the data faithfully.

Even if we do not wish to use statement order in query answering, it can still be
necessary to distinguish some statements from the rest. For example, Wikidata contains
a lot of historic data with suitable qualifiers, such as the population numbers of cities at
different times. Such data has many applications, but a simple query for the population
of a city should not return a long list of numbers. To simplify basic filtering of data,
Wikidata statements can be given one of three ranks: normal (used by default), preferred
(used to single out values that are preferred over normal ones), and deprecated (to mark
wrong or otherwise unsuitable information that is to be kept in the system for some
practical reason). Ranks can be used to reduce the complexity of the dataset to include
only the most relevant statements; this is also useful for generating RDF exports.

3 Representing Wikidata Content in RDF

We can now present our primary mapping of Wikidata content to RDF (and, occa-
sionally, OWL). We further discuss this encoding and present simplified approaches
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Table 2. Example RDF serialization of terms (top) and sitelinks (bottom) in Turtle

<http://www.wikidata.org/entity/Q80>
a <http://www.wikidata.org/ontology#Item> ;
<http://www.w3.org/2000/01/rdf-schema#label> "Tim Berners-Lee"@en ;
<http://schema.org/description> "izumitelj World Wide Weba"@hr ;
<http://www.w3.org/2004/02/skos/core#altLabel> "TimBL"@pt-br .

<http://es.wikipedia.org/wiki/Tim_Berners-Lee>
a <http://www.wikidata.org/ontology#Article> ;
<http://schema.org/about> <http://www.wikidata.org/entity/Q80> ;
<http://schema.org/inLanguage> "es" .

in Section 4. Wikidata uses a uniform scheme for URIs of all entities, i.e., items and
properties:

http://www.wikidata.org/entity/<id>

is the URI for an entity with identifier <id>, such as Q42 or P184. These URIs fol-
low linked data standards [1]. They implement content negotiation and redirect to the
most suitable data, which might be an RDF document with basic information about
the entity, or the HTML page of the entity on Wikidata. Page URLs are of the form
http://www.wikidata.org/wiki/Q42 for items and of the form http://www.wikidata.org/wiki/
Property:P184 for properties. In addition, there are specific URLs to obtain the data in
several formats, such as http://www.wikidata.org/wiki/Special:EntityData/Q42.nt (RDF in
NTriples format) or http://www.wikidata.org/wiki/Special:EntityData/Q42.json (JSON).
The RDF information provided by the live export of the site is currently limited to
term data; while this already satisfies linked data standards as a basic “useful” piece of
information, it is intended to provide all of the data that is found in the dumps there in
the future.

In addition to the URIs of Wikidata entities, we also use URIs from an ontology that
captures general concepts of the Wikidata data model explained earlier. The base URI
of this ontology is http://www.wikidata.org/ontology#, and its current version used for
the exports is included in the export directory.

3.1 Exporting Terms and Site Links

We start by describing the RDF export of terms and site links. Labels, descriptions, and
aliases can be given in any of the more than 350 languages supported by Wikidata. For
exporting this data in RDF, we need to use language tags that follow the BCP 47 stan-
dard.3 We use the tags of the IANA language tag registry4 whenever possible, although
the official tag does not always agree with the identifier used in Wikipedia and Wiki-
data. For example, als.wikipedia.org is the Alemannic edition of Wikipedia, which has
IANA code “gsw” rather than “als” (Tosk Albanian). We translate such exceptions ac-
cordingly. Finally, some languages supported by Wikidata do not have their own IANA

3 http://tools.ietf.org/html/bcp47
4 http://www.iana.org/assignments/language-subtag-registry/
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Fig. 3. Partial RDF graph for the statement in Fig. 2

tag, and we coin a suitable custom tag following the rules of BCP 47. For example, Basa
Banyumasan is represented by the tag “jv-x-bms” as an extension to Javanese (jv).

Wikidata terms are then exported as RDF string literals with language tags. We
use standard vocabularies for each type of data: RDFS label for labels, schema.org
description for descriptions, and SKOS altLabel for aliases. Table 2 (top) shows ex-
amples for each. Whenever we use third-party vocabularies, we include an OWL dec-
laration to clarify the type of the property, e.g., DatatypeProperty for description and
altLabel.

For 286 languages used in Wikidata, there are also corresponding Wikipedia editions,
which might be pointed to in site links. This means that Wikidata contains terms in lan-
guages that are not found in any Wikipedia. There are several reasons for this fact. First,
Wikipedia editions are only created for languages that have a sufficient community of
editors to maintain such a project. This is the reason why languages such as Herero and
Afar do not currently have a Wikipedia. Secondly, Wikipedia editions generally try to
combine closely related languages. For example, there is only one Portuguese Wiki-
pedia, while Wikidata distinguished Brazilian Portuguese as a separate language that
may use different labels. Thirdly, Wikidata may provide terms for the same language in
different scripts, such as Kazakh in Arab, Cyrillic, and Latin scripts.

Site links are exported using the schema.org property about to associate a Wikipedia
page URL with its Wikidata item, and the schema.org property inLanguage to define
the BCP 47 language code of a Wikipedia page. Table 2 (bottom) gives an example.

3.2 Representing Statements and References in RDF

We will now present our approach for modelling Wikidata statements in RDF. A dis-
cussion of this modelling and possible alternatives follows in Section 4. The result of
modelling the statement of Fig. 2 is displayed in Fig. 3. Qualified names are used for ab-
breviating URIs, where entity: represents http://www.wikidata.org/entity/, wd: represents
http://www.wikidata.org/ontology#, and rdf: and xsd: are as usual. We will explain the
parts of this graph step by step.

As discussed in Section 2.2, Wikidata statements are not just triples but can have
additional quantifiers and references. The natural approach of representing such data in
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RDF is to introduce an auxiliary individual that represents the statement itself, denoted
by entity:Q42Sb88670f8-456b-3ecb-cf3d-2bca2cf7371e in Fig. 3 (the lengthy identifier
is based on a UUID defined by Wikidata for every statement). We can then relate items
to statements, and statements to values, qualifier values, and references.

A consequence of this approach is that Wikidata properties do not directly corre-
spond to properties in RDF. A direct relationship as expressed by property “spouse”
(P26) in Fig. 2 is broken into two triples, relating item to statement and statement to
value, respectively. We use two RDF properties to capture this: entity:P26s to link to
the statement and entity:P26v to link to the value (which is entity:Q14623681 in Fig. 3).
As discussed in Section 4, using two distinct properties is preferable here.

For qualifiers cannot be annotated further, so we can relate them directly to the state-
ment, without introducing additional resources. To distinguish statement qualifiers from
the main value, we create another RDF property by appending q to the Wikidata prop-
erty URI. The qualifiers in Fig. 3 use properties entity:P582q and entity:P580q, respec-
tively. The underlying Wikidata properties are of type time in both cases. To express all
member fields of this complex datatype shown in Table 1, we introduce additional RDF
individuals to represent these values. Figure 3 shows the triples for the value displayed
as “25 November 1991” in Fig. 2. The value entity:Q1985727 for the preferred calendar
model is the Wikidata item for the proleptic Gregorian calendar.

Values of types time, globe coordinates, and quantity are represented in this fashion,
using additional individuals that are named with hash-based URIs. Every such complex
value is represented only once in RDF, even if it is used many times throughout the data.
Values of datatype string are represented by RDF string literals; values of the remaining
datatypes item, URL, and Commons media are represented by RDF resources.

References are also represented using dedicated individuals with hash-based names.
To relate statements to references, we use the property wasDerivedFrom from the W3C
PROV Ontology [13]. Property-value pairs in references are again encoded directly,
using yet another variant of properties using with postfix r. Like complex values, refer-
ences are shared among statements, which saves millions of triples in the RDF dumps.

Finally, the special values none and some are represented using OWL axioms that
state that a property has a value (owl:someValuesFrom) or that this is not the case
(owl:complementOf). This use of negation does not usually make the ontology incon-
sistent, since it refers to the level of statements or references. In particular, it is not
contradictory if one statement claims that a property has no value while another gives a
value. This might even be desirable to capture conflicting claims of different references.

4 Alternative Ways of Expressing Statements in RDF

The RDF exports discussed in Section 3 are faithful representations of all information of
Wikidata that is relevant for query answering. In the case of statements, however, RDF
leads to a rather complex representation where information is distributed across many
triples. In this section, we discuss the design of our main exports, possible alternatives,
and a simplified RDF export format that we provide alongside our main exports.
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4.1 Design Principles for Mapping Statements to RDF

We start by explaining the design principles that have guided our RDF encoding of
statements in Section 3.2. Our solution makes use of reification, the process of encoding
complex structures in RDF by introducing new individuals to represent them. We reify
statements, complex values, and references. Our main design principles are as follows:

1. Reification: all major structures of the Wikidata data model correspond to resources
2. OWL compatibility: our RDF data can also be read as OWL
3. Strong property typing: all properties used in RDF have a specific range and domain
4. URIs for auxiliary resources: we never use blank nodes for objects of the data model
5. Vocabulary re-use: we make use of third-party vocabularies where suitable

Reification is widely acknowledged as the standard solution of representing complex
structures in RDF. The Semantic Web Best Practices group recommends a similar en-
coding for capturing n-ary relations, which is closely related to our task [17], and the
W3C standard OWL 2 uses reification to support the annotation of axioms [18]. Such
general uses of reification should not be confused with the specific reification vocabu-
lary that RDF provides for triples [6]. This approach has been discussed controversially
since it is rather inefficient (using four triples to represent one reified triple), and since
it lacks a formal semantics (to relate reified and original triple). The crucial difference
to our approach is that there is no “non-reified” RDF structure that we start from: we do
not reify RDF triples but Wikidata objects. These objects exist as conceptual entities in
the domain that we model. Wikidata statements can even be argued to be the primary
subjects that Wikidata collects information about. In this sense, representing Wikidata
objects by RDF individuals is not a technical workaround but a modelling goal. We will
discuss other approaches that achieve a similar goal later in this section.

OWL compatibility is motivated by our general goal to support the widest range of
consumers possible. While OWL can be used on any RDF graph (OWL Full), reasoning
on large ontologies is more practical using one of the lightweight profiles of OWL 2,
which impose the stricter requirements of OWL DL. Applications of reasoning in the
context of Wikidata are conceivable, given that there is already a fair amount of schema
information (see Section 5). In addition, we already use various OWL features to encode
Wikidata content, and it would be unfortunate if our exports would not be valid OWL.

Strong property typing is simply good modelling practice, following the general
guideline of using one URI for one thing. Moreover, it is a prerequisite for obtaining
valid OWL DL, where object properties and data properties are strictly separate.

Our use of URIs for resources also follows best practices. Blank nodes add a certain
amount of complexity to processing, and their use in OWL DL is subject to some re-
strictions. The downside of our choice is that we need to coin URIs for complex values
and references, which do not have any identifier in the system. This makes it techni-
cally difficult to provide useful linked data for the hash-based URIs of these objects. It
would be a considerable overhead for Wikidata to keep a global reverse lookup of all
such objects that are currently used on some page (recall that references and values are
also shared, and thus do not refer to any entity in their URIs). Nevertheless, using blank
nodes instead would hardly improve the situation.
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Vocabulary re-use is generally encouraged on the semantic web. A special choice
that we made for our exports is to use only one vocabulary for each piece of data, even
if several would be available. For example, RDFS label is used for labels, but SKOS
prefLabel and schema.org name would be just as suitable. The Wikidata linked data
service actually provides label data in each of these, since LOD consumers may expect
labels to be given in a specific form.5

4.2 Alternatives to Reification

We now discuss alternative options for modelling statements without (explicit) reifica-
tion. One of the oldest approaches for avoiding reification is to move from triples to
quads (quadrupels), where the fourth component can be used to attach context informa-
tion [9]. In relation to RDF, this has first been suggested by Sean B. Palmer in 2001,6 but
very similar ideas have already been proposed in 1993 for the knowledge representation
system Loom [15]. Closely related to our work is the use of quads in YAGO2 to model
temporal and spatial context information for statements extracted from Wikipedia [11].

RDF 1.1 introduces N-Quads as an official W3C recommendation [7]. While syn-
tactically similar to earlier proposals, the underlying concept there are so-called RDF
datasets, and the fourth component of quads is interpreted as the identifier for a named
graph. RDF 1.1 specifies named graphs to have a “minimal semantics” meaning that
entailment is not defined for named graphs. It is left to the application to decide which
named graphs are to be considered when computing query results or inferences. The
SPARQL query language also provides facilities for interacting with named graphs.

Proposals for the semantics of named graphs have been made [8], but did not find
their ways into standards. This topic is more closely related to the general discussion of
context modelling in semantic web and AI. Notable works in the area include C-OWL
[5], Distributed Description Logic [4], TRIPLE [19], and a context-aware semantics
proposed by Guha et al. [10]. In spite of these works, there is no standard approach of
reasoning over contextualized data today.

We could have used named graphs instead of reification for representing statements.
We would still introduce a URI for each statement and use it as the name for a graph
that contains the single main triple of the statement. Everything else would remain
unchanged. Complex values and references would be reified as before, since named
graphs cannot simplify this encoding any further. The main advantage of this approach
would be that it keeps the main property-value assignment of each statement in one
triple, avoiding the need for joins in query answering. The main disadvantage is that
we loose OWL compatibility, and that essential parts of the modelled data are encoded
as annotations on graph names, for which no current standard provides any semantics.
Nevertheless, there is no harm in providing another variant of the export to those who
prefer this view, and we intend to do so in the future (contributions of interested parties
are welcome).

5 It would obviously be preferable if vocabulary providers could agree on a single label property.
6 Discussion with Bijan Parsia and Aaron Swartz:

http://chatlogs.planetrdf.com/rdfig/2001-08-10.txt; resulting email:
http://lists.w3.org/Archives/Public/www-rdf-logic/2001Aug/0007.html
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Most recently, Nguyen et al. proposed singleton properties as yet another approach
of annotating RDF statements [16]. Roughly speaking, they combine the fourth com-
ponent of quads with the predicate URI, to obtain a new property URI that they require
to be globally unique. This approach would work for our setting, but, again, the seman-
tic relationship between triples with singleton properties and their annotations are not
captured by standard semantics.

4.3 Exporting Statements as Triples

Whether we use reification or named graphs, we cannot avoid to use relatively complex
RDF graphs if we want to capture the rich structure of Wikidata statements. Yet, it is
sometimes desirable to have a simpler view of the data. We therefore provide several
secondary data dumps that are not faithful but still meaningful.

The complexity of serialising statements is caused by qualifiers and references.
References provide additional information that could be ignored when interpreting state-
ments. In contrast, omitting qualifiers may change the meaning of the statement sub-
stantially. Many qualifiers, such as start date and end date, restrict the validity of a
claim to a particular context, and one would obtain wrong or misleading claims when
ignoring this information.

To obtain simpler RDF exports, we thus focus on statements without qualifiers and
ignore all references. In this situation, we can represent many statements by single RDF
triples. This leads to a different RDF graph structure, and we therefore use new RDF
properties which use the postfix c. In addition, many complex values can be reduced
to their most important member, so that no additional individuals are required. For
example, the statement in Fig. 1 can be represented by a single triple

entity:Q42 entity:P569c "1952-03-11"ˆˆxsd:date .

We thus obtain an export of simple statements which can be combined with the (faithful)
exports of terms and site links.

5 Extracting Schema Information from Wikidata

While most of the content of Wikidata is naturally focussed on instances, there is also
an interesting and growing amount of schematic information that we provide exports
for. On the one hand, this includes an elaborate class hierarchy that is used to classify
Wikidata items; on the other hand, we extract an OWL ontology that captures a variety
of constraints on the use of properties in Wikidata.

Classification information can be obtained from the Wikidata properties instance of
(P31) and subclass of (P279). The names of these properties suggest a close relationship
to rdf:type and rdfs:subClassOf, and it can be seen from the community discussions that
these RDF(S) properties have indeed been an important role model for P31 and P279. To
extract this information, we apply the approach for exporting simplified statements of
Section 4.3. In particular, we ignore statements with qualifiers. This is hardly a restric-
tion for subclass of, but there are many cases where instance of is used with a temporal
annotation to express that an item has not always been a member of a certain class.

In addition, the Wikidata community has started to formulate constraints for the use
of properties. For example, a constraint on property mother (P25) specifies that all of its
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Table 3. Property constraints in Wikidata and their number of occurrences as of April 2014

Constraint name Description Uses

Single value Property is functional 305
Unique value Property is inverse functional 290
Symmetric Property is symmetric 11
Inverse Specifies the inverse of a property 25
Format Values must match a given formatting pattern 282
One of Values must come from a given list of values 60
Existing file Values must be files on Wikimedia Commons 23
Value type Values must have some instance of or subclass of relation 262
Range Values must be numbers or times in a certain closed interval 53
Target required claim Values must be items that satisfy further claims 100
Item Items with this property must also satisfy further claims 436
Type Items with this property must have some instance of or subclass

of relation
389

Multi value Items with this property must use it with two or more values 2
Conflicts with Items with this property must not satisfy certain other claims 8

values must be instances of person (Q215627). This information is used to detect errors
in the data, but also to clarify the intended use of properties.

Constraints are not part of the data model of Wikidata, and are in fact completely
ignored by the system. Rather, the Wikidata community developed its own way of en-
coding constraints on the talk pages of Wikidata properties. These pages are normal
wiki pages, similar to articles on Wikipedia, where constraints are defined by suitable
formatting commands. Constraint violation reports are generated and uploaded to Wiki-
data by scripts. Table 3 gives an overview of the current constraints with the names used
in Wikidata, together with a short explanation of their meaning. Constraints that require
something to “satisfy further claims” usually require statements to be given for one or
more properties, optionally with specific values. The most general constraints of this
kind are Item and Target required claim.

Many constraints can be expressed in terms of OWL axioms. In contrast to OWL
ontologies, constraints are not used for inferring new information (or even inconsisten-
cies) but to detect possible errors. Nevertheless, the schematic information expressed in
constraints is still meaningful and the corresponding OWL ontology makes sense as a
high-level description of the data. Thus, we extract constraints and provide a dedicated
export of the resulting OWL axioms.

The axioms we extract refer to the RDF encoding of Section 3, and only to the the
main property of a statement. Currently, the constraints are not applied for qualifiers or
references in Wikidata. Clearly, some constraints are difficult or impossible to express in
OWL. Format can be expressed using a regular expression datatype facet on xsd:string,
but few OWL systems support this. Existing file expresses a requirement that is not re-
ally part of the semantic model we work in. Most other constraints correspond to OWL
axioms in a rather direct way. Interestingly, however, neither Symmetric nor Inverse can
be expressed in OWL. While OWL supports symmetric and inverse properties, these
apply only to single triples and cannot entail structures like in Fig. 3.



Introducing Wikidata to the Linked Data Web 63

Table 4. Overview of dump files of 20th April 2014

File topic File size Triples Content

instances 16 M 6,169,821 6,169,821 rdf:type relations
taxonomy 336 K 82,076 40,192 rdfs:subclassOf relations

41,868 OWL classes
simple-statements 300 M 55,925,337 34,146,472 simplified statements
statements 1.8 G 148,513,453 34,282,659 statements
terms 579 M 106,374,085 47,401,512 labels

8,734,890 aliases
35,143,663 descriptions

properties 616 K 52,667 1,005 properties
sitelinks 618 M 126,658,004 37,316,300 site links

6 Connecting Wikidata to the Linked Data Web

A key characteristic of linked open data is the interconnection of datasets [1]. Wikidata,
too, makes many connections to external datasets from many domains, ranging from in-
ternational authority files, such as ISSN or VIAF, to highly specialised databases such
as HURDAT, the database of North Atlantic hurricanes. However, not all of these data
sources provide RDF exports or even URIs for their data, and those that do often con-
sider RDF as a secondary service that is provided as one of many export services.

As a consequence, most databases use identifiers that are not URIs, and (at best)
provide some scheme of computing URIs from these ids. For example, the Freebase
identifier /m/05r5c (Piano) corresponds to the URI http://rdf.freebase.com/ns/m.05r5c,
where one has to replace “/” by “.” to obtain the local name. Naturally, Wikidata tends
to store the identifier, not the URI. The former is usually more concise and readable,
but also required in many applications where the identifier plays a role.

Thus, when exporting Wikidata content to RDF, we do not immediately obtain any
links to external datasets. To address this problem, we have manually inspected Wiki-
data properties of type string, and searched for suitable URIs that can be used instead.
If possible, we have exported the data using URIs instead of strings. The URI is ex-
ported like a Wikidata property value; we never use owl:sameAs to relate external URIs
to Wikidata, since this would often not be justified. In some cases, related URIs are
available from third parties, but there is no official URI that is endorsed by the owner
of the identifier. For example, there are no URIs for SMILES ids as used in chemistry,
but ChemSpider7 serves relevant RDF for these identifiers. We have not exported such
URIs so far, but we consider to include them in addition the string ids in the future.

Overall, we have found 17 widely used Wikidata properties for which we generate di-
rect links to other RDF datasets. Linked semantic datasets and knowledge bases include
Freebase (P646), the Gene Ontology (P686), ChemSpider (661), PubChem (662), sev-
eral types of entities found in MusicBrainz (P434–P436, P966, P982, P1004), the Vir-
tual International Authority File VIAF (P214) as well as several other national authority
files. In total, this allowed for the creation of 2.5 million links to external databases.

7 http://chemspider.com/
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Importantly, our main goal is to generate RDF exports that faithfully represent the
original data using the language of RDF and linked data properly. We do not aspire
to discover links to external datasets that are not already stated explicitly in the data.
In particular, we restrict to target datasets for which Wikidata has a property. In some
cases, suitable properties might be introduced in the future; in other cases, it might be
more suitable for third-party datasets to link to Wikidata.

7 RDF Exports

We provide exports in the form of several bz2-compressed N-Triples files that allow
users to get access to part of the data without having to donwload all of it. Exports are
created once a month, and historic files will remain available. Links to all exports are
found at http://tools.wmflabs.org/wikidata-exports/rdf/.

The main RDF export as described in Section 3 is found in four files: terms (labels,
descriptions, aliases), statements, and sitelinks contain parts of the item data; properties
contains all property data (terms and datatypes). In addition, we provide an export of
simple statements as discussed in Section 4.3, and an export of the class hierarchy (tax-
onomy) and of corresponding rdf:type relations (instances) as discussed in Section 5.

The export results for the Wikidata content dump of 20 April 2014 are shown in
Table 4, together with some statistics on their size and number of content objects. In
total these files cover 15,093,996 items and 1,005 properties. The exported taxonomy
turned out to be very interesting since it was built with the semantics of rdfs:subClassOf
in mind. This is completely different from Wikipedia’s hierarchy of categories, which
is based on broader/narrower relations [20], as in Humans → Culture → Food and
drink→ Meals→ Breakfast→ Bed and breakfast→ Bed and breakfasts in the United
States. Yago(2) reorganizes Wikipedia categories using WordNet [11], and DBpedia in-
tegrates Yago’s class hierarchy. Yet, many of the over 150,000 classes in DBpedia are
still based on English Wikipedia categories, as in AmericanAcademicsOfJapaneseDes-
cent. In contrast, Wikidata provides a completely new dataset, which, while certainly
far from perfect, is a promising starting point for future research and applications.

8 Conclusions

Wikidata, its content, and the underlying software are under continued development, the
outcome of which is hard to foresee. Given the important role that Wikidata plays for
Wikipedia, one can be certain that the project will continue to grow in size and quality.
Many exciting possibilities of using this data remain to be explored.

Wikidata has had its origins in the Semantic Web community [12], and continues to
be inspired by the research and development in this field. With this paper, the results
of these efforts are finally available as machine-readable exports. It remains for the
community of researchers and practitioners in semantic technologies and linked data to
show the added value this can bring.
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Abstract. Only a small fraction of the information on the Web is represented as
Linked Data. This lack of coverage is partly due to the paradigms followed so far
to extract Linked Data. While converting structured data to RDF is well supported
by tools, most approaches to extract RDF from semi-structured data rely on ex-
traction methods based on ad-hoc solutions. In this paper, we present a holistic
and open-source framework for the extraction of RDF from templated websites.
We discuss the architecture of the framework and the initial implementation of
each of its components. In particular, we present a novel wrapper induction tech-
nique that does not require any human supervision to detect wrappers for web
sites. Our framework also includes a consistency layer with which the data ex-
tracted by the wrappers can be checked for logical consistency. We evaluate the
initial version of REX on three different datasets. Our results clearly show the
potential of using templated Web pages to extend the Linked Data Cloud. More-
over, our results indicate the weaknesses of our current implementations and how
they can be extended.

1 Introduction

The Linked Open Data (LOD) Cloud has grown from 12 datasets (also called knowl-
edge bases) to over 2000 knowledge bases in less than 10 years.1 This steady growth of
the LOD Cloud promises to continue as very large datasets such as Linked TCGA [20]
with 20.4 billion triples are added to it. However, the LOD Cloud still contains only a
fraction of the knowledge available on the Web [13]. This lack of coverage is mainly
due to the way the data available on the LOD Cloud is extracted. Most commonly, the
data in the LOD Cloud originates from one of two types of sources: structured data
(especially databases such as Drugbank,2 Diseasome,3 etc.) and semi-structured data

� Both authors contributed equally to this work.
1 http://stats.lod2.eu/
2 http://www.drugbank.ca
3 http://diseasome.eu
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sources (for example data extracted from the Wikipedia4 infoboxes). While generating
RDF triples from structured data (especially databases) is well supported by tools such
as Triplify [3], D2R [4] and SPARQLMap [21] , devising automatic means to generate
RDF from semi-structured data is a more challenging problem. Currently, this challenge
is addressed by ad-hoc or manual (e.g., community-driven) solutions. For example, the
well-known DBpedia [2] provides a mapping Wiki5 where users can explicate how
the content of infoboxes is to be transformed into RDF. On the one hand, manual ap-
proaches offer the advantage of leading to high-precision data; on the other hand, they
suffer of a limited recall because of the small number of web sources from which the
data is extracted. For example, DBpedia only contains a fraction of the movies that
were published over the last years because it was extracted exclusively from Wikipedia.
Moreover, the same knowledge base only contains a fraction of the cast of some of the
movies it describes.

The main aim of this paper is to address the challenge of extracting RDF from semi-
structured data. We introduce REX, an open-source framework for the extraction of
RDF from templated websites (e.g., Wikipedia, IMDB, ESPN, etc.). REX addresses
the extraction of RDF from templated websites by providing a modular and extensi-
ble architecture for learning XPath wrappers and extracting consistent RDF data from
these web pages. Our framework is thus complementary to RDF extraction frameworks
for structured and unstructured data. While REX targets the extraction of RDF from
templated websites in its current version, the architecture of the framework is generic
and allows for creating versions of the tool that can extract RDF from other sources on
websites, for example from unstructured data or from the billions of tables available on
the Web. Our framework has the following features:

1. Extensibility, i.e., our framework is open-source, available under the MIT license
and can thus be extended and used by any third party;

2. Use of standards, i.e., REX relies internally on widely used libraries and on W3C
Standards such as RDF, SPARQL and OWL;

3. Modularity, i.e., each of the modules can be replaced by another implementation;
4. Scalability, i.e., the current algorithms can be used on large amounts of data;
5. Low costs, i.e., REX requires no human supervision;
6. Accuracy, i.e., the current implementation achieves satisfactory F-measures and
7. Consistency, i.e., REX implements means to generate triples which abide by the

ontology of the source knowledge base providing the training data.

In addition to being novel in itself, REX introduces a novel wrapper induction tech-
nique for extracting structured data from templated Web sites. This induction approach
makes use of the large amount of data available in the LOD Cloud as training data. By
these means, REX circumvents the problem of high annotation costs faced by several
of the previous wrapper induction approaches [16,11] while keeping the high accuracy
of supervised wrapper induction methods. By post-processing the output of website
wrappers, our system can generate novel triples. To ensure that these novel triples are
consistent, REX provides a consistency check module which computes and uses the

4 http://wikipedia.org
5 http://mappings.dbpedia.org
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axioms which underlie the input knowledge base K . Only those triples which do not
break the consistency rules are returned by REX. The contributions of this paper are
consequently as follows:

1. We introduce a novel framework for the extraction of RDF from templated web-
sites.

2. We present a novel wrapper induction approach for the extraction of subject-object
pairs from the Web.

3. We integrate state-of-the-art disambiguation and schema induction techniques to
retrieve high-quality RDF.

4. We evaluate the first version of REX on three datasets and present both the strengths
and weaknesses of our approach.

5. Overall, we present the (to the best of our knowledge) first web-scale, low-cost, ac-
curate and consistent framework that allows extracting RDF from structured web-
sites.

The rest of this paper is organized as follows. In Section 2, we introduce the nota-
tion that underlies this paper and the problems that we tackle. Section 3 presents the
architecture of REX in more detail as well as the current implementation of each of
its components. In particular, we illustrate our approach to generate examples from a
knowledge base K and we show our algorithm to learn web wrappers from such exam-
ples. Subsequently, we give an overview of AGDISTIS [22] which we use to address
the problem of URI disambiguation. Finally, we describe our current solution to en-
suring the validity of the data generated by REX. In Section 4 we present the results
of REX on 3 datasets, each containing at least 10,000 pages. We discuss related work
in Section 5, and we conclude the paper in Section 6. More information on REX can
be found at http://aksw.org/Projects/REX including inks to the source code
repository (incl. examples), to the documentation and to a tutorial of the framework.

2 Notation and Problem Statement

In this section, we present the concepts and notation to understand the concept behind
REX. We denote RDF triples as < s, p, o > where (s, p, o) ∈ R × P × (R ∪ L). We
call R the set of resources, P the set of properties and L the set of literals. We call
A = R ∪ P ∪ L the set of all atoms. We regard knowledge bases K as sets of triples.
We denote the set of all pairs (s, o) such that < s, p, o >∈ K with pairs(p,K). We
define the in-degree in(a) of an atom a in K as the number of distinct x such that
there is a predicate q with < x, q, a >∈ K . Conversely, the out-degree out(a) of a is
defined as the number of distinct atoms y that are such that there exists a predicate q′

with < a, q′, y >∈ K . We assume the existence of a labeling function label, which
maps each element of A to a sequence of words from a dictionaryD. Formally, label :
A → 2D. For example, the value of label(r) can be defined as the set of x with <r,
rdfs:label, x>∈ K if r is a resource and as the lexical form of r if r is a literal.

Based on this formalisation, we can define the problem that REX addresses as fol-
lows: Given (1) a predicate p that is contained in a knowledge base K and (2) a set of
unlabeled web pages W = {w1, w2, . . . , w|W |}, extract a set of triples < si, p, oi >
from the websites of W . Several tasks have to be addressed and solved to achieve this
goal within the paradigm that we adopt:



Web-Scale Extension of RDF Knowledge Bases from Templated Websites 69

Problem 1: We first require an approach for extracting pairs of resource labels out of
unlabelled pageswi. We tackle this problem by means of a wrapper induction algorithm
(see Section 3.4). We assume that we are given (1) a set E ⊆ {(s, o) :< s, p, o >∈ K}
of positive examples for a predicate p from the Linked Data Web and (2) a set of web
pagesW without any labeling. Our aim is to generate high-quality wrappers, expressed
as pairs of XPath expressions over these unlabeled web pages W , that extract a pair of
values from each page.

Problem 2: Once the pairs of values have been extracted from web pages, we need to
ground them in the knowledge base K . In this context, grounding means that for each
value extracted by our solution to Problem 1 we have to either (1) find a matching re-
source or (2) generate a novel resource or literal for this particular value. We address this
challenge by using a URI disambiguation approach that combines breadth-first search
and graph algorithms to determine a resource that matches a given string. If no URI is
found, our approach generates a new resource URI (see Section 3.5).

Problem 3: Once new knowledge has been generated, it is central to ensure that the
knowledge base K to which it is added remains consistent. To this end, we need to
ensure that we do not add any statements to K that go against its underlying axioms.
The problem here is that these axioms are not always explicated in knowledge bases
in the LOD Cloud. We thus devise an approach to generate such axioms from instance
data (see Section 3.5). To achieve this goal, we use a statistical analysis of the use of
predicates across the knowledge base K . Moreover, we provide means to use RDFS
inference to generate new knowledge from new resources generated by our solution to
Problem 2.

3 The REX Framework

In the following, we present REX, an integrated solution to the three problems presented
above. We begin by giving an overview of its architecture. Then, we present each of its
components. As running example, we use the extraction of movie directors from web
pages.

3.1 Overview

Figure 1 gives an overview of REX. All modules are interfaces, for which we provide
at least one implementation. Hence, REX can be ran out of the box. Given a predicate p
and a knowledge baseK , REX provides a domain identification interface, which allows
for detecting Web domains which pertain to this predicate. For example, the predicate
dbo:actor leads to the domain http://imdb.com being retrieved. From this do-
main, a set W of web pages can be retrieved by using a crawler. The results of the
crawling are stored in a solution for unstructured data, for example an index. REX then
generates a set of examples using an instantiation of the example generator interface.
The goal here is to generate a sample E of all elements of pairs(p,K) that allows
learning high-quality pairs of XPath expressions. The examples are given to a wrapper
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inducer, which learns pairs of XPath expressions for extracting the pairs of values in E
from the elements of W . These pairs are then applied to all pages of W . The extrac-
tion results, i.e., pairs of strings, are passed on to a URI generator, which implements
a graph-based disambiguation approach for finding or generating URIs for the strings
contained in the extraction results. The resulting set C of candidate triples are finally
forwarded to an validation engine, which learns axioms from K and applies these to
C to derive a set of triples that are consistent with K . In the following, we detail our
current implementation of each of these components.

Fig. 1. Architecture of REX

3.2 Extraction Layer

REX’s data extraction layer consists of two main components: The domain identifica-
tion module is the first component of the layer and takes a set of triples (s, p, o) as
examples and returns a ranked list of Web domains. Our current implementation sim-
ply uses the Google interface to search for websites that contain the label of all s,
p and o. The top-10 domains for each triple are selected and their rank is averaged
over all triples. The resulting ranking is returned. For our example dbo:actor, we
get http://imdb.com as top-ranked domain. The second component consists of a
crawler interface which allows to gather the web pages that are part of the detected
domain and collect them in a storage solution for unstructured data. Currently, we rely
on crawler4j6 for crawling and Apache Lucene7 for storing the results of the crawling.

3.3 Storage Layer

The storage layer encapsulates the storage solutions for structured data (i.e., the knowl-
edge base K) and the unstructured data (i.e., the output of the extraction layer). We
assume that the structured data can be access via SPARQL. The unstructured data

6 https://code.google.com/p/crawler4j/
7 http://lucene.apache.org/
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storage is expected to return data when presented with a pair (s, o) of resources, which
is commonly a positive or negative example for the pairs that abide by p. As stated
above, we rely on a Lucene index that can access the labels of resources and simply
search through its index for pages that contain both a label for s and a label for o.

3.4 Induction Layer

The induction layer uses the data in the storage layer to compute wrappers for the web-
site crawled in the first step. To this end, it contains two types of modules: The example
generation module implements sampling algorithms that are used to retrieve examples
of relevant pairs (s, o) such that (s, p, o) ∈ K . These examples are used to feed the
wrapper induction module, which learns the wrappers that are finally used to extract
data from web pages. Hereafter, we present the implementations of these modules.

Generation of Examples. Given a knowledge base K , the generation of all examples
E for a predicate p can be retrieved by computing all triples < s, p, o > fromK . How-
ever, using all triples might lead to poor scalability, especially if K is very large. To
ensure the scalability of our approach, we thus aimed to ensure that we can provide
REX with only a sample of E and thus reduce its learning runtime without diminishing
its accuracy. Our first intuition was that it is more likely to find resources that stand for
well-known real-world entities on the Web. Thus, by selecting the most prominent ex-
amples from the knowledgeK , we should be able to improve the probability of finding
web pages that contain both the subject and the object of our examples. This intuition
can be regarded as prominence-driven, as it tries to maximize the number of annotated
pages used for learning. We implemented this intuition to generating a sample of E by
implementing a first version of the example generator that ranks the examples (s, o) in
E in descending order by how prominent they are in the knowledge base. The score
scr for ranking the examples was computed by summing up the in- and out-degree of
s and o: scr(s, o) = in(s) + in(o) + out(s) + out(o). We call this example selection
prominence-based.

The main drawback of this first intuition is that it introduces a skew in the sampling as
we only consider a subset of entities with a particular distribution across the pages inW .
For example, actors in IMDB have different templates depending on how popular they
are. Learning only from popular actors would then lead to learning how to extract values
only from web pages obeying to particular type of HTML template. While this problem
can be by choosing a large number of examples, we revised our sampling approach to
still use the ranking but to sample evenly across the whole list of ranked resources. To
this end, given a number n of required pairs, we return the first n pairs (s, o) from the

ranked list computed above whose index idx abides by idx(s, o) ≡ 0
(
mod

⌊
|E|
n

⌋)
.

We call this second implementation of the example generator interface the uniform
approach .

Wrapper Generation. Detecting rules to extract the subject-object pairs related to
a property p is the most difficult step when aiming to extract RDF from templated
website. Here, we present our current implementation of the wrapper induction
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module interface of REX, which aims to extract subject-object pairs for p from a set of
pages W that belong to the same website and share a common template. We assume
that an example generator provides the input set E containing a subset of the pairs
that can be extracted from the pages in W . Formally, let Q denote the set of pages that
contain a pair in E: Q = {w : w ∈ W, (s, o) ∈ E ∧ (label(s), label(o)) ∈ w},
where (label(s), label(o)) ∈ w denotes that at least one of the labels of s and at least
one of the labels of o occur in the page w. We use the pairs in E to gain the positive
annotations for the pages in Q. These annotations are needed to automatically infer a
set of wrappers, i.e., a set of extraction rule pairs that extract the target subject-object
pairs.

To avoid the extraction of incorrect values, our approach includes a technique to
evaluate the output wrapper coverage, i.e., the number of pages in W for which the
wrappers inferred from Q correctly extract the target subject-object pairs.

Listing 1 reports the pseudo-code of our algorithm to generate the wrappers that ex-
tract subject-object pairs related to a property p from a set of pages: it takes as input the
set of pages W and the set of examples E. To abstract the extraction rules generative
process in our implementation, we assume that there exists, as a parameter of the algo-
rithm, a class of all the creatable extraction rules R. It corresponds to the set of XPath
expressions that we can generate over the pages in W .

As a first step (line 2), the algorithm computes the set of pagesQ (we assumeQ �= ∅).
Then, it picks up a small set of sample pages I from Q.8 From the pages in I two
initial sets of extraction rules, Rs and Ro, are generated (lines 4-5), as follows. First,
we analyze the DOM tree of the pages to locate nodes that are part of the template.
We use these nodes as roots of XPath expressions that match with the input pair. To
discover the template nodes, we compute the occurrences of the textual leaf nodes in
the pages. Following the intuition developed in [1], we consider template nodes the
document root, the nodes with an id attribute, and the text leaves that occur exactly
once with same value and same root-to-leaf sequence of tags in a significant percentage
(80%) of pages. The rationale is that it is very unlikely that a node occurs exactly once
in several pages with the same root-to-leaf path by chance; rather, it is likely repeated in
every page since it comes from a piece of the underlying HTML template.

Template nodes are then used as pivot nodes to generate XPath expressions that
match with nodes containing a textual leaf that equals the subject (object) of the input
pair. Given a pivot node l, an XPath expression for the textual node t is computed
by appending three expressions: (i) an expression that matches with the pivot node t,
(ii) the path from t to the first ancestor node, nlt, shared by t and l, (iii) the path from
nlt to l (which descends from the shared ancestor node to the target textual node). To
avoid an excessive proliferation of rules, we bound the length of the XPath expressions,
i.e., the number of XPath steps.9

The above step produces several extraction rules that correctly work on the pages in
I . However some of these rules could not work on a larger set of pages. For example,
consider a set of pages such as those shown in Figure 2(a). Assuming that the leaf
nodes ‘Director:’ and ‘Ratings:’ appear once with the same root-to-leaf path in most

8 In our implementation k = |I | = 10.
9 We observed that producing rules longer than 8 steps do not produce any benefit.
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(a)

Extraction rules
r1: //*[contains(.,”Ratings:”)]/../p-s::tr[2]/td/text()

r2: //*[contains(.,”Director:”)]/../p-s::tr[1]/td/text()

r3: /html/table/tr[1]/td/text()

ps = preceding-siblings

(b) (c) (d)

Fig. 2. (a) DOM trees of three pages (in a fictional set I), (b) a page in Q (with a template that
differs from those of the pages in I), (c) some rules to extract the movie title, and (d) a page in
W (with a template that differs from those of the pages in Q).

of the pages in I , they would be considered as template nodes. Figure 2(c) reports an
example of the XPath expressions pivoted in these nodes, and generated to extract the
movie title. Notice, however, that rule r1 does not extract the movie title on pages like
that depicted in Figure 2(b), i.e., pages without user ratings. To improve the accuracy
of the rules generated from pages in I , we evaluate the generated rules over Q, and
select those that extract the largest number of annotations (line 6). In our example, the
extraction rules r2 and r3 would be selected, while r1 would be discarded, as the former
rules work also on the page of Figure 2(b), while the latter does not.

The selected rules are those better working for the pages in Q, that are the pages
containing pairs of K . Although it is likely that these rules also work for the whole
collection of input pages, it might also be the case that W contains pages obeying to
a slightly different template not observed within Q. For example, consider the page in
Figure 2(d): since the movie has been awarded 3 Oscars, the corresponding page has
small structural differences, and neither r1 nor r3 correctly extract the title.

To overcome this issue, we leverage the redundancy of equivalent rules generated
in the above steps. Targeting only resources from pages for which the extraction is
likely to work correctly, we return the pairs (lines 7-8) on which all the distinct yet
equivalent rules return the same value. Again from our example, observe that rules r2

and r3 extract different values from the page in Figure 2(d) (Argo and Oscar 2013,
respectively), therefore, none of the values extracted from that page would be added in
the final output. All these rules are used later (lines 9-13) to check that they extract the
same value (line 10) from a web page.

3.5 Generation Layer

Now that data has been extracted from the websites, REX is ready to generate RDF
out of them. To achieve this goal, two steps needs to be carried out. First, the strings
retrieved have to be mapped to RDF resources or literals. This is carried out by the
URI disambiguation modules. The resulting triples then need to be checked for whether
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Listing 1. ALFREX: Extract Subject-Object Pairs from a Website

Input: knowledge base K, a predicate p, a set of examples E = {(s, o)|(s, p, o) ∈ K}
Input: a set of pages W = {w1, . . . , w|W |} containing data related to the predicate p

Parameter: a class of extraction rules R over W
Parameter: k, the number of sample pages for generating the rules

Output: set T of pairs of strings extracted from pages W

1: T := ∅; // output pairs of strings
2: Q := {w ∈ W : (label(s), label(o)) ∈ w, (s, o) ∈ E};
3: I := a set of k random pages from Q;
4: Rs := {r, r ∈ R,w ∈ I, (label(s), label(o)) ∈ w, r(w) = label(s)};
5: Ro := {r, r ∈ R,w ∈ I, (label(s), label(o)) ∈ w, r(w) = label(o)};
6: (rs, ro) := argmaxrs∈Rs,ro∈Ro

|{w,w ∈ Q, (label(s), label(o)) ∈ w, rs(q) =
label(s) and ro(q) = label(o)}|;

7: {r1s , r2s , . . . , rns } ← {r, r ∈ Rs, r(Q) = rs(Q)};
8: {r1o , r2o, . . . , rmo } ← {r, r ∈ Ro, r(Q) = ro(Q)};
9: for q ∈ W do

10: if (r1s(q) = . . . = rns (q) and r1o(q) = . . . = rmo (q)) then
11: T ← T ∪ {(r1s(q), r1o(q))};
12: end if
13: end for
14: return T ;

they go against the ontology of the knowledge base or other consistency rules. This
functionality is implemented in the data validation modules.

URI Disambiguation. URI disambiguation is not a trivial task, as several resources can
share the same label in a knowledge base. For example, “Brad Pitt” can be mapped to
the resource :Brad Pitt (the movie star) or :Brad Pitt (boxer), an Australian
boxer. We address this problem by using AGDISTIS, a framework for URI disambigua-
tion [22]. In our current implementation, we chose to simply integrate the AGDISTIS
framework using DBpedia 3.8. We chose this framework because it outperforms the
state-of-the-art frameworks AIDA [15] and DBpedia Spotlight [18] by 20% w.r.t. its
accuracy. Especially on short RSS feeds containing only two resource labels, the ap-
proach achieves 3% to 11% higher accuracy. More details on AGDISTIS as well as a
thorough evaluation against popular frameworks such as DBpedia Spotlight and AIDA
can be found in [22]. Note that if no resources in K has a URI which matches s or o,
we generate a new cool URI10 for this string.

Data Validation. Sequentially applying the steps before results in a set of triples
< s, p, o > that might not be contained in K . As we assume that we start from a con-
sistent knowledge base K and the whole triple generation process until here is carried
out automatically, we need to ensure thatK remains consistent after adding< s, p, o >

10 http://www.w3.org/TR/cooluris
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to K . To this end, REX provides a data validation interface whose first implementa-
tion was based on the DL-Learner.11 Depending on the size of K , using a standard
OWL reasoner for consistency checks can be intractable. Thus, our current implemen-
tation applies the following set of rules based on the schema of K and add a triple
< s1, p, o1 > only if it holds that:

1. If a class C is the domain of p, there exists no type D of s1 such that C and D are
disjoint.

2. If a class C is the range of p, there exists no type D of o1 such that C and D are
disjoint.

3. If p is declared to be functional, there exists no triple < s1, p, o2 > in K such that
o1 �= o2.

4. If p is declared to be inverse functional, there exists no triple < s2, p, o1 > in K
such that s1 �= s2.

5. If p is declared to be asymmetric, there exists no triple < o1, p, s1 > in K .
6. If p is declared to be irreflexive, it holds that s1 �= o1.

Note that this approach is sound but of course incomplete. Although an increasing num-
ber of RDF knowledge bases are published, many of those consist primarily of instance
data and lack sophisticated schemata. To support the application of the above defined
rules, we follow the work in [6,7], which provides a lightweight and efficient schema
creation approach that scales to large knowledge bases.

4 Evaluation

The goal of the evaluation was to provide a detailed study of the behavior of the current
REX modules with the aim of (1) ensuring that our framework can be used even in its
current version and (2) detecting current weaknesses of our framework to trigger future
developments. In the following, we begin by presenting the data and hardware we used
for our experiments. Thereafter, we present and discuss the results of our experiments.
Detailed results can be found at the project website.

4.1 Experimental Setup

We generated our experimental data by crawling three websites, i.e.,

1. imdb.com where we extracted dbo:starring, dbo:starring−1 and
dbo:director;

2. goodreads.com, from which we extracted dbo:author and
dbo:author−1;

3. espnfc.com with the target relations dbo:team and dbo:team−1.

We chose these websites because they represent three different categories of templated
websites. imdb.com widely follows a uniform template for all pages in the same sub-
domain. Thus, we expected the wrapper learning to work well here. goodreads.com

11 http://dl-learner.org
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represents an average case of templated websites. While template are most widely used
and followed, missing values and misused fields are more common here than in our
first dataset. The third dataset, espnfc.com, was chosen as worst-case scenario. The
dataset contains several blank pages, a large variety of templates used in manifold dif-
ferent fashions. Consequently, defining a set of golden XPaths is a tedious task, even
for trained experts. Thus, we expected the results on this dataset to be typical for the
worst-case behavior of our approach. We randomly sampled 10,000 HTML pages per
subdomain for our experiments and manually built reference XPath expressions to eval-
uate the precision and recall of the generated extraction rules. The precision, recall and
F-measure reported below were computed by comparing the output of REX with the
output of the reference XPath expressions. All extraction runtime experiments were
carried out on single nodes of an Amazon EC2.small instance.

4.2 Results

Effect of Number of Examples and Sampling Strategy on F-Measure. The results
of our experiments on altering the number of examples used for learning are shown
in Figures 3a-3h. Due to space limitations, we show the average results over all the
pairs extraction by our wrapper induction approach for each of the domains. The results
achieved using the prominence-based sampling show the expected trend: on pages that
use a consistent template (such as the director pages in imdb.com), our approach re-
quires as few as around 70 pages for |Q|. Once this value is reached, REX can compute
high-quality extraction rules and achieves an F-measure of 0.97 (see Figures 3a). For
pages that change template based on the prominence of the entities they describe (like
the actors’ pages, see Figure 3b), our approach requires more training data to achieve
a high F-measure. The increase of F-measure is clearly due to an increase in precision,
pointing to REX being able to better choose across different alternative XPaths when
provided with more information. The results of goodreads.com support our conjec-
ture. With more training data, we get an increase in precision to up to 1 while the recall
drops, leading to an overall F-measure of 0.89 for 40k examples. In our worst-case sce-
nario, we achieve an overall F-measure close to 0.6. The lower value is clearly due to
the inconsistent use of templates across the different pages in the subdomains.

Table 1. Average evaluation results using all available pairs as training data

P R F-measure # pages

dbo:director 0.82 1.00 0.89 216
dbo:starring 0.86 1.00 0.90 316
dbo:author 0.94 0.85 0.86 217
dbo:team 0.32 0.43 0.35 656

The results based on the uniform sampling strategy reveal another trait of REX. As
expected, the coverage achieved using uniform sampling is clearly smaller in all cases.
The results achieved with all the training data available clearly show the importance of
sampling (see Table 1). While one could conjecture that using all data for training would



Web-Scale Extension of RDF Knowledge Bases from Templated Websites 77

 0

 0.2

 0.4

 0.6

 0.8

 1

10k/60 20k/88 30k/112 40k/129

#pairs/#pages

F
P
R

(a) Directors from IMDB,
prominence-based sampling

 0

 0.2

 0.4

 0.6

 0.8

 1

10k/39 20k/52 30k/68 40k/78

#pairs/#pages

F
P
R

(b) Actors from IMDB,
prominence-based sampling

 0

 0.2

 0.4

 0.6

 0.8

 1

10k/109 20k/154 30k/185 40k/208

#pairs/#pages

F
P
R

(c) Authors from Goodreads,
prominence-based sampling

 0

 0.2

 0.4

 0.6

 0.8

 1

10k/15 20k/35 30k/55 40k/89

#pairs/#pages

F
P
R

(d) Directors from IMDB, uni-
form sampling

 0

 0.2

 0.4

 0.6

 0.8

 1

10k/24 20k/52 30k/70 40k/83

#pairs/#pages

F
P
R

(e) Actors from IMDB, uniform
sampling

 0

 0.2

 0.4

 0.6

 0.8

 1

10k/48 20k/90 30k/131 40k/217

#pairs/#pages

F
P
R

(f) Authors from Goodreads,
uniform sampling

 0

 0.2

 0.4

 0.6

 0.8

 1

10k/7 20k/18 30k/33 40k/54

#pairs/#pages

F
P
R

(g) Teams from ESPNFC,
prominence-based sampling

 0

 0.2

 0.4

 0.6

 0.8

 1

10k/22 20k/37 30k/61 40k/67

#pairs/#pages

F
P
R

(h) Teams from ESPNFC, uni-
form sampling

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 15 20

10

20

30

40

50

S
e
c
o
n
d
s

|I|

F
Runtime

(i) Average computational time
and F-measure over all datasets

Fig. 3. Overall evaluation results of the extraction of pairs. Figures (a)-(h) show the average preci-
sion, recall and F-measure achieved the generated XPaths for the prominence-based and uniform
sampling. The x-axis shows the number of examples and the number of sample pages retrieved
in the format |E|/|Q|. Figure (i) shows the average computational time and the corresponding
F-measures for different sizes of |I |.

be beneficial for our approach, the F-measures achieved by using all the data suggest
that sampling can be beneficial for the extraction, especially when the web pages do not
follow a rigid template (e.g., in esnpfc.com) or when the data in the knowledge base
is noisy. Overall, our results suggest that our approach is accurate, also for pages where
entities with different prominence are assigned variable templates as in imdb.com
actors. If multiple occurrences of the same value are present in the same page (as in the
case of books, actors and directors), our algorithm is able to detect the most stable one.
Moreover, our approach seems robust against noisy labels, even when there are many
false positive in the page (e.g., book author pages that include many links to different
books by the same author). An important feature of our approach is that it can obtain
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Table 2. Triples generated by 100 randomly sampled pages, number of possible triples generated
by using gold standard rules

Property #Possible #Triples generated #Consistent #Correct #New
triples by AlfREX triples triples triples

dbo:author−1 54 32 32 22 22
dbo:author 83 83 69 54 54

dbo:team−1 2 1 1 0 0
dbo:team 30 55 42 19 13

dbo:starring−1 40 99 83 35 34
dbo:starring 70 70 44 33 32

dbo:director 61 56 52 41 41

accurate XPaths even by learning from a very small fraction of pages. For example,
in our experiments on up to 40k pages, our approach learned XPath expressions from
only 0.5% to 1.16% of |W |. Still, for very noisy domains with an inconsistent use of
templates, our approach can lead to less accurate extraction rules.

Runtime Performance. We evaluated the runtime performance of our approach by
using 40k examples and the prominence-based distribution while altering the size of I .
As expected, setting |I| to a low value (e.g., 1) leads to less rules being generated and
thus to an overall better runtime performance (see Figure 3i). By setting I to a low value,
REX can be used to get a quick overview of possible extraction results, a characteristic
of our system that could result beneficial for end users. Yet, it also leads to worse overall
F-measures. Setting I to a higher value (e.g., 15) leads to a more thorough (i.e., more
time-demanding) analysis of the websites and thus to better results. Still overall, our
approach scales quasi linearly and requires on average less than thirty seconds to learn
wrappers out of existing data even for |I| = 20.

Quality of RDF Output. To check the quality of the RDF we generated, we manually
checked the triples extracted from each property of our three domains. Each triple was
checked by at least two annotators, which reached a significant Kohen’s kappa score
of 0.88 overall. On goodreads.com we achieved a precision of 75.24%. While we
achieve a precision of 78.85% when extraction directors from imdb.com and of 75% on
starring, the extraction of starring−1 proves more tedious (precision = 42.17%).
As expected, the data extracted from espnfc.com has a low precision of 44.19%. The
results on starring−1 are due to the fact that several actors can star in a movie while
assuming other roles. Thus, our extraction framework often overgenerates triples and
produces false positives (e.g., directors are often included). The results on espnfc.com
are clearly due to the templates not being used correctly. Still, our results clearly show
the potential of our approach, as 60.68% of the triples we extracted are both correct and
novel.
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5 Related Work

To the best of our knowledge, no open-source framework covers the complete func-
tionality of the REX framework. REX relies internally on URI disambiguation and
data validation based on automatically extracted axioms [6]. These are both areas of
research with a wide of body of publications. Especially, several approaches to URI
disambiguation based on graphs [15,22] and statistical information from text [18] have
been developed recently. The extraction of axioms from knowledge based using statis-
tical information [6,7] as also flourished over the last years. The main idea underlying
these approaches is to use instance knowledge from knowledge bases without expres-
sive schemas to compute the axioms which underlie the said knowledge bases. We refer
the reader to the publications above for an overview of these two research areas.

REX is mainly related to wrapper induction. Early approaches to learning web wrap-
pers were mostly supervised (see, e.g., [16,11]). These systems were provided with an-
notated pages out of which they infer extraction rules that allow extracting data from
other unlabeled pages with the same structure as the annotated pages). For example [16]
presents Tresher, a system that allows non-technical end-users to teach their browser
how to extract data from the Web. Supervised approaches were yet deemed costly due
to the human labor necessary to annotate the input web pages. Unsupervised wrapper
induction methods have thus been explored [8,1] to reduce the annotation costs. How-
ever, the absence of a supervision often lead these systems to produce wrappers of ac-
curacy not suitable for production level usage. Novel approaches thus aim to minimize
the annotation costs while keeping a high precision. For example, the approach pre-
sented in [10] relies on the availability of a knowledge base in the form of dictionaries
and regular expressions to automatically obtain training data. Recently, [9] describes
a supervised framework that is able to profit from crowd-provided training data. The
learning algorithm controls the cost of the crowd sourcing campaign w.r.t. quality of
the output wrapper. However, these novel approaches do not target the generated of
RDF data.

Linked Data has been used to learn wrappers to extract RDF from the Web in re-
cent years. For example, [12] exploits Linked Data as a training data to find instances
of given classes such as universities and extract the attributes of these instances while
relying on the supervised wrapper induction approach presented in [14]. However, they
require a manual exploration of the Linked Data sources to generate their training data,
which leads to a considerable amount of manual effort. The DEIMOS project [19] is
similar to REX, as it aims at bringing to the Semantic Web the data that are published
through the rest of the Web. However, it focuses on the pages behind web forms. On-
toSyphon [17] operates in an “ontology-driven” manner: taking any ontology as input,
OntoSyphon uses the ontology to specify web searches that identify possible seman-
tic instances, relations, and taxonomic information, in an unsupervised manner. How-
ever, the approach makes use of extraction patterns that work for textual documents
rather than structured web pages. To the best of our knowledge, none of the existing
approaches covers all steps that are required to extract consistent RDF from the Web.
Especially, only [19] is able to generate RDF but does not check it for consistency. In
contrast, REX is the first approach that is scalable, low-cost, accurate and can generate
consistent RDF.
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6 Conclusions

In this paper we presented the first framework for the consistent extraction of RDF from
templates Web pages. REX is available as open source12 Java implementation in an eas-
ily extendable fashion. Our framework uses the LOD Cloud as source for training data
that are used to learn web wrappers. The output of these wrappers is used to generate
RDF by the means of a URI disambiguation step as well as a data validation step. We
studied several sampling strategies and how they affect the F-measure achieved. Our
overall results show that although we can extract subject-object pairs with a high accu-
racy from well-templated websites, a lot of work still needs to be done in the area of
grounding these strings into an existing ontology. One solution to this problem might
be to use more context information during the disambiguation step. Moreover, more so-
phisticated approaches can be used for crawling websites offering structured navigation
paths towards target pages [5]. By these means, we should be able to eradicate some
of the sources of error in our extraction process. Our approach can be further improved
by combining it with crowdsourcing-based approaches for wrapper induction such as
ALFRED [9] or by learning more expressive wrappers. We thus regard this framework
as a basis for populating the Web of Data using Web pages by professional end-users.
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Abstract. In this paper we show how event processing over seman-
tically annotated streams of events can be exploited, for implementing
tracing and tracking of products in supply chains through the automated
generation of linked pedigrees. In our abstraction, events are encoded as
spatially and temporally oriented named graphs, while linked pedigrees
as RDF datasets are their specific compositions. We propose an algo-
rithm that operates over streams of RDF annotated EPCIS events to
generate linked pedigrees. We exemplify our approach using the phar-
maceuticals supply chain and show how counterfeit detection is an im-
plicit part of our pedigree generation. Our evaluation results show that
for fast moving supply chains, smaller window sizes on event streams
provide significantly higher efficiency in the generation of pedigrees as
well as enable early counterfeit detection.

1 Introduction

Recent advances in sensor technology has resulted in wide scale deployment
of RFID enabled devices in supply chains. Timely processing of RFID data
facilitates efficient analysis of product movement, shipment delays, inventory
shrinkage and out-of-stock situation in end-to-end supply chain processes [1].
The scanning of RFID tags in production and storage facilities generates un-
precedented volumes of events as data streams, when trading partners exchange
and handle products from inception through to the end-of-life phase.

In this paper we present a methodology for the automated generation of event-
based traceability/visibility information, referred to as “linked pedigrees”. We
propose a pedigree generation algorithm based on complex processing of real
time streams of RFID data in supply chains. Our streams comprise of events
annotated using RDF/OWL vocabularies. Annotating streams using standard-
ised vocabularies ensures interoperability between supply chain systems and ex-
pands the scope to exploit ontology based reasoning over continuously evolving
knowledge. We represent supply chain events as streams of RDF encoded linked
data, while complex event patterns are declaratively specified through extended
SPARQL queries. In contrast to existing approaches [6, 8, 9] where an element
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in a stream is a triple, our streams comprise of events where each event is rep-
resented as a named graph [5]. A linked pedigree is considered as a composition
of named graphs, represented as an RDF dataset1.

Our exemplifying scenario is an abstraction of the pharmaceutical supply
chain. Counterfeiting has increasingly become one of the major problems preva-
lent in these chains. The WHO estimates that between five and eight percent
of the worldwide trade in pharmaceuticals is counterfeit [11]. Many industry
experts believe this to be a conservative estimate. Increased visibility of supply
chain knowledge, enabled through exchange of event-based traceability data or
pedigrees is anticipated to play a key role in addressing the problem.

In the fall of 2013, the U.S. House of Representatives and Senate passed
the Drug Quality and Security Act (DQSA)2. The track-and-trace provisions,
themselves known as The Drug Supply Chain Security Act (DSCSA)3 within
the DQSA outlines critical steps to build an electronic, interoperable system
to identify and trace certain prescription drugs as they are distributed in the
United States. In readiness for its implementation in the healthcare sector from
2015 onwards, the GS1 Healthcare US Secure Supply Chain Task Force has de-
veloped guidelines4 to identify and serialise pharmaceutical products, in order
to trace their movement through the U.S. pharmaceutical supply chains. The
guidelines are based around the implementation of EPCIS5 (Electronic Product
Code Information Services) as a standard for event oriented, pedigree track and
trace. In accordance to these guidelines, the algorithm proposed in this paper
utilises EEM6 (EPCIS Event Model) [14] - an OWL DL ontology for EPCIS,
CBVVocab7 an OWL DL ontology for the Core Business Vocabulary8, as the
specifications for encoding the event data streams and OntoPedigree9 a content
ontology design pattern for generating the linked pedigrees. To the best of our
knowledge, stream processing of events annotated with semantics enriched meta-
data for the generation of traceability/visibility data has so far not been explored
for EPCIS events within the Semantic Web or supply chain communities.

The paper is structured as follows: Section 2 presents our motivating sce-
nario from the pharmaceuticals supply chain. Section 3 discusses background
and related work. Section 4 presents the preliminaries needed for events and
pedigrees that we use in Section 5 for generating our pedigree composition algo-
rithm. Section 6 highlights our evaluation requirements, illustrates the execution
environment and discusses evaluation results. Section 7 presents conclusions.

1 http://www.w3.org/TR/rdf11-datasets/
2 http://www.gpo.gov/fdsys/pkg/BILLS-113hr3204enr/pdf/

BILLS-113hr3204enr.pdf
3 http://www.fda.gov/Drugs/DrugSafety/DrugIntegrityandSupplyChainSecurity/

DrugSupplyChainSecurityAct/
4 www.gs1us.org/RxGuideline
5 http://www.gs1.org/gsmp/kc/epcglobal/epcis
6 http://purl.org/eem#
7 http://purl.org/cbv#
8 http://www.gs1.org/gsmp/kc/epcglobal/cbv
9 http://purl.org/pedigree#
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2 Motivating Scenario

We outline the scenario of a pharmaceutical supply chain, where trading partners
exchange product track and trace data using linked pedigrees. Figure 1 illustrates
the flow of data for four of the key partners in the chain. The Manufacturer
commissions10, i.e, assigns an EPC (Electronic Product Code) to the items,
cases and pallets. The items are packed in cases, cases are loaded onto pallets and
pallets are shipped. At the Warehouse, the pallets are received and the cases are
unloaded. The cases are then shipped to the various Distribution centers. From
the Distribution centers the cases are sent to retail Dispenser outlets, where
they are received and unpacked. Finally, the items are stacked on shelves for
dispensing, thereby reaching their end-of-life in the product lifecycle.

Fig. 1. Trading partners in a pharmaceutical supply chain and the flow of information

As the serialised items, cases and pallets move through the various phases of
the supply chain at a trading partner’s premises, EPCIS events are generated
and recorded at several RFID reader nodes. Figure 2 illustrates the phases at
a manufacturer’s packaging setup and the event streams that can be possibly
generated in these phases. For example, events are generated when Case001 is
tagged, i.e, commissioned and read by Reader011, when it is packed and read by
Reader013 and finally when the case is made a part of shipment SSCC001 which
is read by Reader015. When the pallets with the cases are shipped from the
manufacturer’s premises to the warehouse, pedigrees encapsulating the minimum
set of EPCIS events are published at an IRI based on a predefined IRI scheme.
At the warehouse, when the shipment is received, the IRI of the pedigree is
dereferenced to retrieve the manufacturer’s pedigree. When the warehouse ships
the cases to the distribution center, it incorporates the IRI of the manufacturer’s
pedigree in its own pedigree definition. As the product moves, pedigrees are
generated with receiving pedigrees being dereferenced and incorporated, till the
product reaches its end-of-life stage.

Given this scenario, for a fast moving supply chain with high volumes (ap-
prox. 100,000 per day, cf. Section 6) of commissioned items, we evaluate the
algorithm proposed in this paper against the time taken for pedigree generation
and counterfeit detection. We experiment with varying sizes of event streams,

10 Associating the serial number with the physical product.
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Fig. 2. EPCIS Read points and events at the Manufacturer’s packaging setup

items, cases and pallets. In particular we would like to ascertain the trade offs
between the time taken in generating a large number of pedigrees, each corre-
sponding to a small number of commissioned items against generating a small
number of pedigrees for large number of commissioned items, aggregated cases
and pallets.

3 Background and Related Work

An Electronic Product Code (EPC)11 is a universal identifier that gives a unique,
serialised identity to a physical object. EPCIS is a ratified EPCglobal12 stan-
dard that provides a set of specifications for the syntactic capture and informal
semantic interpretation of EPC based product information. As the EPC tagged
object moves through the supply chain, RFID readers record and transmit the
tagged data as “events”. In this paper we are particularly concerned with three
types of EPCIS events:

– ObjectEvent represents an event that occurred as a result of some action on
one or more entities denoted by EPCs, e.g., “This list of objects was observed
entering warehouse #12 at 12:01AM, during Receiving”.

– AggregationEvent represents an event that happened to one or more EPC-
denoted entities that are physically aggregated (constrained to be in the
same place at the same time, as when cases are aggregated to a pallet), e.g.,
“This list of objects was just Palletized with this Pallet ID at Palletizer #27
at 12:32PM”.

11 http://www.gs1.org/gsmp/kc/epcglobal/tds/

tds 1 6-RatifiedStd-20110922.pdf
12 http://www.gs1.org/epcglobal
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– TransactionEvent represents an event in which one or more entities denoted
by EPCs become associated or disassociated with one or more identified
business transactions, e.g., “Order #123 was fulfilled with objects x, y and
z” .

A Pedigree is an (electronic) audit trail that records the chain of custody and
ownership of a drug as it moves through the supply chain. Each stakeholder
involved in the manufacture or distribution of the drug adds visibility-based
data about the product at their end, to the pedigree. Recently the concept of
“Event-based Pedigree”13 have been proposed that utilises the EPCIS specifi-
cation for capturing events in the supply chain and generating pedigrees based
on a relevant subset of the captured events. In previous work [13] we introduced
the concept of linked pedigrees, proposed a decentralised architecture and pre-
sented a communication protocol for the exchange of linked pedigrees among
supply chain partners. In this paper we build upon that work and propose an
automated pedigree generation algorithm using streams of EPCIS event data.

Several approaches [16, 17] have been proposed that utilise Complex Event
Processing (CEP) for RFID events. In [16], an event composition language,
declarative rules and a graph based event processing model are presented. In [17]
the authors synthesise behavioural profiles of business processes for query op-
timisation, based on external process models that define potential sequences
of events. Formal modelling of RFID events and roles for the pharmaceuticals
supply chain has been proposed in [10], but the focus there is on addressing se-
curity threats and counterfeits rather than generating pedigrees for traceability.
In contrast, the approach proposed in this paper addresses counterfeit detection
implicitly while generating pedigrees.

RFID platforms built around EPCIS have also been made available by major
IT vendors such as Oracle’s Pedigree and Serialization Manager14, Frequentz’s
IRIS Information Repository and Intelligence Server15, Microsoft’s BizTalk
RFID16 and SAP’s Auto-ID Infrastructure17. In all the above frameworks, event
descriptions are not interoperable, they cannot be shared and combined with
background knowledge about the objects being tracked and traced. Further,
none of these platforms provide any support for semantic descriptions of EP-
CIS events or generation of pedigrees as linked data nor do they provide any
explicit mechanism for counterfeit detection. However our proposed approach
could complement these implementations very well by providing a scalable data
sharing model and framework for exchanging pedigrees using open standards.

13 http://www.gs1.org/docs/healthcare/

Healthcare Traceability Pedigree Background.pdf
14 http://www.oracle.com/us/products/applications/life-sciences/

pedigree-serialization/index.html
15 Originally IBM’s InfoSphere Traceability Server,

http://frequentz.com/traceability-server/
16 http://msdn.microsoft.com/en-us/biztalk/dd409102
17 https://help.sap.com/aii
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Within the Semantic Web Community [7], Several frameworks for CEP and
querying over RDF streams such as C-SPARQL [6], CQELS [8], EP-SPARQL [2]
and INSTANS [9] have been proposed. Social media and smart cities have proved
to be important use cases for the application of these frameworks, however there
have been no applications in the business and supply chain sector. While most
approaches assume streams to comprise of a sequence of time-stamped RDF
triples, our streams are sequences of time-stamped RDF graphs. Some other
approaches for streaming data sources such as [3,4] have also been proposed. A
rule based approach to CEP of event streams that are semantically annotated is
presented in [15].

4 Preliminaries

4.1 EPCIS Events

For the generation of pedigrees we are interested in the three types of EP-
CIS events outlined in Section 3. The set of predefined18 EPCIS event types
Etypes = {Oe, Ae, Te}, where Oe is an Object event, Ae is an Aggregation event
and Te is a Transaction event. The set of predefined EPCIS business step types
Bsteps = {com, pck, shp} represent the business steps of “commissioning”, “pack-
ing” and “shipping” respectively as defined in the Core Business Vocabulary and
correspondingly in our CBVVocab ontology.

An EPCIS event E as defined in this paper, is a 6-tuple 〈Ie, to, tr, et, bs, Re〉
where,

– Ie ∈ I is the IRI for the event.
– to is the time at which the event occurred.
– tr is the time at which the event was recorded, henceforth referred to as the
timestamp of the event.

– et ∈ Etypes is the type of event.
– bs ∈ Bsteps is the business step.
– Re is a non empty set of EPCs associated with the event.

An EPCIS event named graph, Eg, is a pair (In ∈ I,Ge ∈ G), where In is the
name (as well as the IRI) of the event graph and Ge is the RDF event graph.
Additionally, we define functions eventGraph (Eg) and
eventIRI (eventGraph (Eg)) that return the event graph and the event IRI re-
spectively for the EPCIS event represented by Eg. Further, we define a function,
eventOccurrenceTime (eventGraph (Eg)) that returns the time of occurrence to
of the event represented in Ge.

An EPCIS stream (Gs) is an ordered sequence of RDF triples
〈(In, eventRecordedAt, tr) : [to]〉 published at an IRI Is ∈ I, and ordered by to.
The set of triples in Gs are valid at timestamp tr.

We use the notations and definitions defined above in the pedigree generation
algorithm proposed in Section 5.

18 Also referred to as an enum.
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4.2 Provenance Based Linked Pedigrees

In [13] we proposed a content ontology design pattern,“OntoPedigree”19, for
the modelling of traceability knowledge as linked pedigrees. As provenance of
information in supply chains is of critical importance, in this paper we extend
the pedigree definition to include provenance.

As pat of the core supply chain knowledge, a linked pedigree includes IRIs for
products, transaction and consignment. For provenance, we exploit the PROV-
O20 ontology. In particular, we define provenance assertions for the service and
the organisation that created the pedigree as well as for the events and other
information artifacts used in the creation of the pedigree. It is worth noting that
our event ontology EEM has also been mapped to PROV-O21. This implies that
we can trace the provenance associated with any event encapsulated within a
pedigree. This capability has proved immensely useful in associating authorities
with counterfeits (cf. Section 6) when they are detected.

Figure 3 illustrates the graphical representation of OntoPedigree augmented
with provenance information. In particular we link pedigrees to the creating
authority through the prov:wasAttributedTo property. Pedigrees are created
by every partner in the supply chain. Apart from the pedigree initiated and
created by the first partner, all other linked pedigrees include IRIs to the pedi-
gree datasets for the stakeholders in the immediate upstream or downstream
of the supply chain. Pedigrees received from external partners are related via
the ped:hasReceivedPedigree property which is defined as a subproperty of
prov:wasDerivedFrom and the time of pedigree generation is captured via the
prov:generatedAt property.

5 Incremental Linked Pedigree Generation Algorithms

5.1 Extracting Events from EPCIS Streams

Central to the generation of linked pedigrees from streaming EPCIS events is
the notion of “windows” that allow the extraction of an event graph from the
streams for further processing. We extract events from EPCIS event streams
using windows in two steps: In the first step, the window is selected based on
the time interval. In the second step, the filtering of the event IRIs for inclusion
in the pedigree is carried out based on the business steps that generated the
event graphs.

The following SPARQL queries corresponding to the window selection criteria
identified above are defined.The prefix eem corresponds to the EEM ontology.

Window Selection: Time Interval (Qt)

In this step all event IRIs within a time interval of X hrs (tumbling windows)
are selected from the event stream serialised in the TRIG22 format. As TRIG is
19 http://purl.org/pedigree#
20 http://www.w3.org/TR/prov-o/
21 http://fispace.aston.ac.uk/ontologies/eem_prov#
22 http://www.w3.org/TR/trig/
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Fig. 3. Graphical Representation of Provenance based OntoPedigree

currently not supported by any of the stream processing frameworks, we perform
this step as part of our implementation using customised functions.

SELECT DISTINCT ?g ?eventGraphIRI ?time WHERE{

GRAPH ?g {

?eventGraphIRI eem:eventRecordedAt ?time ;

BIND(now() AS ?t1)

FILTER(fun:extractHours(?t1, ?time) <= X) }}

Window Selection: Business Step (Qbs)

Event based consignment information to be included in a pedigree consists of
events corresponding to (a) the commissioning of the items, cases and pallets,
(b) aggregation of the items in the cases (c) loading of cases on the pallets and
shipping. The following SPARQL query, extracts the events corresponding to
these business step from each event graph.

SELECT DISTINCT ?objEvt ?aggEvt ?shpEvt WHERE

{

?objEvt a eem:ObjectEvent;

eem:hasBusinessStepType ?x;

eem:associatedWithEPCList ?y.

?y <http://purl.org/co#element> ?epc1.

{

?aggEvt a eem:AggregationEvent;

eem:hasAggregationURI ?au;

eem:hasBusinessStepType ?x1;
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eem:associatedWithEPCList ?y1.

?y1 <http://purl.org/co#element> ?epc1.

FILTER( contains(str(?x1), "packing"))

{

?shpEvt a eem:ObjectEvent;

eem:hasBusinessStepType ?x2;

eem:associatedWithEPCList ?z1.

?z1 <http://purl.org/co#element> ?au.

FILTER( contains(str(?x2), "shipping"))

}

}

FILTER (contains(str(?x), "commissioning"))

}

Counterfeit EPC Checking

The basis of our counterfeit detection mechanism mandates that all EPCs that
are part of an Aggregation event have been actually commissioned and asserted
as part of an Object event. This implies that if the business step is “packing”
for an Aggregation event, we further check if the EPCs included in the event
have indeed been commissioned as part of an Object event with business step
“commissioning”.

We experimented with various forms of aggregates and joins in our SPARQL
queries to efficiently retrieve and compare the EPCs in the commissioning and ag-
gregation events at the query level itself, however this proved to be highly ineffi-
cient and time-intensive. Simple queries for individually retrieving the EPCs and
running the counterfeit checks within our implementation gave us a much better
performance for counterfeit detection. We reproduce only one of the queries here
due to space constraints.

SELECT ?epc1 WHERE{

?event1IRI a eem:ObjectEvent;

eem:hasBusinessStepType ?x1;

eem:associatedWithEPCList ?y1.

?y1 <http://purl.org/co#element> ?epc1.

FILTER( (contains(str(?x1), "commissioning")))}

5.2 Pedigree Generation Algorithm: Commissioning-Packing-
Shipping

In accordance to the scenario presented in Section 2, Algorithm 1 generates the
pedigrees. It instantiates the pedigree graph, applies various checks as per the
SPARQL queries defined above, retrieves and integrates external datasets, before
finally publishing the linked pedigrees. The steps in the algorithm have been
illustrated in a self explanatory way within the pseudo code itself for brevity.
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6 Evaluation

6.1 Evaluation Requirements

Our evaluation for the pharmaceutical scenario outlined in Section 2 focuses on
two critical timing requirements for pedigree generation in the pharmaceutical
supply chain:

– The time taken to detect counterfeit products in varying volumes
of shipments: This is important as counterfeits have to be detected either
before or along with the pedigree generation. We consider the case where
counterfeits may be introduced as additional items or as replacement of
existing items, when items are being packed into cases. The items have EPCs
assigned and tagged to them, although they have not been commissioned at
the manufacturing unit.

– The time taken for pedigree generation: This time is crucial as pedigree
generation for a specific shipment must be initiated as soon as a shipping
event for the shipment is recorded. The pedigree must be published immi-
nently when the shipment is dispatched. Given this requirement, we evaluate
the time taken for the execution of the various queries in the algorithm for
varying number of commissioning, aggregation and shipping events, as well
as the overall time taken to generate the pedigrees.

6.2 EPCIS Event Volumes

In order to estimate the volume and velocity of events generated in pharmaceu-
tical event streams, we referred to grey literature and interviewed people closely
involved in the pharmaceutical sector and EPCIS experts. We referred to a sur-
vey [12] that studied the cost benefit analysis of introducing EPCIS event based
pedigrees in the pharmaceutical supply chain. As per the survey, the average
volume (number) of pallets, cases and items per month being shipped out of
a typical manufacturing unit is 290, 5800 and 580,000 respectively. Interviews
with experts corroborated the facts, however they also stated that for some large
scale units, the number of items shipped could be as high as 100,000 per day.

Assuming an average rate of production as 6 days per week and 10 hours
per day, we ran a simulation that replicated the volume and velocity of event
generation.We generated the commissioning events based on the number of items
ranging from 24,000 to 102,000 per day or approximately 40 to 170 per minute23.
As the number of items packed per case and the number of cases loaded per pallet
could vary across manufacturing units, we generated aggregation and shipping
events, considering aggregated items ranging from 100 to 500 (increments of
100) per case and number of cases per pallet ranging from 20 to 100 (increments

23 Since the number of pallets and cases commissioned is significantly lower than that
of the items, as a close approximation we assume that commissioning of the items
subsumes the commissioning of the cases and pallets and therefore do not consider
these events separately.
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Algorithm 1. Pedigree generation: Commissioning-Packing-Shipping

// Input is the event graph stream and output is the linked pedigree

Data: Is
Result: Gp

// Set up the pedigree graph

1 Instantiate the pedigree provenance graph, Gpp

2 Insert triple (Ip,prov:wasGeneratedAt, tp) in Gpp

3 Instantiate the pedigree default graph, Gpd

4 Insert triple (Ip,hasStatus, ped:Initial) in Gpd

5 Insert triple (Ip,hasSerialNumber, np) in Gpd

6 while Is has events do
// extracts the event graphs based on the window length for time

interval.

7 Execute Qt on the incoming stream Is to get the event IRI result set Re

8 for Eg ∈ Re do
9 Execute counterfeit EPC checking queries on Re to get counterfeit EPC

result set, Rc

10 if (Rc is non-empty) then
11 Send notification for counterfeit EPC
12 else
13 Retrieve event graph, eventGraph(Eg)
14 Transform Eg to N-Triples representation
15 Execute Qbs on Eg using a RDF stream processor
16 Extract event URIs for commissioning, aggregation and shipping

events in Rcom, Ragg, Rshp respectively
17 for Ia rdf:type Ae ∈ Ragg do
18 Insert triple (Ip, eem:hasConsignmentInfo, Ia) in Gpd

19 end for
20 for Ie rdf:type Oe ∈ Rcom do
21 Retrieve product master IRI, Im for EPCs in Ie
22 Insert triple (Ip, eem:hasProductInfo, Im) in Gpd

23 Insert triple (Ip, eem:hasConsignmentInfo, Ie) in Gpd

24 end for
25 for Is rdf:type Te ∈ Rshp do
26 Insert triple (Ip, eem:hasTransactionInfo, Ie) in Gpd

27 end for

28 end if

29 end for
30 Merge graphs Gpp and Gpd

31 Publish Gp at IRI Ip
32 end while
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of 20). We experimented with tumbling window sizes of 3, 5, 7 and 10 hours
respectively. For the window size of 10 hours and rate of 120 and 170 items per
minute in the stream, the number of commissioning, aggregation and shipping
events are highlighted in Table 1 giving an indication of the overall volume of
events we considered. Based on the rate of counterfeits as highlighted in Section
1, we introduce 8% of the total items as counterfeits in order to estimate the
time taken for detection. The event dataset dumps used for the various runs of
the algorithm as part of our simulation have been made available24.

Table 1. Number of commissioning, aggregation and shipping events for a window size
of 10 hours and item commissioning rate of 120 and 170 per minute

100-500 per case 20-100 per pallet

Window
size (hrs)

Items/min. event
stream velocity

Commissioned
events

Aggregation events (in-
crements of 100)

Shipping events
for each of the
aggregates
(increments of
20)

10

120 72000 720/360/240/180/144 36/18/12/9/7
18/9/6/5/4
12/6/4/3/3
18/9/6/5/4
7/4/3/2/2

170 102000 1020/510/340/255/204 51/26/17/13/11
26/13/9/7/5
17/9/7/5/4
13/7/5/4/3
10/5/4/3/2

6.3 Pedigree Generation Framework

Figure 4 illustrates the workflow and execution environment of our EPCIS stream
processing framework. We have developed a library, LinkedEPCIS25 for encoding
EPCIS events as linked data. RFID tag data, read by readers is converted into a
stream of linked EPCIS event named graphs using the library, which is deployed
on the edge server or as part of a custom app. EPCIS event streams are accessed
by the Linked Pedigree server that deploys various components for facilitating
the generation of linked pedigrees from event IRIs.

As our event streams are named graphs, we natively generated the streams
in TRIG. However currently none of the stream processing engine support the
TRIG format. We therefore implemented an event extractor component that
extracts the event graphs from the stream based on predefined window sizes,
computed using the rate of event generation identified above.

24 http://fispace.aston.ac.uk/pharma/eventDatasets
25 https://github.com/nimonika/LinkedEPCIS
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As part of our machinery, we incorporate an enhanced version of an exist-
ing semantic stream processing engine, INSTANS [9] for continuously executing
queries over our event streams. As INSTANS accepts event streams in NTriples,
we convert the extracted event stream into the N-Triples serialisation before pip-
ing it with INSTANS, where the queries are executed. The results are event graph
IRIs, that are passed to the pedigree generator which compiles the pedigrees.
The pedigree generator integrates the pedigrees with any external datasets such
as location based information, product master data or any other information the
trading partner may consider useful. The pedigrees are persistently stored for
history based analysis and are also published at IRIs that can be accessed by
invoking the REST services published on the Linked Pedigree server.

Fig. 4. Generating linked pedigrees from EPCIS event streams

6.4 Evaluation Results

We carried out an extensive and exhaustive evaluation of the pedigree generation
algorithm. For the four window sizes and varying number of commissioning,
aggregation and shipping events, we ran a total of 400 iterations of the algorithm.
The evaluations were made on Mac OSX 10.9.2, 1.7GHz Intel core i5, 4GB
1333 MHz DDR3. Figures 5 and 6 illustrate some of the key findings of our
experiments. We observed that the time taken for the generation of pedigrees
was most influenced by and increased with the number of commissioning events.
Surprisingly, varying the number of items per case (100-500 with increments
of 100) or the number of cases per pallet (20-100 with increments of 20) for
the same number of commissioning events had little influence. The time taken
for the detection of counterfeits did increase with the number of commissioning
events, however the increase was not as significant as that observed with the
pedigree generation time. The formulation of the SPARQL queries did have an
influence on the time taken to detect counterfeits as noted in Section 1. For high
numbers of commissioned items, we consistently ran out of memory when we
tried to run a combined query for retrieving the EPCs from the commissioning
and aggregation events. However splitting the query and checking for counterfeits
within the implementation resolved the problem. Further, as the EEM ontology
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Fig. 5. Pedigree generation duration for increasing number of commissioning events

Fig. 6. Counterfeit detection duration for increasing number of commissioning events

and the OntoPedigree pattern heavily exploit the PROV-O vocabulary, when a
counterfeit was detected, we were able to trace it back to the agent responsible
for the generation of the pedigree using the prov:wasAttributedTo relationship.
This feature of Semantic Web/Linked data technologies for counterfeit detection
in pedigree generation, immediately gives us a significant advantage compared
to the various commercial efforts reviewed in Section 3. Update queries took
comparatively little time as compared to querying, so we do not report those
results here.

The results of our experiments provide noteworthy insights into improving
the performance of the supply chain and optimising the process of pedigree gen-
eration in real time. In Section 2, we set out to establish the trade off between
generating a large number of pedigrees, each corresponding to a small number
of commissioned items against a small number of pedigrees for large number of
commissioned items, aggregated cases and pallets. Based on our observation we
can conclude that using smaller window sizes of 3 - 5 hrs for generating pedigrees,
yields less number of commissioning events which can not only significantly re-
duce the running time of the algorithm, but it can also enable quicker detection of
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counterfeits and consequently make a significant impact on the overall efficiency
of tracking and tracing within the supply chain. Another important conclusion
is that variations in aggregation and shipping loads do not significantly impact
the pedigree generation time for small window sizes.

7 Conclusions

Data visibility in supply chains has received considerable attention in recent
years. In the healthcare sector, visibility of datasets that encapsulate track and
trace information is especially important in addressing the problems of drug
counterfeiting. In this paper we have shown how Semantic Web standards, on-
tologies and linked data can be utilised to represent and process real time streams
of supply chain knowledge, thereby significantly contributing to the vision. We
have presented an algorithm that illustrates how linked pedigrees can be au-
tomatically harnessed from streaming EPCIS event datasets. Our algorithm,
besides generating the pedigrees, also checks an important constraint of EPC
mismatch, which can play a major role in identifying counterfeit drugs illegally
introduced in the supply chain. Provenance, which is a critical aspect of supply
chain knowledge is an integral part of our framework. We have performed an
exhaustive evaluation of the algorithm using various combinations of commis-
sioning, aggregation and shipping events. Our results provide very useful insights
in improving the overall efficiency of the supply chain.

Much work still needs to be done. We are extending our algorithms to au-
tomatically assert aggregation and containment relationships using stream rea-
soning techniques, and persistently update the knowledge base with the newly
derived relationships.
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Abstract. When are two entries about a small molecule in different
datasets the same? If they have the same drug name, chemical structure,
or some other criteria? The choice depends upon the application to which
the data will be put. However, existing Linked Data approaches provide
a single global view over the data with no way of varying the notion of
equivalence to be applied.

In this paper, we present an approach to enable applications to choose
the equivalence criteria to apply between datasets. Thus, supporting mul-
tiple dynamic views over the Linked Data. For chemical data, we show
that multiple sets of links can be automatically generated according to
different equivalence criteria and published with semantic descriptions
capturing their context and interpretation. This approach has been ap-
plied within a large scale public-private data integration platform for
drug discovery. To cater for different use cases, the platform allows the
application of different lenses which vary the equivalence rules to be
applied based on the context and interpretation of the links.

1 Introduction

Links between datasets are generally defined by the data providers using the
owl:sameAs predicate [1]. However, Halpin et al. [2] have shown that owl:sameAs
is widely misused to capture different degrees of equivalence, i.e. its practical
use is not limited to the case where two resources are truly identical (implying
logical equivalence) but instead capture some application scenario where the
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two distinct data entries can be treated as being operationally equivalent. This
is because datasets frequently capture alternative views of the world at different
levels of granularity. For example, in the case of chemical datasets used for drug
discovery the focus can be on the molecular structure (e.g. ChemSpider [3]) or
the drug (e.g. DrugBank [4]), which are not necessarily the same thing. This
can lead to multiple ways to equate the entries in these datasets, e.g. for some
applications the fact that the entries share the same drug name is enough to
consider them operationally equivalent whereas for other applications a stricter
criteria may be required such as having the same chemical structure or being one
of the many variations possible for the compound. This means that the data can
be linked in a variety of ways to satisfy different application needs depending
upon the perspective of the user for a particular task.

We argue that the application using the Linked Data should decide upon the
operational equivalence to apply between entries in different datasets by using
a suitable scientific lens [5] — a set of rules that modifies the links between
datasets according to some notion of operational equivalence. For the chemical
example, distinct sets of links should be created for each of the different equiv-
alence interpretations. To enable the lenses approach, the meaning of the link
between two resources needs to be published together with the mapping. We call
this the context of the link.

The work presented in this paper has been conducted as part of the Open
PHACTS project [6]; a public-private partnership that has built and deployed
a large scale drug discovery information space supporting several applications1.
The Open PHACTS Discovery Platform [7] provides a domain specific Linked
Data API [8] through which drug discovery data can be retrieved. The develop-
ment of the platform was guided by research questions provided by drug discov-
ery researchers both in academia and industry [9]. A requirement for the platform
drawn from these research questions was to provide a mechanism through which
different notions of equivalence between data sources could be supported.

This paper presents

– an approach to capturing the meaning of links which is compatible with
existing published Linked Data (Section 3) and demonstrates that these can
be automatically generated for chemical datasets (Section 4);

– chemical lenses that change the links between entities in different datasets
based on the chemical alignments that are deemed to represent equivalent
concepts under different assumptions (Section 5);

– an evaluation of the use of the chemistry lenses within the Open PHACTS
Discovery Platform (Section 7).

2 Multiple Identifiers, But Are They the Same?

Scientific data is messy. It is stored in multiple datasets, each of which has
been created with its own focus. For example information about drugs can be

1 http://www.openphactsfoundation.org/apps.html accessed July 2014.
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Fig. 1. Example showing the different links for relating the ChemSpider entries for
imatinib and gleevec to the DrugBank record for gleevec. The equivalence encoded by
each link has been provided. It also provides an equivalence relationship between the
two ChemSpider records.

retrieved from DrugBank [4] while data about the chemical substances that
compose the drug are available from ChEMBL [10] and ChemSpider [3]. The
entries in these datasets do not align neatly, or in the ways that the scientists
who need an integrated view of the data expect. The datasets use their own
identifier schemes and do not always follow best practice for representing their
data, e.g. representing the chemical structure with full details of charges and
stereochemistry [11,12]. The challenge is identifying when two entries should be
considered equivalent to meet specific scientific needs, particularly when these
needs change on a per use case basis.

Consider the entries for the drug gleevec–the chemical substance imatinib
mesylate– shown in Figure 1. The ChemSpider entry (ChemSpider:1101892)
has the name field set to gleevec and the chemical structure for imatinib me-
sylate. The entry on the right is from DrugBank (DrugBank:DB006193). It has
its chemical name set to imatinib, the drug name field shows gleevec and the
chemical structure is that of imatinib. Note that imatinib mesylate is a salt-form
of imatinib, shown by the has part relationship between the two ChemSpider
records. Are the ChemSpider and DrugBank records for gleevec the “same”?
For a scientist interested in the biological and medical effects of gleevec they
would be, but not for a scientist interested in the physicochemical properties of
imatinib mesylate.

Many datasets contain links to other related datasets. For example, UniProt
[13] includes links to several related datasets. However, the nature of these links
are not captured; in the case of the RDF export of UniProt they are all stated
as rdfs:seeAlso. This is to avoid making inaccurate claims about the links,
but reduces the knowledge conveyed. At the other extreme, the datasets in the
Linked Data Cloud widely use the predicate owl:sameAs [1]; typically they do
not intend the strict semantics of owl:sameAs [2].

For users and applications to interpret and reuse links between datasets, they
need to understand what notion of equivalence is being expressed by the link.

2 http://www.chemspider.com/110189 accessed July 2014.
3 http://www.drugbank.ca/drugs/DB00619 accessed July 2014.
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They need to distinguish between (i) two entries that capture different aspects
of the same real-world concept, e.g. the ChemSpider and ChEMBL entries for
imatinib mesylate, (ii) two entries that are highly related, e.g. the ChemSpider
and DrugBank records for gleevec, and (iii) an entry that is a relevant reference
but not the same real-world concept, e.g. the protein target that gleevec interacts
with in the body. It is therefore hard to automatically reuse such links due to
the differing natures of the datasets and meaning of the link. As such, existing
links need to be used with caution in many application domains, particularly in
science. To overcome this, we argue that the context of the links, i.e. the setting
in which the operational equivalence between the data entries holds true, should
be captured in the metadata of the link.

3 Describing Datasets and Their Links

The power of Linked Data comes from the links that relate the entities repre-
sented by the data resources. In many integration scenarios, including that of
the Open PHACTS Discovery Platform, these links represent an equivalence re-
lationship, i.e. stating that the two linked entities can be considered “the same”.
For example, consider the co-reference links available through the sameas.org
service4.

To enable the reuse of the links between datasets, the link consumer – a
human user or an application – needs to understand what have been linked and
in which context. That is, the consumer needs to know which datasets, and in
particular which version of a dataset, has been linked, and what were the reasons
for claiming the mapping relationship, e.g. the entities can be considered an exact
match as they share the same chemical structure. (The notion of exact match is
defined in SKOS [14].)

We use the approach of a VoID linkset to capture the context of the links [15].
A VoID linkset contains a collection of link triples that relate the entries in a
pair of datasets through a single mapping relationship. The linked datasets are
themselves described using VoID. For the purposes of the Open PHACTS Dis-
covery Platform, we have defined a checklist of properties that must be provided,
e.g. the license and version number, and those that are optional to provide, e.g.
the location of a SPARQL endpoint containing the data [16].

As shown by the example in Figure 1, there can be many reasons to equate en-
tries across datasets. The VoID linkset metadata captures details of the datasets
linked, i.e. the context, and the link relationship. However, the link predicate
tends to be a generic mapping relationship such as owl:sameAs or one from
SKOS which does not convey the reason why the entries are equivalent, i.e. the
justification for the equivalence relationship.

One approach to capture the equivalence relationship conveyed by a link be-
tween two data entries is to define a domain specific predicate. For example,
one could define a mapping predicate that states that two linked chemical en-
tries are considered operationally equivalent because they have the same drug

4 http://sameas.org/ accessed July 2014.
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name. This new mapping predicate could be declared as a sub-property of the
skos:exactMatch predicate. This would allow standard inferencing rules to be
applied. However there is a major social barrier to such an approach – gaining
consensus on the required linking predicates. Additionally, there is the burden
of updating the existing links in the datasets to use these new link predicates; a
human intensive task. Such an approach is unlikely to gain traction.

An alternative is to continue using existing link predicates such as owl:sameAs
and those in SKOS, and annotate the linkset descriptions with additional con-
textual data that captures the equivalence criteria used to generate the links.
This enables the use of the existing links unchanged. Thus, lowering the barrier
to uptake as the annotations can be retrofitted to the existing links.

We term this additional metadata the justification for the linkset; the notion
captured is the scientific interpretation of the operational equivalence applied by
the linkset. For example, the linkset relating ChemSpider and DrugBank because
they have the same InChI representation of the chemical5 would express the
justification in the linkset VoID header with the triples

:Chemspider-Drugbank_Linkset void:linkPredicate skos:exactMatch ;

bdb:linksetJustification cheminf:CHEMINF_000059 .

:cheminf:CHEMINF_000059 rdfs:label "InChIKey" .

where :Chemspider-Drugbank_Linkset is the resource that describes the linkset,
the link predicate is declared to be skos:exactMatch using the VoID predicate,
and the justification is specified using the BridgeDb vocabulary (namespace
bdb6) with the value for InChI Key taken from the Chemical Information Ontol-
ogy (namespace cheminf7). The set of supported justifications within the Open
PHACTS Discovery Platform can be found in [16]; the subset relating to chem-
istry data are included in Tables 1 and 2. A key advantage of this approach is
that it extends rather than changes the existing data, i.e. the metadata can be
added later on with minimal effort.

4 Linked Chemistry Data

There are a large number of datasets (openly) available that contain information
about chemicals. However, differences in scientific or technical approaches to
molecular structure representation mean that data sources will not always be in
agreement in the chemical structure for a given substance. Various efforts are
ongoing to link entries for the same chemical between databases, for example,
to link metabolites [18,19].

5 InChI is a standardised string representation for chemical compounds, the hash value
of which is called the InChI Key [17].

6 http://vocabularies.bridgedb.org/ops to appear soon.
7 http://semanticscience.org/resource/ accessed May 2014.
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Table 1. Predicates used to capture the justification of chemical linksets and the
operational equivalence that is interpreted. sio: Semantic Science Integrated Ontology,
cheminf: Chemical Information Ontology, and chebi: Chemical Entities of Biological
Interest Ontology.

Term Justification

Chemical entity
sio:SIO 010004

The concepts linked represent the same chemical
entity.

InChI Key
cheminf:CHEMINF 000059

The concepts linked have the same InChI Key.

Has part
chebi:has part

Used to indicate the relationship between part and
whole.

Is tautomer of
chebi:is tautomer of

Used to denote that the related chemical entities are
tautomers.

4.1 Chemistry Registration Service

It is common for compounds in separate datasets to be represented differently
and this can lead to various challenges when comparing and interlinking chemi-
cal data. To ensure data quality for the representation of chemical compounds,
the Open PHACTS Discovery Platform provides a Chemical Registration Ser-
vice [20], which reads a standard chemical structure information file (SD File)
[21] and performs validation and standardization of the representations of the
compound. The validation step checks the chemical representation for chemistry
issues such as hypervalency, charge imbalance, absence of stereochemistry, etc.
The standardization step uses a series of rules, based on those of the US Food
and Drug Administration’s Substance Registration System [22], to standardize
the chemical representations.

The Chemical Registration Service identifies the chemical counterparts of each
molecule—these are representations of the substance stripped of their stereo
bonds, salts and charge. These counterparts provide a resource for relating rep-
resentations across datasets. Previously, ChEBI [23] had the richest set of rela-
tionships between molecular structures, including parthood relations, relations
between enantiomers (opposite stereo forms) and relations between tautomers
(rapidly interconverting forms of a molecule such as the ring and chain forms of
glucose) [24], and of course the subclass relation relating a more-completely spec-
ified structure to a less-completely specified structure (in terms of, for example,
stereochemistry or isotopic composition). However, ChEBI does not distinguish
between different subclass relations, indicate which of the forms of a tautomer
are in the majority under physiological conditions, or indeed relate structures
to structures that have been normalized according to the Open PHACTS rules.
Thus we have for the moment, after discussion with ChEBI about adding more
relationships, extended CHEMINF with the concepts and relationships given
in Table 2. The ChEBI team will consider them for future inclusion in their
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Table 2. Additional predicates for representing chemical equivalences. The cheminf

namespace refers to http://semanticscience.org/resource/.

Term Description

has uncharged
counterpart
cheminf:CHEMINF 000460

Connects a molecule to molecule with identical heavy-atom
connectivity which is neutral. It is not a subclass relation.

has component with
uncharged counterpart
cheminf:CHEMINF 000480

Connects a molecular substance, say a mixture containing
ions, with a neutral form of one of the ions.

has stereoundefined
parent
cheminf:CHEMINF 000456

Subclass relation between a class that has stereochemistry
defined and an otherwise identical class that does not.

has isotopically
unspecified parent
cheminf:CHEMINF 000459

Subclass relation between a class that has isotopes
specified, for example D2O or 14C-urea, and an otherwise
identical class that does not, for example water or urea.

has major tautomer at
pH 7.4
cheminf:CHEMINF 000486

A exists in an equilibrium with B at pH 7.4 and
physiological temperature and B is the dominant isomer.

has OPS normalized
counterpart
cheminf:CHEMINF 000458

This connects a molecule to its normalized counterpart
according to the OPS specification.

ontology [25]. These predicates can be used in addition to those in Table 1 as
the justification property of the linkset descriptions to capture the equivalence
condition applied. For example, the relationship between the two ChemSpider
records in Figure 1 would use the justification chebi:has part.

4.2 Generating Linked Chemistry Data

From the input SD file the Chemical Registration Service generates an RDF
representation of the data, with each distinct chemical structure having its own
Open PHACTS identifier (URI). Various properties are computed including its
InChI representation [26] and properties that can be derived from the canonical
structure, e.g. SMILES strings and various physicochemical properties such as
molecular weight. Based on the InChI representation, the Chemical Registration
Service is able to collapse and aggregate the source dataset representations, and
thus generate linksets from the Chemical Registration Service data to each of
these datasets, e.g. ChEBI, ChEMBL and DrugBank. Note that mol V2000 is
used for the internal representation for chemicals [27].

The generation of linksets has been implemented as part of the data process-
ing pipeline of the Chemical Registration Service. Each dataset and linkset has
a metadata description conforming to the specification in [16]. The metadata
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Fig. 2. A graphical depiction of the Aflatoxin B1 example. The blue dashed box en-
compasses the linksets activated under the Default lens while the red dashed box
encompasses the additional linksets activated under the ChemistryCounterpart lens.
The top of the figure states the number of pathways discovered under each lens when
querying for Aflatoxin B1 with details of its stereochemistry.

description captures the context of the linkset, i.e. which specific version of a
dataset has been loaded into the Chemical Registration Service on which date,
as well as the justification for the links, i.e. the equivalence criterion used to
generate the linkset.

5 Chemistry Lenses

Users of data integration systems such as the Open PHACTS Discovery Platform
expect answers to their queries despite discrepancies in the underlying data that
make aligning the data difficult. For example, consider the Wikipathways [28]
entry WP6998 representing the cellular pathway for the human metabolism of
aflatoxin B1. When mappings are based on entries sharing the same InChI, the
pathway is not returned when searching for pathways containing the compound
aflatoxin B1 as represented by the ChemSpider entry ChemSpider:1624709, rep-
resented by the blue box in Figure 2. This is due to one, or more, of the underly-
ing data sources not containing details of the stereochemistry – it is common for
datasets to not include details of the stereochemistry as it is simply unknown in
many cases. However, the users expect that the pathway would be returned for
the call since they loosen their notion of equivalence to include stereoisomers,
corresponding to the red box in Figure 2. We propose the use of lenses to enable
such functionality, i.e. to vary the equivalence criteria applied for a given query
by applying a different lens.

8 http://www.wikipathways.org/instance/WP699 accessed May 2014.
9 http://www.chemspider.com/162470 accessed July 2014.
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A lens defines a conceptual view over the data that varies the links between
datasets based on the operational equivalence to be applied. Lenses are modelled
in RDF and consist of the following:

– Identifier: Each lens is given a URI to identify it.
– Title (dct:title): Each lens is given a short descriptive title.
– Description (dct:description): Each lens has a textual description that

explains the effect of the lens to a domain scientist.
– Documentation link (dcat:landingPage):A link to further explanation with

illustrative examples of the effects of the lens.
– Creator (pav:createdBy): A link to a resource that represents the person

that created the lens.
– Creation date (pav:createdOn): Timestamp of when the lens was created.
– Equivalence rules (bdb:linksetJustification): A set of URIs identifying

the justifications that hold under the lens.

At present, we capture minimal provenance information (creator and creation
date), using properties from the PAV ontology [29]. We have found it necessary
to provide detailed documentation of the effects of each of the lenses deployed on
the Open PHACTS Discovery Platform. This documentation demonstrates the
effects of the lens using examples to show the changes in the results returned.

Within the Open PHACTS consortium, we are testing two lenses. The first
encapsulates a set of default expected behaviours. This lens equates chemicals
that have the same InChI representation or where the datasets equate their
identifiers. This lens provides the primary linking between chemical compounds
and matches the behaviour of existing integration strategies and in particular
that of the Open PHACTS Discovery Platform prior to the introduction of lenses.

The second lens, called the ChemistryCounterpart lens exploits the full set of
relationships generated by the Chemical Registration Service, i.e. the justifica-
tions captured in Tables 1 and 2. It is very permissive in its notion of equivalence,
relating all entries that are variations of charge, isotopes, stereochemistry, salt
forms, tautomers, and compounds in a mixture.

Additional lenses that only activate one of these variations, e.g. a stereochem-
istry lens, could easily be added from a technical perspective – the infrastructure
and data exist to provide the lens. However, considerable effort is required to
explain the behaviour of a given lens to the scientific users of the system.

For the cellular pathway example, the users of the Open PHACTS API benefit
from the use of lenses. Under the default lens, no pathways are returned due to
the datasets containing different stereoisomers. Using the ChemistryCounterpart
lens, five pathways are returned including the Wikipathways one.

6 Identity Mapping with Lenses

The lenses functionality is provided within the Open PHACTS Discovery Plat-
form by the Identity Mapping Service (IMS). The IMS provides a lookup service
to return “equivalent” URIs for a given URI. The notion of equivalence can be
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Fig. 3. Visualisation showing the interlinking of the 16 chemistry datasets. Blue edges
depict InChI equivalences, red edges depict the same chemical entity equivalences, and
grey depict the ChEBI and CHEMINF equivalences from Tables 1 and 2. Solid lines
are skos:exactMatch links, dashed lines are skos:closeMatch links and dotted lines
are skos:relatedMatch links.

varied by supplying the URI for the lens to be applied. The IMS implemen-
tation is an extended version of the BridgeDb framework that maps database
identifiers [30]. The IMS implementation supports cross-references over Linked
Data sources, i.e. supporting the use of URIs to represent entries in datasets
and loading mapping data from VoID linksets. The source code is available from
https://github.com/openphacts/IdentityMappingService and the service
is accessible through the Open PHACTS API, https://dev.openphacts.org/.

6.1 Interconnected Data

The linked chemistry data consists of 130 linksets containing 13,970,556 links
that connect the Chemical Registration Service to each of its source datasets,
generating a hub of data shown in Figure 3. To answer the queries behind the
Open PHACTS API methods we require links directly between the various source
datasets10. These can be computed by the IMS using custom inference chains.
However, this process needs to consider the justifications associated with the
linksets.

Based on the justification of linksets, we can compute inferred linksets. For
example, we can generate a linkset between datasets A and C through some
intermediary dataset B if there is a linkset between A and B and one between
B and C such that both linksets have the same justification. Definition 1 for-
mally gives the rule for computing inferred linksets based on their justification.
We denote a linkset between datasets A and B with the link predicate p and

justification j as A
j−−−→
p

B. Note that we do not require that the linksets have

10 In order that these queries run efficiently, the links are materialised in the IMS.
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the same link predicate when inferring linksets. The resulting inferred linkset is
given the weaker of the two link predicates with a hierarchy of

owl:sameAs � skos:exactMatch� skos:closeMatch� rdfs:seeAlso.

Thus, if p was the link predicate owl:sameAs and r the link predicate

rdfs:seeAlso, the computed linkset A
j−−−→
r

C would have the link predicate

rdfs:seeAlso.

Definition 1 (Inferring linksets based on justifications). Given datasets

A, B, and C, linksets A
j−−−→
p

B and B
j−−−→
r

C both with the justification j

and link predicates p and r respectively then we can generate the linkset

– A
j−−−→
r

C if p � r;

– A
j−−−→
p

C if r ≺ p.

By iteratively applying the rule given in Definition 1 it is possible to compute
chains of linksets that use the same justification. This can be seen as materialising
the network of ‘follow-your-nose’ links in the data for a given equivalence type.
It is possible to enter an infinite cycle while computing these links; thus the
IMS implementation prevents a dataset being revisited in a chain. As part of
the provenance of the computed linkset, the linksets that are used to compute
it are tracked and reported in the resulting VoID description of the linkset.

By inferring the network of links over the Open PHACTS datasets, the de-
ployed IMS contains 51,168,586 links from 40,802 linksets. Note that the link
materialisation is independent of the lenses applied. The materialisation mecha-
nism computes every possible inferred linkset based on the justification and link
predicate.

6.2 Lens Implementation

The IMS responds to a request for equivalent URIs by performing a lookup
in its internal database. Since the network of interlinks is pre-computed, the
implementation of lenses is straightforward. The API call is extended with a new
parameter to pass in the lens URI. This URI is used to retrieve the justifications
that are enabled by the lens. The equivalent URI lookup query has additional
conditions added which ensure that only links with enabled justifications are
returned.

A lookup for data through the Open PHACTS Discovery Platform must pro-
vide the URI of the entity of interest. However, the user does not need to know
the equivalent URIs in all of the datasets used by the Discovery Platform. This is
handled by the IMS which is called by the workflow that fulfils the API call. We
have previously shown that this adds a small overhead to the execution time of a
method call, but that a user will not perceive this [31]. We believe the advantage
of enabling the user to select their operational equivalence conditions outweighs
this small performance hit.
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7 Evaluation

The effects of the chemistry lenses on the answers returned by the Open PHACTS
Discovery Platform were analysed by two pharmacology researchers. The re-
searchers used a set of 22 chemicals which were chosen for the different chemical
features they exhibit11, viz. stereochemistry (15), tautomers (10), isotopes (3),
charge (2), salts (3). One compound acted as a control as it did not contain any
of the above features. Note that a single chemical may exhibit multiple features
unless it is in the control group. This resulted in an extensive number of rela-
tionships that were systematically compared to verify their correctness by the
pharmacology researchers. (A very labourious task.)

For each chemical, identified using its ChemSpider URI12, the evaluator ex-
ecuted the mapUri API call13, which returns the set of equivalent URIs for the
given seed value under the supplied lens. The calls were made first using the De-
fault lens, which matches the behaviour of earlier releases of the Open PHACTS
Discovery Platform, and then with the ChemistryCounterpart lens.

The results of each call were analysed. First the images of the chemicals re-
turned by the call were visually inspected against the associated image of the
seed chemical. This visual inspection was used to determine that the returned
substances were related to the seed substance, e.g. as a charge neutral parent
chemical. Next, the result set was inspected to ensure that each of the relevant
parent chemicals were returned when the ChemistryCounterpart lens was in-
voked, i.e. if a chemical exhibits stereochemistry and is a salt we would expect
that the stereo parent as well as the salt base and the base chemical would be
returned. The lenses were found to work as expected.

The linkset data and the lens enabled IMS have been deployed in the Open
PHACTS Discovery Platform. The Linked Data API of the platform has been
extended to enable the lens parameter to be passed in; if no URI is supplied then
the Default lens is applied. The Open PHACTS Discovery Platform receives over
2 million hits a month providing further assurance of the correctness of the lenses
and the underlying linksets.

8 Related Work

Data integration has been widely studied both in the relational database and
the semantic web communities [32]. Integration systems expose a single view
of the world to users and require the work of a domain expert to interrelate
the datasets to be integrated. Dataspaces [33] aim to lower the up-front cost
by starting with rough relationships that can be refined automatically through

11 Values in brackets indicates the number of chemicals that exhibit that property.
12 ChemSpider chemicals are indexed using the InChI code set to the standard settings

with the exception of the reconnected layer, so distinguish the various forms that a
substance can take.

13 https://beta.openphacts.org/1.3/mapUri accessed July 2014. To create a free
API access key and read documentation see https://dev.openphacts.org/
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user feedback. The Open PHACTS Discovery Platform takes a similar approach;
integration is achieved through queries and the relationships between datasets
are captured in our global-as-view queries. However, we enable multiple views
over the data by varying the active equivalence relationships for the instance
URIs through the use of lenses.

Lenses rely on the availability of multiple links between datasets which provide
different equivalence relationships. Several tools have been developed for gener-
ating links between datasets [34]. Since 2009 there has been an instance matching
track14 in the annual ontology matching competition15 to compare such tools.
The most recent results are available from [35]. These are general purpose link
generators that look for similarities between resources in two datasets. In gen-
eral, they generate one set of links based on the matching algorithms applied
and a threshold value for closeness. The Chemical Registration Service exploits
domain knowledge, viz. properties of the chemicals, to generate multiple linksets,
each based on different equivalence criteria. Other efforts are ongoing to link en-
tries for the same chemical between databases, for example, to link metabolites
[18,19,36], but these are focused on linking database entries and do not consider
the need to support multiple linkages for different use cases. We are investigating
similar approaches for proteins and other entities of interest.

There are two approaches in the literature for managing the multiple URI
problem. The first approach recognises that the same logical resource can be
given multiple URIs, e.g. when a dataset is served by multiple mirrors, or that
some entities may be unambiguously identified. Services such as the Identi-
fiers.org [37] which addresses the multiple data mirrors problem and the En-
tity Name System [38] which addresses the disambiguation problem provide
a URI for the concept that can be used unambiguously. However, this is not
the problem addressed by the lenses proposed in this paper. The second ap-
proach are co-reference services that provide links between entities in different
datasets. This is the problem addressed by the lenses. Co-reference services such
as sameas.org16 [39] provide a service by which equivalent URIs can be obtained.
sameas.org harvests owl:sameAs links from publicly available datasets on a wide
range of topics. These existing co-reference services do not consider under what
conditions the equivalence holds. The data loaded into the IMS is curated and
comes with a justification for the equivalence. We believe that these third party
co-reference services are an underutilized but key part of developing practical
semantic web applications.

9 Conclusions

In this paper, we have shown the importance of understanding the nature of
how links between datasets are created in order to effectively answer scientific

14 http://www.instancematching.org/oaei/imei2013/results.html accessed May
2014.

15 http://oaei.ontologymatching.org/ accessed May 2014.
16 http://www.sameas.org accessed May 2014.
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questions. We describe a process for generating such domain specific links and
techniques for applying them. Our approach is deployed on a live system that
has been used as the basis for a variety of drug discovery applications17. More-
over, expert users have verified the validity of the results of our system. Lenses
have practical benefits in allowing users to vary how the data is exposed under
integration.

While the technical implementation of lenses is relatively straightforward and
indeed the overall concept of a lens is easy to grasp, the effects of applying a
lens requires considerable training and educating of the users. To this end, we
are endeavouring to supply suitable user-oriented documentation for each lens
deployed in the Open PHACTS Discovery Platform.

Given the broad capabilities of the scientific lenses approach, we are still dis-
cussing which set of lenses will be included in future versions of the platform.
The division of the chemical features between the Default lens and other lenses
remains to be decided. There is some interest in including the tautomers in the
default and dividing the other chemical features (stereochemistry, salt forms,
etc.) into their own specific lenses rather than one lens which contains all fea-
tures. This may simplify the results returned, but increases the choice presented
to applications and users.

Finally, we are looking at expanding our lenses approach to the other types
of datasets needed for drug discovery, viz. proteins, splice variants, cross-species
relationships. We are also looking at how lenses can be used to vary the quality
associated with the links, e.g. curated versus non-curated links.
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Medicines Initiative Joint Undertaking under grant agreement number 115191,
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Abstract. The increase in the volume and heterogeneity of biomedical
data sources has motivated researchers to embrace Linked Data (LD)
technologies to solve the ensuing integration challenges and enhance in-
formation discovery. As an integral part of the EU GRANATUM project,
a Linked Biomedical Dataspace (LBDS) was developed to semantically
interlink data from multiple sources and augment the design of in silico
experiments for cancer chemoprevention drug discovery. The different
components of the LBDS facilitate both the bioinformaticians and the
biomedical researchers to publish, link, query and visually explore the
heterogeneous datasets. We have extensively evaluated the usability of
the entire platform. In this paper, we showcase three different workflows
depicting real-world scenarios on the use of LBDS by the domain users to
intuitively retrieve meaningful information from the integrated sources.
We report the important lessons that we learned through the challenges
encountered and our accumulated experience during the collaborative
processes which would make it easier for LD practitioners to create such
dataspaces in other domains. We also provide a concise set of generic
recommendations to develop LD platforms useful for drug discovery.

Keywords: Linked Data, Drug Discovery, SPARQL Federation, Visu-
alization, Biomedical Research.

1 Introduction

Drug discovery entails the effective integration of data and knowledge from mul-
tiple disparate sources, the intuitive retrieval of vital information and the active
involvement of domain scientists at all stages [33]. Biomedical data, encompassing
a diverse range of spatial (gene⇒ organism) and temporal (cell division⇒ human
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lifespan) scales, is organized in separate datasets, each originally published to
address a specific research problem. As a result, there are a large number of vo-
luminous datasets available with varying representations, models, formats and
semantics. Consequently, retrieving meaningful information for drug discovery-
related queries, like ‘List of molecules, with 5 Hydrogen bond donors, Molecular
Weight <400 and effective against DNA Methyltransferase targets, referenced in
any publications’, becomes time-consuming and tedious as the scientist has to
manually search and assemble results from several portals.

The advent of Linked Data (LD) technologies to solve the integrative chal-
lenges has opened exciting new avenues for scientific research in drug discovery
[13]. These technologies not only facilitate the integration of various voluminous
and heterogeneous data sources (i.e. experimental data, libraries, databases) but
also provide an aggregated view of the biomedical data in a machine-readable
and semantically-enriched way that enables re-use. However, domain users need
to traverse a steep technical learning curve to use these technologies for ad-
dressing their research problems. Hence, the adoption of LD technologies by the
actual beneficiaries of the integrated data sources is yet to be achieved.

An approach that facilitates the adoption of LD by the domain users was
proposed by us, under the European FP7-funded GRANATUM project1. The
project was conceived to semantically interlink knowledge and data for the design
and execution of in silico experiments in the domain of cancer chemoprevention
drug discovery. A Linked Biomedical Dataspace (LBDS) was developed as an
integral part2 of the GRANATUM project to offer a single-point, integrated ac-
cess to multiple, diverse biomedical data sources for non-technical, domain users.
We also provide a rich suite of tools to enable users publish, access and visualize
their experimental datasets in conjunction with the LBDS. Our main motiva-
tion was to enable cancer researchers to retrieve information pertaining to their
research questions. Previously, the domain experts have extensively evaluated
the accuracy of our integration and the usability of our platform for informa-
tion discovery [42,15,18]. During the development of the components we learnt
important lessons by tackling the complex challenges associated with the com-
plexity of biomedical data integration and discovery, and believe that our gained
insights would be useful for LD practitioners.

The rest of this paper is structured as follows: Section 2 describes the related
research carried out in this area. In Section 3, we provide a brief overview of the
LBDS and its different components. In congruence with the domain experts, we
outlined a set of questions (Table 1) which should be satisfactorily answered by
the components. Section 4 showcases the use of different components to solve
three research tasks associated with information discovery in cancer chemopre-
vention. Section 5 describes the evolution of our LBDS, summarizes the results
of previous evaluations and compares our design decisions against some of the
popular LD platforms developed for drug discovery. Finally, we report on the im-
portant lessons that we learned through the collective experience and challenges
encountered, during the collaborative processes.

1 www.granatum.org
2 http://goo.gl/xo3KJB
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Fig. 1. Architecture of the Linked Biomedical Dataspace

2 Related Work

Initiatives, notably Bio2RDF [4] and Neurocommons [27], have been carried
out for publishing biomedical resources using semantic web technologies. The
Linking Open Drug Data (LODD) task force under the W3C Health Care
and Life Sciences Interest Group (HCLS IG) has provided best practices and
recommendations for transforming and exposing publicly available data about
drugs in a LD representation [30]. Architectures like SQUIN [14] and FedX [32]
could be configured for distributed querying across these data sources. Some
projects have applied LD technologies for integrating and exploring biomedical
data sources. OpenPHACTS [41], a pharmacological space, uses a bottom-up
data-warehousing approach. DistilBio3 was developed as a proprietary, graph-
based, visual search platform for the life sciences. Health-e-child [5] employs
knowledge resources and OLAP-based data normalization tools to build multi-
dimensional semantic spaces from biomedical data collections. Linked2Safety [2],
aims to accelerate clinical practice and medical research. Finally, Linked TCGA
[29] enables evidence-based personalized prognosis for cancer.

3 Linked Biomedical Dataspace

The Linked Biomedical Dataspace (LBDS) enables the semantically-enriched
representation, exposure, interconnection, querying and browsing of biomedical
data and knowledge in a standardized and homogenized way. We envision the

3 http://distilbio.com/
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LBDS to comprise of four distinct components, namely: i) Knowledge Extraction
(KEC), ii) Link Creation (LCC), iii) Query Execution (QEC), iv) Knowledge
Publishing (KPC) (Fig. 1). A Biomedical Semantic Model is proposed as a com-
mon reference model and vocabulary for the synchronization of the four compo-
nents. For LBDS, data is integrated from multiple sources including experimental
datasets provided by the biomedical scientists and public repositories.

3.1 Biomedical Semantic Model

The role of the Biomedical Semantic Model is to unify the diverse and het-
erogeneous data sources scattered across the Life Sciences Linked Open Data
(LSLOD) Cloud consistently. When the same concept (e.g. Molecule) is referred
in two sources using different terms, the semantic model ensures that those
terms are mapped appropriately (coreference). Furthermore, the semantic model
is used for the creation of new links between entities in different data sources,
the assembly of SPARQL queries and data browsing. A specific Cancer Chemo-
prevention semantic model (CanCO) was created for application in the cancer
domain. The methodology for the CanCO development follows a “meet-in-the-
middle” approach where the concepts emerged both in a bottom-up (i.e. analyze
the domain) and a top-down (i.e. analyze ontologies/vocabularies) fashion [42].

3.2 Knowledge Extraction Component

Biomedical datasets are available in various formats like domain-specific CSV,
XML (eXtended Markup Language) files or heterogeneous, structured databases.
Representation using RDF allows standardized access and interlinking of data.
The Knowledge Extraction Component (KEC) supports two main features :-

Extracting Knowledge from Dataset files: Specialized scripts were devel-
oped to transform the large datasets semi-automatically by using mapping rules,
established in a simple declarative language. Any developer can easily map the
structure of batch-produced XML or CSV files to concepts and properties de-
rived from CanCO (Query Elements - Qe). Google RDF Refine4 is also made
available for the semantic enrichment of smaller files by domain users.

Extracting Knowledge from Relational Database: We have followed the
D2RQ approach to expose any relational database as a virtual RDF graph and
to make it available through a SPARQL endpoint [6]. The assignment of tables
and columns into ontology terms, as well as the translation of SPARQL to SQL
queries, is being handled via mappings expressed in the D2R language.

3.3 Link Creation Component

To assemble powerful queries traversing several SPARQL endpoints5, it is first
necessary to link the underlying data sources. A ‘Cataloguer’ explores and cat-
alogues the schema used to represent data in more than 60 public LSLOD

4 http://refine.deri.ie/
5 http://srvgal78.deri.ie/RoadMapEvaluation/#Sparql_Endpoints
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Table 1. Questionnaire

Q1 What is the scope of Linked Biomedical Dataspace (LBDS)?
Q2 What are the different types of relevant data sources integrated in the LBDS?
Q3 How would you confirm uninterrupted data availability from integrated sources?
Q4 How would you deal with bad quality Linked Data sources?
Q5 What should be the link types, granularity, format, size and structure of the catalogue?
Q6 What are the available linking and aligning strategies, approaches and tools?
Q7 How can the domain users intuitively search information from the LBDS?
Q8 How could the retrieved information be presented in a human-readable, domain-specific format?

Q9
How are the limitations of the LBDS, in terms of the availability, scalability and
interoperability across different platforms addressed?

Q10 What is the role of domain experts during the development of LBDS?
Q11 What are the possible uses of the LBDS demonstrated in real scenarios?
Q12 Should external links to Linked Data sources be locally materialized to enhance query responses?
Q13 How would the LBDS address emerging user needs?

SPARQL endpoints, and a ‘Linker’ links the catalogued concepts and properties
to CanCO Qe6. The Linker creates links using the following strategies: i) Näıve
Matching/Syntactic Matching/Label Matching, ii) Named Entity Matching and
iii) Manual and Domain-specific unique identifier Matching [15].

3.4 Query Execution Component

The core component of our LBDS is a federated graph query engine, which
reasons over the previously catalogued links - {Concept_A subClassOf Qe},
{Concept_A void:uriRegexPattern stringPattern} and {sparqlEndpoint

void:class Concept_A}, to transform a simple query {?s a Qe} to a SPARQL
construct {{?s a Concept_A} UNION {?s a Concept_B}} and execute the fed-
erated alternatives against the specific sparqlEndpoint. This ensures semantic
interoperability as the formulated queries use the same semantic model and in-
formation retrieval is independent of the underlying schemas. An ad hoc module
recursively monitors the latency of the SPARQL endpoints to ‘smartly’ deter-
mine which endpoints are available for querying. The query engine also provides
a permission-based access to the RDFized experimental datasets.

3.5 Knowledge Publishing Component

The QEC is exposed as a SPARQL endpoint and as REST web services by
the Knowledge Publishing Component (KPC). The KPC also provides a Visual
Query System - ReVeaLD7 (Real-time Visual Explorer and Aggregator of Linked
Data) for facilitating non-technical biomedical users to intuitively formulate ad-
vanced SPARQL queries by interacting with a visual concept map representation
of CanCO [18]. Results are aggregated from the LBDS and presented in a data
browser with ‘Smart Icons’, which render domain-specific visualizations using a
set of Qe-based Graphic Rules, and refer to additional information available on
portals like ChemSpider [25] and PubChem [21].

6 http://srvgal78.deri.ie/arc/roadmap.php
7 http://srvgal78.deri.ie:8080/explorer
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4 Workflows

Our interactions with the domain experts during the development of the LBDS,
allowed us to establish a set of questions (Table 1) which the components should
satisfactorily address. As such, the identification of practices for addressing these
is a necessary step to enable future practitioners to conceptualize dataspaces in
other domains. We segregated three separate workflows where we present how the
different components can be used in sequence to solve specific research problems.
We attempt to address the previous questions through these workflows. The users
of our LBDS fall into two categories: a bioinformatician - a computer scientist
with a biology background, who is responsible for data management, and a
biomedical researcher who has no knowledge of computer science and uses the
LBDS to query and explore the data (Q1). Workflow 4.1 is relevant only for the
bioinformatician whereas 4.2 and 4.3 involves both users.

4.1 Discovering and Cataloguing Relevant Sources from LSLOD

LBDS enables querying multiple, heterogeneous, distributed data sources through
a single interface to address domain-specific problems. Two approaches are con-
sidered by a bioinformatician: “a priori integration”, that uses the same vo-
cabularies and ontologies, and “a posteriori integration”, a methodology that
defines mapping rules between different schemas, enabling the modification of
the topology of queried graphs and the integration of data sources using alter-
native vocabularies. The steps taken for “a posteriori integration” are :-

1. There are multiple datasets in the LSLOD describing the concept Molecule
- Bio2RDF KEGG <kegg#Compound>, DrugBank <drugbank:Drug>, ChEBI
<chebi#Compound> and BioPAX <biopax-level3.owl#SmallMolecule>

(Q2).
2. LSLOD SPARQL endpoints and the contained concepts and properties are

catalogued. Sample instances and associated labels are also catalogued and
linked to the corresponding concept using void:exampleResourcepredicate.
Regular Expressions are used to identify the source of the instance (Q5).

3. Instances are assigned to new concepts through inference by identifying and
creating a link that two concepts are similar (e.g. owl:sameAs,
rdfs:subClassOf). Based on the nature of the data, the most appropriate
linking process is decided using the aforementioned strategies (Q5,Q6).

4. SPARQL algebra rewrites the query at QEC to retrieve all Molecules.

Listing 1. SPARQL Algebra to rewrite query at QEC

CONSTRUCT (bgp ( t r i p l e ?molecu le a gr : Molecule ) ) UNION (
SERVICE (<kegg/ sparq l >,<kegg/ sparq l>

bgp ( t r i p l e ?molecu le rd f : type <kegg#Compound>))
SERVICE (<cheb i / sparq l >,<cheb i / sparq l>

bgp ( t r i p l e ?molecu le rd f : type <cheb i#Compound>)))
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Fig. 2. Using ReVeaLD to retrieve and visualize information on small molecules, iden-
tified for favorable binding activity towards Estrogen receptors

4.2 Retrieving Molecules, Which Interact with Estrogen Receptors

One of the primary objectives8 of the GRANATUM project was to identify
molecules having a favorable binding affinity with Estrogen receptors-α and β
for the prognosis of breast cancer drug therapy [36]. PubChem is a vast public
repository cataloguing the potency of small molecules towards various biological
targets, as determined by bioactivity assays (BioAssays) [21]. The central idea is
to retrieve favorable agents (with Molecular Weight<300) targeting the Estro-
gen receptors from the PubChem BioAssays, and provide additional biological
information of the resources (Q1). The steps taken were as follows :-

1. The bioinformatician realizes that the PubChem data source exposed as a
SPARQL endpoint under Bio2RDF Release 1 experiences frequent query
timeouts, making it unfeasible for integration. The datasets are downloaded
through an FTP server9 in CSV and XML formats. (Q2).

2. After discussing with the domain experts, the CanCO model is incremented
by adding a new concept AssayResult, relationships {Assay hasResult

AssayResult} and {AssayResult mentionMolecule Molecule}, and

8 http://goo.gl/2OJePz
9 ftp://ftp.ncbi.nih.gov/pubchem
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AssayResult-associatedproperties outcomeMeasure (EC50, IC50, Potency),
outcomeType (Active or Inactive) and outcomeValue. (Q10,Q13)

3. The PubChem datasets are transformed using KEC and the extended CanCO
model, and stored locally to ensure uninterrupted data availability. (Q3)

4. The advanced SPARQL query can be formulated by the biomedical re-
searcher by clicking the concepts Assay, Chemopreventive Agent (CMA)

and Target using ReVeaLD’s concept map visualization, and setting a nu-
merical filter (<300) on the CMA:Molecular Weight and a text filter
(∼estrogen receptor) on the Target:title properties (Q7). Additional bio-
logical properties of the CMAs could be retrieved by clicking the UI inputs.

5. ReVeaLD’s data browser replaces the RDF URIs with associated titles from
the extracted dictionary. Entity information and domain-specific visualiza-
tions are accessed through ‘Smart Icons’ (Fig. 2) (Q8). Corrupt visualiza-
tions, due to deprecated structure file locations or unsupported libraries, are
presented as text by default, making ReVeaLD interoperable (Q9).

6. ReVeaLD could transfer SMILES identifiers [39] of retrieved molecules to the
ChemSpider REST API10 to obtain information on patents and vendors, and
to virtual screening platforms like LISIs [19] for in silico analysis (Q11).

4.3 Combining Knowledge Extracted from Publications with LD

It is necessary to identify the adverse events associated with potential molecules
(as discovered in assays and clinical trials) before selecting them. There is a
huge wealth of knowledge stored in scientific publications, outlining the results
of molecules tested previously. PubMed, an online search engine, is used by
biomedical researchers globally. It comprises of citations for biomedical literature
extracted from MEDLINE, Life Sciences Journals and books. Information in
PubMed (publication metadata and open-access papers) is well-structured and
maintained; however, the full potential of integrating this information with non-
LD and LSLOD entities is yet to be realized (Q1). The steps taken are :-

1. The bioinformatician retrieves the XML files, regarding publication data,
through PubMed Utilities (Q2). The KEC converts these files to RDF triples
by using the Qe Target, Molecule and Publication concepts, and stores
them locally to enhance query performance (Q12).

2. Databases of diseases and molecules, maintained by domain users, are identi-
fied and exposed as RDF Virtual Graphs using D2RQ [6]. The LCC creates
links between the two aforementioned data sources. Only data sources of
good granularity are selected as potential repositories to scan for links (Q4).

3. The QEC could perform queries upon an interlinked data sources as a single
data graph. The biomedical researcher can select the Publication concept in
ReVeaLD and request the SMILES information of the molecules, excluding
those associated with adverse events harmful to human subjects (Q7,Q11).

10 http://www.chemspider.com/AboutServices.aspx
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Fig. 3. Usage Statistics of ReVeaLD logged using Google Analytics

5 Evolution and Evaluation

Since the launch of LBDS in October 2012, the bioinformaticians and biomedical
researchers, associated with the project, have used the components to link newer
datasets and mine the LBDS (Section 3). We exposed a database, providing
structural information on interesting molecules, using D2R, and converted the
PubChem BioAssay XML datasets to RDF for secure access. Our discussions
with the domain experts led to the inclusion of an auto-complete search input
in ReVeaLD to allow single entity search, and the use of SMILES identifiers
for in silico analysis. SPARQL endpoints under the Bio2RDF Release 2 were
integrated later in May 2013 due to better uptime. To aid the non-technical
users we created a screencast11 outlining the different steps (Workflow II, III),
which was made available on the project website and has been downloaded by
∼175 users12 by October 2013. Google Analytics tracking showed that ReVeaLD
was accessed by 387 distinct users from 29 countries, up to February 2014 (Fig.
3), for querying and extending the CanCO semantic model. CanCO underwent
15 different changes, 9 of them were merged with the main model, whereas 6 are
available as independent extensions on the GRANATUM platform.

As the LBDS evolved, we evaluated the different components separately. The
expressivity, completeness, correctness, usability and simplicity of CanCO se-
mantic model in the context of cancer chemoprevention domain was evaluated
using an application-based and a human assessment methodology [42]. The links
generated by LCC were evaluated both empirically and comparatively, as well
as validated by the domain experts [15]. The usability and user experience of
ReVeaLD was evaluated using the HCI-based ‘Tracking Real-time User Experi-
ence (TRUE)’ methodology [18]. Functional (http://goo.gl/m67o03) and non-
functional (http://goo.gl/dEZuUE) requirements were evaluated later using
questionnaires. Summarizing our results: i) CanCO fully covers the needs of
the domain and facilitates easy usage, ii) existing linking strategies could not be
used for LSLOD, and iii) a domain-specific model improves the intuitiveness of
semantic search. A preliminary evaluation shows QEC to be the only federated
query engine that ensures privacy and supports all SPARQL features [28].

We carried out an empirical comparative evaluation with some of the popular
LD platforms, introduced in Section 2, enabling drug discovery (Table 2). In most

11 http://www.granatum.org/pub/bscw.cgi/d82084/3%20ReVeaLD.mp4
12 http://goo.gl/hvKkQf
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Table 2. Comparative Evaluation against Popular Linked Data Platforms

GRANATUM OpenPHACTS Linked2Safety DistilBio Linked TCGA Health-e-Child

Domain-specific model ✓ ✗ ✓ ✗ ✓ ✗

Knowledge and Data Extraction ✓ ✗ ✗ ✗ ✗ ✗

Query Federation ✓ ✗ ✓ ✗ ✓ ✗

Data warehousing ✓ ✓ ✗ ✓ ✗ ✓

Intuitive Querying ✓ ✓ ✗ ✓ ✓ ✓

Domain-specific Visualization ✓ ✗ ✗ ✗ ✓ ✓

Linked Open Data ✓ ✓ ✓ ✓ ✓ ✓

Commercial Data ✗ ✓ ✗ ✓ ✗ ✓

cases, these initiatives are not yet user-driven or scalable and some approaches
are too generic, whereas drug discovery is domain-specific [33]. OpenPHACTS
[41], DistilBio and Health-e-child [5] platforms transform and store informa-
tion from multiple providers (including commercial and private [13]) in semantic
interoperable formats. Adoption by the actual users is impeded due to their
use of a comprehensive ontology instead of a domain-specific model and they
have emphasized the need for community-driven annotation and personaliza-
tion. Linked2Safety [2] and Linked TCGA [29] are pursuing the domain-specific
query federation approach towards data integration. However, the scalability of
these platforms for integrating newer data sources is yet to be evaluated. Linked
TCGA and Health-e-child also provide domain-specific visualizations [17].

6 Lessons Learned

While reviewing the state-of-the-art technologies and developing the LBDS com-
ponents to address the questions (Table 1), we learned numerous lessons which
may be useful for LD practitioners to develop such dataspaces in other domains.

Q1. What is the scope of Linked Biomedical Dataspace?
The scope of the LBDS in general, and the semantic model in particular [37],
should be determined initially before its conceptualization. The scope definition
includes: i) the identification of the actual beneficiaries (end-users), ii) the iden-
tification of the potential use cases, and iii) the definition of the functional and
non-functional requirements [42]. A well-defined scope will drive the whole de-
sign and development of the LBDS and facilitate subsequent decisions, like the
selection of relevant resources i.e. models, ontologies, non-ontological resources,
and the identification of the core Qe. The identification of the re-usable sections
and the method of integration in the semantic model is also important [38].

Q2. What are the different types of relevant data sources integrated in the LBDS?
Due to the large number of data sources available dispersed across the web,
it is crucial to determine the relevance of these sources with respect to the
target domain before integration in the LBDS. The possible source types in-
clude ontologies (e.g. Gene Ontology - GO [3]), existing datasets from LSLOD
(e.g. DrugBank, PubChem, PubMed), data dumps, SPARQL endpoints, user-
provided data (e.g. Excel files, experimental data). A starting point of investi-
gation could be the BioPortal [40], Bio2RDF [4] and Neurocommons [27].
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Q3. How would you confirm uninterrupted data availability from integrated
sources?
The latency and functionality of public SPARQL endpoints affects the quality
of the retrieved query results and the domain users may not be able to get
information from an important data source (e.g. PubChem). Most endpoints
aggregate all the SPARQL results and push back to the client in bulk, instead
of buffering them, making it difficult to determine if the endpoint has timed
out or is still collecting the results. Moreover, databases like ZINC [16] are very
useful for structure-based virtual screening, but are not available as SPARQL
endpoints or RDF Dumps. Data warehousing approaches could be used, but the
maintenance, storage and continuous updating is rate-limiting and may neces-
sitate manual intervention [10]. Specialized applications like SPARQLES could
be used to recursively monitor the availability of public SPARQL endpoints to
determine query federation and make the data publishers conscious [8] .

Q4. How can one manage Linked Data sources that are of bad quality?
Curated data sources in LSLOD suffer from lack of accuracy, incompleteness, tem-
poral inconsistency or coverage.We found issues like: i) Different namespaces used
by the same provider, e.g. <http://bio2rdf.org/kegg_vocabulary:xGene>,
<http://bio2rdf.org/ns/biopax#pathway>, <http://bio2rdf.org/ns/ns/
bind#interactionPart>, and <http://bio2rdf.org/ns/ns/ns/pubchem#Mol

ecular_Formula>, ii)URL-encoded labels, e.g. pdb:1%2C1%2C5%2C5tetrafluoro
phosphopentylphosphonicAcidAdenylateEster, iii) non-dereferenceable URIs,
e.g. kegg_vocabulary:bpm+BURPS1710b_1815+BURPS1710b_A0336, and iv)
Alpha-numeric URIs, for which no labels were defined, e.g. so:0000436 [15].
Possible solutions include using partial snapshots of the endpoints (not whole
RDF dumps) or mechanisms to assess the quality of LD repositories during link
creation.

Q5. What should be the link types, granularity, format, size and structure of the
catalogue?
As different data catalogues exist to serve distinct purposes, one should decide
how well the chosen catalogue fulfills the requirements. When data linking is
a key requirement it is prudent to compile a catalogue from scratch. Existing
vocabularies e.g. VoID [1], DCAT13, Dublin Core (DC)14, and FOAF15 can be
used to describe data in the catalogue. The selection of a vocabulary depends
upon the purpose of the catalogue and the granularity under consideration. For
example, the PROV Namespace16 can be used when the user wants to record the
provenance information in the catalogue. The overall structure of the catalogue
and its format is an important design factor. If Query Transformation Rules
are to be derived from the catalogue, it should be conceived to suit considered

13 http://www.w3.org/TR/2012/WD-vocab-dcat-20120405/
14 http://dublincore.org/documents/dcmi-terms/
15 http://xmlns.com/foaf/spec/
16 http://www.w3.org/ns/prov#



Linked Biomedical Dataspace 125

linking approaches. Qe in the catalogue could be linked using link types with
completely different semantics (e.g. rdfs:subClassOf, owl:sameAs).

Q6. What are the available linking and aligning strategies, approaches and tools?
Linking and aligning the semantic model with other models and ontologies plays
a pivotal role in ensuring semantic interoperability and addressing data hetero-
geneity. However alignment of ontologies is generally suited when the data has
been structured as a hierarchy which is not always the case [11]. Vocabularies e.g.
WordNet [23], and Unified Medical Language System (UMLS) [7] can be used
to achieve automated similarity and relatedness scores. As these vocabularies
and available linking tools e.g. SILK and LIMES are very generic for LSLOD,
limited success is obtained (non-specific, unrealistic and redundant links) [15].

Instance Alignment i.e. identifying the same entity referenced using different
URIs, is currently very difficult to achieve at run-time and query results often
contain duplicates. There is no set of common properties and unique identifiers
may be encoded using different nomenclatures. For example, Aspirin (Drug-
Bank), also referred as Acetylsalicylic Acid (ChEBI), is an interesting compound
for in silico studies of colorectal cancer [31]. However, there is a marked differ-
ence in their InChi and SMILES representations (smilesStringIsomeric versus
smilesStringCanonical). Molecular Weights and Formulas could not be used,
as stereo-isomers have similar values for these attributes but are drastically dif-
ferent from a biological perspective (e.g. D-Glucose and L-Glucose). Approaches
like [24] could be delved into deeper and tested for LSLOD.

Q7. How can the domain users intuitively search information from the LBDS?
Semantic search applications allow the formulation of highly expressive queries
but SPARQL is the least usable modus operandi for biomedical users who may
not have technical knowledge of LD Technologies. Even for a skilled LD practi-
tioner it is difficult to assemble federated queries. An interface, which effectively
lowers the barrier between Usability (Natural) and Expressivity (Formal), should
be developed [20]. Such an interface evolves through 5 distinct stages - SPARQL,
VQS, Single entity search, Keyword search and Google-like NL-queries. Instead
of using standard ontologies a semantic model devised by the domain experts
increases the intuitiveness as users are familiar with the Qe [42]. Concept maps
augment translation of any knowledge graph, to solve a domain-specific problem,
into a formal representation [22]. ReVeaLD allows visual interaction through a
concept map, but still shows an extreme reliance on the CanCO Qe, e.g. com-
pulsory selection of the Drug concept to retrieve information on Aspirin [18].
Primarily, an exhaustive dictionary summarizing all types of ‘biological entities’
should be compiled using machine-learning term extraction [34] and the gap
could then be bridged further by proposed methodologies [12,20].

Q8. How could the retrieved information be presented in a human-readable,
domain-specific format?
Although RDF representations are more suitable for semantic reasoning, RDF
URIs are confusing for the biomedical researcher. Fresnel Vocabulary [26] could
be used to provide a more human-readable representation. Most biomedical data
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sources expose REST APIs which provide structural information on any entity
(i.e. 3D structures, pathway maps, etc.) and native web technologies makes it
relatively easy to develop and integrate visualization libraries. ReVeaLD searches
for specific triple patterns (Graphic Rules) to provide a domain-specific outlook
e.g. drugbank:targets/844 drugbank:pdbIdPage <http://www.pdb.org/

pdb/explore/explore.do?structureId=1IVO> [18]. However, many entities in
the LSLOD do not have values for the predicates rdfs:label and dc:title, or
the required triple patterns (drugbank:pdbIdPage) for the Graphic Rules.

Q9. How are the limitations of the LBDS, in terms of the availability, scalability
and interoperability across different platforms addressed?
The scalability of our LBDS is directly impacted by: i) Number of desirable
SPARQL endpoints to be queried by the QEC (current threshold is 105 end-
points), ii) The size and complexity of the datasets to be RDFized, and
limitations of the existing tools of KEC, and iii) Visualization of a larger num-
ber of results (>10000) and computing facets for data navigation. A rule-based
reasoning-enabled QEC for Qe-specific queries (i.e. DrugBank and ChEBI for
Molecule) may alleviate this but the processing time would differ between the
Qe i.e. retrieving information on Molecules is more taxing than Assays. The
reliance of ReVeaLD on the configuration of the client system (graphics card,
system RAM and browser version) affects the interoperability across different
platforms [18]. Some technologies, like WebGL, are only supported by modern
browsers, necessitating backward compatibility. Libraries like Modernizr17 could
be used to detect which browser-based features are supported in real-time.

Q10. What is the role of domain experts during the development of LBDS?
Domain experts should be actively involved throughout all stages of the devel-
opment, especially during conceptualization of the semantic model, since they
would be the final users. The existing methodologies for building ontologies and
semantic models lack interaction with the domain experts which results in a well-
construed ontology that may be not be useful for the end-users [42]. We found
the collaborative decision-making between the computer scientists and domain
experts essential for: i) Model development, by identifying the scope, relevant
data sources and core Qe, ii) Validation of the links generated by LCC, iii) Pro-
totyping of ReVeaLD [18] and iv) Evaluation of the LBDS. However, domain
experts need a stronger motivation for active participation. We obtained their
input and feedback through brainstorming, interviews and questionnaires.

Q11. What are the possible uses of the LBDS demonstrated in real scenarios?
The main application of the LBDS would be to significantly reduce the time and
costs of current drug discovery techniques. The LBDS enables domain scientists
to strategically and informatively isolate ∼100 biological compounds of biological
‘relevance’ from >300,000 compounds (Workflows II, III). These compounds can
be virtually screened using in silico methods like Protein-Ligand Docking [35],
to obtain around 10 potential compounds for in vivo analysis. LBDS could also

17 http://modernizr.com/
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be used for the discovery of biological interactions (protein-protein or gene-drug
interactions) by integrating ‘-omics’ datasets with GO or PubChem.

Q12. Should external links to Linked Data sources be locally materialized to en-
hance query responses?
RDF entities existing in repositories are subject to changes, data unavailability
or are badly-curated. As interfaces request data from a federated query engine,
which executes queries to remote repositories, the user experience or semantic
reasoning by agents is disrupted in such situations. A potential solution can be
the partial materialization of RDF triples from remote resources to local repos-
itories [9]. The query engine could first try to resolve a query locally and if it is
not possible, the query can be forwarded to external repositories. The selection
of triples to be cached, as well as the refresh mechanisms is subject to a lot of
parameters that could be solved by weighted-equations.

Q13. How would the LBDS address emerging user needs?
Even if the model seems to fully represent an area of interest (e.g. cancer chemo-
prevention) at the time of its creation, new needs might emerge in the future
(e.g. new Qe) for end-users. The LBDS has to provide a maintenance mecha-
nism that satisfies these demands. An incrementation tool was integrated with
ReVeaLD to enable users to extend or merge the semantic model by adding
new Qe. A naive versioning is enabled for domain users to maintain and share
different modifications of their extensions.

7 Recommendations

We summarize a set of generic recommendations that initiatives developing LD
platforms for drug discovery might find useful.

1. End-users (i.e. domain experts) should be involved at all stages (from con-
ceptualization to evaluation) of the LBDS development.

2. Developers must use a domain-specific semantic model for the homogenisa-
tion of the data sources and the integration of the LBDS components.

3. Quality and availability of the RDF data sources should be taken into con-
sideration when discovering datasets.

4. SPARQL endpoints must be monitored constantly for availability and inter-
operability, and feedback should be used to inform data publishers.

5. Caching mechanisms must be incorporated at the data sources and QEC.

6. Data publishers must ensure that the RDF URIs are HTTP-dereferenceable.

7. User-driven tools for data extraction and annotation must be provided.

8. Retrieved information from the LBDS should be made more human-readable
and personalized to meet the needs of the domain.

9. Concept maps must be used for knowledge visualization, to enable prelimi-
nary users to interpret and formulate domain problems.

10. HCI-based (Human-computer interaction) evaluations of semantic web ap-
plications must be carried out to enhance user experience and usability.
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8 Conclusion

In this paper, we present the important lessons learned during the collabora-
tive development of a Linked Biomedical Dataspace (LBDS) for supplementing
drug discovery. We provided a brief overview of the different components and
the state-of-the-art technologies which could be integrated to publish, inter-
link, access and visualize LD. We emphasize the collaborative involvement of
domain users in all the decision-making processes of the LBDS development.
Three workflows showcase how the LBDS can be exploited by bioinformaticians
and biomedical researchers for cancer chemoprevention drug discovery. We com-
pare the main features of our LBDS against some of the popular LD platforms
available for drug discovery. Our experiences and the challenges encountered
have helped us outline the important lessons and summarize generic recommen-
dations for LD practitioners to create such dataspaces in other domains.
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Abstract. The ability to integrate a wealth of human-curated knowl-
edge from scientific datasets and ontologies can benefit drug-target in-
teraction prediction. The hypothesis is that similar drugs interact with
the same targets, and similar targets interact with the same drugs. The
similarities between drugs reflect a chemical semantic space, while simi-
larities between targets reflect a genomic semantic space. In this paper,
we present a novel method that combines a data mining framework for
link prediction, semantic knowledge (similarities) from ontologies or se-
mantic spaces, and an algorithmic approach to partition the edges of
a heterogeneous graph that includes drug-target interaction edges, and
drug-drug and target-target similarity edges. Our semantics based edge
partitioning approach, semEP, has the advantages of edge based commu-
nity detection which allows a node to participate in more than one cluster
or community. The semEP problem is to create a minimal partitioning of
the edges such that the cluster density of each subset of edges is maximal.
We use semantic knowledge (similarities) to specify edge constraints, i.e.,
specific drug-target interaction edges that should not participate in the
same cluster. Using a well-known dataset of drug-target interactions,
we demonstrate the benefits of using semEP predictions to improve the
performance of a range of state-of-the-art machine learning based pre-
diction methods. Validation of the novel best predicted interactions of
semEP against the STITCH interaction resource reflect both accurate
and diverse predictions.

Keywords: Drug-target interaction prediction, vertex coloring graph,
community detection, graph partitioning.

1 Introduction

Linked Open Data has important applications across the biomedical enterprise
where there is a nexus created by the availability of publicly accessible richly cu-
rated scientific collections and the extensive use of ontologies and thesauri. This
ability to seamlessly integrate a wealth of human-curated knowledge can benefit
many applications including drug-target interaction prediction and drug-drug
similarity ranking. Consider that drugs are molecules that participate in some
biomolecular reaction associated with a disease related genomic target (protein).
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The ability to predict new drug-target interactions can have applications in drug
re-purposing to find new targets for drugs. A related application is drug-drug
side effect prediction, e.g., to construct the SIDER [16] side effect resource, or
to populate ADEpedia [14], a knowledge base of adverse drug events (ADEs) for
drug safety surveillance.

Beyond drug-target interaction prediction, drug-drug similarity rankings are
an important component of the comprehensive evidence that is used to make
clinical or policy recommendations. Consider the following example relevant to
a group of monoclonal antibodies (mab) drugs: On November 3, 2010, The New
York Times reported that Genentech began offering secret rebates to ophthal-
mologists in an apparent inducement to get them to prescribe Ranibizumab

rather than the less expensive Bevacizumab. Several studies have shown no su-
perior effect of Ranibizumab over Bevacizumab for the treatment of macular
degeneration, an aging-related eye condition. Subsequently, on April 8, 2014, the
Washington Post highlighted the results from analyzing a BIGDATA Medicare
collection revealing that one of the largest Medicare billers, an ophthalmologist
in West Palm Beach, Fla., earned $20 million in 2012; a large fraction of his
earnings came from injecting patients with Lucentis (Ranibizumab) instead of
Avastin (Bevacizumab).

Figures 1(a) and (b) show a schematic overview of drug-target interaction
networks; drugs are circles and targets are squares. For interaction prediction,
or to determine functionally equivalent drugs, one must exploit drug-drug and
target-target similarities; the hypothesis is that similar drugs interact with the
same targets, and similar targets interact with the same drugs. The similarities
between drugs reflect a chemical semantic space, while similarities between tar-
gets reflect a genomic semantic space [8,21]. Within these semantic spaces, pairs
of drugs or pairs of targets may have multiple semantics-based similarity scores.
For example, drugs can have similarities based on chemical structure or shared
side-effects, while gene targets may share sequence based or protein-protein in-
teraction based similarity [21]; this is illustrated by the multiple edge types.

For the purpose of this paper we focus on drug-target interaction edges. How-
ever, our method can be applied to a variety of Linked Data collections and
ontologies as will be seen in the next section.

There are many approaches for link prediction or similarity ranking, e.g.,
drug-target interaction networks [29] or citation graphs [20]. The importance of
structured knowledge and collective classification for drug-target prediction was
discussed in [11]. Structured knowledge include triads; in Figure 1(b), the inter-
action edge (di, tx), the similarity between targets tx and ty, and the potential
interaction edge (di, ty) form a triad. Similarly, in Figure 1(a), the two interac-
tion edges (di, tx) and (dj , ty), the corresponding drug-drug similarity between
di and dj , and the target-target similarity between tx and ty, form a tetrad.
Further, collective classification would support the simultaneous reasoning over
the edges (di, tx), (di, ty), (di, tz), etc., in Figure 1(b), and their corresponding
similarities.
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(a) Drug-target interaction (b) Drug-target interaction pre-
diction through collective classi-
fication

Fig. 1. (a) Drug-Target Interaction Network. Drugs are circles and diseases are rect-
angles. (b) An Example of Collective Classification of Potential Interactions.

We present semEP, an unsupervised semantics based edge partitioning method;
semEP combines a data mining framework for link prediction, semantic knowl-
edge (similarities) from ontologies or semantic spaces, and an algorithmic
approach to partition the edges of a heterogeneous graph. For this paper, we
consider a graph that includes drug-target interaction edges, and drug-drug and
target-target similarities. The semEP problem is to create a minimal partition-
ing of the edges such that the cluster density of each subset of edges is maximal.
An advantage of semEP edge clustering is that it allows a node to participate in
more than one cluster or community; this is a natural match with the semantics
of drugs that have multiple functions, and thus interact with different targets.
We do not limit semEP to triad or tetrad clusters and we consider clusters of
varying shape and size. Further, semEP can use semantic knowledge on simi-
larities to specify edge constraints, i.e., specific pairs of drug-target interaction
edges that should not occur in the same cluster.

Using a well-known dataset of drug-target interactions [3,8], we demonstrate
the benefits of using semEP predictions to improve the performance of all the
state-of-the-art machine learning based prediction methods [8]. We also validate
the best novel predictions of all the methods (where the interactions are not in
the test dataset) against the STITCH drug-target interaction resource [17]. The
good performance of semEP reflects its ability to exploit structured semantic
knowledge to make accurate and diverse predictions.

This paper is organized as follows: Section 2 provides a motivating example
of Linked Data and ontological knowledge and Section 3 describes the semEP
edge partitioning problem. Section 4 summarizes related research. Experimental
results are reported in Section 5 and Section 6 concludes.

2 Semantics of Annotations and Ontological Relatedness

In this paper, we focus on a specific link prediction use case – the problem of pre-
dicting drug-target or drug-disease interaction edges. However, as motivation, we
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(a) Bevacizumab and Cetuximab (b) ISA Hierarchy

Fig. 2. (a) Drugs Bevacizumab and Cetuximab (green rectangles), Disease Annotations
(orange rectangles) and NCI Thesaurus Terms (red ovals). Four communities are high-
lighted in blue. (b) Fragment of an ISA Hierarchy in the NCIt. The red lines indicate
ISA relationships

consider the more general problem of drug-drug similarity ranking. Bevacizumab
and Cetuximab are exemplars of monoclonal antibodies that are anti-neoplastic
agents used in cancer treatment. We consider the similarity of Bevacizumab
and Cetuximab using their neighborhood graph of shared annotations of disease
terms. Figure 2(a) represents (partial) disease annotations associated with each
drug; the disease terms are mapped to terms in the NCI Thesaurus (NCIt). Each
path between a pair of diseases, e.g., Colon Carcinoma and Stage IV Rectal

Cancer, is identified with red circles representing intermediate NCIt terms.
A simple shared annotation pattern would include the identical term, e.g.,

Rectal Carcinoma. Ontological relatedness indicates that non-identical terms
such as Colon Carcinoma and Stage IV Rectal Cancer are also related to
each other. Combining shared annotation and ontological relatedness, we may de-
termine that (Colon Carcinoma, Colorectal Carcinoma, Rectal Carcinoma,
Stage IV Rectal Cancer), together, form a shared community of ontologically
related disease terms. Further, (Malignant Colorectal Neoplasm, Stage IV

Colon Cancer, Colorectal Adenocarcinoma) appear to form a (possibly over-
lapping) community, while (Thyroid Gland Neoplasm, Oropharyngeal

Neoplasm, Head and Neck Neoplasm) and (Malignant Uterine Neoplasm,
Malignant Ovarian Neoplasm) form additional distinct communities.

Figure 2(b) shows a fragment of the NCIt ISA hierarchy. Carcinoma can be
specialized to various organs, e.g., Lung Carcinoma; to specific types of disease,
e.g., Adenocarcinoma; to disease stages, e.g., Stage IV Breast Cancer; or to
combinations, e.g., Stage III Colorectal Adenocarcinoma (not shown).
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3 Semantics Based Edge Partitioning Problem (semEP)

3.1 From Structured Knowledge to Link Prediction for Drug Target
Interaction Networks

LetD = {d1, d2, · · · , dm} be a drug set and let T = {t1, t2, · · · , tn} be a target set.
Let Sd be a drug similarity matrix where the (i,j)-th element denoted sd(di,dj) is
a similarity score (potentially there are multiple scores) between drugs di and dj .
Let St be a target similarity matrix where the (i,j)-th element denoted st(ti,tj)
is a similarity score between targets ti and tj .

Let Y be a binary matrix of true labels of drug-target interactions. Yi,j =
1 if drug di interacts with target tj ; Yi,j = 0 otherwise.

The objective is to produce a score matrix F where the (i,j)-th element de-
noted Fi,j is the score or probability that the drug di interacts with target tj .

The hypothesis underlying most solutions is that similar drugs interact with
the same targets, and similar targets interact with the same drugs. While this
appears to be straightforward, there are many challenges. First, there is no single
approach to determine the similarities between drugs or between targets; indeed
there are many similarities based on different semantics [21]. Referring to the
Linked Data example in the previous section, the NCIt can be used to define a
semantic space for drugs and for targets (diseases), while taxonomic metrics can
be used to determine similarity scores using the NCIt structure.

A bigger challenge is that the bipartite drug-target interaction network ex-
presses multi-relational or graph structured knowledge. A drug di may be com-
plex in its functional behavior and may have multiple targets. Hence, a drug dj
that is similar to di based on chemical structure but not on side-effect similarity,
may only share some of the targets of di.

A state-of-the-art solution for the drug-target interaction prediction problem
is presented in [11] where they propose a drug-target prediction framework based
on Probabilistic Soft Logic (PSL) [5]. The PSL based solution reasons collectively
over interactions using structured rules that capture the multi-relational nature
of the network, e.g., the triads and tetrads of Figure 1(a) and (b). Finding the
most promising candidates for triad and tetrad based learning is an expensive
problem that requires significant tuning [11] and the PSL based program was
thus limited to triads and tetrads.

In contrast, semEP can make predictions using larger complex clusters. We
can also exploit the drug-drug or target-target similarities to control the shape
of the clusters. Figure 3 illustrates a drug-target interaction network on the left,
with three drugs DB01100 (Pimozide), DB01244 (Bepridil), and DB00836 (Lop-
eramide), and eight targets. Drugs DB01100 (Pimozide) and DB01244 (Bepridil)
share 6 interactions. A node partition may place these two drugs into one com-
munity and place DB00836 (Loperamide) in a second community.

Since semEP is an edge partitioning, it can instead consider more complex
communities with an overlap of nodes. The broken (dotted) edges in Figure 3
(left) connect each target to its least similar target. A visual inspection of these
edges reveals that a split of the targets, with 782, 784, and 785 appearing in one
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community, while 774, 776, 778, 779, and 8912 are placed in a second community,
has the property that no target is placed in a community together with its least
similar target. To capture such properties, semEP will consider edge constraints
as follows: Consider the scenario where targets 784 and 779 have a mutual least-
similar-target relationship. Then semEP will guarantee an edge constraint for
this pair, i.e., no edge incident to 784 will be placed in the same cluster together
with an edge incident to target 779.

Thus, semEP combines the benefit of edge partitioning that allows node over-
lap in the clusters, and the edge constraints that prohibit (some) pairs of edges
to be placed in the same cluster. This accommodates both the semantics of
nodes with complex function (node overlap in multiple clusters), and the seman-
tics of separating the edges incident to the least similar pairs of nodes (edge
constraints).

Figure 3 (b) shows the two edge communities created by semEP on the right.
Community 1 includes drugs DB01100 (Pimozide), DB01244 (Bepridil), and
five targets. Community 2 includes those two drugs as well as DB00836 (Lop-
eramide), and has three targets. We note that these communities, with 6 and 7
nodes, respectively, are more complex compared to triads. The predicted drug-
target interaction(s) based on these two communities are shown as broken edge(s)
in the edge communities on the right. We note that through the use of struc-
tured knowledge (edge constraints), edge partitioning and node overlap, semEP
predicts an interaction between DB00836 (Loperamide) and target 784.

We summarize the objectives of semEP as follows:

– An edge partitioning that allows the overlap of nodes in multiple clusters;
this matches the semantics of complex function associated with nodes.

– Create clusters with high cluster density to improve prediction accuracy.
– Exploit semantic knowledge about the least similar pairs of nodes to identify

edge constraints; they will be used to prohibit the placement of incident
edges, of the least similar nodes, in the same cluster.

– Balance these competing objectives by creating a minimal number of clus-
ters, each of which has maximal cluster density.

3.2 Problem Definition: semEP

The semantics based edge partition problem (semEP) is the minimal partitioning
P of the edges of a graph BG such that the aggregate cluster density over all
subsets of edges (clusters) p ∈ P is maximized. We note that a partitioning P
of edges may result in the overlap of nodes across different clusters.

Definition 1 (Cluster (Similarity) Density). Consider a labeled bipartite
graph BG=(D ∪ T , WE). Nodes in D represent a set of drugs and nodes in T
represent a set of targets. WE is a set of drug-target interactions, i.e., there
is an edge e = (d, t) ∈ WE iff Yd,t = 1. Let p be a subset of interactions of
WE. Let Dp ⊆ D be the drug set incident on the edges (d, t) ∈ p, and let
Tp ⊆ T be the target set incident on the edges (d, t) ∈ p. Let sd(i, j) represent
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Fig. 3. Using Structured Knowledge for semEP. (a) A drug-target interaction network
of three drugs DB01100 (Pimozide), DB01244 (Bepridil) and DB00836 (Loperamide),
and eight targets. (b) Two edge communities created by semEP. Community 1 includes
drugs DB01100 (Pimozide) and DB01244 (Bepridil) and five targets. Community 2
includes all three drugs and has three targets.

the similarity score between a pair of drugs i and j ∈ Dp. Let st(i, j) represent
the similarity score between a pair of targets i and j ∈ Dt. Under the condition
that |Dp| > 0 ∧ |Tp| > 0, the cluster (similarity) density of p cDensity(p) =
1+

2∗∑i,j∈Dp [i�=j]sd(i,j)

|Dp|(|Dp|−1)
+

2∗∑i,j∈Tp[i�=j]st(i,j)

|Tp|(|Tp|−1)

3 . If |Dp| = 0, or if |Tp| = 0, then we
replace the respective fraction by the value 0.

To explain, the three terms in the numerator correspond to (1) the average
score of the interaction edges in p, (2) the average drug-drug similarity score
between all pairs of drugs in p, and (3) the average target-target similarity
score between all pairs of targets in p, respectively. We note that the score for
interactions is given by Yd,t and is an unweighted score of 1.0 for this special case
of drug-target interactions. The cluster (similarity) cDensity penalizes singleton
clusters or clusters with a singleton drug or target node.

Definition 2 (The Semantics Based Edge Partition Problem (semEP)).
Given a labeled bipartite graph BG=(D ∪ T , WE) described as before, semEP
identifies a (minimal) partition P of WE such that the aggregate cluster density

over all subsets p ∈ P semEP (P ) =
∑

p∈P (cDensity(p))

|P | is maximal.

Recall that a solution to semEP corresponds to a partition of the edges where
the number of clusters is minimized while the overall cDensity is maximized. We
illustrate the impact of these two objectives on drug-target interaction predic-
tion accuracy using the two edge partitions A and B in Figure 4. Consider the
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Fig. 4. Two partitions with the same cDensity and red broken predicted edges

following drug-drug and target-target similarity scores: sd(d1, d3) = sd(d2, d3) =
st(t1, t3) = st(t2, t3) = 0.1, and sd(d1, d2) = st(t1, t2) = 0.4. Positive interaction
edges are black solid edges while predicted edges are red broken edges. Both
partitions have the same cDensity of 0.47. However, partition A includes four
prediction edges while B only includes one prediction edge. Assuming that these
are all true positive predictions, then partition A, which satisfies the two semEP
objectives of maximum aggregate cDensity and minimal number of clusters, has
the same precision and greater recall, compared to partition B.

Definition 3 (Edge Constraint). Given nodes i and j, let Inc(i) and Inc(j)
correspond to the sets of incident edges to i and j, respectively. Given a real
number θd or θt in the range [0 : 1] and a similarity score sd(i, j) < θd or
st(i, j) < θt, then there exists an edge constraint EdgeConstraint(i, j, Inc(i),
Inc(j), θ).

Property 1 (Edge Constraint). Let P be a solution to the semEP. For a
given edge constraint EdgeConstraint(i, j, Inc(i), Inc(j), θ) to hold, there can be
no cluster p in P such that ei ∈ Inc(i) and ej ∈ Inc(j) occur in p.

We map semEP to the Vertex Coloring Graph (VCG) problem. The Vertex
Coloring Graph problem assigns a color to every vertex in a graph such that
adjacent vertices are colored with different colors and the number of colors is
minimized. Each cluster (component) p in the partition P produced by semEP
corresponds to a color in the VCG problem. This will ensure that a minimal
number of colors will guarantee a minimal partitioning P .

Definition 4 (Mapping of the Vertex Coloring Problem to the Seman-
tics Based Edge Partition Problem). Consider a labeled bipartite graph
BG=(D ∪ T , WE) and a vertex coloring graph G=(V, F ). For each edge or in-
teraction l in WE there is a node vi in V . Further, there is an edge l = (vi, vj)
in F , iff there are nodes i and j such that vi ∈ Inc(i), vj ∈ Inc(j), and Edge-
Constraint(i, j, Inc(i),Inc(j), θ)1 holds. Let P be the (minimal) partition of WE
to maximize semEP(P ). Let M be a mapping from V to SC, where SC is a set
of colors, two vertices from G share the same color if they are in the same par-
tition component p of P and the value cDensity(p) is maximized. The Vertex

1 There are thresholds θd and θt for drugs and targets, respectively.
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Coloring Problem for BG is to identify M such that the number of colors used
in the coloring of the graph G, namely nc(G), is minimized. Given the set Used-
Colors of colors in SC that are used in the coloring of the graph, the number
of colors corresponds to nc(G)=

∑
cl ∈ UsedColors(1− cDensity(cl)), where cDen-

sity(cl) represents the density of the labels of edges from component p in P , from
BG, that are colored with the color cl.
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(c) Iterations of the semEP Algorithm. Colors in VCG
correspond to clusters in the interaction network.

Fig. 5. Example Iterations of semEP

Example Iterations of semEP: Consider the drug-target interaction network
of Figure 5(a) with four interactions and the following similar scores: st(t1, t2) =
0.1, st(t1, t3) = 0.9, st(t2, t3) = 0.8, sd(d1, d2) = 0.75, sd(d1, d3) = 0.8, and
sd(d2, d3) = 0.75. Consider thresholds θd = θt = 0.6 below which pairs of drug
or pairs of targets are used to specify edge constraints. Figure 5(b) is the Vertex
Coloring Graph (VCG) for the interaction network of Figure 5(a). For example
the edge (I1, I2) is in VCG because the similarity score st(t1, t2) of targets t1 and
t2 are below the threshold θt = 0.6. Figure 5(c) shows the iterations of semEP;
in each iteration, the figure on the top assigns a color to a node of the VCG while
the figure at the bottom places an edge in a cluster. In the first iteration, semEP
chooses vertex I2 of the VCG since it has the greatest degree, and assigns color
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p1. Simultaneously, the interaction I is placed in the cluster p1. In the second
iteration, vertices I1 and I3 have the greatest degree; semEP breaks the tie in
favor of I1. Vertex I1 is assigned the color p2 and this creates a new cluster p2
with interaction I1. In the third iteration, the vertex I3 is assigned the feasible
color p2; this adds the interaction T3 to cluster p2. In the last iteration, vertex
I4 can be colored with p1 or p2; semEP chooses p1 and interaction I4 is placed
in cluster p1. The cluster p1 has a cDensity 1 = (1.0 + 0.8 + 0.75)/3 = 0.85,
and cluster p2 has cDensity = (1.0 + 0.0 + 0.8)/3 = 0.6; thus, the aggregate
cDdensity is (0.85 + 0.6)/2 = 0.73. If I4 had instead been placed in p2, the
aggregate cDensity would have been lower and = (0.33 + 0.9)/2 = 0.62. Figure
5(c) shows the two predicted edges (broken edges) in the fourth iteration.

An Efficient Implementation of semEP: VCG is NP-hard [15], and many
approximate algorithms have been proposed to solve this problem [23]. semEP
extends the well-known approximate algorithm DSATUR [4] to solve VCG to
obtain the edge partitions. DSATUR is a greedy iterative algorithm that col-
ors each vertex of the graph once by following a heuristic to choose the colors.
Given a graph G=(V,E), DSATUR orders vertices in V dynamically based on
the number of different colors assigned to the adjacent vertices of each vertex in
V , i.e., the vertices are chosen based on the degree of saturation on the partial
coloring of the graph built so far. Only colored adjacent nodes are considered.
Intuitively, selecting a vertex with the maximum degree of saturation allows one
to first color the vertex (vertices) with more restrictions; this is one for which
there is a smaller set of colors. Ties are broken based on the vertex degree of the
adjacent nodes. As a result of casting the semEP problem to VCG, semEP iter-
atively adds an edge or interaction to a cluster following the DSATUR heuristic
to create clusters that maximize the cluster density. semEP assigns a score to
an edge e in WE according to the number of edges whose adjacent terms are
dissimilar to the terms of e, and that have been already assigned to a cluster.
Then, edges are chosen in terms of this score (descendant order). Intuitively,
selecting an edge with the maximum score, allows semEP to place first the edges
with more restrictions; this is one for which there is a smaller set of potential
clusters. The selected edge is assigned to the cluster that maximized cDensity.
Time complexity of DSATUR is O(|V |3), thus semEP is O(|WE |3).

4 Related Work

We briefly compare with research in graph data mining, link prediction, clus-
tering, community detection and ranking. Graph data mining [7] covers a broad
range of methods dealing with the identification of (sub)structures and pat-
terns in graphs; state-of-the-art approaches include spectral graph clustering
[26], RankClus [24], and GNetMine [13]. Spectral graph clustering relies on an
unnormalized Laplacian graph representation of a homogeneous network to clus-
ter the graph based on information encoded in its eigenvectors [26]. RankClus
[24] and GNetMine [13] interleave link analysis-based ranking with clustering to
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place highly ranked entities in highly ranked clusters. These approaches focus
on the use of graph properties to partition the graph.

The problem of dealing with multiple types of similarity scores has been mod-
eled as follows: Perform simultaneous clustering with multiple heterogeneous
networks over an identical set of nodes; the complexity has been shown to be as
hard as the k densest subgraphs problem [18]. JointCluster [19] is a simultaneous
clustering or partition of the nodes such that nodes within each set or cluster in
the partition are well connected in each graph, and the total cost of inter-cluster
edges (edges with endpoints in different clusters) is low. Khuller et al. presented
one of the earliest solutions to a related K-Center problem [2].

There has been significant work on community detection [1,9,20,22]; multi-
ple approaches have been identified as follows: [9]: i) topology-based techniques
that consider network structure; ii) topic-based approaches that rely on tex-
tual information within nodes; iii) hybrid solutions that combine topology- and
topic-based approaches. The majority of existing techniques focus on partitioning
nodes rather than edge partitioning. Similar to semEP, Ahn et al. [1] introduce
a partition density function based on the similarity of nodes; they detect com-
munities that maximize partition density using optimization methods. This may
produce a large number of communities, unlike semEP that produces a minimal
number. Ereteo et al. [10] tackle the problem of a semantic social network and
propose a topology- and topic-based algorithm, SemTagP, to detect communi-
ties from the RDF representation of social networks. Osborne et al. [20] present
Temporal Semantic Topic-Based Clustering (TST); it uses similarity between
research trajectories and a Fuzzy C-Means algorithm.

Ding et al. [8] provides a comprehensive survey of similarity-based machine
learning approaches for drug-target interaction prediction. Several machine learn-
ing techniques have been evaluated [11,21,28,29]. Approaches presented by Zheng
et al. [29] and Perlman et al. [21] consider feature engineering over multiple sim-
ilarity features. A PSL based solution [11] directly considers multi-relational
structured knowledge and learns from multiple similarity metrics.

5 Evaluation of semEP and State-of-the-Art Methods

5.1 Dataset and Evaluation Protocol

Dataset: A well known dataset of over 900 drugs, almost 1,000 targets, and over
5,000 interactions [3] has been used by Ding et al. to compare several state-of-
the-art machine learning based interaction prediction methods [8]. This dataset
provides a drug-drug chemical similarity score based on the hashed fingerprints
from the SMILES resource, and a target-target similarity score based on the
normalized Smith-Waterman sequence similarity score. The targets belong to the
following four groups: Nuclear receptors, Gprotein-coupled receptors (GPCRs),
Ion channels and Enzymes. Dataset statistics are reported in Table 1.

A 10-fold cross validation will randomly select 90% of positive and negative
interactions as training data, and will use the remaining 10% of elements as test
data, for each of the four groups of targets in the dataset.
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Table 1. Statistics for the Drug-Target Interaction Dataset [3]

Statistics Nuclear receptor GPCR Ion channel Enzyme
Number of drugs 54 223 210 445
Number of targets 26 95 204 664
Number of drug target interactions 90 635 1,476 2,926
Average interaction count per target 3.46 6.68 7.23 4.4
Average interaction count per drug 1.66 2.84 7.02 6.57
Graph Density2 0.028 0.013 0.017 0.005

semEP Prediction: Recall that Y is a binary matrix where Yi,j = 1 if drug
di interacts with target tj and Fi,j is the score or probability of the prediction.
Since semEP is not a machine learning method, it works as follows: We represent
the training data from Y as a bipartite graph and apply edge partitioning. Table
2 shows the values of the thresholds θd and θt used to specify edge constraints
in Definition 1. For a selected cluster p, all missing interactions are assigned
to be positive interactions in Y . The Fi,j score assigned to the interactions in

p is the normalized graph density = |I|
|Dp|∗|Tp| , where |I|, |Dp| and |Tp| are the

cardinalities of the interactions, drugs and targets in p, respectively. We label
this density as the interaction prediction density or iDensity.

Table 2. Score threshold θd and θt for edge constraints in Definition 1

Threshold Nuclear receptor GPCR Ion channel Enzyme
θd 0.3421 0.2759 0.2619 0.2333
θt 0.1832 0.1416 0.1355 0.0209

State-of-the-Art Methods: We used the code and results from multiple
machine learning based prediction methods that are available as supplemen-
tal material to the research reported in [8]. Due to space limitations, we simply
label and name all the methods as follows: i) BLM: Bipartite Local Method [6];
ii) LapRLS: Laplacian Regularized Least Squares [27]; iii) GIP: Gaussian Inter-
action Profile [25]; iv) KBMF2K: Kernelized Bayesian Matrix Factorization with
twin Kernels [12]; and v) NBI: Network-Based Inference [6].

5.2 Results

First, we demonstrate the benefits of using semEP predictions to improve the
performance of the prediction methods in [8]. We then validate the best novel
predictions of all the methods against the STITCH drug-target interaction re-
source [17].

Using semEP to Improve Performance: To measure the impact of semEP
predictions on the performance of the methods, we enhance the (initial) inter-
action prediction matrix Y of each method, over the hold-out test data, with
the best predicted interactions of semEP. The best predictions of semEP are
those with an iDensity prediction score equal or greater than a 0.5 threshold.

2 Graph Density is defined as 2×#Edges
#Nodes×(#Nodes−1)

.
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Further, we limit the added predictions to be no more than 30% of the positive
interactions in the holdout set. We label this matrix YsemEP . We also create
a control binary matrix Ycntrl which enhances the initial predictions of each
method, Y with K interactions, where K corresponds to the cardinality of the
added predictions in YsemEP . The entries in Yi,j = 0 are randomly chosen (K
times) without replacement, following a uniform distribution, to create Ycntrl.

We use the metrics Area Under the Curve (AUC) for precision, and Area
Under the Precision-Recall curve (AUPR) for the trade-off between precision
and recall. Table 3 reports on the AUC and AUPR of each machine learning
method Y , the performance when using semEP predictions, YsemEP , and the
control predictions Ycntrl, for each of the four target groups.

The AUC for the methods are generally high, representing the robust perfor-
mance of these methods. Despite this high baseline, YsemEP is able to improve
the performance for all of the methods, for all of the target groups. We also
observe that the performance of Ycntrl degrades for all of the methods, for all of
the target groups.

The impact of YsemEP is noteworthy when considering the AUPR; these values
are somewhat low in general, for all methods, reflecting the sparse training data.
Again, we observe a major improvement of AUPR, for all of the methods, for
all of the target groups. In addition, there is a sharp decrease of performance of
Ycntrl for all of the methods / target groups.

Table 3. 10-fold cross validation AUC and AUPR for methods in [8]. Y is the state-
of-the-art method; YsemEP is the semEP enhancement; Ycntrl is the random control.

AUC

Method
Nuclear receptor GPCR Ion channel Enzyme
Y YsemEP Ycntrl Y YsemEP Ycntrl Y YsemEP Ycntrl Y YsemEP Ycntrl

BLM 0.724 0.778 0.665 0.888 0.911 0.798 0.920 0.929 0.879 0.929 0.935 0.838
NBI 0.690 0.825 0.670 0.833 0.900 0.769 0.925 0.947 0.888 0.895 0.915 0.810
GIP 0.861 0.895 0.803 0.943 0.958 0.843 0.975 0.981 0.932 0.968 0.973 0.874
LapRLS 0.848 0.877 0.799 0.941 0.956 0.844 0.967 0.972 0.925 0.962 0.966 0.868
KBMF2K 0.876 0.914 0.822 0.939 0.960 0.845 0.981 0.985 0.936 0.967 0.971 0.869

AUPR

Method
Nuclear receptor GPCR Ion channel Enzyme
Y YsemEP Ycntrl Y YsemEP Ycntrl Y YsemEP Ycntrl Y YsemEP Ycntrl

BLM 0.242 0.369 0.238 0.472 0.481 0.327 0.599 0.622 0.542 0.499 0.537 0.373
NBI 0.465 0.682 0.342 0.615 0.719 0.467 0.829 0.854 0.744 0.786 0.818 0.616
GIP 0.657 0.749 0.520 0.705 0.764 0.563 0.888 0.897 0.813 0.869 0.878 0.700
LapRLS 0.577 0.676 0.468 0.630 0.704 0.517 0.800 0.818 0.733 0.830 0.838 0.663
KBMF2K 0.557 0.725 0.475 0.673 0.760 0.544 0.879 0.891 0.810 0.796 0.822 0.656

To further explore the benefit of the semEP predictions, Table 4 compares
the overlap of the Top 10 positive predictions in YsemEP and the Top 10 positive
predictions of each method in Y . The overlap (equal count) is remarkably low,
across all methods, and across all target groups. These results suggest that the
interactions predicted by semEP are both accurate and diverse, compared to
the range of state-of-the-art machine learning based prediction methods. The
diversity explains the major impact on AUPR by YsemEP and the potential for
semEP to exploit structured knowledge in the relevant semantic space(s).
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Table 4. Overlap of Top 10 predictions of semEP and each of the methods in [8].
Entries highlighted in bold are cases where predictions are all different.

Nuclear receptor GPCR Ion channel Enzyme
Method Equal Different Equal Different Equal Different Equal Different
BLM 1 9 0 10 0 10 0 10
NBI 0 10 1 9 0 10 0 10
GIP 2 8 1 9 0 10 3 7
LapRLS 4 6 1 9 0 10 2 8
KBMF2K 4 6 0 10 0 10 0 10

Validation Using STITCH: We validated the Top 5 novel predicted interac-
tions of all methods; novel interactions are those with Yi,j = 0 in the hold-out
test dataset. The validation was performed against the latest online version of
the STITCH [17] drug target interaction portal3. Table 5 reports on the num-
ber of validated novel predictions. We observe that as before, semEP is able to
identify validated novel interactions across all target groups and it identifies the
highest number of validated novel interactions for the target groups of GPCRs
and Enzymes. We note that the graphs of GPCRs and Enzymes are sparser
than the other two graphs (see Graph Density in Table 1). This provides few
opportunities for learning in the training data. Nevertheless, semEP can exploit
structured knowledge, edge partitioning and node overlap, to make accurate and
diverse predictions, even in this sparse learning environment.

Table 5. Top 5 novel interactions manually validated with STITCH. Entries high-
lighted in bold correspond to the largest number of novel validations.

Method Nuclear receptor GPCR Ion channel Enzyme
semEP 4 5 1 4
BLM 2 1 0 0
NBI 1 1 1 2
GIP 3 3 1 1
LapRLS 5 3 2 2
KBMF2K 3 4 2 2

6 Conclusions and Future Work

We defined the semEP problem to create a minimal partitioning of drug-target
interaction edges such that the cluster density of each subset of interaction edges
is maximal. We map the semEP problem to the Vertex Coloring Graph problem
using Edge Constraints. semEP combines the benefits of edge partitioning and
edge constraints (incident to the least similar drug-drug or target-target pairs)
to identify communities. We conducted an extensive evaluation of semEP on a
well-known dataset of drug-target interactions. The results suggest that semEP
exploits structured knowledge from semantically annotated data, and is clearly
able to predict novel interactions and enhance the performance of sophisticated
machine learning methods.

3 http://stitch.embl.de/
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In future work, we will explore the use of semEP to identify interesting
clusters, and combine / compare with the structure learning of the PSL-based
method [11]. We will also apply semEP to other domains, e.g., citation graphs,
to identify topical and to predict future relationships between researchers.
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Abstract. The recent big data movement resulted in a surge of activity
on layering declarative languages on top of distributed computation plat-
forms. In the Semantic Web realm, this surge of analytics languages was
not reflected despite the significant growth in the available RDF data.
Consequently, when analysing large RDF datasets, users are left with
two main options: using SPARQL or using an existing non-RDF-specific
big data language, both with its own limitations. The pure declarative
nature of SPARQL and the high cost of evaluation can be limiting in
some scenarios. On the other hand, existing big data languages are de-
signed mainly for tabular data and, therefore, applying them to RDF
data results in verbose, unreadable, and sometimes inefficient scripts. In
this paper, we introduce SYRql, a dataflow language designed to process
RDF data at a large scale. SYRql blends concepts from both SPARQL
and existing big data languages. We formally define a closed algebra that
underlies SYRql and discuss its properties and some unique optimisation
opportunities this algebra provides. Furthermore, we describe an imple-
mentation that translates SYRql scripts into a series of MapReduce jobs
and compare the performance to other big data processing languages.

1 Introduction

Declarative query languages have been a corner stone of data management since
the early days of relational databases. The initial proposal of relational algebra
and relational calculus by Codd [8] was shortly followed by other languages such
as SEQUEL [7] (predecessor of SQL) and QUEL [34]. Declarative languages sim-
plified programming and reduced the cost of creation, maintenance, and mod-
ification of software. They also helped bringing the non-professional user into
effective communication with a database. Database languages design continued
to be an active area of research and innovation. In 2008, the Claremont Report
on Database Research identified declarative programming as one of the main
research opportunities in the data management field [2].

There is, indeed, a large number of examples of publications describing design
and implementation of query languages that embed queries in general purpose
programming languages [19,37,30], for semi-strucutred data [25,1], for Semantic
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Web data [12,3], for graphs [6,17] and for network analysis [10,27,26] to name a
few. Furthermore, the recent big data movement resulted in a surge of activity
on layering declarative languages on top of distributed computation platforms.
Examples include PIG Latin from Yahoo [20], DryadLINQ from Microsoft [39],
Jaql from IBM [4], HiveQL [35] from Facebook and Meteor/Sopremo [13]. This
paper focuses on declarative languages for large Semantic Web data represented
in RDF.

In fact, there has been a significant growth in the available RDF data and
distributed systems have been utilised to support larg-scale processing of the
RDF data [36,15,16]. Nevertheless, the surge of analytics languages was not
reflected in the Semantic Web realm. To analyse large RDF datasets, users are
left mainly with two options: using SPARQL [12] or using an existing non-RDF-
specific big data language.

SPARQL is a graph pattern matching language that provides rich capabilities
for slicing and dicing RDF data. The latest version, SPARQL 1.1, supports
also aggregation and nested queries. Nevertheless, the pure declarative nature
of SPARQL obligates a user to express their needs in a single query. This can
be unnatural for some programmers and challenging for complex needs [18,11].
Furthermore, SPARQL evaluation is known to be costly [22,29].

The other alternative of using an existing big data language such as Pig Latin
or HiveQL has also its own limitations. These languages were designed for tabular
data mainly, and, consequently, using them with RDF data commonly results in
verbose, unreadable, and sometimes inefficient scripts. For instance, listings 1.1
and 1.2 show a basic SPARQL graph pattern and an equivalent Pig Latin script,
respectively. Listing 1.2 has double the number of lines compared to listing 1.1
and is, arguably, harder to read and understand.

Listing 1.1. SPARQL
basic pattern
� �

?prod a : PoductType .

? r : reviewFor ?prod .

? r : r ev i ewer ? rev

�� �

Listing 1.2. Corresponding Pig Latin script
� �

r d f = LOAD ’ data ’ USING PigStorage ( ’ ’ ) AS (S ,P,O) ;

SPLIT rd f INTO rev i ewer s IF P = ’ : reviewer ’ ,

rev i ews IF P = ’ : reviewFor ’ ,

prods IF P = ’a ’ and O = ’ProductType ’ ;

tmp1 = JOIN prods BY S , rev i ews BY O;

tmp2 = JOIN tmp BY rev i ews : : S , r ev i ewer s BY S ;

�� �

In this paper we present SYRql, a declarative dataflow language that focuses
on the analysis of large-scale RDF data. Similar to other big data processing lan-
guages, SYRql defines a small set of basic operators that are amenable to paral-
lelisation and supports extensibility via user-defined custom code. On the other
hand, SYRql adopts a graph-based data model and supports pattern matching
as in SPARQL.

SYRql could not be based on SPARQL Algebra [22] as this algebra is not
fully composable. The current SPARQL algebra transitions from graphs (i.e.
the initial inputs) to sets of bindings (which are basically tables resulting from
pattern matching). Subsequently, further operators such as Join, Filter, and
Union are applied on sets of bindings. In other words, the flow is partly “hard-
coded” in the SPARQL algebra and a user cannot, for instance, apply a pattern
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matching on the results of another pattern matching or “join” two graphs. In a
dataflow language, the dataflow is guided by the user and cannot be limited to the
way SPARQL imposes. We, therefore, define a new algebra that underpins the
SYRql language. In particular, this paper provides the following contributions:

– We define the syntax and semantics of a compositional RDF algebra (sec-
tions 2.2). The algebra achieves composability by always pairing graphs and
bindings together. We relate the defined algebra to SPARQL algebra (sec-
tion 2.3) and report some of its unique properties that can be useful for
optimising evaluation (section 2.4).

– We describe SYRql, a dataflow language based on the defined algebra (sec-
tion 3.1). An open source implementation of SYRql that translates scripts
into a series of MapReduce jobs is also described (section 3.2).

– We present a translation of an existing SPARQL benchmark into a num-
ber of popular big data languages (namely Jaql, HiveQL, and Pig Latin).
The performance of equivalent SYRql scripts is compared with the other big
data languages (section 4). The comparable results that SYRql implemen-
tation showed are encouraging giving its recency relative to the compared
languages. Nevertheless, a number of improvements are still needed to ensure
a good competitiveness of SYRql.

2 RDF Algebra

The goal of this algebra is to define operators similar to those defined in SPARQL
algebra but that are fully composable. To achieve such composability, the algebra
operators input and output are always a pair of a graph and a corresponding
table. We next provide the formal definitions and description.

2.1 Preliminaries

We use N to denote the set of all natural numbers. We assume the existence
of two disjoint infinite sets: U (URIs) and L (literals). The set of all terms is
denoted by T (i.e. T = U

⋃
L). We also assume that both U and L are disjoint

from N. An RDF triple1 is a triple (s, p, o) ∈ U × U × T . In this triple, s is the
subject, p is the predicate and o is the object. An RDF graph is a set of RDF
triples. We use G to refer to the set of all RDF graphs. Furthermore, we assume
the existence of the symbol ‘?’ such that ? �∈ T and define a triple pattern as
any triple in (T

⋃
{?})× (T

⋃
{?})× (T

⋃
{?}).

Definition 1. A binding is a sequence of RDF terms (URIs or literals).

Bindings are used to represent results of some operator over RDF graphs.
Notice that our notion of binding is similar to that of SPARQL. However, in
SPARQL a binding is a function that maps variable names to values. Our def-
inition of binding obviates the need for variable names by using an ordered

1 We only consider ground RDF graphs and therefore we do not consider blank nodes.
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sequence. A common way to represent a set of bindings is by using a table. We
use subscript to access binding elements based on their position in the sequence
(i.e. The ith element of a binding S is Si). The length of a binding S is denoted
as |S| and the empty binding is denoted as () (notice that |()| = 0).

The concatenation of two bindings S = (a1, a2, ..., an) and T = (b1, b2, ..., bm)
is the binding (a1, a2, ..., an, b1, b2, ..., bm). We denote concatenation by a dot (i.e.
S . T ).

2.2 RDF Algebra Expressions

Syntax. An RDF expression e is defined inductively as follows:

1. Atomic: if g is an RDF graph (i.e. g ∈ G) then g is an RDF expression.
2. Projection: if e is an RDF expression and (a1, ..., an) is a sequence of natural

numbers, then (e|(a1,...,an)) is an RDF expression. For example (e|(4,2)) is a
projection RDF expression.

3. Extending bindings: if e is an RDF expression, h is an n-ary function
that takes n RDF terms and produces an RDF term (i.e. h : T n → T ) and
a1, ..., an is a sequence of natural numbers then
(e ⊕(a1,...,an) h) is also an RDF expression.

4. Extending graphs: if e is an RDF expression, a1, a2, a3 are three natural
numbers or RDF terms (i.e. a1, a2, a3 ∈ T

⋃
N) then

(e ⊕ (a1, a2, a3)) is also an RDF expression.
5. Triple pattern matching: If e is an RDF expression and t is a triple

pattern then (e[t]) is also an RDF expression.
6. Filtering: if e is an RDF expression, a, b ∈ N and u, v ∈ T then the following

are valid RDF expressions:
(e[ a θ b ]), (e[ a θ u ]) and (e[u θ v ])
Where θ is =, �=, < or ≤. For example, (e[ 1 ≤ 2]) and (e[ 1 =“label” ]) are
two filtering RDF Expressions.

7. Cross product: if e1 and e2 are RDF expressions, then so is (e1 × e2).
8. Aggregation: we define aggregate functions that take a set of terms and

return a single value2. Therefore, the signature of an aggregate function is
f : 2T → N. If e is an RDF expression, a and b are two natural numbers and
f is an aggregate function then (e 〈a, f, b〉) is an RDF expression.

Semantics. We now define the semantics of the previous expressions. For each
expression e the value of it is denoted as

�
e
�
. The value is always a set of pairs of a

graph and a binding. The graph and binding components of
�
e
�
are, respectively,

denoted as
�
e
�
.g and

�
e
�
.b. To depict the values in this paper, we denote each

pair by drawing a graph and a table close to each other. The table represents a
binding and uses the order of elements in the binding as columns headers. The
set of pairs that constitute an expression value are surrounded by curly brackets.

2 For simplicity of the presentation here, we restrict aggregate functions to those that
take a set of single values and return an integer. Generalising this is straightforward.
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In the figures, sub-figure (a) is the input while sub-figure (b) shows the result of
applying an operator to the input (see figure 1 for an example).

1. Atomic:
�
g
�
= {(g, ())}

The value of an atomic expression gives an empty binding.
2. Projection:

�
(e|(a1,...,an))

�
= {(g, S) |(g, S′) ∈

�
e
�
, S = (S′

a1
, ..., S′

an
)}

(a)
�
e
�

(b)
�
(e|(3,1))

�

Fig. 1. Projection example

Projection allows choosing a sub-sequence of the bindings while leaves the
graph component in each pair unaffected. Figure 1 provides an example of
a projection expression value.

3. Extending bindings:

�
(e ⊕(a1,...,an) h)

�
= {(g, S . (h(Sa1 , ..., San))) |(g, S) ∈

�
e
�
}

These expressions allow extending the binding with a new value that is cal-
culated based on existing values in the binding. See Figure 2 for an example.
Notice that h can be viewed as a Skolem function arising from the quantifi-
cation ∀Sa1∀Sa2 ...∀San∃c : c = h(Sa1 , ..., San)

4. Extending graphs: We use the convention that Sa = a for some binding
S and a term a ∈ T . Notice that T and N are disjoint and therefore the
previous convention does not cause any ambiguity.�
(e ⊕ (a1, a2, a3) )

�
= {(g

⋃
{(Sa1 , Sa2 , Sa3)}, S) |(g, S) ∈

�
e
�
}

These expressions are similar to the extending bindings expressions defined
before but they allow extending the graph. An example evaluation of such
expression can be seen in Figure 3.
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(a)
�
e
�

(b)
�
(e ⊕(2) h×2)

�
Notice that h×2 is

a function that doubles its input (i.e.
h×2(x) = x× 2

Fig. 2. Defining a new variable example (extending bindings)

5. Triple pattern matching:
We discuss each possible triple pattern separately assuming s, p, o ∈ T�
(e[ (s, p, o) ])

�
= {( {(s, p, o)}, () ) |∃(g, S) ∈

�
e
�
∧ (s, p, o) ∈ g}�

(e[ (s, p, ?) ])
�
= {( {(s, p, o)}, (o) |∃(g, S) ∈

�
e
�
∧ (s, p, o) ∈ g}�

(e[ (s, ?, o) ])
�
= {( {(s, p, o)}, (p) ) |∃(g, S) ∈

�
e
�
∧ (s, p, o) ∈ g}�

(e[ (s, ?, ?) ])
�
= {( {(s, p, o)}, (p, o) ) |∃(g, S) ∈

�
e
�
∧ (s, p, o) ∈ g}�

(e[ (?, p, o) ])
�
= {( {(s, p, o)}, (s) ) |∃(g, S) ∈

�
e
�
∧ (s, p, o) ∈ g}�

(e[ (?, p, ?) ])
�
= {( {(s, p, o)}, (s, o) ) |∃(g, S) ∈

�
e
�
∧ (s, p, o) ∈ g}�

(e[ (?, ?, o) ])
�
= {( {(s, p, o)}, (s, p) ) |∃(g, S) ∈

�
e
�
∧ (s, p, o) ∈ g}�

(e[ (?, ?, ?) ])
�
= {( {(s, p, o)}, (s, p, o) ) |∃(g, S) ∈

�
e
�
∧ (s, p, o) ∈ g}

Triple pattern matching expressions filter graphs to only triples matching
the provided pattern and introduces the corresponding bindings. A key dif-
ference from SPARQL pattern evaluation is retaining the matching triples
in addition to the bindings. Figure 4 shows an example. Notice that a triple
pattern matching expression yields a graph with only one triple and elimi-
nates previous bindings. Notice also that one can still apply further pattern
matching on the results, something that is not possible in SPARQL.

6. Filtering:�
(e[ a θ b ])

�
= {(g, S) ∈

�
e
�
|Sa θ Sb}�

(e[ a θ u ])
�
= {(g, S) ∈

�
e
�
|Sa θ u}�

(e[u θ v ])
�
=

{�
e
�
if u θ v

φ Otherwise
7. Cross product:�

(e1 × e2)
�
= { (g1 ∪ g2, S . T ) |(g1, S) ∈

�
e1

�
∧ (g2, T ) ∈

�
e2

�
}

See figure 5 for an example.
8. Aggregation:

the expression (e 〈a, f, b〉) groups by the ath element in the binding, then
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(a)
�
e
�

(b)
�
(e⊕ (a, p2, 2))

�

Fig. 3. Defining a new triple (extending graphs)

apply the aggregate function f on the values of the bth element in each
group.

�
(e 〈a, f, b〉)

�
= {(φ, {k, f({Sb |∃(g, S) ∈

�
e
�
∧ Sa = k})})}

See Figure 6 for an example and notice that the resulting RDF graphs are
empty (absence of graph in the figure indicates empty graph component).

2.3 Relationship to SPARQL

Lemma 1. RDF Algebra expressions can express SPARQL 1.1 basic graph pat-
terns with filters, aggregations and assignments.

Proof. SPARQL filters, aggregation and assignments can be directly mapped to
“filtering”, “aggregation” and “extending bindings” expressions in RDF Algebra.
SPARQL individual triple patterns can be expressed by “triple pattern match-
ing” expressions. Basic graph patterns in SPARQL imply a join on common
variables among individual triple patterns. These expressions can be expressed
by a sequence of “cross products” and filtering “expressions” in the same way
that natural join is defined in relational algebra. ��

We provide next a couple of example SPARQL queries along with their equiv-
alent RDF Algebra expressions:

– The SPARQL query: SELECT ?s ?v WHERE { ?s :p ?o . ?o :p2 ?v }
evaluated on the RDF graph g is equivalent to the expression:
((( (g[(?, : p, ?)])× (g[(?, : p2, ?)]) )[2 = 3])|(1,4))

– The SPARQL query:
SELECT ?s ?z WHERE { ?s :p ?o . ?o :p2 ?v BIND(?v * 1.1) AS ?z }
evaluated on the RDF graph g is equivalent to the expression:
(( ((( (g[(?, : p, ?)])× (g[(?, : p2, ?)]) )[2 = 3]) ⊕(4) ×1.1 )|(1,5))
Where ×1.1(x) = x× 1.1
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(a)
�
e
�

(b)
�
( e[ (?, p1, ?) ] )

�

Fig. 4. Triple pattern matching example

2.4 Algebraic Properties

Algebraic laws are important for query optimisation. RDF Algebra shares some
operators with SPARQL algebra and therefore related properties and laws de-
fined in SPARQL algebra carry along. We focus here on triple patterns properties
that are unique to our algebra. First, we define a partial ordering relationship
between triple patterns.

Definition 2. ∀x, y ∈ T
⋃
{?} : x � y iff one of the following holds:

– Both x and y are ?.
– x and y are equal RDF terms (i.e. x, y ∈ T ∧ x = y).
– x is a term and y is ? (i.e. x ∈ T ∧ y =?).

We generalise � to triple patterns.

Definition 3. For two triple patterns (x1, x2, x3) and (y1, y2, y3) we say that
(x1, x2, x3) � (y1, y2, y3) iff x1 � y1, x2 � y2, and x3 � y3.

The defined partial ordering relationship between triple patterns (�) can be
thought of as a “more specific” relationship. The following list contains a number
of algebraic properties that use this relationship. We also highlight potential
optimisation opportunities of each of these algebraic property.

1.
�
((e[t1])[t2])

�
.g =

�
(e[t1])

�
.g if t1 � t2

Applying a less specific triple pattern does not change the resulting graph.
It can nevertheless change the binding. For example,�
((e[(?, : p, : o)])[(?, ?, : o)])

�
.g =

�
(e[(?, : p, : o)])

�
.g
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(a)
�
e1

�
×

�
e2

�

(b)
�
(e1 × e2)

�

Fig. 5. Cross product example

2.
�
(e[t1])

�
=

�
((e[t2])[t1])

�
if t1 � t2

Therefore to calculate the results of matching expression e to the pattern t1
one can instead try matching t1 against the results of matching t2 against e.
This can be advantageous if the e[t2] is “cached”.

3.
�
((e1 × e2)[t])

�
=

�
(((e1[t])× (e2[t]))[t])

�
More generally

�
((e1 × e2)[t])

�
=

�
(((e1[t1])× (e2[t2]))[t])

�
for all t1, t2 such

that t � t1 and t � t2. This can cut down the cost of a cross product between
two expressions by substituting them with further matched expressions.

The list above is not comprehensive by any means. Further study of other
algebraic properties of triple patterns is one of our current research focus. We
believe that studying this “triple algebra” can yield fruitful results that can
further be applied in tasks like caching RDF query results, views management
and query results re-use.
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(a)
�
e
�

(b)
�
(e 〈1, SUM, 2〉)

�

Fig. 6. Aggregate expression example

3 A Data flow Language for RDF

3.1 SYRql Language

SYRql is a dataflow language that is grounded in the algebra defined before.
A SYRql script is a sequence of statements and each statement is either an
assignment or an expression. The core set of operators in SYRql are those defined
by the algebra in sections 2.2.

The syntax of SYRql borrows the use of “− >” syntax to explicitly show the
data flow. According to the designers of Jaql, the “− >” syntax, inspired by
the Unix pipes, makes scripts easier to read and debug [4]. It allows eliminating
the need for defining variables (as in PIG) or for a WITH clause (as in SQL)
in each computational step. It is worth mentioning that Meteor [13] language
dropped the pipe notation of Jaql to support operators with multiple inputs and
outputs. In SYRql, operators with multiple inputs or outputs are not common
and therefore we decided to adopt the pipe syntax. However, SYRql does support
multi-input operators such as multi-way joins.

Pattern matching in SYRql uses identical syntax to basic graph patterns of
SPARQL. SPARQL syntax for patterns is intuitive, concise and well-known to
many users in the Semantic Web field. We hope that this facilitates learning
SYRql for many users.

Listing 1.3 shows an example SYRql script that performs pattern matching,
filtering, and aggregation. Notably, line 10 in the script provides an example of
composability that is not directly available in SPARQL. In line 10, a pattern
matching is applied to the results of another pattern matching. We believe that
such capabilities are useful for complicated scripts, specifically for exploratory
tasks, and for reusing previous scripts as well as previously computed results.
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Further description and examples of the SYRql language is available online3.
The BNF grammar defining the syntax can also be found on SYRql website.

Listing 1.3. Example SYRql script
� �

1 $ rd f = load ( ’ hdfs : // master :9001/ bsbm20k ’ ) ;

2

3 $janReviewers = $rdf −> pattern ( ’ ? review rev : rev i ewer ? rev i ewer .

4 ? review dc : date ? date .

5 ? r ev i ewer bsbm : country ? cntry . ’ )

6 −> f i l t e r (? date >= ’2008−01−01 ’ && ?date < ’2008−02−01 ’);

7

8 $janReviewers −> group by ? cntry in to janReviewersCount : count (? review ) ;

9

10 $ i re l andJanRev i ewers = $janReviewers −> pattern ( ’ ? rev bsbm : country : IE ’ ) ;

�� �

3.2 SYRql Implementation

The current implementation4 translates SYRql scripts into a series of MapRe-
duce [9] jobs. We use Java and Apache Hadoop 2 API5 in our implementation.

Data Representation: JSON6 is used for internal representation of the data.
Particularly, we use JSON arrays for bindings and JSON-LD [31] to represent
graphs. JSON-LD is a recent W3C recommended serialisation of RDF. It has
attracted good adoption so far and this can be expected to grow. Consequently,
by using JSON-LD a large amount of RDF data can be directly processed using
SYRql. Furthermore, existing works such as NTGA [24] have demonstrated the
benefit of manipulating RDF graphs as “groups of triples” that share the same
subject. In this work, we utilize JSON-LD’s ability to represent star subgraphs as
single JSON objects, thus eliminating the need for joins when evaluating star-join
queries. This particular way of encoding RDF in JSON-LD is referred to as the
flattened document form7 and it is the format used in SYRql implementation.
Moreover, we provide a MapReduce implementation that converts RDF data
serialised as N-Triple format8 into flattened JSON-LD.

Parsing, Compiling and Evaluation: We use ANTLR9 to parse SYRql
scripts and build the abstract syntax tree. Each node in the tree represents
an expression and the children of the node are its inputs. For triple matching
expressions, triple patterns are grouped by subject to utilise the data stored as
star-structured subgraphs, thus reducing the number of required joins. The tree
is then translated into a directed acyclic graph (DAG) of MapReduce jobs. Se-
quences of expressions that can be evaluated together are grouped into a single
MapReduce job. Finally, the graph is topologically sorted and the MapReduce

3 https://gitlab.insight-centre.org/Maali/syrql-jsonld-imp/wikis/home
4 https://gitlab.insight-centre.org/Maali/syrql-jsonld-imp
5 http://hadoop.apache.org/
6 http://json.org
7 http://www.w3.org/TR/json-ld/#flattened-document-form
8 http://www.w3.org/TR/2014/REC-n-triples-20140225/
9 http://www.antlr.org/
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jobs are scheduled to execute on the cluster. It is worth mentioning that for join
expressions we implemented the optimised repartition join [14].

4 Evaluation

We conducted a performance evaluation of SYRql. Our goal of this evaluation
is two-fold:

– Compare performance of SYRql to other popular alternatives, namely Jaql,
Pig Latin, and HiveQL. Our thesis is that SYRql’s features and syntax can
improve user productivity when processing RDF data and help generating
scripts that are easier to understand and debug. Therefore, we want to mea-
sure the loss in performance, if any, that an early adopter of the language
might have to tolerate.

– In the same spirit of Pig Mix10 that is developed as part of Pig, we want this
benchmark to measure performance on a regular basis so that the effects of
individual code changes on performance could be understood.

We based our benchmark on the Berlin SPARQL Benchmark (BSBM) [5] that
defines an e-commerce use case. Specifically, we translated a number of queries in
the BSBM Business Intelligence usecase (BSBM BI)11 into equivalent programs
in a number of popular big data languages. In particular, we provide programs
in the following languages:

Jaql. A scripting language designed for Javascript Object Notation (JSON).
Pig Latin. A dataflow language that provides high-level data manipulation

constructs that are similar to relational algebra operators.
HiveQL. A declarative language that uses a syntax similar to SQL.

The programs were written by the authors of this paper who have interme-
diate to high expertise in those languages. We believe that they reflect what an
interested user would write given a reasonable amount of time. We evaluated
four queries from BSBM BI that cover all core operators i.e., filters, patterns,
joins and aggregation. We plan to evaluate other benchmark queries as part of
the near future work.

4.1 Setup

Environment: The experiments were conducted on VCL12, an on-demand com-
puting and service-oriented technology that provides remote access to virtualised
resources. Nodes in the clusters had minimum specifications of single or duo core
Intel X86 machines with 2.33 GHz processor speed, 4G memory and running

10 https://cwiki.apache.org/confluence/display/PIG/PigMix
11 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

spec/BusinessIntelligenceUseCase/index.html
12 https://vcl.ncsu.edu/
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Fig. 7. Query processing times

Red Hat Linux. We used a 10-node cluster and the following software versions:
Apache Hadoop 2.3.0, Jaql 0.5.1, Pig 0.12.1, and Hive 0.12.0.

Dataset and Queries: We generated BSBM data for 400K products in N-
triple format. The size of the data was about 35GB containing approximately
140 million triples. As mentioned before, the queries are the scripts corresponding
to BSBM BI queries.

4.2 Results and Discussion

Figure 7 shows corresponding response time for each of the scripts. Jaql and
SYRql required pre-processing of the data to convert the N-Triple RDF data into
JSON-LD. The conversion, which took 40 minutes, is only needed once and then
the data can be used by all the queries. In general, our SYRql implementation
shows encouraging results. It is comparable to the times that Jaql and Pig Latin
showed. However, Hive outperformed all the other four systems significantly. The
superior performance of Hive was also reported in [33].

Both SYRql and Jaql can evaluate triple patterns that share the same subject
together due to their underlying data model and their use of JSON-LD. Pig, on
the other hand, evaluates each triple pattern individually and then joins the
results. We believe that this is the main reason for the better performance that
Jaql and SYRql generally achieved in comparison to Pig despite the maturity
and the larger developers community that Pig enjoys.

Examining the generated MapReduce jobs, it was observed that Jaql and
SYRql generated similar sequences of jobs. However, SYRql computes results
for both graphs and bindings as specified in the underlying algebra. This results
in more computation to be done. Nevertheless, separating bindings and graphs
helped speeding up some operators through reading and processing less data.
For example, filters operate only on the bindings and do not need to process the
graphs. Similarly, joins are calculated based on the bindings and then joining the
corresponding graphs is a simple union of the matched graphs (see the semantics
of the cross product operator in Section 2.2).
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We speculate that the superior performance of Hive is mostly due to its effi-
cient join performance. Hive join optimisations such as conversion to map-joins
can be applicable when the joining relations are small in size. Additionally, for
grouping queries, Hive computes map-side partial aggregations using a Com-
biner, an optimisation we plan to integrate in our next version.

In summary, SYRql implementation showed a good performance that will
hopefully encourage users to try it. Moreover, SYRql scripts contained 50% less
lines than Pig scripts and 42% less than Jaql scripts. Evaluating the language
ease-of-use and readability is planned for future work.

5 Related Work

A large number of declarative languages were introduced recently as part of the
big data movement. These languages vary in their programming paradigm, and in
their underlying data model. Pig Latin [20] is a dataflow language with a tabular
data model that also supports nesting. Jaql [4] is a declarative scripting languages
that blends in a number of constructs from functional programming languages
and uses JSON for its data model. HiveQL [35] adopts a declarative syntax
similar to SQL and its underlying data model is a set of tables. Other examples
of languages include Impala13, Cascalog14, Meteor [13] and DryadLINQ [39]. [33]
presented a performance as well as a language comparison of HiveQL, Pig Latin
and Jaql. [28] also compared a number of big data languages but focuses on their
compilation into a series of MapReduce jobs.

In the semantic web field, SPARQL is the W3C recommended querying
language for RDF. A number of extensions to SPARQL were proposed in the
literature to support search for semantic associations [3], and to add nested reg-
ular expressions [23] for instances. However, these extensions do not change the
pure declarative nature of SPARQL. There are also a number of non-declarative
languages that can be integrated in common programming languages to provide
support for RDF data manipulation [21,32]. In the more general context of graph
processing languages, [38] provides a good survey.

6 Conclusions and Future Work

RDF Algebra, a fully composable algebra that is similar to SPARQL algebra,
was presented in this paper. The composabilty of RDF Algebra is obtained by
pairing graphs and bindings together. A number of unique algebraic properties
were presented. Further study of these properties is at the top of our research
agenda. We believe that this is a fruitful direction that can have impact in a
number of related research problems.

Based on RDF Algebra, we presented SYRql, a dataflow language for large
scale processing of RDF data. An implementation of SYRql on top of MapRe-
duce platform was described. This paper also reported some initial results on a

13 https://github.com/cloudera/impala
14 http://cascalog.org/
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performance comparison between SYRql implementation and other existing big
data languages. Our future work includes refining SYRql syntax and improving
its performance. In particular, we plan to provide an implementation that runs
SYRql scripts on top of Apache Spark15 and to use binary representation of the
JSON-LD RDF data instead of the textual one currently used.
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Abstract. Driven by initiatives like Schema.org, the amount of seman-
tically annotated data is expected to grow steadily towards massive scale,
requiring cluster-based solutions to query it. At the same time, Hadoop
has become dominant in the area of Big Data processing with large infras-
tructures being already deployed and used in manifold application fields.
For Hadoop-based applications, a common data pool (HDFS) provides
many synergy benefits, making it very attractive to use these infrastruc-
tures for semantic data processing as well. Indeed, existing SPARQL-on-
Hadoop (MapReduce) approaches have already demonstrated very good
scalability, however, query runtimes are rather slow due to the underlying
batch processing framework. While this is acceptable for data-intensive
queries, it is not satisfactory for the majority of SPARQL queries that are
typically much more selective requiring only small subsets of the data.
In this paper, we present Sempala, a SPARQL-over-SQL-on-Hadoop ap-
proach designed with selective queries in mind. Our evaluation shows
performance improvements by an order of magnitude compared to ex-
isting approaches, paving the way for interactive-time SPARQL query
processing on Hadoop.

1 Introduction

In recent years, the Semantic Web has made its way from academia and re-
search into real-world applications (e.g. Google Knowledge Graph) driven by
initiatives like Freebase and Schema.org. With the agreement of leading search
engine providers to support the Schema.org ontology, one can expect the amount
of semantically annotated data to grow steadily at web-scale, making it infeasible
to store and process this data on a single machine [12].

At the same time, new technologies and systems have been developed in the
last few years to store and process Big Data. In some sense, RDF can also be seen
as an instance of Big Data since RDF datasets can have a very diverse struc-
ture and require expensive operations for evaluation. In this area, the Hadoop
ecosystem has become a de-facto standard due to its high degree of parallelism,
robustness, reliability and scalability while running on heterogeneous commodity
hardware. Though Hadoop is not developed with regard to the Semantic Web,
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we advocate its adaptation for Semantic Web purposes for two main reasons:
(1) The expected growth of semantic data requires solutions that scale out as
witnessed by the annual Semantic Web Challenge1. (2) Industry has settled on
Hadoop (or Hadoop-style) architectures for their Big Data needs. This means
there exists a tremendous momentum to address existing shortcomings, leading
to (among others) scalable, interactive SQL-on-Hadoop as a recent trend.

In our view, using a dedicated infrastructure for semantic data processing
solely would abandon all potential synergy benefits of a common data pool
among various applications. Therefore, we believe that following the trend to
reuse existing Big Data infrastructures is superior to a specialized infrastructure
in terms of cost-benefit ratio. Consequently, there has been a lot of work done on
processing RDF and SPARQL, the core components of the Semantic Web stack,
based on Hadoop (MapReduce), e.g. [14,22,23,25,28]. These approaches scale
very well but exhibit pretty high runtimes (several minutes to hours) due to the
underlying batch processing framework. This is acceptable for ETL like work-
loads and unselective queries, both in terms of input and output size. However,
the majority of SPARQL queries exhibit an explorative ad-hoc style, i.e. they
are typically much more selective. There is currently an evolution of user expec-
tations, demanding for interactive query runtimes regardless of data size, i.e. in
the order of seconds to a few minutes. This is especially true for selective queries
where runtimes in the order of several minutes or even more are not satisfying.
This trend can be clearly observed in the SQL-on-Hadoop field where we cur-
rently see several new systems for interactive SQL query processing coming up,
e.g. Stinger initiative for Hive, Shark, Presto, Phoenix, Impala, etc. They all
have in common that they store their data in HDFS, the distributed file system
of Hadoop, while not using MapReduce as the underlying processing framework.

Following this trend, we introduce Sempala, a SPARQL-over-SQL approach to
provide interactive-time SPARQL query processing on Hadoop. We store RDF
data in a columnar layout on HDFS and use Impala, a massive parallel processing
(MPP) SQL query engine for Hadoop, as the execution layer on top of it. To
the best of our knowledge, this is the first attempt to run SPARQL queries
on Hadoop using a combination of columnar storage and an MPP SQL query
engine. Just as Impala is meant to be a supplement to Hive [27], we see our
approach as a supplement to existing SPARQL-on-Hadoop solutions for queries
where interactive runtimes can be expected.

Our major contributions are as follows: (1)We present a space-efficient, unified
RDF data layout for Impala using Parquet, a novel columnar storage format for
Hadoop. (2) Moreover, we provide a query compiler from SPARQL into the SQL
dialect of Impala based on our data layout. The prototype of Sempala is available
for download2. (3) Finally, we give a comprehensive evaluation to demonstrate
the performance improvements by an order of magnitude on average compared
to existing SPARQL-on-Hadoop approaches, paving the way for interactive-time
SPARQL query processing on Hadoop.

1 See http://challenge.semanticweb.org/
2 See http://dbis.informatik.uni-freiburg.de/Sempala for download.
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2 Impala and Parquet

Impala [1] is an open-source MPP SQL query engine for Hadoop inspired by
Google Dremel [16] and developed by Cloudera, one of the biggest Hadoop dis-
tribution vendors. It is seamlessly integrated into the Hadoop ecosystem, i.e. it
can run queries directly on data stored in HDFS without requiring any data
movement or transformation. Moreover, it is designed from the beginning to be
compatible with Apache Hive [27], the standard SQL warehouse for Hadoop. For
this purpose, it also uses the Hive Metastore to store table definitions etc. so that
Impala can query tables created with Hive and vice versa. The main difference to
Hive is that Impala does not use MapReduce as the underlying execution layer
but instead deploys an MPP distributed query engine. The architecture of Im-
pala and its integration into Hadoop is illustrated in Fig. 1 with Sempala being
an application on top of it. The Impala daemon is collocated with every HDFS
DataNode such that data can be accessed locally. One arbitrary node acts as
the coordinator for a given query, distributes the workload among all nodes and
receives the partial results to construct the final output. Impala is a relatively
young project with its first non-beta version released at the beginning of 2013
and new features and performance enhancements being constantly added. At
the time of writing this paper, Impala still lacks the support for on-disk joins,
i.e. joins are only done in-memory. The support for external joins is scheduled
for the second half of 2014.

Processing Node
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Metastore

HDFS
NameNode

State Store

Impala CLI

Query Planner

Query Coordinator

Query Execution
Engine

HDFS DataNode

Local Direct
Reads

Processing Node

Query Planner

Query Coordinator

Query Execution
Engine

HDFS DataNode

Fully MPP
Distributed

Impala

Hadoop

Fig. 1. Impala architecture and integration into the Hadoop stack

Parquet [2] is a general purpose columnar storage format for Hadoop inspired
by Google Protocol Buffers [16] and primarily developed by Twitter and Cloud-
era. Though not developed solely for Impala, it is the storage format of choice
regarding performance and efficiency for Impala. A big advantage of a colum-
nar format compared to a row-oriented format is that all values of a column
are stored consecutively on disk allowing better compression and encoding as all
data in a column is of the same type. Parquet comes with built-in support for bit
packing, run-length and dictionary encoding as well as compression algorithms
like Snappy. In addition, also nested data structures can be stored where so-called
repetition and definition levels are used to decompose a nested schema into a
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list of flat columns and to reconstruct a record such that only those columns
are accessed that are requested. This way, Parquet is very efficient in storing
wide schemes with hundreds of columns while accessing only a few of them in
a request. In contrast, a row-oriented format would have to read the entire row
and select the requested columns later on. It is worth mentioning that NULL
values are not stored explicitly in Parquet as they can be determined by the def-
inition levels. We utilize both, the efficient support of wide tables and compact
representation of NULL values, in our data layout for RDF (cf. Sect. 3.1).

3 Sempala

In the following, we describe the architecture of Sempala consisting of two main
components as illustrated in Fig. 2. The RDF Loader converts an RDF dataset
into the data layout used by Sempala, which we describe in Sect. 3.1. The Query
Compiler, described in Sect. 3.2, rewrites a given SPARQL query into the SQL
dialect of Impala based on our data layout.

RDF Loader Query Compiler

SPARQL Query

SPARQL Parser

Algebra Compiler

Algebra Optimizer

Impala SQL Compiler

Impala

Syntax Tree

Algebra Tree

Algebra Tree

Impala SQL File

RDF Graph

Triple Parser

MapReduce

HDFS

Property Table Converter

Bulk Import
Property Table

MapReduce Plan + RDF

Fig. 2. Overview of Sempala architecture

3.1 RDF Data Layout for Impala

For the following remarks, consider the small example RDF graph about arti-
cles and corresponding authors using a simplified RDF notation in Fig. 3. It
is a common approach by many RDF engines to store RDF data in a rela-
tional DBMS back-end, e.g. [30]. These solutions typically use a giant so-called
triples table with three columns, containing one row for each RDF statement,
i.e. triples(sub, prop, obj). While being flexible and simple in its representation,
it is not an efficient approach for large-scale datasets as queries typically cause
several self-joins over this table. In [29] the author describes the usage of so-
called property tables for query speed-up in Jena2. In general, a property table
has a schema propTable(sub, prop1, ..., propn) where the columns (properties)
are either determined by a clustering algorithm or by the class of the subject.
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The idea is to store all properties in one table that tend to be defined together,
e.g. an article can have properties title, pages, author and cite in our example.
The biggest advantage of property tables compared to a triples table is that they
can reduce the number of subject-subject self-joins that result from star-shaped
patterns in a SPARQL query, e.g. {?s title ?t . ?s author ?a . ?s pages ?p}.
This is particularly relevant for selective SPARQL queries as they often contain
such patterns. Hence, the efficient support of star-shaped patterns is also an
important design goal for Sempala.

Article1 Alice

Paul_Erdoes

erdoesNr

author

"Title 1"

"12" "Title 2"

"8"author

pages

title

author

cite

title

pages

"1"

erdoesNr"0" Article2

Fig. 3. Simplified RDF graph about articles and corresponding authors

In [3] the authors discuss potential drawbacks of property tables. The biggest
problem arises from the typically diverse structure of RDF which makes it virtu-
ally impossible to define an optimal layout. Since not all subjects in a cluster or
class will use all properties, wide property tables may be very sparse containing
many NULL values and thus impose a large storage overhead, e.g. Article2 does
not have a cite property. On the other side, property tables are the more effective
the more property columns required by a query reside within a table, reducing
the number of necessary joins and unions. This means there is a fundamen-
tal trade-off between query complexity and table sparsity. Narrow tables where
property columns are highly correlated are more dense but the likelihood that
a query can be confined to a single table drops, resulting in more complicated
queries. Wide tables, indeed, require less joins simplifying query complexity but
they are more sparse, i.e. contain many NULL values.

The authors in [3] argue that a poorly-selected property table layout can sig-
nificantly slowdown query performance and propose a vertical partitioned schema
having a two-column table for every RDF property instead, e.g. author(sub, obj).
However, in their evaluation they used a row-oriented RDBMS (Postgres) as
back-end to store property tables, which is clearly not the best of choice for
wide tables. In the following, we explain how we leverage the properties of Par-
quet to overcome the aforementioned trade-off and drawbacks in Sempala.

In contrast to a row-oriented RDBMS, the column-oriented format of Parquet
is designed for very wide tables (in the order of hundreds of columns) where only
a few of them are accessed by a request. Therefore, we use a single unified property
table consisting of all RDF properties used in a dataset to reduce the number of
joins required by a query. In fact, star patterns can be answered entirely without
the need for a join. Furthermore, we do not need any kind of clustering algorithm
that is likely to produce suboptimal schemes for an arbitrary RDF dataset. It
also eases query translation and plan generation as all queries use a single table,
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thus leaving more leeway for query optimization in general and the Impala query
optimizer in particular. Of course, this table will be typically sparse as an RDF
dataset can use many properties and most subjects will only use a small subset
of these properties. But since NULL values are not stored explicitly in Parquet
(cf. Sect. 2), sparse columns cause little to no storage overhead.

Nevertheless, our unified approach also comes at a cost. While it is straight-
forward to store properties with a maximum cardinality of one, multi-valued
properties (cf. e.g. author property in Fig. 3) cannot be easily expressed in a flat
schema. As Parquet supports nested data structures, we could use a repeated
field to store multiple values of a property. Unfortunately, Impala does currently
not support nested data (version 1.x). To represent multi-valued properties in a
flat table, we use the following strategy: For each value of a multi-valued prop-
erty we store a duplicate of the corresponding row containing all other column
values. That means for a subject having n multi-valued properties, each consist-
ing of m values, we would store n×m rows in our table. For example, the unified
property table for the RDF graph in Fig. 3 is depicted in Table 1.

Table 1. Unified Property Table for RDF graph in Fig. 3

subject author:string title:string pages:int cite:string erdoesNr:int

Article1 Paul Erdoes ”Title 1” 12 Article2
Article1 Alice ”Title 1” 12 Article2
Article2 Paul Erdoes ”Title 2” 8
Paul Erdoes 0
Alice 1

At first glance, this representation seems to impose a large storage overhead
if many multi-valued properties exist. In fact, this effect is strongly mitigated
by the built-in run-length encoding of Parquet. As all duplicates are stored in
consecutive rows in the table, they are represented by a pair (value, count).
As a consequence of this multi-value treatment, we have to use DISTINCT in
our (sub)queries where we access the table such that we do not produce a lot
of duplicate results. As we only do this when accessing the table, the query
semantics is not affected but it causes an additional overhead. With the support
for nested data as column values, e.g. lists, scheduled for Impala version 2.0, we
could refine this strategy to avoid duplicate rows in future versions of Sempala.

As URIs and literals in RDF tend to be rather long strings, it is also a common
approach to use a dictionary encoding for compaction which is an already built-
in feature of Parquet. In addition, we also store a triples table along with the
unified property table as triple patterns with an unbound property in a SPARQL
query, e.g. {s ?p o}, cannot be easily answered using a property table. It would
not make sense to use a vertical partitioning in this case as the table is only used
for those parts of a query where the property is not specified anyway.

We implemented the conversion from RDF in N-Triples format into our unified
property table layout using MapReduce such that it can also scale with the
dataset size. In an initial preprocessing job we identify all properties used in
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the dataset together with their types (data types of the objects). In a second
job we then apply the actual conversion and parse the object values into the
corresponding data types of Impala, if possible. For all other types, we store
them as strings. We tested our data layout on an RDF dataset with 100 million
triples and compared it with the standard triples table and vertical partitioning
described in [3], all stored with Parquet (except for the original RDF). For
performance comparison, we defined a set of carefully chosen SPARQL queries
consisting of basic graph patterns in various shapes (star and chain) as these
patterns are the core of every SPARQL query. Table 2 summarizes the results.
We see that the unified property table achieves an excellent compression ratio -
the compressed size is actually smaller than the compressed original RDF - while
having the best query performance both in arithmetic and geometric mean.

Table 2. Pre-evaluation results on an RDF dataset with 100 million triples

Original RDF Triples Table Vertical Unified
Partitioning Property Table

size Text Parquet Parquet Parquet
(uncompressed) 10.5 GB 9.7 GB 8.6 GB 14.2 GB
(snappy compressed) 2.1 GB 2.0 GB 2.3 GB 1.8 GB
(ratio) 0.2 0.2 0.27 0.13
runtimes
(arithmetic mean) 17.9 s 7.3 s 5.1 s
(geometric mean) 7.2 s 4.3 s 2.7 s

3.2 Query Compiler

The Query Compiler of Sempala is based on the algebraic representation of
SPARQL expressions defined by the official W3C recommendation [21]. We
use Jena ARQ to parse a SPARQL query into the corresponding algebra tree.
Next, some basic algebraic optimizations, e.g. filter pushing, are applied. How-
ever, SPARQL query optimization was not a core aspect when developing Sem-
pala, hence there is still much room for improvement in this field. Finally, the
tree is traversed from bottom up to generate the equivalent Impala SQL expres-
sions based on our unified property table layout described in Sect. 3.1. Due to
space limitations, we focus on the most relevant key points in the following.

Every SPARQL query defines a graph pattern to be matched against an RDF
graph. The smallest pattern is called a triple pattern which is simply an RDF
triple where subject, property and object can be a variable. A set of triple
patterns concatenated by AND (.) is called a basic graph pattern (BGP). BGPs
are the core of any SPARQL query as they are the leaf nodes in the algebra tree.
Consider, for example, the BGP

p = {?s title ?t . ?s cite ?c . ?c author Paul Erdoes}.
Applied to the RDF graph in Fig. 3, it would yield a single result

(?s→ Article1, ?t→ ”Title 1”, ?c→ Article2).

For the translation of a BGP into an Impala SQL expression, we can exploit
the fact that all properties of a subject are stored in the same row in the unified
property table. Thus, we do not need an extra subquery for every triple pattern
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but instead can use a single subquery for all triple patterns that have the same
subject, regardless of whether it is a variable or a fixed value. We call a set
of triple patterns in a BGP having the same subject a triple group. A BGP
can thus be decomposed into a disjoint set of triple groups, called a join group.
Considering BGP p, its join group consists of two distinct triple groups, tg1 =
{?s title ?t . ?s cite ?c} and tg2 = {?c author Paul Erdoes}. The algorithm to
decompose a BGP into its corresponding join group is depicted in Algorithm 1.
For the sake of clarity, it is slightly simplified in a way that it ignores the case
when the property in a triple pattern is a variable. As already mentioned in
Sect. 3.1, such patterns can be answered using the triples table.

Algorithm 1. computeJoinGroup(BGP)

input : BGP : Set〈TriplePattern : (subject, property, object)〉
output: JoinGroup : Map〈key : String → TripleGroup : Set〈TriplePattern〉〉

1 JoinGroup ← new Map()
2 foreach triple : TriplePattern ∈ BGP do
3 if JoinGroup.containsKey(triple.subject) then // add triple to exisiting TripleGroup
4 JoinGroup.getByKey(triple.subject).add(triple)
5 else // add a new TripleGroup for that triple
6 JoinGroup.add(triple.subject → new TripleGroup(triple))
7

8 end
9 return JoinGroup

Every triple group is answered by a subquery that does not contain a join.
The basic idea is that, at first, variables occurring in a triple group define the
columns to be selected by the query. At second, fixed values are used as condi-
tions in the WHERE clause. The names of the variables are also used to rename
the output columns such that an outer query can easily refer to it. This strategy
is depicted in Algorithm 2 using a simplified relational algebra style notation.
Again, we omit the special case of a property being a variable. For every variable
in a triple pattern, we have to add the corresponding column (identified by the
property) to the list of projected columns (lines 4, 7). Additionally, if the object
is a variable, we also have to add a test for not NULL to the list of conditions
(line 8) because NULL values indicate that the property was not set for this
subject. This is not necessary for variables on subject position as the subject
column does not contain NULL values. For example, the subquery sq1 for tg1 is
SELECT DISTINCT subject AS s, title AS t, cite AS c FROM propTable

WHERE title IS NOT NULL AND cite IS NOT NULL

and the subquery sq2 for tg2 is
SELECT DISTINCT subject AS c FROM propTable WHERE author = ’Paul_Erdoes’

Finally, if a join group consists of more than one triple group, we have to
combine the results of all corresponding subqueries using a sequence of joins.
The join attributes are determined by the shared variables in the triple groups
which correspond to the projected columns in respective subqueries. Since we
rename the columns according to variable names, we essentially have to compute
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Algorithm 2. TripleGroup2SQL(TripleGroup)

input : TripleGroup : Set〈TriplePattern : (subject, property, object)〉
output: SQL query (written in relational algebra style for the sake of clarity)

1 projection ← ∅, conditions ← ∅
2 foreach triple : TriplePattern ∈ TripleGroup do
3 if isVariable(triple.subject) then
4 projection.add(subject → triple.subject)
5 else conditions.add(subject = triple.subject) ; // subject is a fixed value

6 if isVariable(triple.object) then
7 projection.add(triple.property → triple.object)
8 conditions.add(triple.property not null)

9 else conditions.add(triple.property = triple.object) ; // object is a fixed value

10 end
11 return πprojection(σconditions(propTable))

the natural join between all subqueries. To avoid unnecessary cross products, we
order the triple groups by the number of shared variables, assuming that joins
are more selective the more attributes they have. This strategy is depicted in
Algorithm 3. For example, the final query for p is

SELECT q1.s, q1.t, q2.c FROM (sq1) q1 JOIN (sq2) q2 ON (q1.c = q2.c)

Algorithm 3. JoinGroup2SQL(JoinGroup)

input : JoinGroup : Map〈key : String → TripleGroup : Set〈TriplePattern〉〉
output: SQL query (written in relational algebra style for the sake of clarity)

1 JoinGroup ← JoinGroup.orderBySharedVariables()
2 query ← TripleGroupToSQL(JoinGroup.getFirst())
3 JoinGroup.removeFirst()
4 foreach group : TripleGroup ∈ JoinGroup do
5 query ← query �� TripleGroup2SQL(group)
6 end
7 return query

In general, this strategy does not guarantee an optimal join order. However,
after creating the unified property table, we utilize the built-in analytic features
of Impala to compute table and column statistics that are used to optimize
join order. In our tests, the automatic optimization showed almost the same
performance as a manually optimized join order.

A FILTER expression in SPARQL can be mapped to the equivalent conditions
in Impala SQL where we essentially have to adapt the SPARQL syntax to the
syntax of SQL. These conditions can then be added to the WHERE clause of the
corresponding (sub)query. The OPTIONAL pattern is realized by a left outer
join in Impala SQL. If it contains an additional filter in the optional pattern
(right-hand side), e.g. {?s title ?t OPTIONAL{?s pages ?p FILTER(?p > 10)}},
these conditions are added to the ON clause of the left outer join, according to
the W3C specification. UNION, OFFSET, LIMIT, ORDER BY and DISTINCT
can be realized using their equivalent clauses in the SQL dialect of Impala.

Finally, a translated query is executed with Impala where the results are not
materialized locally but stored in a separate results table in HDFS. This way,
we can even query them later one with Impala, if necessary.
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Example. A complete example of how a a SPARQL query is translated to Im-
pala SQL is illustrated in Fig. 4. The SPARQL query (1) asks for page numbers,
authors and optionally their Erdős numbers (if smaller than three) of all articles,
ordered by number of pages in descending order. The corresponding algebra tree
is illustrated in (2) and the final Impala SQL query is given in (3). This query
is then executed with Impala.

SELECT *
WHERE { ?s :pages ?p . ?s :author ?a .
        OPTIONAL { ?a :erdoesNr ?e FILTER(?e < 3) }
        FILTER(?p > 10) }
ORDER BY DESC(?p)

ORDER BY
DESC ?p

Left Join
?e < 3 BGP

?a :erdoesNr ?e

Filter
?p > 10

BGP
?s :pages ?p
?s :author ?a

CREATE TABLE result AS SELECT q1.s, q1.p, q1.a, q2.e
FROM ( SELECT DISTINCT subject AS s, pages AS p, author AS a FROM propTable
       WHERE author IS NOT NULL AND pages > 10 ) q1
     LEFT OUTER JOIN
     ( SELECT DISTINCT subject AS a, erdoesNr AS e FROM propTable
       WHERE erdoesNr IS NOT NULL ) q2
     ON ( q1.a = q2.a AND q2.e < 3 )
ORDER BY p DESC
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Fig. 4. Sempala Query Compiler workflow from SPARQL to SQL

4 Evaluation

The evaluation was performed on a small cluster of ten machines, each equipped
with a six core Xeon E5-2420 CPU, 2×2 TB disks and 32 GB RAM having
the Hadoop distribution of Cloudera in version 4.5 and Impala in version 1.2.3
installed. The machines were connected via Gigabit network. This is actually
a rather low-end configuration as Cloudera recommends 256 GB RAM and
12 disks or more for Impala nodes which is also a typical configuration in an
Hadoop production cluster. We used two well-known SPARQL benchmarks for
our evaluation, Lehigh University Benchmark (LUBM) [10] with datasets from
1000 to 3000 universities and Berlin SPARQL Benchmark V3.1 (BSBM) [6] with
datasets from one to three million products. For LUBM, we used WebPie [28]
to pre-compute the transitive closure as Sempala does not support OWL rea-
soning. The load times and store sizes for Sempala are listed in Table 3. We
can see that – although we store both, property and triples table – the actual
store size is significantly smaller than the size of the original RDF graph. This
is achieved by Parquets built-in support for run-length and dictionary encoding
in combination with Snappy compression that perform great for storing RDF in
a column-oriented format.
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Table 3. Load times and store sizes for Sempala (sizes in GB)

RDF triples RDF size Load time Prop. Tab. Triples Tab. Ratio

L
U

B
M 1000 205 million 34.1 40 min 2.4 2.4 0.14

2000 410 million 68.5 76 min 4.8 5.7 0.15
3000 615 million 102.9 113 min 7.2 9.8 0.16

B
S
B

M 1000K 350 million 85.9 70 min 11.1 14.9 0.30
2000K 700 million 172.5 92 min 22.1 29.8 0.30
3000K 1050 million 259.3 138 min 38.9 44.6 0.32

We compared our prototype of Sempala with four other Hadoop based sys-
tems, where three of them are our own prototypes from other research projects.
(1) Hive [27] is the standard SQL warehouse for Hadoop based on MapReduce.
As Impala was developed to be highly compatible with Hive, we can run the
same queries (with minor syntactical changes) on the same data with Hive as
well. This way, Hive could also be seen as an alternative execution engine for
Sempala. (2) PigSPARQL [25,26] follows a similar approach as Sempala but
uses Pig as the underlying system. It stores RDF data in a vertically partitioned
schema similar to [3]. (3) MapMerge [22] is an efficient map-side merge join im-
plementation for scalable SPARQL BGP processing that significantly reduces
data shuffling between map and reduce phases in MapReduce. (4) MAPSIN [24]
uses HBase, the standard NoSQL database for Hadoop, to store RDF data and
applies a map-side index nested loop join that completely avoids the reduce
phase of MapReduce.

LUBM consists of 14 predefined queries taken from an university domain, most
of them rather selective returning a limited number of results. This is the kind of
workload where Sempala can play its full strength. The performance comparison
for LUBM 3000 is illustrated in Fig. 5 on a log scale while absolute runtimes
are given in Table 4. We can clearly observe that Sempala outperforms all other
systems by up to an order of magnitude on average (geometric mean). Q1, Q3,
Q4, Q5, Q10, Q11 are the most selective queries returning only a few results
and can be answered by Sempala within ten seconds or less. All these queries
define a star-shaped pattern which can be answered very efficiently with the
unified property table of Sempala. In addition, runtimes remain almost constant
when scaling the dataset size. Q6 and Q14 have the slowest runtimes as they are
the most unselective queries returning all students and undergraduate students,
respectively. For this queries, the runtime is dominated by storing millions of
results back to HDFS. This is evidenced by the fact that if we just count the
number of results, runtimes again drop below ten seconds. Q2, Q7, Q8, Q9 and
Q12 are more challenging with Q2 and Q9 defining the most complex patterns.
Also for this queries, runtimes of Sempala are significantly faster than for all
other systems, remaining way below one minute.

For BSBM, we used the query templates defined in the Explore use case
that imitate consumers looking for products in an e-commerce domain. We had
to omit Q9 and Q12 as we do currently not support CONSTRUCT and DE-
SCRIBE queries. For each dataset size we generated 20 instances of every query
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

101

102

103

Sempala Hive PigSPARQL MAPSIN MapMerge

Fig. 5. Performance comparison for LUBM 3000 (log scale)

Table 4. LUBM query runtimes (in s), GM: geometric mean, n/a: not applicable

LUBM Query 1 2 3 4 5 6 7 8 9 10 11 12 13 14 GM

1
0
0
0

Sempala 7 11 6 8 6 28 17 10 14 7 6 8 9 24 10
Hive 77 253 75 89 82 133 310 243 312 77 74 165 217 125 137
PigSPARQL 44 144 48 56 40 35 129 140 207 45 40 119 39 39 66
MapMerge 36 405 31 63 33 15 71 58 179 43 13 15 28 16 41
MAPSIN 32 n/a 30 35 33 45 60 60 n/a n/a 32 n/a 42 42 40

2
0
0
0

Sempala 7 15 7 9 7 47 27 14 21 7 7 9 12 43 13
Hive 80 298 89 97 85 153 353 284 371 82 80 180 237 145 154
PigSPARQL 65 196 55 78 55 50 195 195 309 60 50 158 50 49 89
MapMerge 61 750 52 117 56 18 120 93 311 75 13 16 46 18 62
MAPSIN 52 n/a 47 60 52 67 93 92 n/a n/a 51 n/a 81 78 65

3
0
0
0

Sempala 8 21 8 10 8 66 36 18 28 8 8 10 15 61 16
Hive 98 305 85 96 85 162 417 320 407 87 84 192 245 170 165
PigSPARQL 66 255 65 102 66 55 251 256 391 71 56 208 60 50 107
MapMerge 81 1099 67 153 71 25 167 124 432 98 14 17 57 24 80
MAPSIN 81 n/a 70 89 78 98 120 119 n/a n/a 74 n/a 125 105 94

template using the BSBM test driver, summing up to a total of 200 queries
per dataset. In Table 5 we report the average query execution time (aQET)
per query. MapMerge and MAPSIN could not be used for BSBM evaluation as
they only support SPARQL BGPs. Again, Sempala outperforms Hive and also
PigSPARQL by an order of magnitude on average while runtimes for Q1, Q3,
Q4, Q6 and Q10 remain almost constant around ten seconds for all dataset sizes.
For Q7, a memory error occurred due to the reason that Impala in version 1.2.3
does only support in-memory joins and whenever an Impala node exceeds its
memory resources, the whole query execution is cancelled. So the resources of
an individual Impala node can be a bottleneck for scalability as adding more
nodes to the cluster would not solve this issue. The support for on-disk joins in
Impala is announced for a version beyond 2.0 in the second half of 2014. In the
interim, we can fall back on Hive without additional effort if a memory intensive
query fails on Impala.
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10 Q11

101
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103

Sempala Hive PigSPARQL

Fig. 6. Performance comparison for BSBM 3000K (log scale)

Table 5. BSBM query runtimes (in s), GM: geometric mean

BSBM Query 1 2 3 4 5 6 7 8 10 11 GM

1
0
0
0
K Sempala 8 16 8 12 17 8 28 36 11 14 14

Hive 164 219 148 292 233 139 631 818 169 114 234
PigSPARQL 127 169 161 189 200 35 235 278 226 131 157

2
0
0
0
K Sempala 11 23 11 16 27 8 37 48 12 18 18

Hive 202 307 188 336 309 188 828 1169 211 170 309
PigSPARQL 144 184 180 226 224 36 278 358 259 235 187

3
0
0
0
K Sempala 11 30 11 16 37 10 MEM 63 13 27 19

Hive 294 414 277 490 399 285 1203 1554 265 216 427
PigSPARQL 151 191 198 265 240 41 330 409 307 343 215

Overall, the evaluation clearly demonstrates that combining existing tech-
nologies for Big Data processing can be an efficient solution for querying seman-
tic data. In that sense, Sempala is a significant step towards interactive-time
SPARQL query processing on Hadoop.

5 Related Work

RDF-3X [18] is considered to be one of the fastest single machine RDF sys-
tems but its performance degrades for queries with unbound objects and low
selectivity factor [14]. Furthermore, with continuously increasing dataset sizes
it becomes more and more challenging to store and process RDF datasets on a
single machine only [12], raising the need for distributed solutions.

The authors in [13,17] were among the first to use Hadoop for RDF storage
and retrieval. They presented systems based on MapReduce for SPARQL BGP
processing, omitting more complex SPARQL language elements. HadoopDB [4]
is a hybrid of MapReduce and DBMS where MapReduce is the communication
layer above multiple single node DBMS aiming to combine the speed of a SQL
database with the scalability of MapReduce. The authors in [12] adopted this
hybrid approach for RDF data using RDF-3X instead of a SQL database. An
RDF graph is partitioned into subgraphs, each of them stored on a single node
running an instance of RDF-3X. Furthermore, each node also stores the n-hop
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neighborhood of his subgraph such that queries within an n-hop distance can
be answered locally. However, the initial graph partitioning is done on a single
machine which strongly limits scalability and query performance drops signif-
icantly when a query cannot be answered within the n-hop neighborhood. So
there is a fundamental trade-off between query performance and scalability as
the size of locally replicated data growth exponentially with n. HadoopRDF [14]
is a MapReduce based RDF system that stores data directly in HDFS and re-
balances automatically when cluster size changes but join processing is done
in the reduce phase only, thus there is always a costly data shuffling phase in-
volved [24]. There is a large body of work on join optimization in MapReduce,
e.g. [5,7,22,24]. However, they still suffer from overall MapReduce batch process-
ing overhead what makes interactive runtimes virtually impossible to achieve on
MapReduce.

There are several approaches which store RDF data in HBase, a NoSQL
database based on HDFS. Jena-HBase [15] provides a combination of the Seman-
tic Web framework Jena and HBase to overcome the lack of scalability of single
machine RDF-stores. However, they do not provide a distributed query engine,
thus scalability and query performance for large RDF data is still an issue. The
MAPSIN join proposed in [24] utilizes HBase to avoid costly shuffle phases by
processing joins in the map phase with a focus on selective star pattern queries.
The authors of RDFChain [8] refined this idea to support chained queries more
efficiently. H2RDF+ [20] also stores RDF data in HBase and processes joins
locally or distributed depending on join complexity estimation. However, like
most RDF systems for Hadoop, also MAPSIN, RDFChain and H2RDF do solely
support join-only queries, i.e. SPARQL BGPs. In contrast, Sempala supports
the full range of single graph operators from the SPARQL 1.0 spec.

Instead of implementing a SPARQL processing engine directly in MapReduce,
PigSPARQL [26] translates SPARQL queries to Pig Latin, a high-level languages
for data processing on MapReduce. As with Sempala, it supports all SPARQL
1.0 operators and benefits from further developments of Pig as illustrated in a
revised work [25]. However, based on MapReduce execution, it cannot provide
interactive query runtimes.

Beyond general-purpose platforms like Hadoop, Virtuoso Cluster Edition [9],
Clustered TDB [19] and 4store [11] are specialized distributed RDF stores. How-
ever, they require a dedicated infrastructure and pose additional installation and
management overhead whereas our approach builds upon the idea to use existing
platforms that are open-source, well-known and widely used. Moreover, as we do
not require any changes to Hadoop, Sempala runs on any existing Hadoop cluster
or cloud service (Impala is also supported by Amazon Elastic MapReduce).

6 Conclusion

In recent years, the Hadoop ecosystem has become a de-facto standard for dis-
tributed storage and processing of Big Data. A core idea of Hadoop is to have a
common data pool while providing various applications on top of it. This makes
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it also an attractive choice to store and query semantic data at web-scale. How-
ever, while existing approaches for SPARQL-on-Hadoop have proven very good
scalability, they fail to provide interactive query runtimes.

In this paper, we presented Sempala, a SPARQL query processor for Hadoop
based on Impala. Combining a state-of-the-art columnar file format to store
RDF data in HDFS with a massive parallel processing engine integrated seam-
lessly into the Hadoop stack provides an elegant and at the same time efficient
approach to query large volumes of RDF data. Our comprehensive evaluation
demonstrated that Sempala is a big step towards interactive-time SPARQL query
processing on Hadoop. For future work, we plan to refine our RDF data layout of
Sempala by incorporating nested data structures that will be introduced in Im-
pala 2.0 and to add support for features beyond SPARQL 1.0 such as subqueries
and aggregations.
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Abstract. As the Web of Data is growing at an ever increasing speed,
the lack of reliable query solutions for live public data becomes apparent.
sparql implementations have matured and deliver impressive perfor-
mance for public sparql endpoints, yet poor availability—especially
under high loads—prevents their use in real-world applications. We pro-
pose to tackle this availability problem by defining triple pattern frag-
ments, a specific kind of Linked Data Fragments that enable low-cost
publication of queryable data by moving intelligence from the server to
the client. This paper formalizes the Linked Data Fragments concept,
introduces a client-side sparql query processing algorithm that uses
a dynamic iterator pipeline, and verifies servers’ availability under load.
The results indicate that, at the cost of lower performance, query tech-
niques with triple pattern fragments lead to high availability, thereby
allowing for reliable applications on top of public, queryable Linked Data.

Keywords: Linked Data, Linked Data Fragments, querying, availability,
scalability, sparql.

1 Introduction

The past few years, the performance of sparql endpoints has increased steadily.
In spite of all this progress, reliable queryable access to public Linked Data
datasets largely remains impossible due to the low availability percentages of
public sparql endpoints. As of end-2013, the average sparql endpoint is down
for more than 1.5 days each month [4]. This means we cannot build reliable
applications on top of queryable public data. No matter how fast sparql imple-
mentations become, if their availability does not increase, no one will take the
risk of depending on public data providers to provide querying for their applica-
tions. Availability, not performance, is currently the main threat to the success
of the Semantic Web as a viable technology for today’s challenges.
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To circumvent the availability issue, consumers who want to query public data
typically download a data dump and host their own private sparql endpoint.
While this seems to solve the issue, it has the following drawbacks:
– Hosting an endpoint requires (possibly expensive) infrastructural support

and involves (often manual) set-up and maintenance.
– The data in the endpoint is not guaranteed to be up-to-date.
– Each dataset required by any of the desired queries must be fully loaded into

the endpoint, even if only a small part of that dataset is actually needed.
Furthermore, querying a local machine can hardly be considered Web querying,
as everything happens offline. Making the Semantic Web vision scalable by down-
loading and querying all data locally seems an unsatisfactory paradox.

In order to advance towards a solution for high-availability Web querying,
Linked Data Fragments (ldfs) [27] were proposed as a framework to analyze
all possible ways of publishing parts of a Linked Data dataset, ranging from
sparql endpoints with highly specific results to data dumps that contain the
entire dataset. In particular, this framework allows to define specific types of
fragments that can be generated with minimal effort by servers, while still en-
abling efficient client-side querying. One such type are triple pattern fragments
(formerly called basic Linked Data Fragments [27]), which offer triple-pattern-
based access to a dataset.

In this paper, we show that client-side query processing using triple pattern
fragments allows live querying with high availability and scalability of public
datasets. This result demonstrates that this enables reliable query execution on
the Web of Data, with minimal server-side cost. First, the next section discusses
related work on querying rdf-based datasets on the Web. We then provide
a formalization of Linked Data Fragments in Section 3, followed by a client-side,
iterator-based query execution algorithm in Section 4. Section 5 contains the
availability evaluation and discussion. We conclude the paper in Section 6.

2 Related Work

On the current Web, several http interfaces that provide access to triple-based
data are available. We will discuss public sparql endpoints, Linked Data pub-
lishing, and other http interfaces for triples, as well as their querying methods.

2.1 Public sparql Endpoints

The sparql language [12] is the w3c standard to query a collection of rdf
triples [16]. Many triple stores, such as Virtuoso [5] and Jena tdb [11], offer
a sparql interface. Even though current sparql interfaces offer high perfor-
mance [3, 19, 22], individual queries can consume a significant amount of server
processor time and memory. In fact, it has been shown that the evaluation prob-
lem for sparql is pspace-complete [21]. Like any high-performance database
server, sparql servers with high demand are generally expensive to host, which
is further complicated for public servers because of unpredictable loads.
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The current de-facto way for providing queryable access to triples on the Web
is the sparql protocol [6]: clients send sparql queries through a specific http
interface; the server executes these queries and responds with their results. This
contrasts with the majority of machine-to-machine http interactions on the
Web, where the server implements a rigidly structured api through which clients
access the data. Such apis purposely limit the kind of queries a client can ask,
as it allows those servers to place a bound on the computation time needed for
each api request [27]. With sparql endpoints, clients can demand the execution
of arbitrarily complicated queries1 [6]. Furthermore, since each client requests
unique, highly specific queries, regular http caching mechanisms are ineffective,
since they can only optimize repeated identical requests.

These factors contribute to the low availability of public sparql endpoints,
which is documented extensively [4]. It is important to note that this low avail-
ability is not the result of poor performance: as indicated by multiple bench-
marks [3, 19, 22], many sparql implementations deliver very high performance.
Instead, it is the consequence of the architectural decision of the current sparql
protocol, which demands the server responds to highly complex requests [27].
This makes providing reliable public sparql endpoints an exceptionally difficult
challenge, incomparable to hosting any other public http server.

2.2 Linked Data

Perhaps the most well-known alternative interface to rdf triples is described by
the Linked Data principles [2] which, not coincidentally, align with the Web’s
architectural constraints [8]. The principles require servers to publish documents
(“subject pages”) with triples about specific entities, which a client can access
through their entity-specific uri, a practice which is called dereferencing. Each of
these Linked Data documents contains triples that mention uris of other entities,
which can be dereferenced in turn. Serving such documents is like serving html
files, which does not require much processor time or memory, so hosting them
at low cost is straightforward. Several Linked Data querying techniques [14] aim
to use dereferencing to solve sparql queries over the Web of Data. This process
happens client-side, so the availability of servers is not impacted.

The Linked Data publishing and querying strategy has two main drawbacks.
First, query execution times are high, and many queries cannot be solved (ef-
ficiently). For example, it is nearly impossible to directly answer the following
seemingly simple query for any given dataset:

SELECT ?person WHERE { ?person a <http://xmlns.com/foaf/0.1/Person> }

A client could try to fetch the url http://xmlns.com/foaf/0.1/Person but, be-
cause of the Web’s unidirectional linking structure, the document at that url
cannot possibly link to all instances of foaf:Person. In fact, it does not link to
any, so the query execution yields an empty result.
1 Many endpoints allow to only expose a subset of all sparql queries, for instance, by

limiting the allowed execution time. However, even under those circumstances, the
availability of public sparql endpoints remains low [4].
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Second, documents about an entity are looked up through dereferencing, and
the uri of an entity only points to the single document on the server that hosts
the domain of that uri. For example, the uri http://dbpedia.org/resource/

Barack_Obama leads to triples about Barack Obama on the dbpedia server, not
to the triples hosted on other sources that also have data about Barack Obama,
such as the bbc or the New York Times. And even though dbpedia could link
to those sources, this is entirely up to the server’s discretion. While anybody
can reuse the dbpedia uri to add triples about an entity, it is highly unlikely
that those triples are considered by Linked Data querying. This contrasts with
sparql endpoints, which can provide data about resources with any uri.

2.3 Other http Interfaces to rdf Triples

Finally, several other http interfaces for triples have been designed. Strictly
speaking, the most trivial http interface is a data dump, which is a single-file
representation of a (part of a) dataset. As discussed in Section 1, this allows
consumers to set up a private query endpoint. Typical http apis offer more
granular access, albeit still far less flexible than sparql endpoints.

The Linked Data Platform [23] is a read/write http interface for Linked Data,
scheduled to become a w3c recommendation. It details several concepts that
extend beyond the Linked Data principles, such as containers and write access.
However, the api has been designed primarily for consistent read/write access to
Linked Data resources, not to enable reliable and/or efficient query execution.
Another read/write interface is the sparql Graph Store Protocol [20], which
describes http operations to manage rdf graphs through sparql queries.

Additionally, several other fine-grained http interfaces for triples have been
proposed, such as the Linked Data api [17] and Restpark [18]. Some of them
aim to bridge the gap between the sparql protocol and the rest architectural
style underlying the Web [28]. However, none of these proposals are widely used
at the moment and no query engines for them are implemented to date.

3 Linked Data Fragments

3.1 Concept and Context

What all of the above interfaces have in common is that, in one sense or another,
they publish certain fragments of a Linked Data dataset. A sparql endpoint re-
sponse, a Linked Data document, and a data dump each offer specific parts
of all triples of a given collection. Rather than presenting them as fully dis-
tinct approaches, we uniformly call the result of each request to such interfaces
a Linked Data Fragment (ldf) [25, 27]. As Fig. 1 shows, each kind of fragment
mainly differs in its specificity. Depending on this, the workload to compute an-
swers to queries is divided differently between clients and servers. The key to
efficient and reliable Web querying is to find fragments that strike an optimal
balance between client and server effort. Before we examine particular options,
let us define formally what ldfs are.
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Fig. 1. All http triple interfaces offer Linked Data Fragments of a dataset. They differ
in the specificity of the data they contain, and thus the effort needed to create them.

3.2 Formal Definitions

As a basis for our formalization, we use the following concepts of the rdf data
model [16] and the sparql query language [12]. We write U , B, L, and V to
denote the sets of all uris, blank nodes, literals, and variables, respectively.
Then, T = (U ∪B)×U × (U ∪ B ∪L) is the (infinite) set of all rdf triples. Any
tuple tp ∈ (U ∪ V)× (U ∪ V)× (U ∪ L ∪ V) is a triple pattern. Any finite set of
such triple patterns is a basic graph pattern (bgp). Any more complex sparql
graph pattern, typically denoted by P , combines triple patterns (or bgps) using
specific operators [12,21]. The standard (set-based) query semantics for sparql
defines the query result of such a graph pattern P over a set of rdf triples
G ⊆ T as a set that we denote by [[P ]]G and that consists of partial mappings
μ : V → (U ∪ B ∪ L), which are called solution mappings. An rdf triple t is
a matching triple for a triple pattern tp if there exists a solution mapping μ
such that t = μ[tp], where μ[tp] denotes the triple (pattern) that we obtain by
replacing the variables in tp according to μ.

For the sake of a more straightforward formalization, in this paper, we as-
sume without loss of generality that every dataset G published via some kind of
fragments on the Web is a finite set of blank-node-free rdf triples; i.e., G ⊆ T ∗

where T ∗= U × U × (U ∪ L). Each fragment of such a dataset contains triples
that somehow belong together; they have been selected based on some condition,
which we abstract through the notion of a selector:

Definition 1 (selector). A selector is a partial function s : 2T→ {true, false}.
A more concrete type of this abstract notion are triple pattern selectors, which
select triples that match a certain triple pattern:

Definition 2 (triple pattern selector). Given a triple pattern tp, the triple
pattern selector for tp is the selector stp that, for any singleton set {t}⊆ 2T, is
defined by

stp({t}) =
{
true if t is a matching triple for tp,
false else.

When publishing data on the Web, we should equip its representations with
hypermedia controls [1,8,9]. We encounter them on a daily basis when browsing
html pages; they are usually present as hyperlinks or forms. What all these
controls have in common is that, given some (possibly empty) input, they result
in our browser performing a request for a specific url.

Definition 3 (control). A control is a function that maps from some set to U .
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In particular, we are interested in controls whose domain is a set of selectors, as
they allow to create urls that correspond to data matching those selectors.

By now, we have introduced all elements necessary to define fragments of an
rdf-based dataset.
Definition 4 (Linked Data Fragment). Let G ⊆ T ∗ be a finite set of blank-
node-free rdf triples. A Linked Data Fragment (ldf) of G is a tuple f =
〈u, s, Γ,M,C〉 with the following five elements:
– u is a uri (which is the “authoritative” source from which f can be retrieved);
– s is a selector;
– Γ is a set consisting of all subsets of G that match selector s, that is, for every
G′ ⊆ G it holds that G′ ∈ Γ if and only if G′ ∈ dom(s) and s(G′) = true;

– M is a finite set of (additional) rdf triples, including triples that represent
metadata for f ; and

– C is a finite set of controls.

Any source of rdf-based data on the Web can be described as an ldf by spec-
ifying the corresponding values for u, s, Γ , M , and C. For example, the result
of a sparql CONSTRUCT query is an ldf where the selector is the query, the
metadata set is empty, and the control set contains a sparql endpoint url [6].

Informally, we distinguish different types of ldfs, each of which represents ldfs
that have the same type of selector and the same kind of conditions on their meta-
data M and on their controls C. Section 3.3 will show a specific ldf type.

Some ldfs can be quite large; for instance, a data dump typically contains
millions of triples. Downloading such a large fragment can be undesired in cer-
tain situations, for instance, if we just want to inspect part of the data in the
fragment, or if we are only interested in a fragment’s metadata but not its actual
data. Therefore, a server that hosts ldfs can segment them into smaller pages.
Formally, we capture such a page as follows:
Definition 5 (ldf page). Let f = 〈u, s, Γ,M,C〉 be an ldf of some finite set
of blank-node-free rdf triples. A page partitioning of f is a finite, nonempty
set Φ consisting of so-called pages of f such that the following properties hold:
1. Each page φ ∈ Φ is a tuple φ = 〈u′, uf , sf , Γ ′,M ′, C′〉 with the following six

elements: (i) u′ is a uri from which page φ can be retrieved with u′ �= u,
(ii) uf = u, (iii) sf = s, (iv) Γ ′ ⊆ Γ , (v) M ′ ⊇M , and (vi) C′ ⊇ C.

2. For every pair of two distinct pages φi = 〈u′i, uf , sf , Γ ′
i ,M

′
i , C

′
i〉 ∈ Φ and

φj = 〈u′j , uf , sf , Γ ′
j ,M

′
j, C

′
j〉 ∈ Φ it holds that u′i �= u′j and Γ ′

i ∩ Γ ′
j = ∅.

3. Γ =
⋃

〈u′,uf ,sf ,Γ ′,M ′,C′〉∈Φ Γ
′.

4. There exists a strict total order ≺ on Φ such that, for every pair of two pages
φi = 〈u′i, uf , sf , Γ ′

i ,M
′
i , C

′
i〉 ∈ Φ and φj = 〈u′j , uf , sf , Γ ′

j,M
′
j , C

′
j〉 ∈ Φ with φj

being the direct successor of φi (i.e., φi ≺ φj and ¬∃φk ∈ Φ : φi ≺ φk ≺ φj),
there exists a control c ∈ C′

i with u′j ∈ img(c).
Note in particular that each page contains all metadata and controls of the
corresponding fragment, in addition to the controls that allow to navigate from
one page to the next. If paging is available, servers should automatically redirect
clients from the fragment to its first page, to avoid sending overly large chunks.
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The collection of all ldfs of a certain dataset provided by a server is captured
formally as follows:

Definition 6 (ldf collection). Let G ⊆ T ∗ be a finite set of blank-node-free
rdf triples, and let c be a control. The c-specific ldf collection over G is a set F
of ldfs such that, for each ldf f ∈ F with f = 〈u, s, Γ,M,C〉, the following
three properties hold: 1. f is an ldf of G; 2. s ∈ dom(c); 3. c(s) = u.

Finally, we define a query semantics for evaluating sparql queries over a dataset
that is published as a collection of ldfs.

Definition 7 (query semantics). Let G ⊆ T ∗ be a finite set of blank-node-
free rdf triples, and let F be some ldf collection over G. The evaluation of
a sparql graph pattern P over F , denoted by [[P ]]F , is defined by [[P ]]F = [[P ]]G.

3.3 Triple Pattern Fragments

The current http interfaces for rdf, as discussed in Section 2 and summarized
in Fig. 1, have limitations for query evaluation over live data with high avail-
ability. To facilitate querying on the client side, clients should be able to access
those fragments that correspond to important parts of the query. To maximize
availability on the server side, servers should only offer those fragments they can
generate with minimal effort. In other words, we have to search for a compromise
along the axis in Fig. 1. Offering triple-pattern-based access to datasets seems an
interesting compromise because a) graph patterns, the main building blocks for
sparql queries, consist of triple patterns, so they are important query parts for
clients; and b) servers can select triples corresponding to a certain triple pattern
at low processing cost [7]. For this reason, we introduced a triple-pattern-based
http interface for data access [26, 27], which we formalize as follows.

Definition 8 (triple pattern fragment and collection). Given a control c,
a c-specific ldf collection F is called a triple pattern fragment collection if, for
any possible triple pattern tp, there exists an ldf 〈u, s, Γ,M,C〉 ∈ F , referred to
as a triple pattern fragment, such that the following three properties hold:
1. s is the triple pattern selector for triple pattern tp (as per Definition 2).
2. There exists a (metadata) rdf triple 〈u, void :triples, cnt〉 ∈ M with cnt

representing an estimate of the cardinality of Γ , that is, cnt is an integer
that has the following two properties:
(a) If [[tp]]G = ∅, then cnt = 0.
(b) If [[tp]]G �= ∅, then cnt > 0 and abs

(
|[[tp]]G|−cnt

)
≤ ε for some F -specific

threshold ε.
3. c ∈ C.

Since the selector s of a triple pattern fragment f = 〈u, s, Γ,M,C〉 is a triple
pattern selector, all elements of Γ are singleton sets: |G′| = 1 for all G′ ∈ Γ .
Large fragments would usually be paged as in Definition 5; so while a single page
would not contain all matching triples of the fragment, it would contain the cnt
estimate metadata for the entire fragment, together with the collection’s control.
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Furthermore, any triple pattern fragment collection over some set of rdf
triples G consists of the complete set of triple pattern fragments of G, which in
practice means the server can provide any of them when requested, i.e., it does
not need to have materialized versions for all of them. Each of these fragments
includes the collection-specific hypermedia control (e.g., using the Hydra Core
Vocabulary [26]), making triple pattern fragment collections hypermedia-driven
rest apis [9]. Consequently, by discovering an arbitrary fragment of a collection,
a client can directly reach and retrieve all fragments of the collection. In partic-
ular, this includes all fragments with a selector for one of the triple patterns of
a given sparql graph pattern. Therefore, clients can compute a complete query
result for such a pattern over the collection after obtaining any of its fragments.
In the following section, we discuss an efficient approach for performing this.

4 sparql Queries over Triple Pattern Fragments

4.1 High-Level Algorithm

Triple pattern fragments offer triple-pattern-based access to a dataset on the Web.
If a client wants to evaluate a sparql query over this dataset, it should thus
transform this query into a sequence of triple pattern queries. To optimize the
performance of the execution, the number of http requests should be mini-
mized, and they should execute in parallel to the extent possible. Reducing the
number of expensive operations is possible by selecting a suitable order in which
query parts are evaluated. Therefore, database systems use a query planner to
create an optimized order, based on statistical information about the data [10].
Since such information is usually not available for data on the Web, query plan-
ners have to resort to heuristics [13]. To mitigate this, triple pattern fragments
contain metadata, i.e., the number of triples matching a certain pattern.

We previously introduced a recursive algorithm to efficiently evaluate basic
graph patterns (bgps) over a triple pattern collection [27], since bgps form the
main building blocks of sparql queries. We summarize the algorithm here:
1. For each triple pattern tpi in the bgp B = {tp1, . . . , tpn}, fetch the first

page φi1 of the ldf fi for tpi, which contains an estimate cnti of the total
number of matches for tpi. Choose ε such that cntε = min({cnt1, . . . , cntn}).

2. Fetch all remaining pages of fε. For each triple t in the ldf, generate the
solution mapping μt such that μt[tpε] = t. Then compose the subpattern
Bt = {tp | tp = μt[tpj] ∧ tpj ∈ B} \ {t}. If Bt �= ∅, find mappings ΩBt by
calling the algorithm for Bt. Else, ΩBt = {μ∅} with μ∅ the empty mapping.

3. Return all solution mappings μ ∈ {μt ∪ μ′ | μ′ ∈ ΩBt}.
By recursively fetching those fragments with the lowest number of matches, and
applying their mappings to the graph pattern, we narrow down the number of
http requests that are subsequently needed.

While this algorithm finds all matches for the bgp in the collection, its recur-
sive calling structure returns all results at once, i.e., we have to wait for the first
result until all other results have been computed. Furthermore, adding support
for additional sparql operators to such a monolithic algorithm is impractical.
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4.2 Dynamic Iterator Pipelines
A common approach to implement query execution in database systems is through
iterators that are typically arranged in a tree or a pipeline, based on which query
results are computed recursively [10]. Such a pipelined approach has also been
studied for Linked Data query processing [13,15]. In order to enable incremental
results and allow the straightforward addition of sparql operators, we imple-
ment a triple pattern fragments client using iterators.

The previous algorithm, however, cannot be implemented by a static iterator
pipeline. For instance, consider a query for architects born in European capitals:

SELECT ?person ?city WHERE {

?person a dbpedia-owl:Architect. # tp1
?person dbpprop:birthPlace ?city. # tp2
?city dc:subject dbpedia:Capitals_in_Europe. # tp3

} LIMIT 100

Suppose the pipeline begins by finding ?city mappings for tp3. It then needs
to choose whether it will next consider tp1 or tp2. The optimal choice, however,
differs depending on the value of ?city:

– For dbpedia:Paris, there are ±1,900 matches for tp2, and ±1,200 matches
for tp1, so there will be less http requests if we continue with tp1.

– For dbpedia:Vilnius, there are 164 matches for tp2, and ±1,200 matches for
tp1, so there will be less http requests if we continue with tp2.

With a static pipeline, we would have to choose the pipeline structure in
advance and subsequently reuse it.

In order to generate an optimized pipeline for each (sub-)query, we propose
a divide-and-conquer strategy in which a query is decomposed dynamically into
subqueries depending on partial solution mappings. The main function of an
iterator is next(), which either returns a mapping or nil if no mappings are left.

We first introduce a trivial start iterator, which outputs the empty mapping μ0
on the first call to next(), and nil on all subsequent calls.

Next, we implement a previously defined triple pattern iterator [15] for triple
pattern fragments. This iterator Itp is initialized with a predecessor iterator Ip,
a triple pattern tp, and a page φ0 of an arbitrary triple pattern fragment of a col-
lection F . The iterator then extends mappings from its predecessor by reading
triples from the ldf corresponding to triple pattern tp. The url of this ldf is re-
trieved through the collection control in the start page φ0. Each call to Itp.next()
results in mappings for tp in F , depending on the predecessor’s mappings.

To solve bgps of sparql queries, we introduce a triple pattern fragment
bgp iterator. Such a bgp iterator is initialized with a predecessor Ip, a bgp B =
{tp1, . . . , tpn}, and an arbitrary triple pattern fragment page φ0 of a collection F .
For an empty pattern (n = 0), a bgp iterator is equal to a start iterator. For
a pattern length n = 1, it is constructed by creating a triple pattern iterator
for (Ip, tp1, φ0). For n ≥ 2, a bgp iterator uses Algorithm 1.

bgp iterators evaluate a bgp by recursively decomposing it into smaller itera-
tors. For each triple pattern in the bgp mapped by each result of Ip, the iterator
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Data: (predecessor Ip, bgp B = {tp1, . . . , tpn} with n ≥ 2, start page φ0)
1 I ← nil; c ← the triple pattern control in the control set C0 of φ0;
2 Function BasicGraphPatternIterator.next()

3 μ ← nil;
4 while μ = nil do
5 while I = nil do
6 μp ← Ip.next();
7 return nil if μp = nil;
8 Φ ← {φi

1 | φi
1 = http GET first fragment page using url c(μp[tpi])};

9 ε ← i such that cntφi
1
= min({cntφ1

1
, . . . , cntφn

1
});

10 Iε ← TriplePatternIterator(StartIterator(), μp[tpε], φ
ε
1);

11 I ← BasicGraphPatternIterator(Iε, {μ[tp] | tp ∈ B \ {tpε}}, φε
1);

12 μ ← I.next();
13 return μ ∪ μp;

Algorithm 1. For all mappings μp of a predecessor Ip, a bgp iterator for
a pattern B = {tp1, . . . , tpn} creates a triple pattern iterator Iε for the least
frequent pattern tpε, passed to a bgp iterator for the remainder of P .

fetches the first page of the corresponding ldf. This page contains the cnt meta-
data, which tells us how many matches the dataset has for each triple pattern.
The pattern is then decomposed by evaluating it using a) a triple pattern iter-
ator for the triple pattern with the smallest number of matches, and b) a new
bgp iterator for the remainder of the pattern. This results in a dynamic pipeline
for each of the mappings of its predecessor, as visualized in Fig. 2. Each pipeline
is optimized locally for a specific mapping, reducing the number of requests.

To evaluate a sparql query over a triple pattern fragment collection, we pro-
ceed as follows. For each bgp of the query, a bgp iterator is created. Dedicated
iterators are necessary for other sparql constructs such as UNION and OPTIONAL,
but their implementation need not be ldf-specific; they can reuse the triple
pattern fragment bgp iterators. The predecessor of the first iterator is a start
iterator. We continuously pull solution mappings from the last iterator in the
pipeline and output them as solutions of the query, until the last iterator re-
sponds with nil. This pull-based process is able to deliver results incrementally.

...

B′′= { Drago_Ibler a Architect. }

Alen_Peternac
Drago_Ibler
Juraj_Neidhardt
...

?person birthPlace Zagreb.

B′= { ?person a Architect. ?person birthPlace Zagreb. }

Zagreb
Budapest
Rome
...

?city subject
Capitals_in_Europe.

B= { ?person a Architect. ?person birthPlace ?city. ?city subject Capitals_in_Europe. }

Fig. 2. A bgp iterator decomposes a bgp B = {tp1, . . . , tpn} into a triple pattern
iterator for an optimal tpi and, for each resulting solution mapping μ of tpi, creates
a bgp iterator for the remaining pattern B′ = {tp | tp = μ[tpj ] ∧ tpj ∈ B} \ {μ[tpi]}
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As most time of an ldf client is spent waiting on http requests, the process
can be sped up by buffering the individual iterators. A major advantage of
our dynamic pipelines is that, because each element of a bgp iterator uses its
own separate sub-pipeline, multiple pipelines can run in parallel. E.g., given the
context of Fig. 2, the pipelines for Zagreb, Budapest, and Rome can run in parallel,
and so can those for the Alen_Peternac, Drago_Ibler, and Juraj_Neidhardt. This
results in more concurrent http requests and thus a lower average waiting time
per request. Since triple pattern fragment apis are deliberately designed to allow
high throughput, clients are not bound by crawler politeness rules [14].

5 Evaluation
The goal of the evaluation is to compare the availability–performance relation-
ship of triple-pattern-based query execution to query execution over other ldfs,
sparql endpoints in particular. Performance in this case refers to the query re-
sponse time (i.e., time until the client reports a first solution of the query result)
and total execution time. We measure availability of a server as the fraction of
cases in which the client receives a response within a specified amount of time
after sending a request. For this evaluation, we use a timeout of 60 seconds.

Since overloaded servers are a major cause of unavailability, we also monitor
processor, memory, and bandwidth usage of servers. The assumption is that
servers with high resource usage will be more prone to low availability, i.e.,
a temporal inability to process responses in a reasonable time.

5.1 Experimental Setup

We implemented the triple pattern fragments query execution approach of Sec-
tion 4 as an open-source ldf client for sparql queries. This client is written
in JavaScript, so it can be used either as a standalone application, or as a li-
brary for browser and server applications. While we also implemented an ldf
client as an adapter for the popular Java framework Jena [11], it was not in-
cluded in the comparison, because it uses the existing Jena arq querying in-
frastructure instead of our algorithm. The used ldf server is an open-source
Java server with the compressed hdt format [7] as back-end. We provide all
source code of the implementations, as well as the full benchmark configu-
ration, at https://github.com/LinkedDataFragments/. The triple pattern frag-
ments client/server setup is compared to four sparql endpoint infrastructures:
Virtuoso (6.1.8 and 7.1.1) [5] and Jena Fuseki [11] (tdb 1.0.1 and hdt 1.1.1).

To measure the availability and performance of triple pattern fragment servers
and sparql endpoints under varying loads, we set up an environment with one
server and a variable number of clients. In order to obtain repeatable experi-
ments, the benchmarks were executed on virtual machines on the Amazon aws
platform. The complete setup consists of 1 server (4 virtual cpus, 7.5 gb ram),
1 http cache (8 virtual cpus, 15 gbram) and 60 client machines (4 virtual
cpus, 7.5 gb ram), capable of running 4 single-threaded clients each. We pur-
posely chose a modest server machine to show the impact for low-budget sce-
narios. The http cache acts as a proxy server between servers and clients and
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was chosen for its bandwidth capabilities (which Amazon associates with specific
cpu/ram combinations). It caches http requests for a maximum of 5 minutes.

To date, no sparql availability benchmark exists; however, several perfor-
mance benchmarks exist. We chose the Berlin sparql Benchmark (bsbm) [3]
because of its wide-spread use, with a dataset size of 100 million triples. To
mimic the variability of real-world scenarios, each client executes different bsbm
query workloads based on its own random seed. As existing work on Linked
Data querying focuses exclusively on bgp queries [14], this paper is the first
to use a sparql benchmark on a Linked Data publishing method with a non-
sparql http interface. We do not aim for best performance with triple pattern
fragments; instead, we strive to improve the availability/performance balance.

For our experiments, we have extended bsbm with support for parsing stream-
ing Turtle results, and added the possibility to measure the response time (re-
ception of first solution) in addition to the total query execution time (reception
of all solutions). Some of the bsbm queries use the ORDER BY operator, which has
to be implemented in a blocking way; i.e., the first solution can only be sent
after all solutions have been computed. Therefore, (only) for measurements of
the response time, we use variants of these queries without ORDER BY, assuming
the user application prefers streaming results and performs sorting itself.

After every 1-second interval during the evaluation, we measure on the server,
cache, and client the current value of several properties, including cpu usage of
each core, memory usage, and network io. These measurements are obtained
using PerfMon, while distributed testing happens using JMeter.2

5.2 Results and Discussion

Figs. 3.1 to 3.10 summarize the main measurements of the evaluation. All x-axes
use a logarithmic scale, because we varied the number of clients exponentially.

Fig. 3.1 shows that the performance of sparql endpoints significantly de-
creases with the number of clients. Even though a triple pattern fragments setup
executes sparql queries with lower performance, the performance decrease with
a higher number of clients is significantly lower. Because of caching effects, triple
pattern fragments querying starts performing slightly better with a high number
of clients (n > 100). The per-core processor usage of the sparql endpoints grows
rapidly (Fig. 3.5) and quickly reaches the maximum; in practice, this means the
endpoint spends all cpu time processing queries while newly incoming requests
are queued. The triple pattern fragments server consumes only limited cpu,
because each individual request is simple to answer, and due to their finer gran-
ularity, the cache can answer several requests (Fig. 3.4).

At the client side, the opposite happens (Fig. 3.7): clients of sparql endpoints
hardly use cpu, whereas triple pattern fragments clients do use between 20% and
100% cpu. This percentage decreases with higher numbers of clients, because the
networking time dominates. Memory consumption remains fairly constant and
low (Fig. 3.8). On the server (Fig. 3.6), memory usage remains constantly high;
however, each considered implementation could be configured to use less memory.
2 http://jmeter.apache.org/ and http://jmeter-plugins.org/wiki/PerfMonAgent/
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Fig. 3.2 shows the outbound network traffic on the server with an increasing
number of clients. This traffic is substantially higher with triple pattern fragment
servers, because clients need to ask for several responses to evaluate a single
query. The cache ensures that responses to identical requests are reused; Fig. 3.4
indeed shows that caching is far more effective with triple pattern fragments.

Some of the bsbm queries execute slowly on triple pattern fragments clients,
especially those queries that strongly depend on operators such as FILTER, which
in a triple-pattern-based interface can only be evaluated on the client. The
execution times of these queries exceed the timeout limit of 60s (Fig. 3.3).
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Therefore, we separately study bsbm query template 3 (finding products that
satisfy 2 numerical inequalities and an OPTIONAL clause), which is one of the tem-
plates whose queries cause few timeouts. Note how its execution time (Fig. 3.9)
for triple pattern fragments starts high, but only increases very gradually,
whereas the execution time on sparql endpoints rises very rapidly. Further-
more, the response times increase more slowly with increased load (Fig. 3.10).
Only on the triple pattern fragments server, cpu usage remains low for this
query at all times.

These results indicate that triple pattern fragments query execution succeeds
in reducing server usage, at the cost of increased query times. Triple pattern
fragments servers cope better with increasing numbers of clients than sparql
endpoints. Furthermore, querying benefits strongly from regular http caching,
which can be added at any point in the network. This is all the more remark-
able since, to allow comparisons with other work, these results were obtained
with an existing sparql benchmark that focuses on performance, not availabil-
ity. Even though certain queries make it difficult for an ldf client to find all
results within the timeout window (especially with blocking operators such as
ORDER BY), the first results to all queries arrive before the timeout period. In the
future, the development of an availability-focused sparql benchmark could stim-
ulate availability improvements of the considered systems. The full results of our
experiments are published as ldfs at http://data.linkeddatafragments.org/.

6 Conclusions

Publishers of Linked Data strive to host their data reliably at minimal cost.
Applications, on the other hand, need to query data in the most flexible way.
The three well-known rdf interfaces on the Web—sparql endpoints, Linked
Data documents, and data dumps—are just a fraction of all possible ways to
transfer Linked Data from a server to a client. Since sparql endpoints offer
the most flexibility, they are not coincidentally the most expensive to host with
high availability. The Linked Data Fragments framework captures the search for
alternative http interfaces to rdf data, trying to balance the server’s desire for
maximum reliability and the client’s need for maximum flexibility.

In this paper, we have shown that triple pattern fragments, which additionally
contain count metadata and hypermedia controls, can reduce the load on servers
to less than 30% of the load on sparql endpoints. This happens by shifting the
query-specific tasks to clients, at the cost of slower query execution. Instead of
sending one complex query, clients use a dynamic iterator pipeline to combine the
results of several simpler queries, thereby also vastly improving the effectiveness
of http caching. This captures the spirit of Web querying: clients browse pages
and iteratively extract bits of information to find complex answers. The goal of
triple pattern fragments is to provide those bits that are helpful for clients to
evaluate queries, yet inexpensive to generate by servers.

Triple pattern fragments are definitely not the final answer to querying rdf
datasets on the Web. In fact, there will probably never be such a final answer.
By definition, each api on the Web that publishes rdf triples (which, through
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json-ld [24], can include those apis that publish json) offers its own kind of
ldfs. The challenge for future clients is to find answers to queries through all
kinds of different fragments along the axis of ldfs. The results indicate the po-
tential of this querying strategy, as we have shown they allow executing complex
queries of common sparql benchmarks over live data on the Web with high
availability. Whereas the Linked Data principles emphasize hyperlinks between
data documents [2], triple pattern fragments add forms that let clients control
what data they request. Those forms allow custom access, but at the same time
limit the possible kind of queries in order to save on server processing resources.

Especially in cases where there are limited financial resources to publish data,
triple pattern fragments could make a significant difference: data can be hosted
at low cost, in a way that allows live querying, with high availability. In addition
to our own open source implementations of ldf servers, two third-party imple-
mentations are available. The Belgian Crossroads Bank for Enterprises recently
published their data as triple pattern fragments (http://data.kbodata.be/) us-
ing their own open-source server. The open-source data management system
The DataTank (http://thedatatank.com/) now also supports triple pattern frag-
ments. This lowers the entry barrier for publishers even further. Implementers
of clients and servers can follow the triple pattern fragments specification [26].

Improving the performance is possible if clients can query more specific frag-
ments. In particular, support for certain FILTER expressions would speed up sev-
eral queries, as triple pattern fragments only allow for exact matches. Interesting
future work is therefore to define new classes of ldfs that support such features,
where we always need to keep in mind that minimizing the server’s processing
cost for each fragment is the key to maximizing its availability. Part of this work
includes the description of such fragments, so a client can dynamically discover
what fragment types a server offers, and thus how it can execute a query in an
optimal way. For instance, if a server supports (a subset of) sparql, clients need
to ask fewer queries than when only triple patterns are supported. This trade-off
between server cost/availability and client performance will continue to exist.

Finally, ldf querying shows us that we perhaps need to re-evaluate the way
we develop applications on top of Linked Data. The dominant paradigm so far
has been: “ask a complex question to a server; wait; act on the results”, where the
“waiting” part can be long if the server has low availability. As the response times
of the evaluation indicate, new applications might prefer not to wait, evolving
towards a real-time, distributed paradigm: “ask simple questions to many servers,
acting on results as they arrive”. A major benefit of clients that solve queries by
fetching fragments of Linked Data, in addition to incrementally updating results,
is that they can support distributed querying by asking fragments from different
servers. In other words, limiting the http interfaces of rdf servers does not
only lead to higher availability, it encourages clients to solve complex queries
themselves—and for that, they have the entire Web of Data at their disposal.
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Abstract. The Resource Description Framework (RDF) is a standard for con-
ceptually describing data on the Web, and SPARQL is the query language for
RDF. As RDF data continue to be published across heterogeneous domains and
integrated at Web-scale such as in the Linked Open Data (LOD) cloud, RDF data
management systems are being exposed to queries that are far more diverse and
workloads that are far more varied. The first contribution of our work is an in-
depth experimental analysis that shows existing SPARQL benchmarks are not
suitable for testing systems for diverse queries and varied workloads. To address
these shortcomings, our second contribution is the Waterloo SPARQL Diversity
Test Suite (WatDiv) that provides stress testing tools for RDF data management
systems. Using WatDiv, we have been able to reveal issues with existing sys-
tems that went unnoticed in evaluations using earlier benchmarks. Specifically,
our experiments with five popular RDF data management systems show that they
cannot deliver good performance uniformly across workloads. For some queries,
there can be as much as five orders of magnitude difference between the query
execution time of the fastest and the slowest system while the fastest system on
one query may unexpectedly time out on another query. By performing a detailed
analysis, we pinpoint these problems to specific types of queries and workloads.

Keywords: RDF, SPARQL, systems, benchmarking, workload diversity.

1 Introduction

With the proliferation of very large, heterogeneous RDF datasets such as those in the
Linked Open Data (LOD) cloud [6], there is increasing demand for high-performance
RDF data management systems. A number of such systems have been developed; how-
ever, as queries executed on these systems become increasingly more diverse [4], [10],
[16], these systems have started to display unpredictable behaviour, even to the ex-
tent that on some queries they time out (cf., Fig. 4). This behaviour is not captured
by existing benchmarks. The problem is that data that are handled by these RDF data
management systems have become far more heterogeneous [10], and web applications
that are supported by these systems have become far more varied [4], [16], but existing
benchmarks do not have the corresponding variability in their datasets and workloads.
Consequently, problems go undetected in evaluations using existing benchmarks until
systems are actually deployed. To address these shortcomings, we have designed the
Waterloo SPARQL Diversity Test Suite (WatDiv) that offers stress testing tools to re-
veal a much wider range of problems with RDF data management systems.

P. Mika et al. (Eds.) ISWC 2014, Part I, LNCS 8796, pp. 197–212, 2014.
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Our contributions with WatDiv and the work leading up to its design can be summa-
rized in three steps. First, we introduce two classes of query features, namely, structural
(cf., Section 2.1) and data-driven features (cf., Section 2.2) that should be used to evalu-
ate the variability of the datasets and workloads in a SPARQL benchmark. More specif-
ically, with these features we differentiate as much as possible those types of queries
that may result in unpredictable system behaviour and are indicators of potential flaws
in physical design. For example, in a previous work, we illustrate that the choice of
physical design in an RDF system is very sensitive to the types of joins that the sys-
tem can efficiently support [2]. Hence, we introduce a feature called “join vertex type”.
Likewise, we note that a system’s performance depends on the characteristics of the
data as much as the query itself. Consequently, we introduce additional features that
capture multiple notions of selectivity and result cardinality.

Second, we have performed an in-depth analysis on existing SPARQL benchmarks
using the two classes of query features that we introduce. Our experimental evaluation
demonstrates that no single benchmark (including those that are based on actual query
logs) is sufficiently varied to test whether a system has consistently good performance
across diverse workloads (cf., Section 3). Furthermore, these benchmarks do not pro-
vide the tools to localize problems to specific types of queries if needed. For example,
it would be useful if one could diagnose that the system under test has problems with
queries that have a particular join vertex type, and drill down the evaluation if necessary.
These are exactly the type of evaluations that we aim to facilitate with WatDiv.

Third and last, we use WatDiv to experimentally evaluate five popular RDF data
management systems (cf., Section 5). Our discussion consists of two parts. First, we
demonstrate that evaluations using a diverse workload can help reveal problems about
systems that existing benchmarks cannot identify. Second, we show that by analyzing
results across one or more structural and data-driven features, it is possible to diagnose
and reason about specific problems—a feature not supported by any other benchmark.

2 Preliminaries

This section defines query features based on which we shall discuss the diversity of
SPARQL benchmark workloads. These features can be categorized into two classes:
(i) structural features and (ii) data-driven features. We assume the reader is familiar
with the RDF data model [21] and the SPARQL query language [14].

We define these features over a basic fragment of SPARQL, namely, basic graph pat-
terns (BGPs) with filter expressions. For the sake of brevity, we denote queries in this
fragment by a pair B̄ = 〈B,F 〉, hereafter, referred to as a constrained BGP (CBGP),
where B is a finite set of triple patterns (i.e., a BGP) and F is a finite set of SPARQL
filter expressions. Hence, by using the algebraic syntax for SPARQL [3], a CBGP
B̄ = 〈B,F 〉 with F = {f1, ... , fn} is equivalent to a SPARQL graph pattern P of the
form

(
(...(B FILTER f1)... )FILTER fn

)
(if F = ∅, then P is the BGP B). Consequently,

the evaluation of B̄ over an RDF graph G, denoted by [[B̄]]G, is the bag (multiset) of
solution mappings [[P ]]G as defined by the standard SPARQL query semantics [3], [14].

While a discussion of a more expressive fragment of SPARQL is certainly possible,
for our purposes, this is not necessary: the objective of our benchmark is stress testing,
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Fig. 1. Possible query structures

with an emphasis on revealing issues with the physical design of RDF data management
systems. To this end, we try to generate test queries that are as diverse as possible within
this basic fragment of SPARQL and deliberately avoid testing of complex functionality
such as filters, unions, aggregation and optional graph patterns.

2.1 Structural Features

Every BGP (as used by a CBGP) combines a set of triple patterns into one of numerous
query structures such as those in Fig. 1a–1c. As a basis for comparing the structural
diversity of different sets of CBGPs we introduce four features.

Triple Pattern Count: This feature refers to the number of triple patterns in (the BGP
of) a CBGP. Triple pattern count allows one to broadly distinguish between simple and
structurally complex queries. Ideally, we would like an RDF system to execute simple
queries extremely fast while scaling well with increasing number of triple patterns. In
fact, DBpedia query logs [17] reveal that while in general most queries contain only a
few triple patterns, users may issue (albeit infrequently) queries having more than 50
triple patterns.

Join Vertex Count: This feature represents the number of RDF terms (i.e., URIs,
literals, and blank nodes) and variables that are the subject or object of multiple triple
patterns in a CBGP. Hereafter, we refer to these terms and variables as join vertices
of the CBGP. Formally, if T and V denote the set of all RDF terms and the set of all
variables, respectively, an element x ∈ (T ∪ V) is a join vertex of CBGP B̄ = 〈B,F 〉
if there exist two distinct triple patterns tp = 〈s, p, o〉 and tp′ = 〈s′, p′, o′〉 such that
(i) tp ∈ B and tp′ ∈ B, (ii) x ∈ {s, o}, and (iii) x ∈ {s′, o′}.
Join Vertex Degree: For each join vertex x of a CBGP B̄ = 〈B,F 〉, the degree of x is
the number of triple patterns in B whose subject or object is x. Hereafter, for any such
triple pattern 〈s, p, o〉∈B with x∈{s, o} we say that the triple pattern is incident onx.

Join vertex count and join vertex degree offer a finer distinction of structural com-
plexity than the triple pattern count. For example, the two queries in Fig. 1a and Fig. 1b
have the same number of triple patterns but they differ in their join vertex count and
join vertex degrees. That is, Fig. 1a is a long linear-shaped query with multiple (4)
low-degree (2) join vertices, whereas Fig. 1b is a star-shaped query with a single high-
degree (5) join vertex. A system may show completely different performance for these
two queries and a benchmark should capture such blind spots if any.

Join Vertex Types: The data representation and indexing schemes employed by RDF
systems can result in completely different behaviour on different types of joins [2],
and a benchmark should include a sufficiently large sample of queries for each join
type. Consequently, we distinguish the following three (mutually non-exclusive) types
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of join vertices: A join vertex x of a CBGP B̄ = 〈B,F 〉 is of type SS+ if x = s for
every triple pattern 〈s, p, o〉 ∈ B that is incident on x; similarly, x is of type OO+ if
x = o for every 〈s, p, o〉 ∈ B that is incident on x; and x is of type SO+ if x = s
and x = o′ for two triple patterns 〈s, p, o〉 ∈ B and 〈s′, p′, o′〉 ∈ B (both of which are
incident on x, respectively). For example, the join vertices ?a, ?x and ?y in Fig. 1c have
types SS+, SO+and OO+, respectively.

2.2 Data-Driven Features

The structural query features (discussed above) are often not sufficient. More specifi-
cally, a system’s choice of a query (execution) plan depends on the characteristics of
the data as much as the query itself. For example, systems rely heavily on selectivity
and cardinality estimations for query plan optimization [23]. Consider the following
example: A system chooses to break down a BGP B = {tpA, tpB, tpC} into its triple
patterns and to execute them in a specific order, namely, tpA, tpB and then tpC . The
system picks this particular query plan because the subset of triples that match tpA is
smaller. Furthermore, it estimates the intermediate result cardinalities to be sufficiently
low and decides to use in-memory data structures and algorithms. To enumerate differ-
ent plan choices, we consider the following test cases:

– queries have a diverse mix of result cardinalities;
– a single or few triple patterns are very selective, while the remaining ones are not;
– all of the triple patterns in a query are almost equally selective (hence, there is a

higher probability that the optimizer picks a sub-optimal query plan due to estima-
tion errors); etc.

Next, we define result cardinality and notions of selectivity, and explain how we use
them in our evaluations to distinguish among such different test cases.

Result Cardinality: This feature represents the number of solutions in the result of
evaluating a CBGP B̄ = 〈B,F 〉 over an RDF graph G. Recall that this result, denoted
by [[B̄]]G, is a bag (multiset) of solution mappings (cf. Sec. 2.1). Consequently, if Ω
denotes the set underlying the bag [[B̄]]G and card[[B̄]]G denotes the function that maps
each solution mapping μ ∈ Ω to its cardinality in the bag [3], we define the result
cardinality of B̄ overG by

CARD(B̄, G) =
∑
μ∈Ω

card[[B̄]]G(μ). (1)

Filtered Triple Pattern Selectivity (f-TP Selectivity): Given some CBGP B̄ = 〈B,F 〉
and a BGP B∗ such that B∗ ⊆ B, we write λF(B∗) to denote the CBGP B̄′ = 〈B′, F ′〉
with B′ = B∗ and F ′ = {f ∈ F | vars(f) ⊆ vars(B∗)}, where vars(·) denotes the
variables in a filter expression or a BGP. Then, for any triple pattern tp ∈ B in a CBGP
B̄ = 〈B,F 〉, the f-TP selectivity of tp over an RDF graph G, denoted by SELFG(tp), is
the ratio of distinct solution mappings in [[λF({tp})]]G to the number of triples in G.
Formally, if Ω denotes the set underlying the (bag) query result [[λF({tp})]]G, then

SEL
F
G(tp) = |Ω|/|G|. (2)



Diversified Stress Testing of RDF Data Management Systems 201

In our evaluations, we use three related measures. We use the result cardinality of
a CBGP as it is defined, and we compute the mean and standard deviation of the f-
TP selectivities of the triple patterns in the CBGP. The latter is especially important in
distinguishing queries whose triple patterns are almost equally selective from queries
with varying f-TP selectivities.

While result cardinality and f-TP selectivity are useful features, they are not entirely
sufficient. More specifically, once a system picks a particular query plan and starts ex-
ecuting it, it is often the case that there are intermediate solution mappings which do
not make it to the final result. What this means is that all triple patterns of a CBGP
contribute to its overall “selectiveness”, or stated differently, in every join step, some
intermediate solution mappings are being pruned. Contrast this to another possible case
in which the overall “selectiveness” of a CBGP can be attributed to a single triple pat-
tern in that CBGP. In that case, a system could use runtime optimization techniques
such as sideways-information passing [18] to early-prune most of the intermediate re-
sults, which may not be possible in the original example (for a more detailed discussion
refer to [2]). From a testing point of view, it is important to include both cases. In fact,
in Section 5.5, we shall revisit this example and experimentally show that systems be-
have differently on these two cases. To capture these constraints, we study two more
features, namely BGP-restricted and join-restricted f-TP selectivity. The former is con-
cerned with how much a filtered triple pattern contributes to the overall “selectiveness”
of the query, whereas the latter is concerned with how much a filtered triple pattern con-
tributes to the overall “selectiveness” of the join(s) that it participates in. Just as we do
with f-TP selectivity, for our evaluations, we compute the mean and standard deviation
of these two features.

BGP-Restricted f-TP Selectivity: For any triple pattern tp ∈ B in a CBGP B̄ =
〈B,F 〉, the B̄-restricted f-TP selectivity of tp over an RDF graph G, which is denoted
by SELFG(tp | B̄), is the fraction of distinct solution mappings in [[λF({tp})]]G that are
compatible (as per standard SPARQL semantics [3]) with a solution mapping in the
query result [[B̄]]G. Formally, if Ω and Ω′ denote the sets underlying the (bag) query
results [[λF({tp})]]G and [[B̄]]G, respectively, then

SEL
F
G(tp | B̄) =

∣∣{μ ∈ Ω | ∃μ′ ∈ Ω′ : μ and μ′ are compatible}
∣∣∣∣Ω∣∣ . (3)

Join-Restricted f-TP Selectivity: Given a CBGP B̄ = 〈B,F 〉, a join vertex x of B̄,
and a triple pattern tp ∈ B that is incident on x, the x-restricted f-TP selectivity of
tp over an RDF graph G, denoted by SELFG(tp |x), is the fraction of distinct solution
mappings in [[λF({tp})]]G that are compatible with a solution mapping in the (join)
query result [[λF(Bx)]]G with Bx ⊆ B being the subset of all the triple patterns in B
that are incident on x (i.e, Bx = {tp ∈ B | tp is incident on x}). Hence, if Ω and Ω′

denote the sets underlying [[λF({tp})]]G and [[λF(Bx)]]G, respectively, then

SEL
F
G(tp |x) =

∣∣{μ ∈ Ω | ∃μ′ ∈ Ω′ : μ and μ′ are compatible}
∣∣∣∣Ω∣∣ . (4)
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3 Evaluation of Existing SPARQL Benchmarks

Even though existing SPARQL benchmarks [7], [12], [17], [20] offer valuable testing
capabilities, we demonstrate in this section that they are not suitable for stress testing
RDF systems. We consider the following 4 benchmarks:

– The Lehigh University Benchmark (LUBM) [12] was originally designed for testing
the inferencing capabilities of Semantic Web repositories.

– The Berlin SPARQL Benchmark (BSBM) [7] contains multiple use cases such as
(i) explore, (ii) update, and (iii) business intelligence use cases. Furthermore, it
goes into testing how well RDF systems support different (and important) SPARQL
features, namely, aggregation, union, and optional graph patterns.

– SP2Bench [20] tests various SPARQL features such as union and optional graph
patterns.

– The DBpedia SPARQL Benchmark [17] (DBSB) uses queries that have been gen-
erated by mining actual query logs over the DBpedia dataset [5]. Thus, it contains
a more “diverse set of queries” [17].

We assess the diversity of existing benchmarks using the structural and data-driven
features presented in Section 2. In our evaluations of benchmarks, we only consider
SELECT queries. For BSBM, we focused on the explore use case and generated 100
queries per query template. We observed this to be a sufficiently large sample to un-
derstand the general properties of BSBM. For DBSB, we analyzed a sample of 12500
queries that were drawn uniformly at random from the subset of SELECT queries in
the query logs (the other two benchmarks have a fixed number of queries). For Wat-
Div, we generate the same number of queries (12500). Recall that the query features
in Section 2 are defined over CBGPs. For this reason, when analyzing existing bench-
marks (with respect to these features), we first translate each complex non-CBGP query
into a CBGP by replacing OPT and UNION operators with AND. Hereafter, we refer to
these CBGPs (including those for which translation was not necessary) as the queries of
the benchmark. To compute the statistics reported in this section, for each benchmark,
we generated a benchmark-specific dataset of 1 million triples, and executed all of the
queries in the benchmark.

3.1 Evaluation Using Structural Features

Consider Fig. 2a, which compares queries in each benchmark with respect to their triple
pattern count (x-axis).1 Benchmarks are stacked along the y-axis. For each benchmark,
the presence of a point indicates that the benchmark contains at least one query with the
corresponding number of triple patterns indicated by the x-axis value. Fig. 2a–2c and
Fig. 3a– 3f should be read similarly. The actual distribution of queries with respect to
these features are available in the online version of this paper.2

1 For the time being ignore WatDiv in these figures. The results about WatDiv are not important
for this section. We discuss WatDiv in Section 4.

2 https://cs.uwaterloo.ca/˜galuc/watdiv/paper/
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(a) Triple pattern count (b) Join vertex count

(c) Join vertex degree (mean)

SS+ OO+ SO+

LUBM 78.6% 0.0% 42.9%
SP2BENCH 81.0% 33.3% 57.1%

BSBM 84.8% 5.6% 52.8%
DBSB 41.1% 4.4% 5.4%

WATDIV 61.3% 18.0% 61.3%

(d) Distribution w.r.t. join vertex types

Fig. 2. Analysis w.r.t. structural features: in Fig. 2a–2c, each point indicates the presence of a
query with the corresponding x-axis value for a given feature

While most benchmarks contain large queries with more than 10 triple patterns
(Fig. 2a)3, LUBM contains only small queries—not exceeding 6 triple patterns in cardi-
nality. Furthermore, LUBM’s join vertex count is also lower than the other benchmarks
(Fig. 2b). This is reasonable as LUBM is intended for semantic inferencing. In fact,
the true complexity of an LUBM query lies in its semantics, not in its structure. For
this reason, the suitability of LUBM for performance evaluation is limited if the system
under test does not support inferencing.

By considering mean join vertex degrees (Fig. 2c), we observe that DBSB is more
diverse than any of the synthetic benchmarks (i.e., LUBM, BSBM, SP2Bench). LUBM
contains fairly simple queries (cf., Fig. 2a), which explains why the mean join vertex
degree is also low for most of these queries. SP2Bench contains (i) linear queries that
are long, or (ii) star queries that are large and centered around a single join vertex, but
not much in between; hence, the join-vertex degree values are concentrated at the two
ends of the x-axis in Fig. 2c. BSBM contains queries that are a little bit more diverse in
their join vertex degrees, but it does not test the two extremes as SP2Bench does.

In Fig. 2d, we compare and contrast benchmarks with respect to the types of join
vertices present in each of the queries. This comparison reveals three problems: LUBM
does not contain any query with an OO+join; BSBM contains some, but their percent-
age is significantly low. In DBSB, queries with both OO+and SO+joins have a low
percentage. Consequently, these three benchmarks may be biased towards particular
physical designs that are more effective for SS+(or SO+) joins, which limits the suit-
ability of these benchmarks for stress tests.

3.2 Evaluation Using Data-Driven Features

Regarding result cardinality, the following observations can be made. BSBM contains
only low-cardinality queries, SP2Bench contains almost only high-cardinality queries,

3 Some DBSB queries have as many as 50 triple patterns, but for clarity of presentation we are
not displaying them.
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(a) Result cardinality (b) f-TP selectivity (mean)

(c) f-TP selectivity (stdev) (d) BGP-restricted f-TP selectivity (mean)

(e) BGP-restricted f-TP selectivity (stdev) (f) Join-restricted f-TP selectivity (mean)

Fig. 3. Analysis w.r.t. data-driven features at 1 million triples: each point indicates the presence
of a query with the corresponding x-axis value for a given feature

and LUBM contains only medium-cardinality queries (cf., Fig. 3a), which reveals an-
other limitation of what each of these three benchmarks can test individually.

Fig. 3b–3c show another issue with existing benchmarks. Although benchmarks are
fairly diverse with respect to f-TP selectivity (i.e., especially DBSB and BSBM), the
standard deviation of f-TP selectivities of filtered triple patterns (within any single
query) is generally high. As explained in Section 2.2, this implies that these bench-
marks are missing the test case in which the triple patterns are more or less equally
selective.

As depicted in Fig. 3d, among the four benchmarks, only SP2Bench has a diverse
selection of queries regarding mean BGP-restricted f-TP. LUBM, BSBM and DBSB
have queries in which either the mean value is 1.0, indicating that each triple pattern
in separation does not contribute to the selectiveness of the query, or the mean is ex-
tremely low, indicating the opposite. For BSBM, the contrast is even extreme. Fig. 3e
highlights an even further problem with DBSB and BSBM. For these two benchmarks,
the variation in BGP-restricted f-TP lies mostly in the lower end of the spectrum, which
indicates that these benchmarks cannot be used to test with queries in which triple pat-
terns contribute unevenly to the pruning of intermediate results (cf., Section 2.2).

Finally, consider Fig. 3f, which compares benchmark queries using join-restricted f-
TP (mean). One can observe two important limitations. First, both LUBM and SP2Bench
queries sparsely cover the spectrum of possible values. Second, although BSBM and
DBSB are much more diverse, they cover completely different ends of the spectrum.
A system can generate completely different query plans for these two scenarios, and
therefore, stress testing should use workloads that include both scenarios.
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3.3 Summary of Findings

In summary, the best known benchmarks (including DBSB, which is based on actual
query logs), individually, are not sufficiently diverse to test the strengths and weak-
nesses of different physical design choices employed by RDF systems. Aggregating
results from multiple benchmarks is not a good solution to the diversity problem either.
First, the underlying datasets have completely different characteristics; therefore, we
may get queries with completely disjoint distributions across the structural and data-
driven features. For example, even though it may appear, based on Fig. 3f, that DBSB
and BSBM complement each other (i.e., they cover the opposite ends of the set of pos-
sible x-axis values), Fig. 3a suggests that it is not quite so. The problem is that these
two benchmarks do not complement each other on all possible features. Hence, in an
aggregated (hypothetical) benchmark, we would still be missing queries with high car-
dinality and high join-restricted f-TP selectivity values. Second, scalability is an issue.
It is not clear (i) how we can generate more queries given that some of the above-
mentioned benchmarks have a fixed number of queries, or (ii) how results from multi-
ple benchmarks should be combined given that each benchmark has its own scalability
restrictions. Our benchmark is designed to address these issues.

4 Waterloo SPARQL Diversity Test Suite (WatDiv)

WatDiv consists of multiple tools4 that enable diversified stress testing of RDF data
management systems:

– The data generator generates scalable datasets at user-specified scale factors—a
common feature of benchmarks. A more interesting feature is that data are gener-
ated according to the WatDiv schema5 with customizable value distributions.

– The query template generator traverses the WatDiv schema and generates a diverse
set of query templates (which is the first step in generating a workload for the stress
tests). Users can specify the number of query templates to be generated as well as
certain restrictions on the query templates such as the maximum number of triple
patterns or whether predicates in triple patterns should be bound.

– Given a set of query templates, the query generator instantiates these templates
with actual RDF terms from the dataset (which is the second and last step in gener-
ating a workload for the stress tests). The number of queries to be instantiated per
query template can be specified by users.

– Given a WatDiv dataset and test workload, for each query in the workload, the
feature extractor computes the structural and data-driven features discussed in Sec-
tion 2. For this to work, the tool needs to point to a third party RDF data manage-
ment system that is already installed on the system.

Dataset Description: What distinguishes WatDiv datasets from existing RDF bench-
marks is the diversity of the structuredness: some entities in WatDiv are well-structured,

4 http://db.uwaterloo.ca/watdiv/
5 http://db.uwaterloo.ca/watdiv/watdiv-data-model.txt
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meaning that they contain few optional attributes, while some others are less well-
structured [10]. We discuss in Section 4 that this enables the generation of test queries
that are far more diverse in their data-driven features.

Three properties contribute to the diversity of WatDiv. First, instances of the same
entity type (i.e., class) do not necessarily have the same properties. Consider the differ-
ent types of entities used in WatDiv.6 Product instances may be associated with different
Product Categories (e.g., Book, Movie, Classical Music Concert, etc.), but depending
on the category a product belongs to, it will have a different set of properties. For exam-
ple, products that belong to the category “Classical Music Concert” have the properties
opus, movement, composer and performer (in addition to the properties that are com-
mon to every product), whereas products that belong to the category “Book” have the
properties isbn, bookEdition and numberOfPages.

Second, even within a single product category, not all instances share the same set
of properties. For example, while isbn is a mandatory property for books, bookEdition
(Pr = 0.5) and numberOfPages (Pr = 0.25) are optional properties, where Pr in-
dicates the probability that an instance will be generated with that property. Users are
able to modify the WatDiv schema, hence these probabilities.

Third, a group of attributes can be correlated, which means that either all or none of
the correlated attributes in that group will be present in any instance of the entity type.
For example, opus and movement are two correlated properties for “Classical Music
Concert” products (cf. <pgroup> construct in the WatDiv dataset schema).

Test Queries: The benchmark queries are generated in two steps. First, a set of query
templates are created by performing a random walk over the graph representation of
the schema of the dataset (i.e., query template generator). In this regard, we use the
following (internal) representation: every entity type in the schema corresponds to a
graph vertex, relationships among entity types (i.e., which correspond to RDF predi-
cates in the instantiated dataset) are represented using graph edges, and each vertex is
annotated with the set of properties of that entity type. This produces a set of BGPs
with a maximum n triple patterns, where n was set to 15 in our experiments. Note that
we generate BGPs with triple patterns that have unbound subjects and objects, whereas
their predicates are bound. Then, k uniformly randomly selected subjects/objects are
replaced with WatDiv-specific placeholders (i.e., placeholders are enclosed within per-
centage [%] signs in the benchmark). In the second step, placeholders in each query
template are instantiated with RDF terms from the WatDiv dataset (i.e., query genera-
tor). To this end, the WatDiv tools maintain, for each placeholder, a set of values that
are applicable to that placeholder, and during the instantiation step, a value is drawn
uniformly at random. For the study in this paper, we generated 12500 test queries from
a total of 125 query templates (i.e., the same number of queries we sampled in DBSB).
These queries are available online.7

Discussion: In Fig. 2a–2d and Fig. 3a–3f, we characterize the aforementioned 12500
WatDiv test queries. With respect to most of the structural query features, WatDiv has
comparable characteristics to DBSB and it is far more diverse than LUBM, SP2Bench

6 http://db.uwaterloo.ca/watdiv/#dataset
7 http://db.uwaterloo.ca/watdiv/stress-workloads.tar.gz
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and BSBM (cf., Fig. 2a–2c). For example, the mean join vertex degree values are
densely distributed between 2.0 and 10.0, indicating a rich mix of queries. Further-
more, with respect to join vertex types, WatDiv has a much more balanced distribution
than DBSB: a significant 18.0% of queries in the WatDiv workload have OO+-type join
vertices, compared to only 4.4% in DBSB, and 61.3% versus 5.4% for queries with
SO+joins.

With respect to most of the data-driven features, WatDiv is far more diverse, often
filling in the gaps that are not supported by existing benchmarks (cf., Fig. 3d, 3e and
3f). For example, while DBSB and BSBM cover only the opposite ends of the spectrum
of mean join-restricted f-TP selectivity values, WatDiv covers the full spectrum (cf.,
Fig. 3f). With respect to mean f-TP selectivity (hence, also standard deviation), Wat-
Div covers a lower range of values than DBSB and other benchmarks (cf., Fig. 3b–3c).
This is because in DBSB there are unselective queries that return the whole dataset, that
is, the subjects, predicates and objects in a triple pattern are all unbound. In contrast, re-
call from Section 4 that for our evaluation we generated queries in which the predicates
in a triple pattern are bound (enabling this feature in WatDiv is a configuration option).
Therefore, for this feature WatDiv complements the other benchmarks. Overall, due to
the comprehensiveness of WatDiv, it has enabled us to reveal performance issues about
existing RDF systems that were missed in studies that used the other four benchmarks.

5 Evaluation of RDF Systems

We used WatDiv to evaluate a number of existing RDF data management systems. In
this section, we report our experimental results and discuss various issues with existing
systems.

5.1 Systems Under Test

RDF systems can be classified broadly into two categories in terms of their data rep-
resentations: (i) tabular and (ii) graph-based. For tabular implementations, one option
is to represent data in a single large table. While earlier triplestores followed this ap-
proach [8,9], it has been demonstrated that maintaining redundant copies with different
sort orders and indexes can be much more effective [19]. Consequently, in our eval-
uations we include the popular prototype RDF-3x [19] (v0.3.7) that follows the latter
approach. It has also been argued that grouping data can significantly improve per-
formance for some workloads [22]. Hence, a second option is to group data by RDF
predicates, where data are explicitly partitioned into multiple tables (one table per pred-
icate) and the tables are stored in a column-store [1]. We test the effectiveness of this
approach on MonetDB [15] (v1.7), which is a state-of-the-art column-store. A third op-
tion is to natively represent RDF graph structure, for which we use the prototype system
gStore [24] (v0.2). We also test three industrial systems, namely, Virtuoso Open Source
(VOS) [11] (v6.1.8 and v7.1.0) and 4Store [13] (v1.1.5). Both VOS and 4Store group
and index data primarily based on RDF predicates. Furthermore, VOS 6.1 is a row-store
and VOS 7.1 is a column-store.
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5.2 Experimental Setup

In our experiments, we use a commodity machine with AMD Phenom II ×4 955
3.20 GHz processor, 16 GB of main memory and a Seagate 3.AA hard disk drive with
100 GB of free space at the time of experimentation. The operating system on the ma-
chine is Ubuntu 12.04 LTS.

In this paper, our objective is to understand how well state-of-the-art RDF systems
perform on a diverse SPARQL workload; however, we do not intend to test the scal-
ability of these systems given more computational nodes and/or CPUs. Therefore, we
restrict each system to use single-threading. WatDiv is equally suitable for scalability
experiments, but these results are not included in this paper.

In our stress-tests we use two versions of the WatDiv dataset, one generated at scale-
factor 100 and the other at 1000, which correspond to approximately 10 million and 100
million triples, respectively. Recall from Section 4 that we use 12500 queries generated
from 125 query templates.

We evaluate the systems using a warm cache. Therefore, we generate two workloads:
a warmup workload and a test workload, both containing the same 12500 queries. On
each system, first the warmup workload and then the test workload is executed. To
achieve higher confidence, we repeat the experiments 5 times. Furthermore, to reduce
the effects of query interactions within the test workload, every time, the sequence of
queries in the test workload is randomized (the warmup experimental run is just another
randomized test run). This way, for each query in a test sequence, we measure and
record its execution time as well as various structural and data-driven features about
that query. For practical reasons, whenever query execution exceeds 60 seconds, we
automatically timeout, proceed with the next query in the sequence, and ignore that
query in the consecutive runs for that system.

5.3 Results

The experimental results are summarized in Fig. 4a–4d. The complete results with error
margins are available in the aforementioned online version of the paper. Fig. 4a displays,
for each system, the total execution time (averaged over the five randomized sequences)
of the test workload. Fig. 4b depicts, for each system, the percentage of queries in the
workload that particular system is the fastest (timeouts are ignored) or up to 10 times
slower than the fastest system, and so on. Fig. 4c–4d display for each query in the
workload (x-axis), the query execution time (in milliseconds) of the fastest as well as the
slowest system for that query (which may be different systems for different queries). For
presentation purposes, queries are sorted according to their maximum execution times.
Note that for some queries, the maximum execution time is capped at 60 seconds, which
marks the timeout threshold.

gStore ran into errors during the execution of some of the queries: we do not consider
these cases in our discussions. Consequently, the percentages for gStore in Fig. 4b do
not add up to 100%. Furthermore, gStore timed out on the queries on the larger dataset,
hence, we excluded it from Fig. 4b.

5.4 Observations

Regarding Fig. 4a, we make two observations. First, VOS (and to some extent RDF-
3x) perform much better than the other three systems on the larger dataset. Second,
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RDF-3x

VOS [6.1]

VOS [7.1]

MonetDB

4Store
gStore

10M triples 58,312 41,612 51,268 48,329 94,289 n/a
100M triples 97,409 75,224 74,997 139,015 260,045 n/a

(a) Total workload execution time (in seconds) for the systems under test
10M triples 100M triples

RDF-3x

VOS [6.1]

VOS [7.1]

MonetDB

4Store
gStore

RDF-3x

VOS [6.1]

VOS [7.1]

MonetDB

4Store
gStore

fastest 11.4% 6.5% 18.7% 31.7% 0.8% 30.9% 20.9% 0.0% 22.6% 56.5% 0.0% n/a
1–10×

sl
ow

er

77.2% 67.5% 63.4% 65.0% 49.6% 35.8% 60.9% 59.1% 54.8% 31.3% 53.0% n/a
10–100× 6.5% 23.6% 13.0% 1.6% 41.5% 2.4% 13.9% 40.0% 20.0% 2.6% 21.7% n/a
100–1K× 3.3% 1.6% 4.1% 0.0% 0.8% 0.0% 3.5% 0.9% 1.7% 6.1% 15.7% n/a
1K–10K× 1.6% 0.8% 0.8% 1.6% 7.3% 0.0% 0.0% 0.0% 0.9% 3.5% 7.0% n/a

10K–100K× 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.9% 3.5% 7.0% n/a

(b) Performance breakdown (10M and 100M triples)

(c) Gap between the recorded execution times
of the fastest and slowest systems at 10M
triples (per query instance)

(d) Gap between the recorded execution times
of the fastest and slowest systems at 100M
triples (per query instance)

Fig. 4. WatDiv Results: Robustness of Existing Systems

although VOS has the lowest total execution time for the whole workload (Fig. 4a), it is
the fastest system in not more than 23 percent of the queries (Fig. 4b). This highlights
an interesting trade-off between robustness across a diverse set of queries versus speed
within a specific type of workload.

Note that no single system is the absolute winner in all of the queries (cf., Fig. 4b.
Furthermore, note that each system performs poorly (i.e., a few orders of magnitude
worse than the fastest system) in a significant percentage of queries in the workload.

The results in Fig. 4c–4d highlight two more issues. First, for most queries, there can
be 2 orders of magnitude difference between the fastest and slowest system, and in the
worst case, this gap can be as large as 5 orders of magnitude (note that this gap exists
even when query execution times are grouped by query template). Second, the worst
case gap widens from the smaller to the larger dataset.

In summary:

– No single system is a sole winner across all queries;
– No single system is the sole loser across all queries, either;
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Fig. 5. Detailed evaluation: results are analyzed across various combinations of features

– For some queries, there can be as much as 5 orders of magnitude difference in the
performance (i.e., query execution time) between the best and the worst system for
that query; and

– The winner in one query may timeout in another.

5.5 Detailed Analysis

In this section, we provide a more detailed evaluation by drilling down into particular
query features (and combinations thereof). Hypothetically speaking, it is possible to
perform such analyses using any possible combination of features (including any addi-
tional feature not covered by our study). However, due to space limitations, we focus
on a few special cases where the results stand out, and while doing so, we demonstrate
how WatDiv can be used for stress testing.

As our first exercise, we quantify an observation that we made in Section 2.2. That
is, we want to test whether systems behave differently for queries in which all (or most)
triple patterns contribute almost equally to the overall “selectiveness” of the query
(Case-A) versus the case in which the overall “selectiveness” of the query can be at-
tributed to a single (or few) triple patterns (Case-B). To distinguish between these two
cases, we rely on the standard deviation of BGP-restricted f-TP selectivity, where a low
(resp., high) standard deviation implies Case-A (resp., Case-B). For this exercise, we
take into account only the queries with result cardinality≤ 2000 (i.e., selective queries).
We divide the spectrum of standard deviation values into three intervals such that we
have an equal number of queries in each interval (approximately 3300 queries per inter-
val). Fig. 5a depicts, for each system, the geometric mean of the query execution times
of all queries in each of the three intervals. We note that, for all four systems, the (mean)
query execution times decrease as the standard deviation of BGP-restricted f-TP selec-
tivity increases. These results indicate that, while systems have integrated techniques to
early-prune intermediate results [18], these techniques do not seem to be effective for
Case-A.

Next, we demonstrate a case in which different systems show varied behavior on
a particular type of workload. In this exercise, we consider only the queries with a
single join vertex and result cardinality ≤ 2000. Then, based on the mean of BGP-
restricted f-TP selectivity, we devised two types of workloads: one in which queries
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have very low mean BGP-restricted f-TP selectivity, and the other in which the mean
is high (each interval contains approximately 2200 queries). The former workload cap-
tures those queries in which due to data distributions, the query itself becomes much
more selective than the individual triple patterns participating in the query. Fig. 5b il-
lustrates an interesting trend: while the five systems behave similarly to some extent for
the latter workload, they have completely differing performance in the former one. An
investigation that may reveal a reason for this observation is beyond the scope of this
paper.

Last, we test whether systems are biased towards a particular query structure (i.e.,
linear vs. star/snowflake). To this end, we select two sets of queries: (i) those queries
with mean join vertex degree ≤ 3.0 and join vertex count ≥ 3 (representing linear
queries), and (ii) those with mean join vertex degree ≥ 5.0 and join vertex count ≤
2 (representing star or snowflake queries). The results in Fig. 5c demonstrate that all
of the four systems are indeed biased against linear queries, highlighting a room for
improvement.

6 Conclusions

In this paper, we discuss WatDiv. First, we introduce a set of query features that can
be used for assessing the diversity of the data and workloads in a SPARQL benchmark.
We explain why these features are important and how they relate to special test cases
that need to be included in a stress testing tool. Then, we discuss our experimental
evaluation of existing SPARQL benchmarks with a specific emphasis on identifying
test cases that are not handled by these benchmarks, which led us to the development of
WatDiv. Our experimental evaluation of existing RDF data management systems with
WatDiv demonstrate that these systems are not sufficiently robust across a diverse set of
queries. Then, we use WatDiv to drill down into specific combinations of query features
to reveal problems that only this type of stress testing could reveal. Specifically, we
illustrate cases where all of the evaluated systems show bias against a particular type of
workload, or where a particular system has some advantage over the others for a specific
type of workload. We believe that evaluations that involve stress testing as demonstrated
in this paper are crucial to build more robust RDF data management systems. For future
work, we consider extending WatDiv to support provenance and temporal data.
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Abstract. It is widely accepted that proper data publishing is difficult.
The majority of Linked Open Data (LOD) does not meet even a core
set of data publishing guidelines. Moreover, datasets that are clean at
creation, can get stains over time. As a result, the LOD cloud now con-
tains a high level of dirty data that is difficult for humans to clean and
for machines to process.

Existing solutions for cleaning data (standards, guidelines, tools) are
targeted towards human data creators, who can (and do) choose not
to use them. This paper presents the LOD Laundromat which removes
stains from data without any human intervention. This fully automated
approach is able to make very large amounts of LODmore easily available
for further processing right now.

LOD Laundromat is not a new dataset, but rather a uniform point of
entry to a collection of cleaned siblings of existing datasets. It provides
researchers and application developers a wealth of data that is guar-
anteed to conform to a specified set of best practices, thereby greatly
improving the chance of data actually being (re)used.

Keywords: Data Publishing, Data Cleaning, Data Reuse, Standards
Conformance.

1 Introduction

Uptake of Linked Open Data (LOD) has seen a tremendous growth over the
last decade. Due to the inherently heterogeneous nature of interlinked datasets
that come from very different sources, LOD is not only a fertile environment for
innovative data (re)use, but also for mistakes and incompatibilities [4,5]. Such
stains in datasets not only degrade a dataset’s own quality, but also the quality
of other datasets that link to it (e.g., via owl:sameAs). There is thus an incentive
that goes beyond that of the original dataset creators to clean stains in LOD.

Existing solutions for cleaning Semantic Web (SW) data (standards, guide-
lines, tools) are targeted towards human data creators, who can (and do) choose
not to use them. Therefore, despite these efforts, much of LOD is still difficult
to use today, mostly because of mistakes for which solutions exist. We believe
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that this poses an unnecessary impediment to the (re)use of LOD for academic
and commercial purposes.

This paper presents the LOD Laundromat, which takes immediate action
by targeting the data directly, not its maintainers. By cleaning stains in LOD
without any human intervention, LOD Laundromat is able to make very large
amounts of LOD more easily available for further processing right now. The
collection of cleaned datasets that LOD Laundromat produces are standards-
and guidelines-compliant siblings of existing, idiosyncratic datasets.

The data-oriented approach of LOD Laundromat is complementary to exist-
ing efforts, since it is preferable that someday the original dataset is cleaned by
its own maintainers. However, we believe that until that day, our complemen-
tary approach is necessary to make LOD succeed while the momentum is still
there. LOD Laundromat is unlike any of the existing initiatives towards realizing
standards-compliant LOD in each of the following three ways:

1. The scale on which clean data is made available: LOD Laundromat com-
prises thousands of data files, and billions of triples.

2. The speed at which data is cleaned and made available: LOD Laundromat
cleans about a billion triples a day and makes them immediately available
online.

3. The level of automation. LOD Laundromat automates the entire data
processing pipeline, from dataset discovery to serialization in a standards-
compliant canonical format that enables easy reuse.

Besides making LOD standards-compliant, LOD Laundromat implements exist-
ing standards in such a way that the resultant data documents are specifically
geared towards easy reuse by further tooling. This includes simplifying certain
aspects of LOD that often cause problems in practice, such as blank nodes, and
significantly reducing the complexity for post-processors to parse the data, e.g.,
through a syntax that is regular expression-friendly.

The LOD Laundromat is available at http://lodlaundromat.org. The col-
lection of datasets that it comprises is continuously being extended. Anyone can
add new seed points to the LOD Laundry Basket by using a Web form or HTTP
GET request. The fully automated LOD Washing Machine takes seed points
from the LOD Laundry Basket and cleans them. Cleaned datasets are dissem-
inated in the LOD Wardrobe. Human data consumers are able to navigate a
large collection of high-quality datasets. Machine processors are able to easily
load very large amounts of real-world data, by selecting clean data documents
via a SPARQL query. For illustrative purposes, various visualizations about the
cleaned data are available as well.

This paper is organized as follows: section 2 gives an overview of related
work. Section 3 specifies the requirements we pose for clean and useful data,
and briefly explores alternative approaches, towards collecting large amounts of
Linked Data. Section 4 details the major operationalization decisions that allow
the data cleaning process to be fully automated. Section 5 elaborates on the way
in which LOD Laundromat makes data available for further processing. Section
6 concludes and mentions future work.
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2 Related Work

In this section we firstly discuss standards and best practices with respect to
Linked Data publishing. Secondly, we discuss existing Linked Data collections
and crawlers. Finally, we discuss available Linked Data catalogs, together with
their advantages and disadvantages.

2.1 Standards

The VoID standard1 is a vocabulary to formally describe datasets. It supports
general metadata (e.g., the homepage of a dataset), access metadata (e.g., which
protocols are available), possible links with other datasets, as well as structural
metadata. Structural metadata includes exemplary resources and statistics (e.g.,
the number of triples, properties and classes).

Bio2RDF [2] presents a collection of dataset metrics which extends the struc-
tural metadata of the VoID description, and provides more detail (e.g. the num-
ber of unique objects linked from each predicate).

While such standards are useful from both the data publisher and the data
consumer perspective, uptake of VoID is lacking.2 Additionally, from a data
consumer perspective, the issue of findability through fully automated means is
not resolved.

A number of observations and statistics related to Linked Data publishing
best practices are presented in [5,3] and by the W3C Linked Data best practices
working group3. The former have analyzed over a billion triples from 4 million
crawled RDF/XML documents. This analysis shows that on average 15.7% of
the RDF nodes are blank nodes. Furthermore, their analysis shows that most
Linked Data is not fully standards-compliant, corroborating the need for sani-
tizing Linked Data. However, note that this study is purely observational, and
the accessed data is not made available in a cleaned form.

2.2 Data Crawlers

Sindice [8] presents itself as a Semantic Web indexer. The main question Sindice
tries to address, is how and where to find statements about certain resources. It
does so by crawling Linked Data resources, including RDF, RDFa and Microfor-
mats, although large RDF datasets are imported on a per-instance and manual
opt-in basis. Sindice maintains a large cache of this data, and provides access
via a user interface and API. Public access to the raw data crawler by Sindice is
not available, nor is access via SPARQL, restricting the usefulness of Sindice for

1 http://www.w3.org/TR/void/
2 A overview of VoID descriptions that can be found by automated means, is given
by the SPARQL Endpoint Status service: http://sparqles.okfn.org/

3 http://www.w3.org/TR/ld-bp/
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Semantic Web and Big Data research. Built on top of Sindice, Sig.ma [10] is
an explorative interactive tool, which enables Linked Data discovery. Similar to
Sindice, Sig.ma provides an extensive user interface, as well as API access. Even
though this service can be quite useful for data exploration, like with Sindice,
the actual raw data is not accessible for further processing.

Contrary to Sig.ma and Sindice, data from the Billion Triple Challenge4

(BTC) 2012 are publicly available and are – as a consequence – often used in Big
Data research. The BTC dataset is crawled from the LOD cloud5, and consists
of 1.4 billion triples. It includes large RDF datasets, as well as data in RDFa
and Microformats. However, this dataset is not a complete crawl of the Linked
Open Data cloud (nor does it aim to be), as datasets from several catalogs are
missing from the BTC. Additionally, the latest version of this dataset dates back
to 2012.

Freebase [1] publishes 1.9 billion triples, taken from manual user input and
existing RDF and Microformat datasets. Access to Freebase is possible via an
API, via a (non-SPARQL) structured query language, and as a complete dump
of N-Triples. However, these dumps include many non-conformant, syntactically
incorrect triples. To give a concrete example, the data file that is the derefer-
ence of the Freebase concept ‘Monkey’6 visually appears to contain hundreds
of triples, but a state-of-the-art standards-conformant parser such as Raptor7

only extracts 30 triples. Additionally, knowing which datasets are included in
Freebase, and finding these particular datasets, is not trivial.

Similarly, LODCache8, provided by OpenLink, takes a similar crawling ap-
proach as Freebase does, but does not make a data dump available, making
actual re-use of the data difficult. However, LODCache does have a SPARQL
endpoint, as well as features such as entity URI and label lookup.

The Open Data Communities service9 is the UK Department for Commu-
nities and Local Government’s official Linked Open Data site. These datasets
are published as data dumps, and are accessible via SPARQL and API calls.
Although this service supports a broad selection of protocols for accessing the
data, the number of datasets is limited and restricted to a particular domain.

Finally, DyLDO [6] is a long-term experiment to monitor the dynamics of a
core set of 80 thousand Linked Data documents on a weekly basis. Each week’s
crawl is published as an N-Quads file. This work provides interesting insight in
how Linked Data evolves over time. However, it is not possible to easily select
the triples from a single dataset, and not all datasets belonging to the LOD
cloud are included. Another form of incompleteness stems from the fact that the
crawl is based on URI dereferences, not guaranteeing that a dataset is included
in its entirety (see section 3).

4 http://km.aifb.kit.edu/projects/btc-2012/
5 http://lod-cloud.net/
6 http://rdf.freebase.com/ns/m.08pbxl
7 Tested with version 2.0.9, http://librdf.org/raptor/rapper.html
8 http://lod.openlinksw.com/
9 http://opendatacommunities.org/
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2.3 Portals

Several Linked Data portals exist, attempting the improve the findability of
Linked Datasets. The Datahub10 lists a large set of RDF datasets and SPARQL
endpoints, including the famous collection of datasets that is called the LOD
cloud. Datasets that are missing from the BTC collection are present in the
Datahub catalog, and the other way round. This catalog is updated manually,
and there is no direct connection to the data: all metadata comes from user input.
This increases the risk of stale dataset descriptions11 and missing or incorrect
metadata. vocab.cc [9] builds on top of the BTC dataset. At the time of writing,
it provides a list of 422 vocabularies. Access to these vocabularies is possible
via SPARQL and an API. This service increases the ease of finding and re-using
existing vocabularies. It has the same incompleteness properties that the BTC
has, and does not (intend to) include instance data.

3 Context

Due to the points mentioned above, the poor data quality on the LOD cloud
poses great challenges to Big Data and SW researchers, as well as to the devel-
opers of Web-scale applications and services. In practice, this means that LOD
is less effectively (re)used than it should and could be. We first enumerate the
requirements that we pose on clean datasets in order to be easily (re)usable
(section 3.1). We then compare three approaches towards collecting LOD, and
evaluate each with respect to the completeness of their results (section 3.2).

3.1 Requirements

Besides the obvious requirements of being syntactically correct and standards-
compliant, we also pose additional requirements for how SW datasets should
be serialized and disseminated. We enumerate these additional requirements,
and briefly explain why they result in data that is more useful for Big Data
researchers and LOD developers in practice.

Easy grammar. We want LOD to be disseminated in such a way that it is
easy to handle by subsequent processors. These subsequent processors are
often non-RDF tools, such as Pig [7], grep, sed, and the like. Such easy post-
processing is guaranteed by adherence to a uniform data format that can be
safely parsed in an unambiguous way, e.g., by being able to extract triples
and terms with one simple regular expression.

Speed. We want to allow tools to process LOD in a speedy way. Parsing of data
documents may be slow due to the use of inefficient serialization formats (e.g.,
RDF/XML, RDFa), the occurrence of large numbers of duplicate triples, or
the presence of syntax errors that necessitate a parser to come up with
fallback options.

10 http://datahub.io/
11 For example, DBpedia links to version 3.5.1 instead of 3.9:

http://datahub.io/dataset/dbpedia (12 May 2014).
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Quantity. We want to make available a large number of data documents (tens
of thousands) and triples (billions), to cover a large parts of the LOD cloud.

Combine. We want to make it easy to combine data documents, e.g., splitting a
single document into multiple ones, or appending multiple documents into a
single one. This is important for load job balancing in large-scale processing,
since the distribution of triples across data documents is otherwise very
uneven.

Streaming. We want to support streamed processing of triples, in such a way
that the streamed processor does not have to perform additional bookkeeping
on the processed data, e.g., having to check for statements that were already
observed earlier.

Completeness. The data must be a complete representation of the input
dataset, to the extent at which the original dataset is standards-compliant.

3.2 Dataset Completeness

The first problem that we come across when collecting large amounts of LOD,
is that it is difficult to claim completeness while collecting LOD. Since there
are alternative approaches towards collecting large volumes of LOD, we give an
overview of the incompleteness issues that arise for each of those alternatives.
At the moment, three options exist for collecting large volumes of LOD:

1. Crawling resources
2. Querying endpoints
3. Downloading datadumps

Resource Crawlers use the dereferenceability of IRIs in order to find LOD.
This approach has the following deficiencies:

1. Datasets that do not contain dereferenceable IRIs are ignored. In [4], 7.2%
of the crawled IRIs were not dereferenceable.

2. For IRIs that can be dereferenced, back-links are often not included [5] As a
consequence of this, even datasets that contain dereferenceable IRIs exclu-
sively can still have parts that cannot be reached by a crawler.

3. Even for datasets that have only dereferenceable IRIs that include back-links,
the crawler can never be certain that the entire dataset has been crawled.

Querying Endpoints provides another way of collecting large volumes of LOD.
The disadvantages of this approach are:

1. Datasets that do not have a query endpoint are ignored. While hundreds of
SPARQL endpoints are known to exist today, there are at least thousands
of Linked Datasets.

2. Datasets that have a custom API and/or that require an API key in order to
pose questions, are not generally accessible and require either appropriation
to a specific API or the creation of an account in order to receive a custom
key.
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3. For practical reasons, otherwise standards-compliant SPARQL endpoints put
restrictions on either the number of triples that can be retrieved or the
number of rows that can be involved in a sort operation that is required for
paginated retrieval.12 This results in incomplete datasets retrieval.

4. Existing LOD observatories show that SPARQL endpoint availability is quite
low.13 This may be a result of the fact that keeping a SPARQL endpoint
up and running requires considerably more resources than hosting a Web
document.

Downloading Data Dumps is the third approach to collecting large volumes
of LOD. Its disadvantages are:

1. Datasets that are not available as datadump are ignored.
2. Datasets that have only part of their documents available for download are

incomplete.

With the LOD Laundromat we want to clean existing datasets, not create a
new dataset that is a collection of parts coming from different datasets (like
BTC, for instance). In addition to that, we find that most datasets for which
a SPARQL endpoint exists, we are also able to find a datadump version. We
therefore believe that downloading datadumps is the best approach towards
collecting large amounts of data documents for cleaning.

4 LOD Washing Machine

In the previous section we have describe the requirements that we believe Linked
Datasets should conform to in order to be more useful in practice. We also ex-
plained why we have chosen to download datadumps in order to guarantee the
best completeness guarantees. Here, we will make the aforementioned require-
ments concrete in such a way that they can be automatically applied to dirty
Linked Datasets. The part of the LOD Laundromat that performs automated
data cleaning is called the LOD Washing Machine.14

Step A: Collect URLs that denote dataset dumps. Before we start laundry-
ing data, we need some dirty data to fill our LOD Laundry Basket with. The
LOD Washing Machine does not completely automate the search for the initial
seed points for collecting LOD. The reasons for this are that, firstly, catalogs
that collect metadata descriptions must be accessed by website-specific APIs,
Secondly, standards-compliant metadata descriptions are stored at multiple lo-
cations, and cannot always be found by Web search operations that can be auto-
mated. Thirdly, metadata descriptions of datasets, whether standards-compliant

12 E.g., Virtuoso, an often used triple store, by default limits both the result set size
and the number of rows within a sort operation.

13 http://sparqles.okfn.org/
14 Code available at https://github.com/LODLaundry/LOD-Washing-Machine
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or catalog-specific, are often outdated (e.g., pointing to an old server) or incom-
plete. Finally, many datasets are not described anywhere, and require someone
to know the server location at which the data is currently stored.

Due to these reasons, the LOD Washing Machine relies on catalog-specific
scripts that collect such seed URLs for washing. An example of this is the CKAN
API15, which provides access to the datasets described in the Datahub, including
the datasets that are in the original LOD cloud. This means that URLs that are
not included in a LOD catalog or portal are less likely to be washed by the
LOD Washing Machine. In addition, we have added several seed points by hand,
for datasets that we know reside at specific server locations. Anyone can queue
washing jobs by adding such seed URLs to the LOD Laundry Basket via the
LOD Laundromat Website.

Some URL strings – e.g., values for the “URL” property in a catalog – do not
parse according to the RFC 3986 grammar.16 Some URL strings are parsed as
IRIs but not as URLs, mostly because of unescaped spaces. Some URL strings
parse per RFC 3986, but have no IANA-registered scheme17, or the file scheme
which is host-specific and cannot be used for downloading. The LOD Washing
Machine uses only URLs that parse per RFC 3986 (after IRI-to-URL conversion)
and that have an IANA-registered scheme that is not host-specific.

Step B: Connect to the hosting server. When processing the list of URLs from
the previous step, we must be careful with URLs that contain the same authority
part, since they are likely to reside at the same server. Since some servers do not
accept multiple (near) simultaneous requests from the same IP, we must avoid
parallel processing of such URLs. The LOD Washing Machine therefore groups
URLs with the same authority, and makes sure they get processed in sequence,
not in parallel. This is implemented by handling URLs with the same authority
in a single thread.

At the level of TCP/IP, not all URL authorities denote a running server or
host. Some running servers do not react to requests (neither reject nor accept),
and some actively reject establishing a connection. Some connections that are
established are broken off during communication.

Step C: Communicate with the hosting server. Once a connection has been es-
tablished over TCP/IP, the LOD Washing Machine sends an HTTP request
with SSL verification (for secure HTTP) and an accept header that includes a
preference for LOD content types. This includes standardized content types and
content types that occur in practice.

Some requests are unsuccessful, receiving either a server, existence, or per-
mission error. Some requests are unsuccessful due to redirection loops.

Step E: Unpack archived data. Many Linked Datasets are contained in archives.
The LOD Washing Machine supports the archive filters and formats that are

15 http://ckan.org/
16 http://tools.ietf.org/html/rfc3986
17 http://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
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supported by library libarchive18. The LOD Washing Machine accesses archives
in a stream and opens additional streams for every archive entry it contains. Since
archive entries can themselves be archives, this procedure is nested, resulting in
a tree of streams. The root node of the tree is the stream of the original archive
file, the leaf nodes are streams of non-archived files, and the other non-leaf nodes
are streams of intermediate archived files.

Some archives cannot be read by libarchive, which throws an exception. We
have not been able to open these archives with any of the standard unarchiv-
ing tools on Linux. Consequently, the LOD Washing Machine gives up on such
archived files, but does report the exception that was thrown.

Step F: Guess serialization format. In order to parse the contents of the textual
data that resides in the leaf nodes of the stream tree, we need to know the
grammar of that data. The LOD Washing Machine uses content types to denote
the grammar that is used for parsing, as content types are often included in the
header of an HTTP responses.

There are various ways in which the content type of a streamed file can be
assessed. The most reliable way is to parse the whole file using each of the
RDF serialization parsers, and take the one that emits the least syntax errors
and/or reads the most valid RDF triples. A theoretical example of why one
needs to parse the whole file, not just a first segment of it, can be given with
the difference between the Turtle and TriG formats. This difference may only
become apparent in the last triple that appears in the file, by the occurrence of
curly brackets (indicating a named graph).

Unfortunately, parsing every dataset with every parser is inefficient (CPU) and
requires either local storage of the whole file (disk space) or multiple downloads
of the same file (bandwidth).

In addition, we make the observation that the standardized RDF serialization
formats occur in two families: XML-like (RDF/XML, RDFa) and Turtle-like
(Turtle, TriG, N-Triples, N-Quads). The distinction between these two families
can be reliably made by only looking at an initial segment of the file.

In order to keep the hardware footprint low, the LOD Washing Machine tries
to guess the content type of a file based on a parse of only a first chunk of that
file, in combination with the extension of the file (if any) and the content type
header in the HTTP response message (if any). Using a look-ahead function on
the stream, the LOD Washing Machine can use the first bytes on that stream
in order to guess its content type, without consuming those bytes so that no
redownload is necessary. The number of bytes available in the look-ahead is the
same as the stream chunk size that is used for in-memory streaming anyway.

As explained above, this method may result in within-family mistakes, e.g.,
guessing Turtle for TriG or guessing N-Triples for N-Quads. In order to reduce
the number of within-family mistakes, we use the content type and file extension.
If these denote serialization formats that belong within the guessed family, we
use that format. Otherwise, we use the most generic serialization format within
the guessed family.

18 https://code.google.com/p/libarchive/
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This approach ensures that the LOD Washing Machine uses a fully streamed
pipeline and relatively few hardware resources.

Step G: Syntax errors while parsing RDF serializations. The LOD Washing
Machine parses the whole file using standards-conforming grammars. For this
it uses the parsers from the SemWeb library [11]. This library passes the RDF
1.1 test cases, and is actively used in SW research and applications. Using this
library, the LOD Washing Machine is able to recognize different kinds of syntax
errors, and recover from them during parsing.

We enumerate some of the most common syntax errors the LOD Laundromat
is able to identify:

– Bad encoding sequences (e.g., non-UTF-8).
– Undefined IRI prefixes.
– Missing end-of-statement characters between triples (i.e., ‘triples’ with more

than three terms).
– Non-escaped, illegal characters inside IRIs.
– Multi-line literals in serialization formats that do not support them (e.g.,

multi-line literals that are only legal in Turtle, also occur in N-Triples and
N-Quads).

– Missing or non-matching end tags (e.g., RDF/XML).
– End-of-file occurs within the last triple (probably indicating a mistake that

was made while splitting files).
– IRIs that no not occur in between angular brackets (Turtle-family).

The LOD Washing Machine reports each syntax error it comes across. For data
documents that contain syntax errors, there is no formal guarantee that a one-
to-one mapping between the original document and a cleaned sibling document
exists. This is an inherent characteristic of dirty data, and the application of
heuristics in order to clean as many stains as possible. In the absence of a formal
model describing all the syntactic mistakes that can be made, recovery from
arbitrary syntax errors is more of an art than a science. We illustrate this with
respect to the following example:

ex : a1 ex : a2 $”” ex : b1 ex : b2 ex : b3 .
ex : c1 ex : c2 ex : c3 .
. . .
ex : z1 ex : z2 ex : z3 .

””” .

A standards-compliant RDF parser will not be able to parse this piece of syntax,
and will give a syntax error. A common technique for RDF parsers is to look
for the next end-of-triple statement (i.e., the dot at the end of the first line),
and resume parsing from there. This results in parsing the collection of triples
starting with 〈rdf:c1, rdf:c2, ex:c3〉 and ending with 〈rdf:z1, rdf:z2, ex:z3〉.
The triple quotes at the end of the code sample will result in a second syntax
error.

However, using other heuristics may produce very different results. For in-
stance, by using minimum error distance, the syntax error can also be recovered
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by replacing the dollar sign with a double quote sign. This results in a single
triple with a unusually long, but standards-compliant, literal term.

Step H: De-duplicate RDF statements. The LOD Washing Machine loads the
parsed triples into a memory-based triple store. By loading the triples into a
triple store, it performs deduplication of interpreted RDF statements. Dedu-
plication cannot be performed without interpretation, i.e., on the syntax level,
because the same RDF statement can be written in different ways. Syntacti-
cally, the same triple can look differently due to the use of character escaping,
the use of extra white spaces and/or newlines and interspersed comments, the
use of different/no named prefixes for IRIs, abbreviation mechanisms in serializa-
tion formats that support them (e.g., RDF/XML, Turtle). Another source of the
many-to-one mapping between syntax and semantics occurs for RDF datatypes /
XML Schema 1.1 datatypes, for which multiple lexical expressions can map onto
the same value.19 For example, the lexical expressions 0.1 and 0.10000000009
map to the same value according to data type xsd:float, but to different values
according to data type xsd:decimal.

While reading RDF statements into the triple store, the contents of different
data documents are stored in separate transactions, allowing the concurrent
loading of data in multiple threads. Each transaction represents an RDF graph
or set of triples, thereby automatically deduplicating triples within the same file.

Step I: Save RDF in a uniform serialization format. Once the triples are parsed
using an RDF parser, and the resulting RDF statements are loaded into mem-
ory without duplicates, we can use a generator of our choice to serialize the
cleaned data. We want our generator to be compliant with existing standards,
and we want to support further processing of the data, as discussed in section
3.1. The LOD Washing Machine produces data in a canonical format that en-
forces a one-to-one mapping between data triples and file lines. This means that
the end-of-line character can be reliably used in subsequent processing, such
as pattern matching (e.g., regular expressions) and parsing. This also means
that data documents can be easily split without running the risk of splitting
in-between triples. Furthermore, the number of triples in a graph can be easily
and reliably determined by counting the number of lines in a file describing that
graph. Secondly, the LOD Washing Machine leaves out any header information.
This, again, makes it easy to split existing data documents into smaller parts,
since the first part of the file is not treated specially due to serialization-specifc
header declarations (e.g., RDF/XML, RDFa) and namespace definitions (e.g.,
RDF/XML, Turtle). Thirdly, the LODWashing Machine replaces all occurrences
of blank nodes with well-known IRIs20, in line with the RDF 1.1 specification21.
Effectively, this means that blank nodes are interpreted as Skolem constants, not

19 http://www.w3.org/TR/xmlschema11-2/
20 https://tools.ietf.org/html/rfc5785
21 http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

#section-skolemization
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as existentially quantified variables. The Skolem constant is an IRI that is based
on the URL that was used to stream the RDF data from, thereby making it a
universally unique name at the moment of processing.22 This makes it easy to
append and split data documents, without the need to standardize apart blank
nodes that originate from different graphs.

From the existing serialization formats, N-Triples and N-Quads come closest
to these requirements. Since the tracking of named graphs is out of scope for
our initial version of the LOD laundry (see section 6), we use a canonical form
of N-Triples that excludes superfluous white space (only one space between the
RDF terms in a triple and one space before the end-of-triple character), superflu-
ous newlines (only one newline after the end-of-triple character), and comments
(none at all). Newlines that occur in multi-line literals, supported by some seri-
alization formats, are escaped according to the N-Triples 1.1 specification. Also,
simple literals are not written, always adding the XML Schema string datatype
explicitly.

Step J: VoID closure. After having stored the data to a canonical format, we
make use of the fact that the valid triples are still stored in memory, by perform
a quick query on the memory store. In this query we derive any triples that
describe Linked Datasets. Specifically, we look for occurrences of predicates in
the VoID namespace. We store these triples in a publicly accessible metadata
graph that can be queried using SPARQL. For each dataset that is described
in VoID triples, we follow links to datadumps (if present), and add them to the
LOD Laundry Basket, and clean those datadumps by using the LOD Washing
Machine as well. Since a dataset may describe a dataset that describes another
dataset, this process is recursive.

Step K: Consolidate and disseminate datasets for further processing. Since we
want to incentivise the dataset creators to improve their adherence to guidelines,
we keep track of all the mistakes that were discussed in this section. The mistakes
(if any) are asserted together with some basic statistics, e.g. number of triples,
number of bytes processed, in the publicly queryable metadata graph. For syntax
errors we include the line and column number at which the error occurred,
relative to the original file. This makes it easy for the dataset maintainers to
improve their data and turn out cleaner in a next wash, since the metadata
descriptions are automatically updated at future executions of the LODWashing
Machine.

5 The LOD Laundromat Web Service

When the LOD Washing Machine has cleaned a data document, it is ironed
and folded, and made available on a publicly accessible Website that provides

22 When a new file is disseminated at the same URL at a later point in time, the same
Skolem constant may be used to denote a different blank node. Using skolemization,
this becomes an instance of the generic problem that IRIs can denote different things
at different times, as the data document is updated.
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additional support for data consumers. We now describe the components that
make up this Website, and lift out the support features that make LOD Laun-
dromat a good source for finding large volumes of high-quality Linked Data.

5.1 LOD Wardrobe

The LOD Wardrobe (Figure 1) is where the cleaned datasets are disseminated
for human data consumers. The data documents are listed in a table that can be
sorted according to various criteria (e.g., cleaning data, number of triples). For
every data document, a row in the table includes links to both the old (dirty)
and new (cleaned) data files, as well as a button that brings up a pop-up box
with all the metadata for that data document. Furthermore, it is easy to filter
the table based on a search string, and multiple rows from the table can be
selected for downloading at the same time.

Fig. 1. The LOD Wardrobe is available at http://lodlaundromat.org/wardrobe

5.2 SPARQL Endpoint

All the metadata that is collected during the cleaning process, is stored in an
RDF graph that is publicly accessible via the SPARQL endpoint
http://lodlaundromat.org/sparql. For human data consumers, we provide
the feature-rich SPARQL editor Yasgui.23 For machine consumption, the

23 http://yasgui.laurensrietveld.nl/
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SPARQL endpoint can be queried algorithmically. For instance, a SPARQL
query can return URLs for downloading all clean data documents with over
one million syntactically correct triples. In this way, LOD Laundromat provides
a very simple interface for running Big Data experiments. The metadata that is
stored by the LOD Washing Machine includes information such as the number
of triples in a dataset:

– the number of removed duplicates,
– the original serialization format,
– any VoID descriptions that were found,
– various kinds of syntax errors,
– and more.

The metadata that the LOD Wardrobe publishes is continuously updated when-
ever new cleaned laundry comes in.

5.3 Visualizations

Besides access to the datasets, the LOD Laundromat provides real-time visual-
izations of the crawled datasets as well. These are small JavaScript widgets that
use SPARQL queries on the metadata SPARQL endpoint.

Purely for illustrative purposes, we include a snapshot of such a widget in Fig-
ure 2. For a collection of 1.276 cleaned documents (containing approximately 2
billion triples) this widget shows the serialization format that was used to parse
the original file. The majority of documents from this collection, 59.2%, are seri-
alized as RDF/XML. Turtle and RDFa amount to 29.5% and 6.7% respectively.
Only 4.4% of all documents are serialized as N-Triples.

As another example of the kinds of queries that can be performed on the
SPARQL endpoint, we take the HTTP Content-Length header. Values for

XML (59.2%)

Turtle (29.5%)

RDFa (6.7%)
N-Triples (4.4%)

TOTAL

1,276
documents

Fig. 2. RDF serialization formats for a collection of RDF documents. Illustrative
example of a visualization widget at http://lodlaundromat.org/visualizations.
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this header are often set incorrectly. Ideally, a properly set Content-Length

header would allow data consumers to retrieve data more efficiently, e.g., by
load-balancing data depending on the expected size of the response. However,
our results show that 32% of the documents return an invalid content length
value, thereby showing that in practice it is difficult to reliably make use of this
property.

5.4 LOD Laundry Basket

In order to extend our collection of datasets over time, users can add seed URLs
to the LOD Laundry Basket. Seed points can be either URLs that point to VoID
descriptions, or to data dumps directly. Seed locations can be added via a Web
form or via a direct HTTP GET request.

6 Conclusion

Existing research shows that many LOD does not comply with existing stan-
dards. To deal with this issue, we have presented LOD Laundromat, a uniform
way of publishing other peoples dirty data. Using LOD Laundromat, we publish
standards- and guidelines-compliant datasets that are siblings of existing, id-
iosyncratic datasets. LOD Laundromat implements a Linked Data cleaner that
continuously crawls for additional datasets; the amount of data that we pub-
lish (over ten billion triples at the time of writing) already surpasses that of
existing data collections, such as the Billion Triple Challenge. In addition, the
LOD Laundromat publishes metadata for every cleaned document on a publicly
accessable Web site, and through machine-accessable Web services. Because any-
body can drop their dirty data in the LOD Laundry Basket, the coverage of the
LOD Laundromat will increase over time. All datasets are published in a very
simple canonical form of N-Triples, which makes it easy for post-processing tools
to parse, possibly in streamed form. By using the LOD Laundromat, data con-
sumers do not have to worry about different serialization formats, syntax errors,
encoding issues, or triple duplicates. In doing so, LOD Laundromat can act as an
enabler for Big Data and SW research, as well as a provider of data for Web-scale
applications.

Although the LOD Laundromat offers many advantages for data consumers
today, we aim to further increase the level of support. Fistly, the metadata we
collect does not yet make use of existing vocabularies, like DCAT24, VoID, and
Prov-O25. Secondly, LOD Laundromat currently disseminates datasets in the
N-Triples serialization format, in which it is not possible to represent multiple
graphs. Even though the use of multiple graphs within the same data document is
not very common today, the few datasets for which this is used would be better
supported by the N-Quads format. This also requires the scope of the triple
deduplication phase to be narrowed down to graphs. Thirdly, not all Linked

24 http://www.w3.org/TR/vocab-dcat/
25 http://www.w3.org/TR/prov-o/
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Data is Open. Some data may be licensed under conditions that do not allow
free data reuse. However, restricting licenses are difficult to detect by automated
means, since very few datasets contain explicit licensing conditions. Still, in those
cases in which a dataset does explicitly mention a license, and this license is not
defined open by the Open Data Commons26, we would like the LOD Washing
Machine to skip it. Finially, we may choose to store multiple versions of the
collection of cleaned datasets as different ‘snapshots’. Such snapshots may, for
instance, improve the reproducibility of LOD experiments.
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Abstract. We present the Dutch Ships and Sailors Linked Data Cloud.
This heterogeneous dataset brings together four curated datasets on
Dutch Maritime history as five-star linked data. The individual datasets
use separate datamodels, designed in close collaboration with maritime
historical researchers. The individual models are mapped to a common
interoperability layer, allowing for analysis of the data on the general
level. We present the datasets, modeling decisions, internal links and
links to external data sources. We show ways of accessing the data and
present a number of examples of how the dataset can be used for his-
torical research. The Dutch Ships and Sailors Linked Data Cloud is a
potential hub dataset for digital history research and a prime example
of the benefits of Linked Data for this field.

Keywords: Digital History, Maritime Data, Heterogeneous Data Cloud.

1 Introduction

As (digital) humanities researchers seek more (international and cross-domain)
collaboration, integrating humanities datasets becomes more important to those
researchers. One subdomain where this is very much prevalent is in (social) his-
torical research. Often historical researchers collect data from historical archives
for their specific research questions. However, these datasets are often not pre-
sented in sharable formats to other researchers. If they are shared at all, the
datasets are published in a multitude of formats. To further the digital history
agenda, it has been recognized that representing and sharing data is key [4,10].
Using Linked Data principles and practices, we can integrate generic data with
smaller datasets that have been created with a specific historical research goal.
Linked Data allows us to publish these datasets using the modeling principles
of the original datasets, while -through the use of (schema) links- still achieving
a level of integration. In this paper, we present the Dutch Ships and Sailors
(DSS) data cloud. This Linked Data cloud brings together four Dutch maritime
historical datasets, each with its own datamodel. The data is available as five-
star linked data making sharing and reuse possible. The data is integrated at

P. Mika et al. (Eds.) ISWC 2014, Part I, LNCS 8796, pp. 229–244, 2014.
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a meta-level through common vocabularies and linked to generic external data
sources allowing for new types of queries and analysis.

As a sea-faring nation, a large portion of Dutch history is found on the water.
The maritime industry has been central to regional and global economic, social
and cultural exchange. It is also one of the best historically documented sectors
of human activity. Many aspects of it have been recorded by shipping companies,
governments, newspapers and other institutions. In the past few decades, much
of the data in the preserved historical source material has been digitized. Among
the most interesting data are those on shipping movement and crew members (cf.
[15]). However, much of the digitized historical source material is still scattered
across many databases and archives while still referring to common places, ships,
persons and events. By linking the different available databases, the data can
complement and amplify each other, and new research possibilities open up. The
DSS datacloud bring together the rich maritime historical data preserved in four
of these different databases. Two of these databases have been used extensively
in historical research and by presenting them in this interoperable format, future
reuse is likely to be easier.

The presented dataset is significant to the digital history community since
it brings together seminal datasets on maritime history in a re-usable and in-
tegrated way. The complexity of the original data is retained and not ‘dumbed
down’ to a specific data model for online presentation. At the same time, mul-
tiple enrichments have been performed and additional enrichments are possible
at a later stage. The four datasets together integrated can serve as a pivot
data cloud for international maritime historical datasets as well as for other
(Dutch) historical datasets. The work here is also significant to the broader
Linked Data community since it presents a prime example of how collabora-
tion between historians and computer scientists can lead to high-quality digital
history datasets that are actually trusted and used by the historians. Digital
humanities is a rapidly growing field in which it is recognized that Linked Data
presents interesting opportunities. Furthermore, this datacloud presents the re-
sults of a method where individual datasets are converted to RDF, maintaining
their own datamodel but are integrated through RDF(S) links into a datacloud.
This methodology can be re-used in other multi-part datasets.

2 General Approach

We here describe the general conversion pipeline and modeling principles. Section
3 describes the specific datamodels and conversion steps.

2.1 Conversion and Modeling Pipeline

The conversion and modeling pipeline is based on previous work described in [6]
where more details about the methodology and tools can be found. We here give
a brief overview. In a first step of the generic pipeline, we have data available in
some XML format. For datasets, not available as XML, we use simple syntactic
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export functions1. The output of the pipeline is linked RDF, corresponding to
a specific datamodel. The pipeline is built on the ClioPatria semantic server
(http://cliopatria.swi-prolog.org). ClioPatria is an RDF triple store that
through a web interface provides feedback on the (intermediary) produced RDF,
which is crucial for the interactivity of the conversion and modeling. We start
by ingesting the XML into ClioPatria, which converts the XML tree into a raw
RDF graph, assigning blank nodes to each node in the tree.

Graph Restructuring. The ClioPatria XMLRDF2 package is a tool for re-
structuring an RDF graph using graph rewrite rules. In the second step, the
crude RDF is rewritten to RDF adhering to a data model format, using hand-
written rules which are interpreted by the XMLRDF tool. These rules are con-
structed in an iterative interactive process3. In this step, some blank nodes from
the rough RDF graph are assigned URIs and resources and triples can be copied,
merged, replaced or deleted. Depending on the datamodel, some literal values
are consolidated to RDF resources. For each dataset, we also generated an RDFS
schema which lists the produced classes and properties and relates them to the
more generic DSS schema (see Section 3.5). ClioPatria provides support for this
by presenting the user with a schema template based on the RDF data loaded.

Linking. We establish links to external resources. This can be done using either
the XMLRDF tool, for example when in dataset A there is an explicit reference
to a unique identifier in dataset B. When linking requires more complex tech-
niques, we employ the ClioPatria package Amalgame4. Amalgame is an iterative
alignment platform that allows a user to mix-and-match multiple label- and
structure-matching algorithms as well as filtering operations into an alignment
workflow. The tool is used to establish identity or other semantic relations (e.g.
broader/narrower) between concepts and instances.

2.2 Generic Modeling Decisions

Resources and URI Schema. RDF Resources can be either blank nodes
or receive a URI. In general, we only use blank nodes to group properties. An
example is given in Section 3.1, where statistics about specific crew member-
ship are grouped. Any resource that is considered to be a meaningful ’thing’
is assigned a URI. This includes resources that might be linked to from out-
side of the dataset. URIs are typically created from an identifier metadata field
(such as the original database record ID). Within the DSS cloud, we have defined
five namespaces: http://purl.org/collections/nl/dss/ for DSS generic data
and http://purl.org/collections/nl/dss/gzmvoc/, http://purl.org/

1 For example, for MS Excel files, we use the built-in export function.
2 http://semanticweb.cs.vu.nl/xmlrdf/
3 The XMLRDF scripts used for the DSS datacloud are found online at
https://github.com/biktorrr/dss/tree/master/script

4 http://semanticweb.cs.vu.nl/amalgame/
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collections/nl/dss/mdb/, http://purl.org/collections/nl/dss/das/and
http://purl.org/collections/nl/dss/vocopv/ for the four datasets. In this
paper we abbreviate URIs with the respective CURIEs5 dss:, gzmvoc:, mdb:,
das: and vocopv:. We use PURL URIs that redirect to a ClioPatria instance,
this allows for persistence of the URIs even beyond the life expectancy of the
project or any specific institute.

Linked Data for Multilayered Enrichment. In some cases, new resources
are created, where in the original metadata, there are only literal values. We do
this specifically to group properties about things that are separately identifiable
and that might reoccur in the datasets. Specifically, we do this for persons,
places, ships, ship types and ranks. In most cases, the original literal values are
retained and a new resource is created in a separate named graph with its own
provenance information. An example of this is shown in Figure 2. By not ’hard
coding’ the enrichment but separating the enriched data from the original data,
we can benefit from the latter, while still always being able to go back to the
original data. This corresponds to an important requirement as put forward by
the historical researchers.

Another important modeling decision that is partly specific to the domain is
that for most types of resources, we assume that they are unique, even though
they have a number of metadata fields in common. For example, two records
(say from 1850 and 1851) might both refer to a person “Piet Janssen” who
sailed on the ship “Alberdina”. We do not assume that these are the same
person, and therefore assign them separate URIs. This was an explicit modeling
decision taken in collaboration with the historians, since many Dutch names are
common and often fathers and sons with the same first and last name sailed on
the same ships. Therefore, in the basic data, we assume that all persons and ships
are unique and assigned separate URIs. At a later stage, automatic or manual
methods can be used to establish identity links. In Section 3.2, we describe this
effort for one of the datasets.

Mapping Properties and Classes to DSS Interoperability Layer. We
model the datasets using separate datamodels with their own properties and
classes and do not use common classes or properties directly in the individ-
ual datasets. Rather we use subproperty and subclass relations to map our
classes and properties to common ones (either in the DSS domain or to ex-
ternal schemas). This way we can retain the specificity of the dataset and the
intended semantics of the model and still allow for reasoning and querying at the
interoperability level (DSS). For example, the notion of a ship name is slightly
different amongst the datasets even though they use the same field name. In some
cases, some normalization process has taken place in the original archive data
and in other cases it has not. These (sometimes subtle) differences are regarded
as crucial by the historians and they need to be maintained in the converted
datasets to ensure trust and usage. This example is shown in Figures 2 and 3.

5 http://www.w3.org/TR/2007/WD-curie-20070307/
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The DSS schema itself is mapped to often-used schema’s. Other than RDF(S)
these are: SKOS6 to describe concepts schemes (ranks, ship types,...); FOAF7 to
describe person information; and Dublin Core terms8 to describe record infor-
mation (description, identifier,...). ClioPatria as well as many other triple stores
supports RDFS entailment in its SPARQL interface and can therefore exploit
these mappings.

2.3 The Role of Provenance and Named Graphs

Provenance plays an important role in historical research and specifically in
archival research. The origin and history of archival data is crucial to estimate
the scientific value of data [13]. This holds even truer for digital data, where in
many cases its provenance is unknown or lost. For Linked Data, the provenance
of resources can be modeled using the PROV-O ontology[7]. In the DSS cloud we
model the provenance on the named graph level. Each named graph is a separate
set of triples that come from one source. This can be either (a table in) an original
data source, or the result of an enrichment or linking process. In the DSS cloud,
each RDF named graph has a URI that is defined also as a prov:Entity. This
URI is the subject and object for the provenance triples, including those listing
the different conversion activities and the human and software agents involved
in the conversion. We also refer to the original data sources and their web URIs
as far as they are present. All the provenance triples are stored in a separate
named graph9.

Next to provenance information, for automatically derived data we list the
content confidence[12]. This provenance information allows for SPARQL queries
that include or exclude triples from specific named graphs because they are the
result of an operation of a software agent or because they have a too low content
confidence value. For a total of four link sets we performed a structured manual
evaluation of random samples by the domain expert. For these named graphs
we assign confidence levels based on the evaluation results.

3 The Datasets

In this section we describe the individual datasets. The first two are modeled
and converted in close collaboration with the historical researchers responsible
for the source datasets and we describe them in more detail. The third and fourth
datasets are conversions of previously published historical datasets and are de-
scribed less elaborately. They were converted with the help of the historians. We
also list the main statistics in Section 3.6 as well as describe the interoperability
layer and links. Figure 1 gives an overview of the entire DSS data cloud and the
internal and external links.
6 http://www.w3.org/2004/02/skos/
7 http://xmlns.com/foaf/0.1/
8 http://dublincore.org/documents/dcmi-terms
9 http://www.dutchshipsandsailors.nl/data/browse/list graph?graph=

http://purl.org/collections/nl/dss/dss provenance.ttl



234 V. de Boer et al.
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Fig. 1. The Dutch Ships and Sailors Linked Data cloud. The individual datasets are
represented by ovals in the bottom half of the image. Internal links are represented by
arrows. External links are represented by dotted arrows.

3.1 GZMVOC

Original Data. The “Generale Zeemonsterrollen VOC” (GZMVOC) (en: “Gen-
eral sea muster rolls VOC”) is a dataset describing the crews of all ships of the
Dutch East India Company (VOC)10 from 1691–1791. The data was gathered
by a Dutch social historian Matthias van Rossum (co-author of this paper) in
the course of his research on labor situations for European and Asiatic crews on
Dutch VOC ships. The data is based on archival records from the VOC itself and
lists data of all ships that sailed between Europe and Asia. The data consists of
the size of the crew as well as its composition (number of European and Asiatic
sailors, soldiers and passengers). In a number of occasions the location of the ship
on the moment of counting -the month of June of each year- as well as data on
the name and type of ship. Where possible, details on the Asiatic crew members
are listed, including wages, job descriptions, place of origin, categorization and
hierarchical structure. For ships with a mixed European and Asiatic crew, often
data about the captain and offices is listed. In this dataset, references to the
Dutch Asiatic Shipping (DAS) dataset are present through numerical IDs (see
Section 3.4). The original data was presented as a Microsoft Excel file, which we
exported to XML.

Data Model and Conversion. An initial RDFS datamodel for GZMVOC
was derived from the structure of the Excel sheet as well as documentation
provided. After that, the model was corrected and refined in close collaboration
with van Rossum. The primary citizens of this dataset are records (countings)
which are the subjects of locations, registration numbers, etc. Counts of Asiatic
and European crews are grouped using blank nodes, rather than linking numbers

10 http://en.wikipedia.org/wiki/Dutch_East_India_Company
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directly to individual records. Each record is connected to a ship resource, which
groups information assumed to be persistent beyond the counting such as the
ship name and type. For the captain, a resource is also created, with name
and birthplace information. Several literal values are consolidated to resources,
including ship types, ranks and places, to allow for later linking. The original
triples with literals are always retained.

After ingestion and conversion to raw RDF. A total of 10 XMLRDF rules
were created to restructure the graph to match the datamodel. The re-
sults were verified by van Rossum by inspecting a number of resources by
hand. In total 110,986 triples are stored in the GZMVOC main data named
graphgzmvoc:gzmvoc_data.ttl11 (see Table 3.6 for all graphs and statistics).
A further 591 triples make up the consolidated places and 166 triples make up
a small vocabulary of ship types and ranks. This is the smallest dataset in the
DSS datacloud. The figure below shows a small sample of the RDF graph for
GZMVOC.

dss:Record 
gzmvoc:Telling 

gzmvoc:telling-1046-De_Berkel 
__bnode_1 

gzmvoc:aziatischeBemanning 

dss:Ship 
gzmvoc:Schip 

gzmvoc: schip-1046-De_Berkel 

dss:has_ship 
gzmvoc:schip 

"1046" 

“Schip” 

“De Berkel” 
rdfs:label 

dss:scheepsnaam 
gzmvoc:scheepsnaam 

dss:ShipType 
gzmvoc:Scheepstype 

gzmvoc: type-Ship 
dss:has_shiptype 

gzmvoc:has_shiptype 

gzmvoc:scheepstype 

“21” 

“Moorse 
mattroosen” dss:azRegistratieKop 

gzmvoc:azAantalMatrozen 

gzmvoc:telling 

gzmvoc:heeft DAS heenreis 

dss:Record 
das:Voyage 

das:voyage-1918_61 

Fig. 2. Small sample of the RDF graph for GZMVOC showing a counting, a linked
ship and detailed counting information connected to a blank node. Resources are rep-
resented using ovals, with the URI at the bottom line under italicized superclasses
above, properties are represented by arrows, with property URIs next to them and
their superproperties italicized. Literals are represented using boxes.

Links. The referenced identifiers of the DAS dataset are used to establish RDF
links to resources in that dataset using a simple lookup script. There are two
types of properties linking GZMVOC and DAS: one representing outgoing jour-
neys (gzmvoc:has das link heen) and one representing homebound journeys
(gzmvoc:has das link terug). Those link triples are stored in a separate named
graph, to enable listing separate provenance information. A total of 5,303 link
triples are stored.

11 mdb:mdb_data.ttl
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3.2 MDB

Original Data. The “Noordelijke Monsterollen Databases” (MDB) (en: “North-
ern muster rolls databases”) is a dataset describing mustering information found
in mustering archives in the three northern Dutch provinces (Groningen, Fries-
land, Drenthe)12 in the period 1803–1937. The original Noordelijke Monsterollen
Databases (MDB) was provided as a SQL dump file by the original maker of
the data, historian Jurjen Leinenga (also co-author of this paper). The database
consists of two tables, one with records of ship muster rolls and one with records
of person-contracts, related to those muster rolls. The SQL dump was loaded
into a MySQL database and exported to XML. This resulted in two XML files,
one for the ship records and one for the person records.

Data Model and Conversion. The datamodel was developed interactively in
collaboration with the historian, based on the original SQL data model and ex-
tensive written documentation. In this model, the two main classes are a “Person
Contract”, and “Mustering”. A Person Contract holds information that is sub-
ject to change, including ranks, wages and time stamps. The Person resource is
used for persistent information such as names, birth place etc. The same choices
are made for “Mustering” which holds specific information about a mustering of
a ship on a specific date. It is related to exactly one ship resource, which holds
persistent information about that ship (name, type, ...). Figure 3 shows an exam-
ple graph snippet. The complete RDFS datamodel is found in the named graph
mdb:mdb_schema.ttl13. The main data graph mdb:mdb_data.ttl has 1,296,641
triples, with 27 predicates and 8 classes.

The conversion script for the MDB dataset is composed of 20 rewrite rules and
can be found at https://github.com/biktorrr/dss/blob/master/script/

rewrite mdb.pl. To ensure unique URIs “Mustering” URIs are constructed us-
ing internal identifiers plus a code for the archive it originates from (this archive
is also a resource in the dataset itself). For ship, person and URIs, we add expand
this URI with the name of the ship, person etc. Places, ranks and shiptypes are
consolidated to place resources.

Internal Links. In the MDB dataset many ships occur multiple times, however
it is initially unknown which ships are which. We therefore assume that all ships
are unique and only at a later state attempt to identify recurring ships. For
this enrichment, multiple algorithms were designed and implemented. A sample
of the results was evaluated by Jur Leinenga and a subset with an acceptable
precision was found (0.95). More details about the linking are found in [14].
The links are stored in a separate named graph (mdb:mdb_ship_sameas.ttl)
with appropriate provenance and content confidence metadata. A total of 33,435
sameAs links are established.

12 http://en.wikipedia.org/wiki/Provinces_of_the_Netherlands
13 For brevity, we shorten graph URIs with CURIEs. The expanded URIs are derefer-

enceable.
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External Links. One of the more interesting external links are those from DSS
records to digital historical newspaper articles from the Dutch Royal Library
(KB)14. The linking algorithm uses a number of features such as ship names,
captain names, time constraints and automatically derived indicator phrases
for maritime events (such as “left port”, “sailing for” etc.) to establish likely
links between MDB records and KB articles. Multiple versions of the algorithm
were developed, focusing either more on precision or on recall. For each version,
random samples of the results were evaluated manually by Jurjen Leinenga.
More details about the linking can be found in [1]). In the end, it was decided
that the results of a high-precision version (precision here is 0.90) of the algo-
rithm were consolidated and added to the datacloud as a separate named graph
(mdb:mdb_2_kb.ttl) with appropriate provenance and content confidence meta-
data. Links are manifested as RDF links between MDB musterings and external
KB paragraph URIs. Figure 3 shows such a link. Note that the KB as of yet
does not provide RDF after dereferencing, rather an XML snippet with the text
of the newspaper article is returned. In total 179,120 dss:has kb link triples
are stored.

dss:Record 
mdb:Aanmonstering 

mdb:aanmonstering-del_gem-1879-101 

dss:Record 
mdb:PersoonsContract 

mdb:persoonscontract-del_gem-
1879-101-16858-Pieter_Hoekstra 

dss:Schip 
mdb:Schip 

mdb:schip-del_gem-1879-101-Isadora 

dss:ship 
mdb:ship 

“1870-1894" 

"Isadora" 

rdfs:label 
dss:shipname 

mdb:scheepsnaam 

dss:ShipType 
mdb:ScheepsType 

mdb:schoener 

dss:shiptype 
mdb:scheepstype 

“32” 

dcterms:identifier 
mdb:inventarisnummer 

mdb:has_KB_article 

<http://resolver.kb.nl/resolve?urn=d
dd:010063756:mpeg21:a0045:ocr> 

mdb:schip-del_gem-1879-137-Isadora 

owl:sameAs 

dss:has_aanmonstering 

mdb:has_person 
foaf:Person 
dss:Person 

mdb:Person 
mdb:persoon-del_gem-1879-101-16858 

dss:rank 
mdb:rank 

dss:Rank 
mdb:Rang 

mdb:matroos 

mdb:maandgage 

“Pieter" 
foaf:firstname 

mdb:voornaam 

“Hoekstra" foaf:lastname 
mdb:achternaam 

Fig. 3. Small sample of the RDF graph for MDB showing a person-contract and
linked person; the counting (mustering) and a linked ship. Also shown are an inter-
nal owl:sameAs and an external link to a KB newspaper resource. For a number of
properties, we list the DSS-superproperties in italics.

3.3 VOCOPV

The original dataset “VOCOpvarenden”[17] is the result of a manual digitization
of the personnel data of the VOC in the 18th Century. The original data consists
of three separate parts (en: ‘voyagers’, ‘salary books’ and ‘beneficiaries’) and was
downloaded as a CSV file from DANS Easy website15. It was converted to an
XML version using a simple python script.

14 http://kranten.delpher.nl
15 https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:33602
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The XML version was then converted to RDF with an XMLRDF rewriting
script. The model was developed in a collaboration between the authors, based on
the original data model, expert knowledge and documentation available. There
are three main classes: “Voyager”; “Salary Book”, which links to ships and “Ben-
eficiary”. Links are present between instances of each of these classes. The com-
plete RDFS datamodel is found in the named graph vocopv:vocopv_schema.ttl.
With more than 22 Million triples, this is the largest dataset in the DSS cloud.

The original VOC Opvarenden dataset uses explicit references to DAS voy-
ages. These were used to generate explicit links between VOC Opvarenden and
DAS. We use three different RDF properties, which correspond to the original
metadata fields. All links are stored in a separate named graph
(vocopv:vocopv_2_das.ttl.gz). In total 1,128,416 links are established.

3.4 DAS

The Dutch Asiatic Shipping (DAS) dataset contains data regarding outward
and homeward voyages of more than 4,700 ships that sailed under the flag of the
(VOC) between 1595 and 1795. The dataset is a conversion of a previously digi-
tized DAS dataset hosted at Huygens ING [3] at http://resources.huygens.
knaw.nl/das/index html en. Between 1595 and 1795 the Dutch East India
Company (VOC) and its predecessors before 1602 equipped more than 4,700
ships to sail from the shores of the Netherlands bound for Asia. More than 3,400
ships made the return voyage home. The reference work Dutch-Asiatic Shipping
has classified these voyages on which Dutch trade between Europe and Asia was
founded in a systematic survey.

The original Dutch Asiatic Shipping data was downloaded as a CSV file. That
data was converted to an XML version using a simple python script (available
on Github). The XML version was then converted to RDF with an XMLRDF
rewriting script. The model was developed in a collaboration between the authors
and is based on the original data model, expert knowledge and documentation
available. Here the main class is “Voyage” detailing a specific voyage of a VOC
ship either from the Netherlands to Asia or back. The complete RDFS data-
model is found in the named graph das:das_schema.ttl. The main data graph
das:das_data.ttl has 149,357 triples, with 21 predicates and 6 classes.

3.5 Generic DSS Data

As was described in Section 2.2, places, ship types and ranks were consolidated
to resources so that they can be linked to internal or external data sources.
For a number of ranks and ship types, a manually constructed SKOS thesaurus
was created by the historians. In a DSS schema (dss:dss_schema.ttl), man-
ually defined 7 classes that are common to the four datasets (Ship, Chamber,
Sailor etc.) as well as three DSS specific properties (eg. ship name), found in
dss:dss_schema.ttl. The other properties and classes in the interoperability
layer are from SKOS, FOAF or DCTERMS. We use rdfs:subPropertyOf and
rdfs:subClassOf triples to relate the properties and classes to this layer.
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Identity Links. Although GeoNames16 does not provide historical place in-
formation, it still is a very usable source of information, providing lat/long co-
ordinates, hierarchical information and place names in other languages. It is a
much linked-to data source on the Web of Data, thereby increasing the reusabil-
ity of the DSS data. Place names from all four datasets are aligned with the
GeoNames dataset, but only for the subset of Dutch places17. For this, we used
the Amalgame toolkit using simple label matching algorithms. The links are
stored in a separate named graph (dss:al_all_place_2_geonames.ttl). We
used skos:exactMatch properties to link DSS place names to GeoNames re-
sources. In total 2,510 links are established. These place names are spread over
the four datasets. The Getty Art and Architecture Thesaurus (AAT)18 lists many
concepts that are relevant for our dataset, for example ship types and ranks. We
use a version of the AAT that has Dutch language labels making it possible to
semi-automatically link DSS ranks and ship types to AAT. The mappings were
based on matching labels and performed by Amalgame. The links are stored
in the named graph (mdb:ranks_and_shiptypes_1.ttl) A total of 75 concepts
were matched. We finally link ranks and ship types to DBPedia19 again using
the Amalgame alignment tool. A total of 123 links are established and stored in
dss:dbpedia_links.ttl

3.6 Statistics

In Table 3.6, we list the named graphs that make up the DSS datacloud. For
each named graph we list the URI, the number of triples and the dataset it
belongs to20. A number of linked external data sources are also loaded to allow
for single access-point SPARQL querying.

4 Accessing the Data

Web Interface. The data is accessible through two live ClioPatria triple store
instances. A ‘stable version’ is published at http://dutchshipsandsailors.nl/
datawith a development version online at http://semanticweb.cs.vu.nl/dss.
The stable version is especially interesting since it is hosted and maintained at
the Huygens ING institute for historical research as part of their digital history
infrastructure, rather than through a university server. This ensures stability and
sustainability of the dataset beyond the research project. The ClioPatria web in-
terface allows for browsing the data. The graphs can be browsed or downloaded

16 http://www.geonames.org
17 We are planning on expanding the links and adding those as separate named graphs

to the data. Initial experiments linking to Indonesian locations have been performed.
18 http://www.getty.edu/research/tools/vocabularies/aat/
19 http://dbpedia.org/
20 A live version of these statistics can be seen at

http://www.dutchshipsandsailors.nl/data/browse/list_graphs
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RDF Graph Triples Dataset
vocopv:vocopv opv.ttl.gz 19,104,514 VOC Opvarenden
vocopv:vocopv sol.ttl.gz 2,231,367 VOC Opvarenden
mdb:mdb data.ttl.gz 1,296,641 MDB
vocopv:vocopv 2 das.ttl.gz 1,128,416 VOC Opvarenden
vocopv:vocopv beg.ttl.gz 636,333 VOC Opvarenden
http://sws.geonames.org/geonames-NL.ttl 309,678 External
http://e-culture.multimedian.nl/ns/rkd/aatned/aatned.rdf 264,968 External
mdb:mdb 2 kb.ttl 179,120 MDB
das:das data.ttl 149,357 DAS
gzmvoc:gzmvoc data.ttl 110,986 GZMVOC
http://sws.geonames.org/geonames nl as skos.ttl 42,811 External
mdb:mdb ship sameas.ttl 33,435 MDB
vocopv:vocopv gen thes.ttl 12,851 VOC Opvarenden
das:das thes gen.ttl 7,034 DAS
dss:dbpedia links.ttl 5,449 External
gzmvoc:gzmvoc 2 das.ttl 5,303 GZMVOC
http://sws.geonames.org/ontology v2.2.1.rdf 2,895 External
dss:al all place 2 geonames.ttl 2,528 DSS (all)
mdb:mdb thes places.ttl 2,273 MDB
gzmvoc:gzmvoc thes gen places.ttl 591 GZMVOC
mdb:mdb thes rangen.ttl 585 MDB
vocopv:vocopv schema.ttl 337 VOC Opvarenden
dss:dss provenance.ttl 273 DSS (all)
mdb:ranks and shiptypes 1.ttl 245 MDB
gzmvoc:gzmvoc schema.ttl 232 GZMVOC
mdb:mdb thes generated.ttl 196 MDB
file:///data/cliopatria/ClioPatria/rdf/base/rdfs.rdfs 190 External
gzmvoc:gzmvoc thes gen.ttl 166 GZMVOC
mdb:mdb schema.ttl 149 MDB
das:das schema.ttl 98 DAS
dss:dss schema.ttl 59 DSS (all)
http://e-culture.multimedian.nl/ns/rkd/aatned/aatned.rdfs 27 External
Total no. triples: 25,529,107

and basic statistics are provided21. Local views of resources are also provided22.
A search functionality, which includes autocompletion, is available. The prove-
nance can be visualized using the PROV-O-Viz tool23, which is integrated with
the triple store at http://dutchshipsandsailors.nl/data/provoviz.

SPARQL Endpoint. A SPARQL 1.1 compliant endpoint is provided at
http://dutchshipasandsailors.nl/data/sparql/, with a number of interac-
tive interfaces provided, such as the YASGUI interface at http://

dutchshipasandsailors.nl/data/dss/yasgui/. A number of editable
example SPARQL queries are also presented at http://www.

dutchshipsandsailors.nl/data/dss queries.

Linked Data. The PURL URIs redirect to the specific resources on the stable
server which will respond through content negotiation. In the case of an RDF
value for the HTTP accept header the server returns RDF triples concerning
the resource. In the current setup the symmetric concise bounded description of

21 http://www.dutchshipsandsailors.nl/data/browse/list_graphs
22 For example http://www.dutchshipsandsailors.nl/data/browse/list resource?

r=http://purl.org/collections/nl/dss/vocopv/opvarenden-344716
23 http://provoviz.org/
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a resource is returned, which is made up by all triples that have that resource
either as a subject or as an object. This conforms to the Linked Data princi-
ples [2]. ClioPatria can respond with RDF in XML, ntriples, turtle or JSON-LD
serialization. In the case of a HTML request, the HTML local view is returned

Raw Data. Finally, the raw RDF data is available i) through the web interface,
where individual graphs can be downloaded as RDF/Turtle or RDF/XML; ii)
through a public repository at https://www.github.com/biktorrr/dss; iii)
as archived humanities datasets at the EASY online archiving system of Data
Archiving and Networking Services (DANS)24. Here the four datasets as well
as the interoperability layer are available as RDF/XML files with persistent
identifiers. Here they are ensured sustainability beyond the life expectancy of
the live versions.

a) b) 

c) 

Fig. 4. Three visualizations of VOC data made possible through GeoNames links a)
shows a plot of birth places on a map; b) shows aggregation by provinces of sailors
in one year (1750) and c) shows a stream plot of the sailors per province over all the
years for which we have data. These visualizations are made through a simple SPARQL
query on the datacloud and visualizing the results using R.

5 Digital History Examples

In this section, we present three example uses developed in collaboration with the
historians associated with the project. For the sake of brevity, we omit the com-
plete SPARQL queries used in these use cases here, but they are reproduced on
the semantic server at http://dutchshipsandsailors.nl/data/dss_queries.

Because many dataset-specific properties are mapped to DSS properties, we
can use RDFS reasoning to search for resources across the different datasets.
It is not hard to define a search query that retrieves all ships with the ship
name “Johanna” or that have some person with the rank of Captain that has

24 https://easy.dans.knaw.nl/ui/home
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“Veldman” as a last name. This allows for search and comparison between the
datasets and for example to research correlations between variables (rank and
wages?) using data from more than one dataset.

Analysis of the types of persons that sailed on the VOC ships can give in-
sight into the socio-economic realities of the 18th Century. The datasets lists
the birthplaces of many of those embarked on (VOC) ships. Through the links
with GeoNames, we can get more information about those places of origin. One
of these uses is to use the GeoNames geo-coordinates to plot information on a
map. Figure 4a) shows such a plot. We can also use the GeoNames geographical
hierarchy to -for example- analyze the provinces of origin of the voyagers, giving
insight at an aggregated level. We used the SPARQL package for the statistical
analysis tool R to provide a quantitative analysis and visualizations of the re-
sults25. Figure 4b)shows the birth provinces of sailors for one year (1750) and
Figure 4c) shows a stream plot of the birth provinces of sailors over multiple
years. These visualizations are made possible through the links with an exter-
nal dataset, they can easily be done for one or multiple DSS datasets and give
an insight into the geographical origins of sailors. These visualizations can be
used to detect anomalies, formulate hypotheses and to make the work of the
quantitative historian more effective and efficient.

In their research, historians combine analysis of data with their expert knowl-
edge as well as common-sense knowledge. Through the link with AAT and
DBPedia, we can use the formalized common sense and expert knowledge to
automatically analyze the data. For example, the ship type hierarchy from AAT
can be used to analyze features of specific ship types. One of the example queries
lists persons that embarked on coastal ships (which has a number of subtypes
such as “kof” or “tjalk”). Without the explicit links, a very complex conjunctive
query would have to be formulated.

6 Related Work

This work builds on previous research that resulted in the Amsterdam Museum
Linked Dataset as well as the Verrijkt Koninkrijk Linked dataset[6,5]. The latter
effort also was done in close collaboration with historians, using specific digi-
tal history research goals. In this case, multiple datasets are combined into one
datacloud, which makes new types of analysis possible. Some tools and meth-
ods are re-used for this paper. Our work has a similar relation to other efforts
that attempt to link historical data to the Web of data [8,16]. In fact there
are multiple examples of datasets that are the result of collaborations between
computer scientists and historians[11]. However, in most cases, this concerns a
single dataset, published using a single metadata model. In our approach, we
work with historians from different backgrounds, who are responsible for their
own data and datamodel. This results in a datacloud of multiple datasets rather
than one monolithic dataset. In the related cultural heritage domain, publishing
of metadata as linked data is gaining ground. Examples include Europeana [9]

25 http://cran.r-project.org/web/packages/SPARQL/
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which uses the Linked Data architecture to provide access to Europe’s cultural
heritage metadata from multiple collection metadata providers.

7 Conclusions and Future work

We presented the Dutch Ships and Sailors Linked Data cloud, developed in
collaboration with the historical researchers responsible for those datasets. We
make four separate and important maritime digital history datasets available as
linked data to researchers and the public. Beyond these four datasets, this paper
shows how Linked Data principles and technologies serve to integrate different
datasets in a flexible way. In the case of these relatively “small” datasets, close
collaboration between data experts and the converting party ensures that the
richness of the original data is not lost, and interoperability is gained up to a
level where it can be used for further historical research. It is an example of how
Linked Data can benefit humanities research -more specifically digital history.
The datacloud can serve as a hub dataset for international maritime historical
datasets as well as for other (Dutch) historical datasets. We identified a total of
25 maritime historical datasets that can be added to the datacloud26. Links to
more datasets are currently being established. For example, part of the Dutch
historical census data made available through the CEDAR project[10] is already
partly linked available in the development version. This presents opportunities
for even more elaborate types of analysis beyond the maritime context.

We are also experimenting with more user-friendly interfaces for specific types
of historical research questions. For the MDB dataset, we will make the digital
scans available and link these to the MDB records, deepening the provenance in-
formation. This enables tracing results of (SPARQL) queries back to the original
data even more than is currently possible, ensuring further trust and usability
in the historical research context.
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Abstract. The central idea of Linked Data is that data publishers sup-
port applications in discovering and integrating data by complying to a
set of best practices in the areas of linking, vocabulary usage, and meta-
data provision. In 2011, the State of the LOD Cloud report analyzed the
adoption of these best practices by linked datasets within different topi-
cal domains. The report was based on information that was provided by
the dataset publishers themselves via the datahub.io Linked Data cata-
log. In this paper, we revisit and update the findings of the 2011 State of
the LOD Cloud report based on a crawl of the Web of Linked Data con-
ducted in April 2014. We analyze how the adoption of the different best
practices has changed and present an overview of the linkage relation-
ships between datasets in the form of an updated LOD cloud diagram,
this time not based on information from dataset providers, but on data
that can actually be retrieved by a Linked Data crawler. Among others,
we find that the number of linked datasets has approximately doubled
between 2011 and 2014, that there is increased agreement on common
vocabularies for describing certain types of entities, and that provenance
and license metadata is still rarely provided by the data sources.

Keywords: Linked Open Data, Web of Linked Data, Best Practices.

1 Introduction

The Web of Linked Data [3,7] has grown from a dozen datasets in 2007 into
a large data space containing hundreds of datasets today. In order to enable
Linked Data applications to discover datasets as well as to ease the integration
of data from multiple sources, Linked Data publishers should comply with a set
of best practices [4]. These best practices can be grouped into three areas:

Linking: By setting RDF links, data providers connect their datasets into a
single global data graph which can be navigated by applications and enables the
discovery of additional data by following RDF links.

Vocabulary Usage: The best practices advise publishers to use terms from
widely-used vocabularies in order to ease the interpretation of their data. If data
providers use their own vocabularies, the terms of such proprietary vocabularies
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should be dereferencable into their RDF schema or OWL definitions. The def-
initions of proprietary vocabulary terms should contain RDF links pointing at
terms from widely-used vocabularies in order to ease their interpretation.

Metadata Provision: Linked Data should be as self-descriptive as possible, and
thus include metadata. An important form of metadata is provenance metadata
describing the origin of datasets and enabling applications to assess their quality.
The best practices also advise to provide licensing metadata and dataset-level
metadata, e.g., in the form of a VoID file1. If datasets are accessible via additional
access methods, such as a SPARQL endpoint or data dumps, then the VoID file
should contain information about these access methods.

The adoption of the Linked Data best practices by datasets belonging to
different topical domains was analyzed in the State of the LOD Cloud report [7]
in 2011. The report is based on information provided by the data publishers
themselves via the datahub.io Linked Data catalog2. In this paper, we revisit
and update the findings of the State of the LOD Cloud report from 2011 based
on a crawl of the Web of Linked Data conducted in April 2014. The paper is
structured as follows: Section 2 describes the crawling strategy that was used
to gather the data that forms the basis of our analysis. Section 3 explains the
categorization of the data by topical domain. Sections 4, 5, and 6 discuss the
adoption of best practices in the areas of linking, vocabulary usage, and metadata
provision. Section 7 gives an overview of related work. The paper closes with a
wrap-up of our findings.

2 Crawl of the Linked Data Web

To evaluate the conformance to the best practices, we have crawled a snapshot
of the Linked Data Web. For this, we used LDSpider, a framework for crawling
Linked Data [6]. We seeded LDSpider with 560 thousand seed URIs originating
from three sources: 1. We included all URIs of example resources from datasets
contained in the lod-cloud group in the datahub.io dataset catalog as well as
example URIs from other datasets in the catalog marked with Linked Data
related tags; 2. We included a sample of the URIs contained in the Billion Triple
Challenge 2012 dataset3; 3. We collected URIs from datasets advertised on the
public-lod@w3.org mailing list since 2011. With those seeds, we performed
crawls during April 2014 to retrieve entities from every dataset using a breadth-
first crawling strategy. Altogether, we crawled 900,129 documents describing
8,038,396 resources. The crawled data is provided for download on the website
accompanying this paper4 so that all results presented in the following can be
verified.

For grouping the retrieved resources into datasets, we generally assume that
all data originating from one pay-level domain (PLD) belongs to a single dataset.

1 http://www.w3.org/TR/void/
2 http://datahub.io/group/lodcloud
3 http://km.aifb.kit.edu/projects/btc-2012/
4 http://data.dws.informatik.uni-mannheim.de/lodcloud/2014/ISWC-RDB/
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Fig. 1. Distribution of the number of resources ( ) and documents ( ) per
dataset contained in the crawl (log scale)

If the datahub.io catalog lists multiple datasets for a single PLD, we apply an
exception to the general rule and use the dataset definitions from the catalog.
Altogether, the crawled data belongs to 1014 different datasets. Figure 1 shows
the distribution of the number of resources and documents per dataset contained
in the crawl.

Our crawler did respect crawling restrictions expressed by the data sources
via robots.txt files. Altogether, we discovered 77 linked datasets which do not
allow crawling and did not retrieve data from these sources.

3 Categorization by Topical Domain

Since the adoption of the Linked Data best practices might vary depending
on the topical domain of the datasets, we classify the datasets into the follow-
ing topical categories: media, government, publications, life sciences, geographic,
cross-domain, user-generated content, and social networking. This categorization
schema is the same as the one used by the 2011 State of the LOD Cloud report
with the only difference that we added the category social networking as we dis-
covered a large number of datasets providing data about people and their social
ties. For datasets that are contained in the datahub.io dataset catalog, we adopt
the topical categorization form the catalog. We manually assigned categories to
the newly discovered datasets after inspecting them. In the following, we define
the categories and refer to some prominent datasets from each category. After-
wards, we compare the overall number of datasets per category with the findings
of the 2011 State of the LOD Cloud report.

The media category contains datasets providing information about films, mu-
sic, TV and radio programmes, as well as print media. Prominent datasets
within this category are the dbtune.org music datasets, the New York Times
dataset, and the BBC radio and television program datasets. The government
category contains Linked Data published by federal or local governments, includ-
ing a lot of statistical datasets. Prominent examples include the data.gov.uk

and opendatacommunities.org datasets. The category publications holds li-
brary datasets, information about scientific publications and conferences, reading
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Table 1. Number of datasets in each category and growth compared to 2011

Category Datasets 2014 Percentage Datasets 2011 Growth

Media 24 (-2) 2% 25 -4%
Government 199 (-16) 18% 49 306%
Publications 138 (-42) 13% 87 59%
Geographic 27 (-6) 2% 31 -13%
Life Sciences 85 (-2) 8% 41 107%
Cross-domain 47 (-6) 4% 41 15%

User-generated Content 51 (-3) 5% 20 155%
Social Networking 520 (-0) 48% - -

Total 1091 (-77) 294 271%

lists from universities, and citation databases. Well known datasets include
the German National Library dataset, the L3S DBLP dataset, and the Open Li-
brary dataset. The category geographic contains datasets like geonames.org and
linkedgeodata.org comprising information about geographic entities, geopo-
litical divisions, and points of interest. The life sciences category comprises bi-
ological and biochemical information, drug-related data, and information about
species and their habitats. The cross-domain category includes general knowl-
edge bases such as DBpedia or UMBEL, linguistic resources such as WordNet
or Lexvo, as well as product data. The the category user-generated
content contains data from portals that collect content generated by larger user
communities. Examples include metadata about blogposts published as Linked
Data by wordpress.com, data about open source software projects published by
apache.org, scientific workflows published by myexperiment.org, and reviews
published by goodreads.com or revyu.com. The category social networking con-
tains people profiles as well as data describing the social ties amongst people.
We include into this category individual FOAF profiles, as well as data about
the interconnections amongst users of the distributed microblogging platform
StatusNet. The distinction between the categories user-generated content and
social networking is that the datasets in the former category focus on the actual
content while datasets in the later focus on user profiles and social ties. The 2011
State of the LOD Cloud report did not contain social networking as a separate
category since the report did not count individual FOAF profiles as separate
datasets and since StatusNet servers did not export Linked Data in 2011.

Table 1 gives an overview of the number of datasets in each category as well
as the growth per category compared to the 2011 report. A list with the exact
assignments of each dataset to a category is found on the accompanying website.
The numbers in brackets in the second column refer to the number of datasets
that do not allow crawling. The by far largest category is social networking with
520 datasets (48% of all datasets). The second largest category is government
with 199 datasets (18%), followed by publications with 138 datasets (13%). Com-
pared to the 2011 State of the LOD Cloud report, we observe a larger number
of datasets in all categories except geographic and media data. The category
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Fig. 2. Degree distributions for datesets belonging to the categories crossdo-
main( ), user-generated content( ), social networking( ), publications( ),
media( ), life sciences( ), government( ) and geographic( ).

government shows the largest growth, followed by the categories user-generated
content and life sciences. Excluding the new category social networking, the
overall number of Linked Datasets has approximately doubled from 2011 (294
datasets) to 2014 (571 datasets). Including the new category, we observe an
overall growth of 271% (from 294 to 1091 datasets).

4 Adoption of the Linking Best Practices

The linking best practice encourages publishers to set RDF links between datasets
in order to enable the discovery of additional data and to support the integration
of data from multiple sources. For analyzing the linkage between datasets, we
aggregate all RDF links by dataset, meaning that we consider two datasets to
be linked if there exists at least one RDF link between resources belonging to
the datasets.

4.1 Degree Distributions

In total, 56% of all datasets in our crawl set RDF links pointing to at least one
other dataset. The remaining 44% are either only the target of RDF links from
other datasets or are isolated. Figure 2 shows the distribution of the in- and
outdegrees for each category. We see that the in- and outdegrees vary widely
with a small number of datasets in each category being highly linked, while
the majority of the datasets is only sparsely linked. Overall, datasets from the
category social networking show the highest degree values. The categories cross-
domain, user-generated content, and geographic show an imbalance between in-
and outdegrees, with user-generated content having larger out- than indegrees,
and cross-domain and to a lesser extent geographic having larger in- than out-
degrees (measured as area under the curve).
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Table 2. Datasets with the highest in- and outdegrees

Dataset Category In Dataset Category Out

dbpedia.org cross-domain 207 bibsonomy.org publications 91
geonames.org geographic 141 semanlink.net user-gen. cnt. 88

w3.org cross-domain 117 deri.org social netw. 70
quitter.se social netw. 64 harth.org social netw. 68
status.net social netw. 63 quitter.se social netw. 67

postblue.info social netw. 56 semanticweb.org user-gen. cnt. 64
skilledtest.com social netw. 55 skilledtests.com social netw. 60

reference.data.gov.uk government 45 postblue.info social netw. 59
data.semanticweb.org publications 44 status.net social netw. 47

fragdev.com social netw. 41 w3.org crossdomain 45
lexvo.org cross-domain 37 data.semanticweb.org publications 45

Looking at the top ten datasets by in- and outdegree in Table 2, we see that
datasets from categories social networking, user-generated content, and publi-
cations are among the top ten with respect to outdegree. While datasets with
a high indegree are dbpedia.org (cross-domain), geonames.org (geographic),
w3.org (cross-domain), reference.data.gov.uk (government) as well as sev-
eral datasets from the category social networking.

4.2 Overall Graph Structure

Analyzing the overall graph structure, we find one large weakly connected com-
ponent which consists of 71.99% of all datasets. In addition, there are three small
components, one consisting of three and two consisting of two datasets. Within
the large weakly connected component, there exists one large strongly connected
component consisting of 36.29% of all datasets.

Figure 3 shows the overall graph structure using the same LOD cloud vi-
sualization as the 2011 report. The size of the circles reflects the indegree of
the corresponding dataset. A zoom-able version of Figure 3 is available on
the accompanying website. Note that we have aggregated all individual FOAF
profiles into a single circle. Compared to the LOD cloud visualization from
the 2011 report which was centered around dbpedia.org as central linking
point, Figure 3 shows a much more decentralized graph with multiple high-
degree nodes: The geonames.org and dbpedia.org datasets are linked by a
large number of datasets belonging to different topical categories. In addition,
the statistics.data.gov.uk and reference.data.gov.uk are highly linked
from within the government category. In the category publications, the Library
of Congress Subject Headings (LCSH) and the German National Library

(DNB) datasets are highly linked. We can also see in Figure 3 that the category
social networking is the most densely interlinked.
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Fig. 3. Overall graph structure and categorization of the datasets by topical domain.
The size of the circles reflects their indegree. A zoom-able version of the diagram is
available on the accompanying website.
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Table 3. Top three linking predicates per category. The percentages are relative to
number of datasets within the category which set outgoing links.

Category Predicate Usage Category Predicate Usage

social networking foaf:knows 60.27% life sciences owl:sameAs 52.17%
social networking foaf:based near 35.69% life sciences rdfs:seeAlso 43.48%
social networking sioc:follows 34.34% life sciences dct:creator 21.74%

publications owl:sameAs 32.20% government dct:publisher 47.57%
publications dct:language 25.42% government dct:spatial 30.10%
publications rdfs:seeAlso 23.73% government owl:sameAs 24.27%

user-generated content owl:sameAs 53.13% geographic owl:sameAs 64.29%
user-generated content rdfs:seeAlso 21.88% geographic skos:exactMatch 21.43%
user-generated content dct:source 18.75% geographic skos:closeMatch 21.43%

media owl:sameAs 81.25% crossdomain owl:sameAs 80.00%
media rdfs:seeAlso 18.75% crossdomain rdfs:seeAlso 52.00%
media foaf:based near 18.75% crossdomain dct:creator 20.00%

4.3 Predicates Used for Linking

Table 3 displays the top three predicates that are used by RDF links within each
topical domain. A first observation is that owl:sameAs is an important linking
predicate within most categories, followed by rdfs:seeAlso. The most notable
deviance is observed for the category social networking, where foaf:knows is
the most widely used linking predicate.

Due to the outstanding role of owl:sameAs as the most widely used linking
predicate, we take a closer look at the datasets connected by owl:sameAs links.
Searching for weakly connected components in the owl:sameAs graph, we find
one large weakly connected component containing 297 (29.3%) of all datasets.
Apart from that, there are only eight further components, out of which three
consist of three datasets and the remaining five consist of two datasets. Looking
at strongly connected components, we find one large component consisting of 74
datasets (7.3%), one with four and six with two datasets.

Table 4 shows the top ten datasets regarding in- and outdegree, this time
considering only owl:sameAs links. Compared to Table 2, we observe a much
smaller number of datasets from the category social networking as this category
is dominated by foaf:knows links.

5 Adoption of the Vocabulary Best Practices

The vocabularies used to represent data and their interpretability are a key
ingredient to make Linked Data semantic data. We consider a vocabulary to be
used by a dataset if a term from the vocabulary appears in the predicate position
of a triple from the dataset or at the object position of a rdf:type triple from
the dataset.
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Table 4. Top 10 datasets regarding in- and outdegree for owl:sameAs links by category

Dataset Category In Dataset Category Out

dbpedia.org crossdomain 89 bibsonomy.org publications 91
geonames.org geographic 29 data.semanticweb.org publications 31

data.semanticweb.org publications 24 myopenlink.net user-gen. cnt. 25
l3s.de publications 24 dbpedia.org crossdomain 23

semanticweb.org user-gen. cnt. 18 semanticweb.org user-gen. cnt. 18
nytimes.com media 11 revyu.com user-gen. cnt. 16
dbtune.org social networking 11 advogato.org social networking 16
kit.edu social networking 9 el.dbpedia.org crossdomain 13

revyu.com user-gen. cnt. 8 nl.dbpedia.org crossdomain 11
w3.org crossdomain 8 harth.org social networking 11

it.dbpedia.org crossdomain 8

Table 5. Vocabularies used by more than 5% of all datasets

Prefix Occurrence Quota Prefix Occurrence Quota

rdf 996 98.22% void 137 13.51%
rdfs 736 72.58% bio 125 12.32%
foaf 701 69.13% cube 114 11.24%

dcterm 568 56.01% rss 99 9.76%
owl 370 36.49% odc 86 8.48%

wgs84 254 25.05% w3con 77 7.60%
sioc 179 17.65% doap 65 6.41%

admin 157 15.48% bibo 62 6.11%
skos 143 14.11% dcat 59 5.82%

5.1 Usage of Well-Known Vocabularies

Table 5 lists the vocabularies that are used by more than five percent of all
datasets5. The vocabularies RDF, FOAF, RDFS, DCTerms, and OWL are the
top vocabularies used by many datasets from across all topical categories. Com-
pared to the 2011 report, we can state that there is a trend towards the adoption
of well-known vocabularies by more datasets. For instance, while the FOAF vo-
cabulary was used by 27.46% of all datasets in 2011, it is used by 69.1% of all
datasets in 2014. The same is true for the Dublin Core vocabulary which is used
today by 56.01% of the datasets and was used by only 31.19% in 2011.

The extent to which well-known vocabularies are used within the different
topical categories reveals some differences. In the category social networking,
there is a high quota of datasets using FOAF (85.96%), followed by the Dublin
Core and the WGS84 vocabulary used by 40% and 37% of all datasets. The
admin vocabulary, which is used by some FOAF generators, finds compara-
tively wide adoption. In the category publications, DCTerms is widely used at a
quota of 83%. Furthermore, the bibo ontology is used by 41.67% of the datasets

5 Prefixes are taken from http://prefix.cc
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belonging to this category. The vocabularies SKOS, resourcelist, which is used
to create reading lists, and SIOC also find some adoption. In the category cross-
domain, several vocabularies are used by 10-40% of all datasets: The dbpedia.org,
georss.org, opengis.net, bibo, the prov vocabulary, the skos vocabulary, and void,
showing that a wide variety of topics is covered in this category. In the category
government, vocabularies for representing statistical data (cube with 61.75% and
sdmx with 26.22%) are found frequently. Vocabularies for expressing metadata,
like the void vocabulary, the sparql-service-description vocabulary, prov and prv
are also find some use. Within the category geographic, 66.67% of all datasets use
the WGS84 vocabulary for encoding geographic coordinates. Other well adopted
vocabularies are skos or the geonames ontology. In the category user-generated
content, many datasets use the FOAF vocabulary together with the SIOC vo-
cabulary (50%) as well as the RSS and the admin vocabulary (both around
17%). The DOAP vocabulary is used by 12.5% of the datasets.

Please note that the schema.org vocabulary promoted by Google, Yahoo and
Microsoft is not listed in Table 5 as we found this vocabulary to be hardly used
in the Linked Data context6. In contrast, the vocabulary is very widely used
together with the Microdata syntax for annotating HTML pages [2].

5.2 Usage of Proprietary Vocabularies

Widely-used vocabularies often do not provide all terms that are needed to
publish the complete content of a dataset on the Web. Thus, data providers
often define proprietary terms that are used in addition to terms from widely
deployed vocabularies. We have also analyzed to which extent datasets from dif-
ferent categories make use of proprietary vocabularies. We consider a vocabulary
to be proprietary if it is used only by a single dataset. Out of the 638 different
vocabularies that we encountered in our crawl, 375 vocabularies (58.77%) are
proprietary according to our definition, while 263 (41.22%) are non-proprietary.
In total, 234 datasets (23.08%) use proprietary vocabularies, while nearly all
datasets also use non-proprietary vocabularies. These numbers show that the
adoption of the best practice to use common vocabularies is improving com-
pared to the State of the LOD Cloud report from 2011 which found 64.41% of
all datasets to use proprietary terms. Table 6 further details the usage of pro-
prietary vocabularies by topical category. The second column of the table shows
the number of proprietary vocabularies used by datasets from each category.
The third column contains the number of datasets in each category that use
proprietary vocabularies.

5.3 Dereferencability of Proprietary Vocabulary Terms

In order to enable applications to retrieve the definition of vocabulary terms,
the URIs identifying vocabulary terms should be made dereferencable. To assess

6 One data source that uses the schema.org type system in addition to its own type
system in order to increase interoperability is dbpedia.org.
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Table 6. Proprietary vocabularies with dereferencability per category and quota of
vocabularies linking to others

Category
Different prop. vo-
cabs. used (% of all
prop. vocab.)

# of datasets us-
ing prop. vocab.
(% of all datasets)

Dereferencability
#of vo-
cabs link-
ing (quota)full partial none

Social networking 126 (33.60%) 81 (15.57%) 19.47% 8.8% 77.78% 20 (15.87%)
Publications 59 (15.73%) 33 (34.38%) 22.03% 8.47% 69.49% 15 (25.42%)
Government 47 (12.53%) 34 (18.58%) 21.28% 12.77% 65.96% 16 (34.04%)
Cross-domain 56 (14.93%) 17 (41.46%) 26.79% 10.71% 62.50% 14 (25.00%)
Geographic 13 (3.47%) 8 (38.10%) 15.38% 7.69% 76.92% 2 (15.38%)
Life sciences 36 (9.60%) 27 (32.53%) 27.78% 5.56% 66.67% 4 (11.11%)

Media 12 (3.20%) 12 (54.55%) 0.00% 16.67% 83.33% 2 (16.67%)
User-gen. cnt. 26 (6.93%) 22 (45.83%) 11.54% 11.54% 76.92% 6 (23.08%)

Total 375 (58.77%) 234 (23.08%) 19.47% 8.80% 71.73% 79 (21.07%)

Table 7. Predicates used to link terms between different vocabularies

Term % of vocabularies Term % of vocabularies

rdfs:range 9.87% rdfs:seeAlso 1.60%
rdfs:subClassOf 8.80% owl:equivalentClass 1.60%

rdfs:subPropertyOf 6.93% owl:inverseOf 1.33%
rdfs:domain 5.60% swivt:type 1.07%

rdfs:isDefinedBy 3.73% owl:equivalentProperty 0.80%

whether a vocabulary is dereferencable, we requested the definitions of all used
terms from the vocabulary via HTTP GET requests. The resulting corpus of
vocabulary definitions is provided for download on the accompanying website.
We define the dereferencability quota of a vocabulary as the number of deref-
erencable terms divided by the number of all terms of the vocabulary. In total,
19.47% of all proprietary vocabularies are fully dereferencable (i.e., their quota
is 1.0). On the other hand, 71.73% of all proprietary vocabularies are not deref-
erencable at all. The remaining 8.8% of all proprietary vocabularies are partially
dereferencable, meaning that for some terms, but not for all, a definition could
be retrieved. Possible causes for partial dereferencability are namespace squat-
ting, i.e. accidentally or incidentally using terms not defined in a vocabulary, and
vocabularies having changed without proper marking of old terms as deprecated.
Columns 4, 5 and 6 in Table 6 show the percentage of fully, partially and not
dereferencable proprietary vocabularies per topical category.

5.4 RDF Links to Terms from Other Vocabularies

Vocabulary terms should be related to corresponding terms within other vocab-
ularies in order to enable applications to understand as much data as possible.
Table 7 contains the different predicates that are used to link terms between
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Table 8. Provenance vocabulary usage and license vocabulary usage by category

Category Any prov vocab Dublin Core Admin Prv/Prov Any license vocab

social networking 169 (32.5%) 57.39% 57.39% 1.18% 5.38%
publications 39 (40.63%) 94.87% 5.13% 2.56% 4.17%
government 76 (41.54%) 100.00% 0.00% 1.32% 30.05%
life sciences 20 (24.10%) 100.00% 0.00% 0.5% 3.61%
cross-domain 7 (17.07%) 100.00% 14.29% 0.00% 9.76%
geographic 3 (14.29%) 100.00% 0.00% 33.34% 0.00%

user-gen. content 9 (18.75%) 88.89% 66.67% 0.00% 10.42%
media 4 (18.18%) 100% 0.00% 0.00% 5.41%

Total 372 (36.69%) 29.09% 11.05% 0.79% 9.96%

vocabularies together with the percentage of all vocabularies using each pred-
icate for linking. We see that 9.87% of all vocabularies use the rdfs:range

predicate to link to other vocabularies (for instance defining the range of a term
to be foaf:Person). The table also shows that only a very small fraction of the
vocabularies provides equivalence links to terms from other vocabularies.

6 Adoption of the Metadata Best Practices

The Linked Data best practices propose that every dataset should provide prove-
nance and licensing information, dataset-level metadata, and information about
additional access methods.

6.1 Providing Provenance Information

For our evaluation, we have collected a list of vocabularies that are designed for
the representation of provenance information. Information about such vocabu-
laries came from the W3C Provenance Working Group, the LOV vocabulary
catalog, as well as our own experience, adding up to a total of 26 vocabularies.
Using those vocabularies, we searched for provenance information in our corpus.
We followed the approach sugested in [5] and searched for triples using predicates
from those vocabularies and containing a document URI as subject.

As shown in Table 8, 36.69% of all datasets use some provenance vocabulary,
which is a slight decrease compared to the State of the LOD Cloud report from
2011, which reports 36.63% of all datasets to provide provenance information.
29.09% of all datasets use Dublin Core Terms, 11.05% use MetaVocab, while
W3C PRV and PROV are used by only 0.79% of the datasets. The provision
of provenance information is widely adopted in the publications and government
domains, while media and geographic datasets show less adoption. For govern-
ment data, there is also a remarkable increase compared to the State of the LOD
Cloud document from 2011, which reports only 20.41% for this topical domain.
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6.2 Providing Licensing Information

With the help of machine-readable licensing information, Linked Data appli-
cations can assess whether they may use data for their purpose at hand. To
evaluate whether a dataset provides license information, we again followed the
approach proposed in [5] and searched for triples which have the document as
their subject and a predicate containing the string ’licen’. To this list, we added
all predicates containing the string ’rights’ as well as the waiver vocabulary,
which leads to a total of 47 terms.

In total, 9.96% of all datasets provide licensing information in RDF. This
number is lower than the 17.84% reported in the State of the LOD Cloud report
from 2011, but still higher than the 3.4% reported in [5]. The most important
predicates for indicating the license are dc/dct:license (7.39%), cc:license
(2.07%) and dc/dct:rights (1.68%). As shown in the last column of Table 8,
the provision of licensing information varies widely across topical domains. More
than a third of all government datasets provide licensing information, while none
of the geographic datasets provides licensing information. A main cause for the
low overall number is the category social networking which contains 48% of all
datasets and in which only 5.38% of the dataset offer licensing information.

6.3 Providing Dataset Level Metadata

Dataset-level metadata can be provided using the VoID vocabulary, either as
inline statements in the dataset or in a separate VoID file. In the latter case,
that file has to be linked from the data via backlinks or be provided at a well-
known location which is created by appending /.well-known/void to the host
part of a URI. As reported in [8], the latter condition is often too strict for
data providers due to missing root-level access to the servers. Thus, we follow
the approach proposed in [8] of relaxing the search for VoID files at well-known
locations, appending /.well-known/void to any portion of the URI.

In general, dataset-level metadata is still rarely provided by datasets within all
topical domains. Some trends towards emerging best practices and de facto stan-
dards can be observed: Dataset-level metadata is rather linked to than provided
at well-known locations and the Dublin Core vocabulary is becoming the de-
facto standard for providing dataset-level provenance information. In total, 149
datasets (14.69%) use the VoID vocabulary. Out of these datasets, 42 (4.14%)
use a backlinking mechanism. Columns 2 to 5 of Table 9 show the VoID adoption
by topical category.

Compared to the 2011 report, the overall percentage of datasets publish-
ing dataset-level metadata using VoiD has decreased from 32.20% to 14.69%,
with the categories government, geographic, and life sciences being exceptions
in which the adoption has slightly grown. Again, the category social networking
is a main cause for the low overall number.
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Table 9. Percentage of datasets using the VoID vocabulary and percentage of datasets
offering alternative access methods

Category VoID Link Well-known Inline Alt. access SPARQL Dump

social networking 5 (0.96%) 0.19% 0.77% 0.00% 4 (0.77%) 0.77% 0.19%
publications 13 (13.54%) 6.25% 3.13% 7.29% 13 (13.54%) 12.50% 4.17%
life sciences 30 (36.14%) 28.92% 2.41% 4.82% 20 (24.10%) 24.10% 15.66%
government 72 (42.08%) 2.73% 2.73% 36.61% 63 (34.43%) 31.15% 31.15%

user-gen. content 6 (11.76%) 11.76% 0.00% 0.00% 3 (6.25%) 6.25% 2.08%
geographic 6 (38.10%) 14.29% 9.52% 14.29% 5 (23.81%) 14.29% 19.05%

cross-domain 5 (12.20%) 7.32% 2.44% 4.88% 4 (9.76%) 4.88% 4.88%
media 2 (9.09%) 0.00% 0.00% 9.09% 1 (4.55%) 0.00% 4.55%

Total 149 (14.69%) 4.14% 1.28% 9.27% 113 (11.14%) 9.96% 8.19%

6.4 Providing Alternative Access Methods

According to the 2011 State of the LOD Cloud report, many datasets provide
additional access methods, such as SPARQL endpoints (68.14%) and dumps
(39.66%). In our analysis, the numbers are much lower as shown in columns 6 to
8 of Table 9. Apart from the government, life sciences and geographic domains,
almost no information on alternative access methods are found. The deviation
can be explained by the fact that we only look at those alternative access methods
that can be discovered via VoID descriptions linked from the datasets or provided
at well-known URLs. As reported in [8], the actual number of existing SPARQL
endpoints may be higher, as many endpoints cannot be discovered from the
data. This is a severe problem for automatic agents navigating the Linked Data
graph, as they are not capable of discovering alternative access methods. While
the numbers for alternative access methods are low, one has to keep in mind that
such methods do not always make sense. For example, the large number of small
FOAF files in the social networking category are mostly datasets contained in
exactly one file. In these cases, it does not make sense to provide a data dump,
because the file itself is a data dump. Likewise, the use of a SPARQL endpoint
for a dataset consisting of only a few dozen triples would not justify the provision
effort.

7 Related Work

An effort that is closely related to the work presented in this paper is the LOD-
Stats project7 which has retrieved and analyzed Linked Data from the Web until
February 2014 [1]. The LODStats website provides statistics about the overall
number of discovered linked datasets as well as the adoption of different vocab-
ularies. What distinguishes LODStats from the work presented in this paper is
that they do not categorize datasets by topical domain and do not analyze the

7 http://stats.lod2.eu/
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overall graph structure, as well as the conformance with the best practices in
the areas of vocabulary dereferencability and metadata provision. Their results
concerning the overall number of accessible datasets (they found 928 datasets)
and the adoption of well-known vocabularies are inline with the findings of this
paper.

A comprehensive empirical survey of Linked Data conformance is presented
by Hogan et al. [5]. Their survey is based on a large-scale Linked Data crawl
from May 2010 as well as a series of smaller snapshots taken between March
and November 2010. The work presented in this paper can be seen as an update
of the results presented by Hogan et al. as we use a crawl from March 2014.
Another major difference is that Hogan et al. do not categorize datasets by
topical domain and thus can not analyze the differences in the adoption of the
best practices in different domains. The article by Hogan et al. contains a detailed
and comprehensive discussion of earlier work on analyzing the adoption of the
Linked Data practices as well as work in the wider area of characterizing the
Semantic Web/Linked Data, its link structure as well as the semantics of its
content. The discussion covers related work from the time span of 2005 to 2012.
For space reasons, we can not repeat this excellent review of related work here.
The general difference between the works discussed by Hogan et al. and our work
is that our analysis is more up-to-date and that we distinguish the datasets by
topical domain.

8 Conclusion

This paper revisited and updated the finding of the State of the LOD Cloud
report [7] from 2011 based on a Linked Data crawl gathered in April 2014.
Our analysis shows that the overall number of Linked Datasets on the Web has
grown significantly since 2011. Looking only at the topical categories covered
in the original report, the number of datasets has approximately doubled since
2011. Also taking the category social networking into account, the number of
datasets has grown by 271%.

Concerning the linkage of the datasets, our analysis shows that there is still a
relatively small number of datasets that set RDF links pointing at many other
datasets, while many datasets only links to a few other datasets. Compared to the
2011 LOD cloud, which was centered around dbpedia.org as central linking hub,
we have discovered a more decentralized graph structure with geonames.org

and dbpedia.org being linked from many datasets besides of the existence of
further category-specific linking hubs. Concerning the types of RDF links that
connect datasets, we have found the predicates owl:sameAs, rdfs:seeAlso and
foaf:knows to be most widely used.

We have observed a trend towards the adoption of well-known vocabularies
by more datasets, the most prominent one being FOAF, which is used by more
than two thirds of all linked datasets, independent of their respective topical
domain. In parallel, the usage of proprietary vocabularies has decreased from
64.41% in 2011 to 23.08% of all datasets in 2014.
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While provenance information is provided for roughly a third of all datasets,
only 10% of all datasets provide machine-readable licensing information. A pos-
itive exception concerning licensing information is the government domain in
which licensing information is provided by 30% of all dataset. Compared to
the 2011 report, the percentage of datasets providing provenance metadata is
approximately the same, while the percentage of datasets providing machine-
readable licensing information has dropped from 17% to 10%. The similar
negative trend is also found for the percentage of datasets publishing dataset-
level metadata using VoID. In 2011, 32.20% of all datasets published VoID while
in 2014 only 14.69% provide such metadata. The categories government, ge-
ographic, and life sciences are exceptions to this trend and the adoption has
slightly grown in these domains.
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Abstract. Schema.org is a way to add machine-understandable information to
web pages that is processed by the major search engines to improve search per-
formance. The definition of schema.org is provided as a set of web pages plus a
partial mapping into RDF triples with unusual properties, and is incomplete in a
number of places. This analysis of and formal semantics for schema.org provides
a complete basis for a plausible version of what schema.org should be.

Schema.org1 “provides a collection of schemas, i.e., html tags, that webmasters can use
to [mark up] their pages in ways recognized by major search providers.”2 The major
search engine providers, including Bing, Google, Yahoo!, and Yandex use schema.org
markup to improve the display of search results and schema.org has been designed by
and is controlled by these organizations. This makes schema.org markup an important
kind of machine-understandable data in the web. Not only are there many web pages
with schema.org information, but this information is used in important ways.

Aside from being a collection of schemas, schema.org is a language for represent-
ing information on the Web, different from other languages used for this purpose, such
as RDF [1,2], OWL [3,4], and the language underlying Freebase [5]. Using this lan-
guage, the schema.org schemas are organized into a simple taxonomy by generalization
relationships and other ontolological aspects of schema.org information are specified.

The publicly available definition of schema.org is, however, incomplete and contra-
dictory. It is only provided as English text on various web pages in schema.org, plus
mappings of the collection of schemas3 into RDF (http://schema.org/docs/full md.html)
and OWL (http://schema.org/docs/schemaorg.owl). The RDF mapping centrally uses
non-RDFS properties, such as http://schema.org/domainIncludes, so it is not possible
to determine the meaning of schema.org constructs from the RDF mapping. The OWL
mapping is somewhat better, as domains and ranges employ OWL unions, but the map-
ping is only a translation of part of what defines schema.org. The lack of a complete
definition of schema.org limits the possibility of extracting the correct information from
web pages that have schema.org markup.

This paper provides a full basis for schema.org as it should be, filling in the holes
in the available descriptions of schema.org and fixing up discrepancies. The paper
provides both a pre-theoretic analysis of schema.org and an abstract syntax and for-
mal model-theoretic semantics for schema.org. This paper does not, however, draw on

1 Throughout this paper schema.org refers to the general idea and schema.org refers to the
collection of documents available at the https://schema.org web site.

2 From https://schema.org, as of 1 April 2014.
3 See http://schema.org/docs/datamodel.html

P. Mika et al. (Eds.) ISWC 2014, Part I, LNCS 8796, pp. 261–276, 2014.
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the use of schema.org on web pages. Researchers can use the basis provided here to
further investigate the properties of schema.org and schema.org markup. Providers of
schema.org data can use this basis to reliably determine the meaning of the schema.org
data they create. Developers can use this basis to build software that uses schema.org
markup as information in a way that is compatible with the description of schema.org.

Description of Schema.org at schema.org

The description of schema.org in this section of the paper is taken from information on
the web pages in schema.org, as of 1 April 2014. It ignores most of the surface syntax
aspects of schema.org, concentrating on the underlying concepts and their intent.

Schema.org information is about items, e.g., the movie Avatar. Items can have types,
e.g., the type identified by the URL http://schema.org/Movie. Items can have asso-
ciated property-value pairs, e.g., the property identified by http://schema.org/director
with value "James Cameron". The value in a property value pair can be text, i.e., a
Unicode string; a literal, e.g., a number or date; a URL, which identifies an item; or
another item. There is no requirement that properties have only a single value for an
item. Items can have associated URLs, e.g., http://www.avatarmovie.com/index.html and
http://en.wikipedia.org/wiki/Avatar (2009 film), each of which identifies the item.

Schema.org provides a collection of types, via pages in schema.org, organized in a
multi-parent generalization hierarchy. Each type is identified by the URL of the page
that provides its definition. Each type has a set of parents, i.e., more-general types. Each
type, except for datatypes, has a set of allowable properties for the type.

The types that are more specific than http://schema.org/Enumerationare enumeration
types that also specify a set of URLs identifying all the items that are instances of
the type. Datatypes are the types more specific than http://schema.org/Datatype and
implicitly provide a set of non-item data values for them and a mapping from text to
these values.

Schema.org also provides a collection of properties, again from schema.org, which
may be also organized in a multi-parent generalization hierarchy.4 Each property is
identified by the URL of the page that provides its definition. Each property may have
one or more types as domains, and can be used on items belonging to any of these types.
Each property has one or more types as ranges, and values for the property belong to
one or more of these types. However, property values can always be provided as just
text.

There is a description of an extension mechanisms for schema.org, which only per-
mits very simple extensions. It appears that the extension mechanism exists only to
further subdivide existing schema.org properties, classes, and enumeration items and
that these extensions are ignored within schema.org.

The translations of the type and property definitions of schema.org into RDF and
OWL abide by the above description, except that there is no translation for the property
hierarchy. These translations provide no extra information beyond what is given here.

4 At the time of writing of this paper there was no general notation of the property hierarchy.
While this paper was in review, the property hierarchy was officially announced
(http://lists.w3.org/Archives/Public/public-vocabs/2014Jun/0095.html)
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Analysis of schema.org as a Description of Schema.org

There are quite a number of aspects of schema.org and schema.org markup that are left
unspecified in schema.org, are unclear, or raise issues. This section describes these as-
pects and provides extra assumptions that will be used in the account for schema.org
presented here. The extra assumptions have been made in a way that is congruent with
the information on schema.org, that make sense in an environment where there are large
central consumers of large amounts of data, and that generate a reasonable representa-
tion formalism. (In several places, the comments in schema.org do not match the actual
class or property, for example, instances of http://schema.org/StructuredValue are not
strings, but this sort of mismatch is not the subject of this paper.)

It is unclear whether types and properties can also be items. However, items work
quite differently from types and properties, and having arbitrary web pages being able
to modify the types and properties of schema.org leads to difficulties, such as not being
able to determine when a property is valid for an item until after all item information
has been processed, so this account treats types and properties as being different from
items. In particular, in this account different URLs that identify the same item do not
identify the same type or the same property. Data values also act differently from items,
so this account treats them as being disjoint from types, properties, and items. The
identifiers of types and properties are different in schema.org, as URLs for types have
initial capitals and URLs for properties do not, so it is fairly obvious that types are
disjoint from properties.

Schema.org uses URLs as identifiers. URLs can be used to retrieve web pages, and
this aspect of URLs is a main basis of schema.org. URLs officially can include fragment
ids, and such URLs then identify parts of web pages. Although fragment identifiers
are not currently used for any types and properties in schema.org, there is nothing
technical preventing their use, and so they will be allowed in the account herein for
types, properties, and items.

It is unclear whether schema.org types and properties must be identified by URLs
in schema.org, but all current schema.org types and properties are so identified. This
account does not formally make the assumption that types and properties must be iden-
tified by URLs in schema.org, but some of the pragmatic analysis does make the as-
sumption that type and property definitions change infrequently, as is the case for types
and properties identified by URLs in schema.org.

The mechanisms for working with datatypes are underspecified in schema.org. This
account adds in a formal mechanism for determining the set of values for a datatype
and a formal method for determining the data value corresponding to a text string for
the datatype.

The name of the most general datatype in schema.org is http://schema.org/Datatype.
This is an unfortunate name—http://schema.org/Literal would be much better—but the
schema.org name will be used in this account. The name of the datatype for float-
ing point numbers in schema.org is http://schema.org/Float. http://schema.org/Float and
http://schema.org/Integer both have generalization http://schema.org/Number. This can
lead to problems because floating point numbers are imprecise whereas integers are
precise. This account, however, does not address the issue.
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It is unclear whether the instances of an enumeration have to be items, or can also
be data values. This account assumes that the instances of an enumeration are given as
URLs, as is the case for all examples currently in schema.org, and thus that instances
of an enumeration are items, not data values.

Some examples in schema.org only make sense if different but similar URLs iden-
tify different items. This is particularly the case for URLs that make up enumerations.
This account assumes that different URLs in an enumeration identify different items,
but does not otherwise assume that different URLs in the same namespace, e.g., dif-
ferent Wikipedia URLs, or in the same document identify different items. This extra
assumption would be easy to add.

The domains of a property are specified both as part of types and as part of prop-
erties in schema.org. In all the examples there is no divergence between the two spec-
ifications, but the possibility of divergence is not ruled out. This account treats the
specification in the type as the actual specification, as that seems to make more sense
for disjunctive domains.

Because several properties indicate that they are subproperties of other properties,
this account incorporates a multi-parent property hierarchy. There are some additions
to the account herein that have to be made to support the property hierarchy.

Both domains and ranges of properties are disjunctive. This is different from most
other representation formalisms, such as description logics [6] and RDF [2]. The stated
rationale for this decision is that it reduces the need for general types that exist only to
be domains or ranges. However, disjunctive domains and ranges mean that additions to
a collection of schema.org information can be non-monotonic. The disjunctive nature
of domains and ranges is fully explored in this account, including how it interacts with
the property hierarchy.

Several aspects of the predominant syntaxes for schema.org markup obscure the
workings of schema.org. This account transforms these aspects of surface syntax into a
different abstract syntax.

Several types and properties are used as part of the foundations of schema.org in
schema.org. Nearly all uses of these types and properties as general types or properties
undermines the foundations of schema.org, so their use is disallowed in this account.
The extension mechanism for schema.org is of very limited utility and appears to not
have any effect on the processing of schema.org markup, so it is ignored in this account.

Description of Schema.org as It Should Be

This section contains a pre-theoretic description of schema.org and schema.org content
as it should be, consonant with the discussion in the previous section. This description
is designed to say how schema.org could work in a way that can be easily turned into a
formal definition of schema.org, as is done in the following section of this paper.

Throughout this account, a URL is a uniform resource locator, optionally including
a fragment part. The document (fragment) at that URL is (the appropriate fragment of)
the document obtained by the usual web mechanisms for retrieving a document given
a URL. URLs will be generally written as CURIES [7], with the prefixes s expanding
to http://schema.org/ and w expanding to http://en.wikipedia.org/wiki/, and the prefixes
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rdf, rdfs, and owl expanding to their usual expansions. The constituents of schema.org
information are types, properties, data values, and items.

There is a collection of types, in a multi-parent generalization taxonomy, with two
roots, s:Thing and s:Datatype. Each type is identified by a unique URL. The document
(fragment) at that URL defines the type, listing:

1. some types that are more general than it (its parents), and
2. for non-datatypes, its properties (see below).

Parents and properties, and information about instances where appropriate, are the only
information about a type obtainable from its defining document (fragment).

Each type has as a generalization (not necessarily directly specified in its defining
document) either s:Thing or s:Datatype, but not both.

The types with strict generalization s:Datatype are datatypes. All the data values be-
longing to the datatype are described in the datatype’s defining document (fragment), as
is a way of transforming text strings into these data values. The datatypes are s:Boolean,
s:Date, s:DateTime, s:Number, s:Float, s:Integer, s:Text (Unicode strings), s:URL, and
s:Time. The details of these datatypes do not matter for this account, except for s:Text,
and are not described here.

The type s:Enumeration has s:Thing as a parent.5 Those types with strict generaliza-
tion s:Enumeration are enumeration types. All those items with the enumeration type
as a direct type are listed in the type’s defining document (fragment). Different URLs
identify different items in an enumeration.

The type s:Thing has properties s:description and s:name.6

There is a collection of properties, disjoint from types, in a multiple-parent gener-
alization taxonomy with multiple roots. Each property is identified by a unique URL.
The document (fragment) at that URL defines the property, providing:

1. types that its values belong to (its ranges), and
2. some properties that are more general than it (its parents).

Ranges and parents are the only information about a property obtainable from its defin-
ing document (fragment).

For each parent of the property for each range of the property the parent must have
a range that is the same as or a generalization of the range. This condition on property
ranges means that the validity of a property value can be checked by looking only at the
range types of the property itself.

The properties s:description and s:name both have range s:Text.
Data values belong to one or more datatypes, and are disjoint from types and prop-

erties. Data values are written as a combination of a URL identifying a datatype and a
text string. The mapping in the datatype turns the text string into a value of the datatype.
Every data value belongs to s:Datatype. If a data value belongs to a datatype then it be-
longs to the parents of the datatype.

5 Enumeration actually has a different supertype on schema.org but this account removes the
unneeded supertype.

6 There are several other properties for s:Thing on schema.org, but these do not play a role in
this account and are ignored here.
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Items are things in the world, including information things, and are disjoint from
types, properties, and data values. Items belong to (one or more) non-datatype types.
Items have zero or more URLs identifying them. Items are associated with (other) items
and data values via properties. Every item belongs to s:Thing. If an item belongs to a
type then it belongs to the parents of the type.

If an item or data value is associated with an item via a property then the item or data
value is also associated with the item via each parent of the property. For each item or
data value associated with an item via a property,

1. one of the item’s types has the property as one of its properties, and
2. the item or data value belongs to one of the ranges of the property.

The documents (document fragments) at the URLs identifying an item provide in-
formation about the item, including types for the item as well as items and data values
associated with the item via properties.

Bare text can be used as if it was the value for any property. If the property does
not have s:Text or s:Datatype as one of its ranges, but does have one or more datatypes
as a range that have a data value that can be written as the bare text then the actual
value for the property is one of these data values. If the property does not have s:Text or
s:Datatype as one of its ranges, and does not have any suitable datatypes as a range, but
does have one or more non-datatypes as a range, then the actual value for the property is
some item that has a type that is one of these ranges and this item has the text as a value
of its s:description property. (The property s:description is used instead of s:name, as
the text might not truly be a name for the value.) Otherwise the actual value for the
property is the bare text itself.

Any surface syntax must provide ways to write all possible data values (as long as
they are not too big). Any surface syntax must have ways to provide items with any
number of types, including none, and values for any property of any of the provided
types or their generalizations or s:Thing, including allowing multiple values for a prop-
erty. Any surface syntax must provide ways for writing items with no identifying URLs.
Any surface syntax must specially process syntax that would otherwise produce values
for s:additionalType, turning the values into types; and s:url and s:sameAs, turning the
values into identifying URLs.

The following URLs are not used to identify types or properties: s:Class, s:Property,
s:domainIncludes, s:rangeIncludes, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain,
rdfs:range, rdfs:type, rdfs:Class, rdf:Property, and owl:Class. If they are used in a surface
syntax to provide information about an item they and their values must be ignored.
The following URLs are not used to identify properties: s:additionalType, s:url, and
s:sameAs.

Formal Definition for Schema.org

This definition for schema.org defines an abstract syntax for schema.org, abstracting
away from the details of the various surface syntaxes, and a model-theoretic seman-
tics, that provides a formal meaning for schema.org. It conforms to the pre-theoretic
description above.
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Abstract Syntax

Surface syntaxes for schema.org are transformed into an abstract syntax, in a process not
fully described here. The abstract syntax plays a similar role as triples do for RDF [2],
but is more complicated, as it makes distinctions between definitions and information
about items. The abstract syntax removes artifacts of the surface syntaxes that make a
formal account difficult, but transforming schema.org surface syntaxes into this abstract
syntax is simple.

The gathering of information from Web documents is performed when building the
abstract syntax. Constructs in the abstract syntax that start with a URL (or set of URLs)
may be constructed from the document at the URL (or documents at one or more of the
URLs), although they need not be.

Definition 1. A URL in this document is a URL with optional fragment identifier, as
defined in the W3C Working Draft on URLs [8]. A text string is a sequence of Unicode
characters [9]. A literal is a pair consisting of a URL, the datatype identifier of the
literal, and a text string.

One part of schema.org information consists of definitions—of regular types, of enu-
merated types, of datatypes, and of properties.

Definition 2. A (regular) type definition is a triple, 〈U, S, P 〉, where U is a URL, the
identifier of the type; S is a set of URLs, the supertypes of the type; and P is another
set of URLs, the properties of the type.

For example, the type definition for movies could be7

〈 s:Movie, {s:CreativeWork},
{ s:actor, s:director, s:producer, s:duration, s:musicBy,
s:productionCompany, s:trailer s:author, s:copyrightYear } 〉

indicating that movie is a subtype of creative work and has eight locally-specified prop-
erties.

The type of actions that update a collection would be

〈 s:UpdateAction, {s:Action}, {s:collection} 〉

indicating that update actions are actions and have only one locally-specified property.

Definition 3. An enumerated type definition is a quadruple, 〈U, S, P,E〉, where U , S,
and P are as in a regular type definition, and E is yet another set of URLs, the direct
instances of the enumerated type.

For example, the enumerated type definition for book formats would be

〈 s:BookFormatType, {s:Enumeration}, {},
{s:EBook, s:Hardcover, s:Paperback } 〉

indicating that there are three different book formats.

7 This definition of movies ignores the legacy properties for movies in schema.org, and adds
in some properties from s:CreativeWork for illustrative purposes.
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Definition 4. A datatype definition is a quadruple, 〈U, S,W, I〉, where U and S are as
in a regular type definition, W is a set of values for the datatype, and I is a partial
mapping from text strings into W .

For example, the datatype for URLs would be

〈s:URL, {s:Text}, U, idU 〉
where U is the set of Unicode strings that are valid URLs and idU is the string identity
function restricted to valid URLs, indicating that URL values are those text strings that
are valid URLs.

It is a bit unusual to include formal datatype definitions in an abstract syntax. It
would be more usual to pull these out into some sort of side definition. However, this
way of defining datatypes puts all aspects of the definition in one place, as is done for
other type and property definitions.

Definition 5. A property definition is a triple, 〈U, S,R〉, where U is a URL, the identi-
fier of the property; S is a set of URLs, the superproperties of the property; and R is a
non-empty set of URLs, the ranges of the property.

For example, the s:collection property (used in update actions), a subproperty of the
s:object property with range s:Thing, would be written as the first of the following prop-
erty definitions:

〈s:collection,{s:object},{s:Thing}〉,
〈s:actor,{},{s:Person}〉,
〈s:director,{},{s:Person}〉,
〈s:copyrightYear,{},{s:Number}〉,
〈s:author,{},{s:Organization,s:Person}〉.

Definition 6. A type definition is either a regular type definition, an enumerated type
definition, or a datatype definition. A definition is either a type definition or a property
definition A definition is said to be a definition for its identifier.

Type and property definitions define separate generalization partial orders on types
and properties, building up from the supertypes and superproperties of type definitions
and property definitions.

Definition 7. A type (property) definition, D, is a child of another, D′, if D′ is one of
the supertypes (superproperties) of D. A type (property) definition, D, is a descendant
of another,D′, in a set of definitions, if there is a chain of child relationships from D to
D′, in the set of definitions.

Definition 8. A URL, U , is a type (property) descendant of another, U ′, in a set of
definitions, written U < U ′, if U is the identifier of a type (property) definition that is a
descendant of a type (property) definition that is identified by U ′.

The other part of schema.org information consists of information about items, pro-
viding types and property values for items. Note that this information is not called
definitions, as there is no requirement that different items in the abstract syntax provide
information about different resources.
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Definition 9. A property value pair, 〈U, V 〉, consists of U , a URL identifying the prop-
erty, and V , a text string or a literal or a URL or an item, indicating the value.

Definition 10. An item is a triple, 〈N, T, PV 〉, where N is a (possibly empty) set of
URLs, identifiers of the item; T is a (possibly empty) set of URLs, identifiers of types of
the item; and PV is a (possibly empty) set of property value pairs.

For example, an item for a particular movie could be

〈{http://www.avatarmovie.com/index.html,w:Avatar (2009 film)},
{s:Movie},
{〈s:name, "Avatar"〉 ,
〈s:director, 〈 {}, {s:Person}, {〈s:name, "James Cameron"〉} 〉 〉 ,
〈s:actor, "Sam Worthington"〉 ,
〈s:actor,w:Sigourney Weaver〉}
〈s:year, "2009"〉 ,
〈s:author, "James Cameron"〉 〉

This item has two identifiers and six property-value pairs, one providing a text value
for a name of the movie, one providing an in-line item for a director of the movie, one
providing a text value for an actor in the movie, one providing a URL identifying an
actor in the movie, one providing a text value for a copyright year of the movie, and
another providing a text value for an author of the movie.

A collection of definitions and items is a knowledge base, the overall way of collect-
ing schema.org information together. There are many side conditions on schema.org
knowledge bases to provide an overall structure of the generalization hierarchies for
types and properties, to account for the built-in types and properties, and to ensure that
literals are well behaved.

Definition 11. A schema.org knowledge base is a triple, 〈T, P, I〉, where D is a set of
type definitions, P is a set of property definitions, and I is a set of items that satisfies
the following conditions:

1. Each URL is the identifier of at most one definition in T , and similarly for P . There
is at most one definition for any URL in T and P .

2. The descendant relationship for types (properties) in T (P ) is a strict partial order.
3. T contains the following regular type definitions:

〈 s:Thing, {}, {s:description, s:name} 〉,
〈 s:Datatype, {}, {} 〉, and
〈 s:Enumeration, {s:Thing}, {} 〉.

4. T contains the following datatype definition, where S is the set of text strings and
id is the identity mapping on text strings:

〈 s:Text, {s:Datatype}, S, id 〉
5. P contains the following property definitions:

〈s:description, {}, {s:Text} 〉 and 〈s:name, {}, {s:Text} 〉.
6. For each literal 〈U, V 〉 in the knowledge base there is a datatype definition
〈U, S,W, I〉 in T such that I is defined on V .
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7. T has a datatype definition for U iff U < s:Datatype in T .
8. T has an enumerated type definition for U iff U < s:Enumeration in T .
9. T has a regular type definition for U iff U is s:Datatype or s:Thing or U < s:Thing

but not U < s:Enumeration in T .

There is nothing about web document retrieval in the abstract syntax (nor in the for-
mal semantics immediately following). The intent should be clear, however—that type
and property definitions come from the document (fragment) obtained by dereferencing
the URL identifying the type or property and that item information often comes from
the document (fragment) obtained by dereferencing a URL identifying the item.8

Building a schema.org knowledge base then generally starts with a collection of
web documents that have schema.org markup about items. However, first the pages in
schema.org that define types and properties are parsed to produce type and property
definitions for the knowledge base. The document (fragments) accessible from URLs
identifying items encountered during this parsing are added to the initial collection of
web documents. Then this collection of documents is parsed to produce items for the
knowledge base.

URLs for items that are encountered during the parsing may be used to direct that the
web document (fragment) at that URL also be parsed to produce items for the knowl-
edge base. Whether this “follow your nose” behavior is actually performed during the
construction of a particular knowledge base depends on many factors that are outside
the purview of this account.

Model-theoretic Semantics

The semantics for schema.org here is built up in the standard way from interpretations,
which provide formal meanings for all URLs as identifying types or properties, and
items and URLs as identifying resources. Items are mapped into sets of resources, not
resources, as the resource corresponding to an item is indeterminate unless there is a
URL that identifies the item. A single URL can independently identify a type, a prop-
erty, and a resource, but these do not have any formal connection between them.

Definition 12. An interpretation is a sextuple, 〈IR, IV , IT , IP , IU , II〉, where IR is a
set of resources; IV is a set of data values, disjoint from IR; and

IT : U → 2IR ∪ 2IV

IP : U → 2IR×(IR∪IV )

IU : U → IR
II : I → 2IR

IT (s:Thing) = IR
IT (s:Datatype) = IV

where U is the set of URLs with optional fragments and I is the set of items.

8 Note that types and properties have a unique identifier whereas items may have multiple iden-
tifiers, or none.
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IT maps types into their extensions, a set of resources or a set of data values. IP maps
properties into their extensions, sets of pairs whose first element is a resource and whose
second element is a resource or a data value. II maps items into their extensions, a set
of resources. IU maps URLs into their extensions as item identifiers, a resource;

Although the mappings above are infinite, in any knowledge base the only part of
the mappings that are relevant are for the URLs and items that occur in the knowledge
base (or query, in entailment and querying situations).

Definition 13. An interpretation, 〈IR, IV , IT , IP , IU , II〉, satisfies a knowledge base,
〈KT ,KP ,KI〉 iff

1. for 〈U, {S1, ..., Sn}, P 〉 a regular type definition in KT , IT (U) ⊆ IT (Si);
2. for 〈U, {S1, ..., Sn}, P, {E1, ...Em}〉 an enumerated type definition in KT ,

(a) IT (U) ⊆ IT (Si),
(b) IT (U) = {IU (e) | e ∈ E}, and
(c) ∀ei �= ej ∈ E IU (ei) �= IU (ej),
where E = ∪{E′| 〈U ′, S′, P ′, E′〉 ∈ KT ∧ (U ′ = U ∨ U ′ < U)};

3. for 〈U, {S1, ..., Sn},W, I〉 a datatype definition in KT ,
(a) IT (U) ⊆ IT (Si) and
(b) IT (U) =W ;

4. for 〈U, {S1, ..., Sn}, R〉 a property definition in KP , IP (U) ⊆ IP (Si);
5. for I = 〈{U1, ..., Un}, {T1, ..., Tm}, {〈P1, V1〉 , ..., 〈Pl, Vl〉}〉, an item in KI ,

(a) II(I) = {IU (U1)}, for 1 ≤ i ≤ n,
(b) II(I) ⊆ IT (Ti), 1 ≤ i ≤ m,
(c) for x ∈ II(I), for 1 ≤ i ≤ l, there exists 〈Pi, S, R}〉 a property definition and

there exists y such that 〈x, y〉 ∈ IP (Pi) and
– if Vi is an item then y ∈ II(Vi)
– if Vi is a URL then y = IU (Vi)
– if Vi is a literal 〈D,T 〉 then there exists 〈D,S,W, ID〉 a datatype defini-

tion and y = ID(T )
– if Vi is a text string then

• if s:Text ∈ R or s:Datatype ∈ R then y = Vi
• otherwise if there exists 〈D,S,W, I〉 a datatype with D in R and Vi

mapped by I then y = IT (Vi) for some one of these datatypes
• otherwise if there exists 〈T, S, P 〉 a type with T in R then y ∈ IT (T )

for some one of these types, and 〈y, Vi〉 ∈ IP (s:description)
• otherwise y = Vi;

6. for each U , for each 〈x, y〉 ∈ IP (U),
(a) there exists 〈T, S, P 〉 a type definition or 〈T, S, P,E〉 an enumerated type def-

inition in KT such that U ∈ P and x ∈ IT (U), and
(b) there exists 〈U, S,R〉 a property definition in KP such that either R = {} or

there exists R′ ∈ R with y ∈ IT (R′).

From this basis the standard notions of entailment and inference and simple querying
can be defined in the usual way.

The first clause in the satisfaction definition above provides the basis for the type
generalization hierarchy, saying that the extension of a regular type is a subset of the ex-
tensions of each of its parent types. This is repeated for enumerated types and datatypes
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in the first part of the second and third clauses. Because regular and enumerated types
are all descendants of s:Thing, their extensions are are subsets of the set of resources.

The second part of the second clause states that the extension of an enumeration is
just the set of all the items that are stated to belong to it and its subtypes. The third part
of the second clause states that all these items are different.

The third clause states that the extension of a datatype is its set of values. Because
datatypes are all descendants of s:Datatype, their extensions must be subsets of the set
of data values.

The fourth clause enforces the property generalization hierarchy.
The fifth clause handles all the parts of item syntax. The first part of this clause says

that the extension of an item is the same as the extension of its identifiers, if any. Note
that if there are no identifiers for an item, then the extension of the item need not be
a singleton set. The second part says that the extension of an item is in the extension
of the extensions of its types. The third part provides meaning for the property-value
pairs in the item. There must be a property relationship from the item to a value that
for item values is in the extension of the item, for URL values is the extension of the
URL as an item identifier, and for literals is the correct data value. For values that are
text there is a determination of what the most suitable ranges are with text datatypes the
most suitable, other compatible datatypes next, and other types least suitable. Then one
of these types is chosen and a data value or item is chosen to belong to this type.

So the movie item above would be a resource that is the same as the extensions of
http://www.avatarmovie.com/index.html and w:Avatar (2009 film) and is in the extension
of s:Movie. This resource would be related to the string "Avatar" via (the property ex-
tension of) s:name, because s:name has s:Text as its sole range; to a resource in the
extension of s:Person that has name "James Cameron" via s:director; to a resource in
the extension of s:Person that has description "Sam Worthington" via s:actor, because
s:director has s:Person as its sole range; to the extension of w:Sigourney Weaver via
s:actor; to the number 2009 via s:copyrightYear, because the supplied text is compatible
with the s:Number datatype; and via s:author to a resource that is either in the exten-
sion of s:Organization or s:Person and that has description "James Cameron", because
s:author has ranges s:Organization and s:Person, and no datatype ranges.

The sixth clause enforces domain and range restrictions. The first part says that for
each property, for each relationship between an item and a value in that property, there
is a regular or enumerated type that has that property and contains the item. The second
part similarly says that if the the definition of the property states ranges, then the value
belongs to one of the ranges. Because parent properties have to have a range that is an
ancestor of this range, this also satisfies the range restriction for each ancestor property.

Discussion

The above formal semantics is quite dense, particularly the definition of satisfaction.
However, there is nothing particularly sophisticated going on, it is just that there are
quite a few bits of schema.org markup to take into account.

The formal semantics is actually more standard than the formal semantics of RDF
[10], as there are no resources for types and properties. It is easy to see that nothing
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about items can affect the relationships within and between types and properties (except
that, as usual, inconsistencies in the information about items cause the semantics to
collapse). If two URLs identify the same item, it is not necessarily the case that the two
URLs define the same type or define the same property. This stands in stark contrast
to RDF, but means that the only source of information for a type or property is its
definition (which would come from the appropriate schema.org page). Thus consumers
of schema.org information do not need to process any items to understand types and
properties.

If two items share an identifying URL, then their extension is the same. If an item
does not have a URL, but has a type that is an enumeration, then the item is one of finite,
enumerated instances of the enumeration. This provides a weak form of disjunction for
schema.org. The distinctness of the extensions of the URLs in an enumeration provides
inequality for arbitrary resources in schema.org

As schema.org has weak disjunction and inequality for resources, its expressive
power is considerably above that of RDFS, even though there is a translation provided
from schema.org types and properties into RDFS.

Schema.org can, however, be translated into OWL, but the translation is not into a
simple variant of OWL. For some parts of schema.org it is easy to see the translation.
The special types s:Thing and s:Datatype are translated into owl:Thing and owl:Literal,
respectively. All other non-datatype types become OWL classes. Supertypes where the
parent type is a regular type translate into subtype axioms.

Property ranges for a property translate into a disjunctive property range axiom.
However, a property can have both regular types and datatypes as ranges. A property
with such a range cannot be categorized as either an object property or a data prop-
erty, and so cannot be translated into OWL 2 DL. However, OWL 2 Full [11] permits
uncategorized properties. Superproperties for properties then translate into subproperty
axioms.

For some parts, the translation needs to take into account more than just one part
of the knowledge base. Domains for a property are constructed by taking all the types
that mention the property and producing a disjunctive property domain for the prop-
erty from them. Enumerations are constructed by finding all the item URLs belonging
to the enumeration type and its subtypes and constructing an axiom stating that the
enumeration type is equivalent to the object one-of containing all these objects. This
construction handles the supertype relationship where the supertype is an enumeration
type. As well, a different individuals axiom is added stating that all the distinct URLs
belonging to the enumeration type and its subtypes are different.

The translation for datatypes requires the construction of a datatype map that has
the same effect as the datatype definitions. The datatypes in schema.org fit within what
can be done for OWL datatypes, so this is possible. Supertypes for datatypes are either
true, because the datatype’s value spaces are in the correct relationship, or false. The
first case can be ignored, as it has no effect. The second case can be translated into an
inconsistent OWL assertion, as it produces an inconsistency.

The translation for items is a bit tricky, to allow for items that do not have any asso-
ciated URLs. Anonymous individuals are employed in the translation to avoid the need
for extra URLs, for each item there is generated a different anonymous individual.
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For each identifier of the item, there is a same-as assertion between the anonymous
individual and the identifier. For each type of the item, there is a class assertion stating
that the anonymous individual belongs to the type.

Property value pairs are treated as follows.

1. If the value is a URL, then it identifies an item, and the URL is used directly as the
value of a property assertion from the anonymous individual to the value via the
property.

2. If the value is a literal, then the corresponding OWL literal is used instead in the
property assertion.

3. If the value is an item, then the item is translated, and the anonymous individual for
the item is used instead.

4. If the value is text, the situation is more complex. First then the ranges for the
property are determined.
(a) If s:Text or s:Datatype is one of the ranges then a string literal is constructed

from the text and used as the value as above.
(b) If there is a range that is a datatype with the text in the domain of its literal-

to-value mapping, then those datatypes with the text in the domain of their
literal-to-value mappings are used to construct one or more literals. The anony-
mous individual is then asserted to belong to a data some-value-from with the
property to a data one-of constructed from these literals.

(c) If there are no suitable datatype ranges then if there are any non-datatype
ranges then the translation of the property-value pair is a property assertion
from the anonymous individual via the property to a fresh anonymous individ-
ual. This fresh anonymous individual is asserted to belong to the disjunction of
the non-datatype ranges and is also asserted to have the text as the value of the
s:description.

The correctness of this mapping is not hard to verify, but a full proof of the correct-
ness would be long and tedious and so is omitted here.

The translation into OWL does not determine how hard or easy reasoning is in
schema.org because reasoning in OWL Full is undecidable. There are no inverse prop-
erties in schema.org, so not making the division between object and data properties
does not appreciably affect reasoning. As this is the only part of the mapping that is
not in OWL 2 DL, the mapping into OWL shows that the reasoning in schema.org is
decidable.

It is easy to show that reasoning here is in PSpace, as reasoners need not introduce
new types, properties, or items. Showing the precise complexity of reasoning is more
difficult, as enumerations and the disjunctive nature of domain and range includes need
to be addressed. For example, if this account of schema.org were modified to use the
underlying semantics of RDF and lift the restrictions on the use of certain URLs the set
cover problem could be encoded, introducing a new source of hardness to reasoning.

The intent of schema.org appears to be that all the types and properties defined in
schema.org will remain in the schema.org namespace and thus under the control of the
owners of schema.org and will change only infrequently. Other web pages will not be
allowed to make changes or additions to these types and properties. This limits the effect
of the non-monotonic nature of the disjunctive domains and ranges of schema.org.
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The model-theoretic account here is a standard one, based on inference instead of
constraints. If an item has a value for a property, then the item is inferred to belong to
one of the domains of the property. The constraint reading [12] would instead require
that the item be stated to belong to a domain for the property before a value could be
provided. There are benefits to the constraint account, as it is closer to the database
situation, but it is less flexible [13].

It is possible to get the effect of the constraint approach in a surface syntax. A surface
syntax can have constructs that require that property-value pairs for an item be only for
items that mention a type or subtype of one of the domains of the property. In this way
most benefits of both approaches can be obtained.

Conclusion

This paper has provided an analysis of what schema.org should be, leading up to a com-
plete formal treatment of schema.org including an abstract syntax and a model-theoretic
semantics. It fills in voids in the publicly-available description of schema.org, including
whether types and properties and items are disjoint, whether enumerations are distinct,
whether properties can have generalizations, and how to handle text values. This may
not exactly correspond to intent of the schema.org members, but it is consistent with the
available information about schema.org, and uses only a reasonable set of additional as-
sumptions.

This paper shows that even the unusual parts of schema.org can be translated into
OWL. Although schema.org cannot be translated into OWL 2 DL, because schema.org
properties cannot be categorized into object and data properties, the extensions are cos-
metic, and schema.org reasoning is no harder than reasoning in OWL 2 DL. Determin-
ing just how hard schema.org reasoning is remains as further work.

Schema.org does not provide local ranges for properties, such as saying that the
author of a movie is a person even though in general authors can be either people or
organizations. This lack of expressive power limits what can be said about property
values and is especially problematic as quite a few roles in schema.org could benefit
from local ranges (e.g., a season of a TV series should be a TV season, but can only be
a general season, as Radio Series also have seasons). Adding this feature to schema.org
would usefully improve its expressive power.

The account of schema.org here should provide a starting point for further formal
analysis of schema.org and a firm foundation for systems that consume schema.org in-
formation. Web pages that contain schema.org information can be checked against this
account to provide a formal account of what the information conveys, thus reducing the
possibility of mismatches between providers and consumers of schema.org information.

The obvious next step is to gather large amounts of schema.org information to see
how schema.org is used in practice. This usage should then be analyzed to see how well
the various aspects of schema.org are used and how the account here helps to better
provide meaning for actual information that uses schema.org.
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Abstract. In order to support web applications to understand the con-
tent of HTML pages an increasing number of websites have started to
annotate structured data within their pages using markup formats such
as Microdata, RDFa, Microformats. The annotations are used by Google,
Yahoo!, Yandex, Bing and Facebook to enrich search results and to
display entity descriptions within their applications. In this paper, we
present a series of publicly accessible Microdata, RDFa, Microformats
datasets that we have extracted from three large web corpora dating
from 2010, 2012 and 2013. Altogether, the datasets consist of almost 30
billion RDF quads. The most recent of the datasets contains amongst
other data over 211 million product descriptions, 54 million reviews and
125 million postal addresses originating from thousands of websites. The
availability of the datasets lays the foundation for further research on in-
tegrating and cleansing the data as well as for exploring its utility within
different application contexts. As the dataset series covers four years, it
can also be used to analyze the evolution of the adoption of the markup
formats.

Keywords: Microdata, RDFa, Microformats, Dataset, Web Science.

1 Introduction

A large number of websites have started to use markup standards to annotate
information about products, reviews, blog posts, people, organizations, events,
and cooking recipes within their HTML pages. The most prevalent of these
standards are Microformats,1 which use style definitions to annotate HTML
text with terms from a fixed set of vocabularies; RDFa [1], which is used to
embed any kind of RDF data into HTML pages, and Microdata [7], a recent
format developed in the context of HTML5.

The embedded data is crawled together with the HTML pages by search
engines such as Google, Yahoo!, Yandex, and Bing, which use the data to enrich
search results and to display entity descriptions within their applications [6,3].
Since 2011, those four search engine companies have been collaborating on the

1 http://microformats.org/
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Schema.org initiative,2 which offers a single vocabulary for describing entities
that is understood by applications from all four companies [5]. So far, only
the big search engine companies had access to large quantities of Microdata,
RDFa, and Microformats data as they were the only ones possessing large web
crawls. However, the situation has changed with the advent of the Common
Crawl Foundation.3 Common Crawl is a non-profit foundation that crawls the
Web and regularly publishes the resulting web corpora for public usage.

We have extracted all Microdata, RDFa, and Microformats data from the
Common Crawl corpora gathered in 2010, 2012 and 2013 and provide the ex-
tracted data for public download. Table 1 gives an overview of the Common
Crawl corpora as well as the overall quantity of the extracted data. The sec-
ond and third column show the number of HTML pages and pay-level domains
(PLDs) covered by the different crawls. The forth and fifth column contain the
percentages of all pages and PLDs that use at least one of the three markup
formats. Column six shows the overall number of RDF quads that we have ex-
tracted from each corpus, while column seven contains the compressed size of
the resulting datasets. The 2013 Common Crawl corpus, for instance, consists of
2.2 billion HTML pages originating from over 12 million PLDs. 26.33% of these
pages and 13.87% of the PLDs use at least one markup format, resulting in an
extracted dataset containing 17 billion RDF quads.

Table 1. Overview of the Common Crawl corpora and the overall quantity of the
extracted data

Crawl Size Extracted Data
Dataset # HTML Pages # PLDs % HTML Pages % PLDs # RDF Quads Compressed Size

2010 2 565 741 671 - 5.76% - 5 193 767 058 332 GB
2012 3 005 629 093 40 600 000 12.29% 5.63% 7 350 953 995 101 GB
2013 2 224 829 946 12 831 509 26.33% 13.87% 17 241 313 916 40 GB

This paper is structured as follows: first, we give an overview of the Common
Crawl initiative and the web corpora that it provides to the public. Afterwards,
we explain the methodology that was used to extract the data from the corpora
and describe the data format that we use to offer the data for public download.
In order to give an impression of the content of the extracted data, we discuss
the distribution of the different markup formats within the 2013 dataset in Sec-
tion 5. Afterwards, we analyze the topical domains as well as the richness of the
annotations in Section 6 for RDFa, Section 7 for Microdata, and Section 8 for
Microformats. In [2], we have presented a similar analysis of the 2012 dataset.
In order to illustrate the evolution of the adoption of the different formats, we
compare our findings from the 2012 and 2013 datasets wherever this reveals in-
teresting trends. Section 9 discusses related work, while Section 10 concludes the
paper by discussing the challenges that need to be addressed for using the data
within applications.

2 http://schema.org
3 http://commoncrawl.org
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2 The Common Crawl

Our dataset series was extracted from three web corpora published by the Com-
mon Crawl Foundation. The first corpus contains pages that have been crawled
between 2009 and 2010. The second corpus was gathered in the first half of 2012.
The crawler that was used to gather both corpora employed a breath-first selec-
tion strategy and was seeded with a large number of URLs from former crawls.
The seed URLs were ordered according to their PageRank. Since the end of 2012
the Common Crawl Foundation releases two crawls per year. Each crawl con-
sists of around two billion pages. For the recent crawls the foundation uses seed
lists provided by the search engine company blekko.4 The new seed lists should
improve the quality of the crawl by avoiding “webspam, porn and the influence
of excessive SEO” [8]. In addition to using an external seed list, the Common
Crawl Foundation has also shifted their crawling infrastructure to a modified
version of Apache Nutch to gather the pages contained in the seed list instead of
using their own crawling framework.5 All Common Crawl corpora are provided
as (W)ARC files6 and are available as free download from Amazon S3.7

3 Methodology

In order to extract RDFa, Microdata, and Microformats data from the corpora,
we developed a parsing framework which can be executed on Amazon EC28 and
supports parallel processing of multiple (W)ARC files. The framework relies on
the Anything To Triples parser library (Any23)9 to extract Microdata, RDFa,
and Microformats data from the corpora. For processing the Common Crawl
corpora on Amazon EC2 we used 100 AWS EC2 c1.xlarge machines. Altogether,
extracting the HTML-embedded data from the 2013 corpus required a total
machine rental fee of US$ 263.06 using Amazon spot instances.10

We used Apache Pig11 running on Amazon Elastic MapReduce to calculate
most of the statistics presented in this paper as well as to generate the vector
representation used for the co-occurrence analysis.12 As the three crawls cover
different HTML pages and as the number of crawled pages per PLD differs

4 http://blekko.com/
5 The code which was used for the crawl can be downloaded at
https://github.com/Aloisius and the original distribution of Nutch at
https://nutch.apache.org/

6 The WARC file format is proposed by the Internet Archive foundation as successor
to the ARC file format – http://archive-access.sourceforge.net/warc/ .

7 http://aws.amazon.com/datasets/41740
8 http://aws.amazon.com/de/ec2/
9 http://any23.apache.org/

10 Additional information about the extraction framework can be found at
http://webdatacommons.org/framework

11 http://pig.apache.org/
12 All used scripts can also be downloaded from the websites of the Web Data Commons

project.
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widely, we aggregate the data by PLD, especially for analyzing the deployment
of the different markup languages and comparing the deployment between the
different datasets. To determine the PLD of each page, we use the Public Suffix
List.13 Hence, a PLD not always equals a second-level domain, but country-
specific domains such as “co.uk” or mass hosting domains like blogspot.com are
considered as top-level domains in our analysis.

4 Dataset Format and Download

The extracted data is represented as RDF quads (encoded as N-Quads14), with
the forth element being used to represent the provenance of each triple. This
means in addition to subject, predicate, and object, each quad includes the
URL of the HTML page from which it was extracted. The extracted data is
provided for download in the various sub-datasets. Each sub-dataset includes the
information extracted for one markup language from one crawl, e.g. all quads
representing information embedded in web pages from the 2013 crawl using
Microdata form a sub-dataset. All datasets are provided for public download on
the Web Data Commons website.15 In addition to the datasets, the website also
provides detailed background data for the analysis presented in this paper, such
as the lists of all websites using specific formats or vocabulary terms.

5 Distribution by Format

Table 2 gives an overview of the distribution of the different markup formats
within the 2013 dataset. For each format, the table contains the number of PLDs
and the number of URLs using the format. For Microformats, the numbers are
reported separately for each sub-format. Column 5 and 6 contain the number of
quads and the compressed file size of the extracted datasets. The largest num-
ber of quads, namely 8.7 billion, were generated from Microdata annotations,
followed by the Microformat hcard with 4.9 billion and RDFa with over 2.6 bil-
lion quads. Regarding the number of websites annotating information using the
different markup languages, we find 995 thousand websites using hcard, followed
by 471 thousand using RDFa and 463 thousand using Microdata.

In order to give an impression about the number of entities that are described
in the data as well as the richness of the entity descriptions, we group all quads
that have the same subject URI into a record. Column four of Table 2 contains
the overall number of records contained in each dataset. We see, for instance,
that the Microdata dataset describes 1.9 billion entities. Each entity description
(record) consists of an average of 4.48 quads.

13 http://publicsuffix.org/list/
14 http://sw.deri.org/2008/07/n-quads/
15 http://webdatacommons.org/structureddata/
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Table 2. Number of websites (PLDs) and webpages (URLs) containing RDFa, Micro-
data, and Microformats annotations, as well as number of records and quads within
the 2013 dataset

# PLDs # URLs # Records # Quads File Size

RDFa 471 406 296 005 115 436 100 210 2 636 964 693 66 GB
Microdata 463 539 276 348 609 1 964 777 851 8 795 074 538 189 GB
Microformats (geo) 23 044 14 436 467 56 611 312 222 780 517 4 GB
Microformats (hcalendar) 20 981 3 683 002 41 683 362 212 675 776 2 GB
Microformats (hcard) 995 258 113 402 968 1 643 288 889 4 884 918 863 60 GB
Microformats (hlisting) 2 854 528 387 19 204 882 65 494 465 890 MB
Microformats (hrecipe) 3 539 814 793 7 094 914 34 062 142 890 MB
Microformats (hresume) 262 52 675 81 924 231 573 4 MB
Microformats (hreview) 12 880 3 504 643 33 027 023 145 692 102 4 GB
Microformats (species) 109 22 419 121 200 373 033 6 MB
Microformats (xfn) 195 663 18 467 168 62 571 191 243 046 214 2 GB

6 RDFa Data

The 2013 RDFa dataset includes data from over 471 thousand websites, which
are 26% of all websites containing structured data in the crawl. The largest
amount of RDF statements was extracted from tripadvisor.com with 78 million
quads, followed by yahoo.com with over 28 million quads and hotels.com with
more than 17 million quads.

Class/Property Frequency Distribution: The corpus contains over 646
thousand different classes and over 27 thousand different RDFa properties. Fig-
ure 1(a) shows the class and property distribution using a log-scale for the y-
axis, which reports the number of websites making use of a class or property.
The x-axis draws the classes and properties ordered descending by the number
of websites using them. Similar to our observations for the 2012 dataset [2], both
distributions are long-tailed and only a small number of classes and properties
are used by a large number of websites. Altogether, we find 949 classes and
2 069 properties that are used by at least two different websites. The majority of
the terms are only used by a single website. Manually inspecting some of these
terms reveals a large number of typos in spelling terms from more widely used
vocabularies. On the other hand, there exists also a large number of proprietary
vocabularies which are used only by a single website.

Frequent Classes: Table 3 lists the most frequently used RDFa classes ordered
by the number of websites deploying them. The table also includes the total
number of records of each class included in the 2013 dataset. For comparison,
we also state the total as well as the percental number of websites deploying
the classes in 2012.16 Table 3 shows that the Facebook ecosystem has a strong
presence in the most frequently used classes, i.e. nine out of 30 classes belong to
the Open Graph Protocol (OGP). Although the total number of websites using

16 The namespaces of the classes are abbreviated with the corresponding prefix from
the http://prefix.cc/list. Classes with an og-namespace prefix belong to the
OGP and are within the HTML pages not maintained with a namespace, but as
literals instead.
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the classes og:“article” and og:“website” is smaller in the 2013 dataset than
in the 2012 dataset, the percental usage is higher. This is due to the smaller
number of PLDs covered in the 2013 crawl (see Table 1). Looking at the total
number of records of each class (column 3 in Table 3), we see that the dataset
contains 13 million og:“product” records, 15 million gd:Organization records, as
well as 22 million sioc:UserAccount records.

Table 3. Most frequently used RDFa classes within the 2013 dataset sorted by the
number of websites (PLDs) using the class, including the total number of records in
2013 as well as the number of websites using the class in 2012

2013 2012
Records PLDs Records PLDs

Class # (in k) # % # (in k) # %

1 og:“article” 82 882 535 167 544 40.14 35 438 354 183 046 35.24
2 og:“website” 24 951 292 71 590 17.15 9 197 072 56 573 10.89
3 foaf:Image 143 179 835 46 505 11.14 12 618 426 44 644 8.60
4 foaf:Document 31 601 886 45 542 10.91 3 709 728 49 252 9.48
5 gd:Breadcrumb 53 156 451 39 561 9.48 52 521 380 9 054 1.74
6 og:“blog” 6 364 724 29 629 7.10 2 365 037 58 971 11.35
7 sioc:Item 30 863 230 29 521 7.07 3 325 019 33 141 6.38
8 og:“product” 13 199 034 13 813 3.31 7 517 484 19 107 3.68
9 sioc:UserAccount 22 195 639 12 632 3.03 2 067 204 19 331 3.72

10 skos:Concept 24 011 250 11 873 2.84 5 197 930 13 477 2.59
11 gd:Review-aggregate 16 626 171 5 266 1.26 7 419 398 6 236 1.20
12 sioc:Post 26 571 378 4 958 1.19 1 079 844 6 994 1.35
13 gd:Rating 979 322 3 603 0.86 1 567 226 4 139 0.80
14 og:“company” 1 834 688 3 105 0.74 2 483 995 6 758 1.30
15 sioctypes:BlogPost 653 322 2 703 0.65 159 553 3 936 0.76
16 sioctypes:Comment 25 831 008 2 639 0.63 903 696 3 339 0.64
17 vcard:Address 55 425 2 225 0.53 746 673 3 167 0.61
18 gr:Offering 498 333 2 199 0.53 371 864 1 342 0.26
19 gr:BusinessEnttiy 394 556 2 155 0.52 119 394 3 155 0.61
20 og:“activity” 1 049 085 2 037 0.49 913 007 3 303 0.64
21 gr:UnitPriceSpecification 429 409 1 681 0.40 450 220 1 562 0.30
22 gr:SomeItems 235 785 1 429 0.34 148 689 670 0.13
23 og:“profile” 940 016 1 276 0.31 573 848 394 0.08
24 gd:Organization 15 693 269 1 232 0.30 7 324 570 2 502 0.48
25 gd:Review 1 415 844 1 221 0.29 1 085 1 321 0.25
26 og:“band” 106 524 1 168 0.28 468 385 1 988 0.38
27 og:“game” 679 546 1 123 0.27 936 482 1 336 0.26
28 gr:TypeAndQuantityNode 187 865 1 121 0.27 122 137 530 0.10
29 gr:QuantitativeValue 192 560 1 032 0.25 282 325 1 077 0.21
30 foaf:Person 1 338 823 851 0.20 128 475 1 209 0.23

Facebook Data: In the following we will have a brief look at the OGP data
and state properties included in the dataset for the OGP classes. The OGP
is developed and promoted by Facebook in order to enable the integration of
external content into the social networking platform. In contrast to other RDFa
vocabularies, OGP allows the usage of literals instead of URIs to identify classes.
Table 4 shows the properties that are most frequently used together with the
top five OGP classes. Similar to our findings for the 2012 dataset [2], the top 15
most frequently used properties are rather generic, whereas there is a small shift
in the usage of namespaces as the ogm namespace is used more frequently.
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Table 4. Absolute and relative number of quads of the top properties co-occurring
with all five of the most frequently used OGP classes, ordered by usage frequency with
og:“article”

og:“article” og:“website” og:“blog” og:“product” og:“company”
Property # % # % # % # % # %

ogo:type 116 898 69.77 32 034 44.75 15 534 52.43 9 909 71.74 1 096 35.30
ogo:title 115 867 69.16 31 737 44.33 15 024 50.71 9 845 71.27 985 31.72
ogo:url 115 508 68.94 31 416 43.88 15 224 51.38 9 662 69.95 965 31.08
ogo:site name 109 888 65.59 27 088 37.84 15 365 51.86 9 709 70.29 963 31.01
ogo:image 92 874 55.43 23 567 32.92 9 716 32.79 9 793 70.90 921 29.66
ogo:description 80 209 47.87 25 258 35.28 10 931 36.89 9 157 66.29 729 23.49
ogm:type 49 631 29.62 39 347 54.96 14 122 47.66 3 785 27.40 2 017 64.96
ogm:title 49 152 29.34 38 292 53.49 13 982 47.19 3 697 26.76 1 978 63.70
ogm:url 48 769 29.11 37 784 52.78 13 931 47.02 3 578 25.90 1 904 61.32
ogm:site name 46 865 27.97 31 234 43.63 13 880 46.85 3 241 23.46 1 847 59.49
ogm:description 42 068 25.11 28 499 39.81 11 501 38.82 3 020 21.86 1 667 53.70
ogm:image 36 923 22.04 26 300 36.74 9 983 33.69 3 540 25.63 1 863 60.00
fb 2008:fbmlapp id 27 865 16.63 11 550 16.13 10 769 36.35 2 275 16.47 812 26.16
ogo:locale 24 200 14.44 14 809 20.69 4 731 15.97 126 0.91 103 3.32
fb 2008:fbmladmins 22 773 13.59 11 097 15.50 10 076 34.01 2 796 20.24 1 351 43.52

7 Microdata

The 2013 Microdata dataset contains data from over 463 thousand different
websites, which are 26% of all websites containing structured data. Compared
to the 6.1% of all websites using Microdata in 2012 [2], the adoption has grown
by more than factor four in just one year. The largest amounts of Microdata
statements were extracted from citysearch.com with 797 million quads, ebay.com
with 153 million quads and hp.com with 65 million quads.

Class/Property Frequency Distribution:The dataset contains over 15 thou-
sand different classes and over 170 thousand different properties that are used
by Microdata annotations. Figure 1(b) shows the class and property distribution
using a log-scale in the same manner as Figure 1(a). Altogether, the Microdata
dataset contains 1 200 classes and 12 506 properties that are used by at least two
different websites. Similar to the observations made for the RDFa deployment,
classes and properties in the long tail include large numbers of typos as well as
website-specific terms.

Frequent Classes: Table 5 shows the most frequently used Microdata classes
ordered by the number of PLDs deploying them. The second column shows the
absolute number of records of each class. The most popular classes belong to the
topical domains product data (Product, Offer, Review, Rating), blogs (Article,
Blog, BlogPosting), navigational information (Breadcrumb), people (Person),
organizations (LocalBusiness, Organization) and addresses (PostalAddress, Ad-
dress). Due to the growing adoption of Microdata, we discuss some of the major
topical domains of the data in more detail in the following.

Postal Addresses: The dataset contains 124 million schema:PostalAddress
records originating from over 52 thousand websites. On average each address
is described by 3.96 property values. Table 6(a) shows that more than 90% of the
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Fig. 1. Class and Property distribution by PLD count within the 2013 dataset

records contain the properties schema:addressLocality and schema:addressRegion.
Table 7(a) shows the top ten websites ordered by number of address records that
we have extracted from the sites.

Local Business: The dataset contains over 76 million records of type schema:
LocalBusiness coming from 35 403 websites. On average schema:LocalBusiness
records contain 5.22 properties. As shown in Table 6(b), over 80% of all records
contain four out of the top five properties. This means, that for a large pro-
portion of records we can expect information about the address of the busi-
ness, the name, as well as the URL. When comparing the websites using the
schema:LocalBusiness class (cf. Table 7(b)) with the ones using the class schema:
PostalAddress we see citysearch.com at the first position in both lists. The web-
site is a local business search engine, providing information about companies
within different cities. A remarkable observation for local businesses is that more
than 6% of the records contain several values for the property “name”.

Product Data: The 2013 dataset contains 202 million product records origi-
nating from almost 71 thousand different websites. This makes product data the
second largest topical domain in the dataset. Table 7(c) shows the top ten PLDs
offering product data ordered by the number of records. Product descriptions are
markup with two different classes: schema:Product (80%) and dv:Product (20%).
On average each product is described by 4.56 properties. Table 6(c) shows that
the properties “name”, “offers”, and “image” are provided for almost 50% of all
product records. Only around 17% of the records contain a “description” prop-
erty. Only 15% of all records use of the property “productId” which might help
to identify product records from different websites that refer to the same prod-
uct. Petrovski et al. [12] have examined the content of product name properties
of electronic products. Their analysis shows that there is quite some variation
in the names that are used by different websites to refer to the same product
and that many e-shops include different product features for marketing reasons
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Table 5. Most frequently used Microdata classes within the 2013 dataset, sorted by
the number of websites using the class, including the total number of records in 2013
as well as the number of websites using the class in 2012

2013 2012
Records PLDs Records PLDs

Class # (in k) # % # (in k) # %

1 schema:WebPage 33 806 314 69 712 15.04 5 927 825 6 678 4.76
2 schema:Article 53 456 896 65 930 14.22 5 012 240 15 718 11.20
3 schema:Blog 2 281 401 64 709 13.96 1 421 909 2 084 1.49
4 schema:Product 178 334 394 56 388 12.16 19 386 194 16 612 11.84
5 schema:PostalAddress 125 780 525 52 446 11.31 9 513 985 19 592 13.96
6 dv:Breadcrumb 223 814 124 44 187 9.53 75 537 788 21 729 15.49
7 schema:AggregateRating 47 467 552 36 823 7.94 4 446 934 7 029 5.01
8 schema:Offer 154 407 699 35 635 7.69 13 725 226 8 456 6.03
9 schema:LocalBusiness 76 317 387 35 264 7.61 7 467 891 16 383 11.68

10 schema:BlogPosting 5 505 020 32 056 6.92 12 143 573 25 235 17.98
11 schema:Organization 91 321 833 24 255 5.23 3 060 174 7 011 5.00
12 schema:Person 143 648 178 21 107 4.55 5 912 833 5 237 3.73
13 schema:ImageObject 32 712 837 16 084 3.47 5 404 283 0.20
14 dv:Product 19 990 466 13 844 2.99 6 235 638 6 770 4.82
15 schema:Review 35 213 270 13 137 2.83 3 114 006 2 585 1.84
16 dv:Review-aggregate 5 462 245 13 075 2.82 2 994 221 8 517 6.07
17 dv:Organization 4 951 153 9 582 2.07 2 311 548 5 853 4.17
18 dv:Offer 7 722 086 9 298 2.01 4 201 002 1 957 1.39
19 dv:Address 1 629 193 8 866 1.91 1 277 451 5 559 3.96
20 dv:Rating 5 878 816 8 360 1.80 2 063 366 1 532 1.09
21 schema:Event 10 551 937 8 258 1.78 1 018 398 4 102 2.92
22 schema:Place 38 519 652 7 653 1.65 1 819 200 4 131 2.94
23 dv:Review 1 868 702 6 432 1.39 1 019 152 2 816 2.01
24 schema:Recipe 1 523 363 6 019 1.30 379 433 718 0.51
25 schema:GeoCoordinates 72 961 757 5 888 1.27 1 045 302 4 677 3.33
26 schema:ProfilePage 116 065 4 833 1.04 86 572 30 0.02
27 schema:AutoDealer 49 706 4 563 0.98 31 615 280 0.20
28 schema:VideoObject 7 124 628 4 530 0.98 31 452 643 764 0.54
29 dv:Person 23 386 913 3 993 0.86 2 609 898 5 237 3.73
30 schema:Thing 1 214 435 3 724 0.80 141 641 587 0.42

into the product names. Both findings illustrate the difficulties that an appli-
cation will need to face that tries to build an integrated product catalog based
on Microdata product records. Petrovski et al. approach this problem by first
extracting product features from the product names and descriptions and then
using these features for identity resolution, reaching an F1-measure of 82% [12].

Job Postings: As a result of a collaboration with the United States Office
of Science and Technology Policy, schema.org started to provide vocabulary
terms for describing job postings in the end of 2011 [4]. Our dataset contains
21 million records of class schema:JobPosting originating from over two thousand
websites. schema:JobPosting records contain, on average, 5.93 properties and the
class schema:JobPosting thus belongs to the classes with the highest average
number of properties used. Table 6(d) shows the most frequent properties of
schema:JobPosting records. 1% of the records contain more than one “name”
property value. Table 7(d) shows the top ten PLDs by record count providing
data for job postings.17

17 A complete list of websites that embed Microdata can be found at
http://www.webdatacommons.org/structureddata/2013-11/stats/

stats.html#html-microdata
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Table 6. Most frequently used properties for selected classes. For space reasons, the
schema-namespace prefix is shortened to s and class names are shortened according
the respective heading.

(a) PostalAdress (PA) Records

Records
Property # (in k) %

s:PA/addressLocality 122 008 98.07
s:PA/addressRegion 114 072 91.69
s:PA/streetAddress 81 719 65.69
s:PA/postalCode 25 447 20.45
s:PA/addressCountry 11 010 8.85
s:PA/telephone 2 790 2.21
s:PA/url 1 422 1.13
s:PA/AddressLocality 1 262 1.00
s:PA/AddressRegion 1 248 0.99
s:PA/name 615 0.49

(b) LocalBusiness (LB) Records

Records
Property # (in k) %

s:LB/name 80 832 106.13
s:LB/address 70 427 92.47
s:LB/url 64 139 84.21
s:LB/geo 63 450 83.31
s:LB/telephone 9 165 12.03
s:LB/description 8 310 10.89
s:LB/image 8 115 10.63
s:LB/aggregateRating 4 320 5.66
s:LB/review 3 807 4.99
s:LB/openingHours 1 957 2.56

(c) Product (P) Records

Records
Property # (in k) %

s:P/name 115 326 57.07
s:P/offers 112 826 55.83
s:P/image 96 193 47.60
s:P/url 59 848 29.62
s:P/description 34 334 16.99
s:P/productID 30 820 15.11
s:P/aggregateRating 24 832 12.17
s:P/image 24 082 11.81
s:P/brand 23 077 11.31
s:P/sku 14 637 7.18

(d) JobPosting (JP) Records

Records
Property # (in k) %

s:JP/title 21 548 101.77
s:JP/hiringOrganization 20 539 97.01
s:JP/jobLocation 19 101 90.22
s:JP/description 14 877 70.27
s:JP/url 8 633 40.77
s:JP/name 8 283 39.12
s:JP/datePosted 5 578 26.35
s:JP/image 2 782 13.14
s:JP/skills 1 298 6.13
s:JP/address 606 2.86

7.1 New Microdata Adopters

In the following, we will analyze the websites that newly adopted Microdata in
2013.We use the list of websites extracted by Meusel et al. [9] from the 2012 crawl
and calculate the overlap with the crawled websites in 2013. We then identify
every website which is included in the 2012 and 2013 crawl and has adopted
RDFa, Microdata, or Microformats in 2013 but did not adopt it in 2012. This
results in a list of 490 778 websites out of which 169 134 make use of Microdata.

Table 8 gives an overview of the classes that are used by at least 1% of new
adopters. Again, classes of the Schema.org vocabulary dominate, however despite
its deprecation in 2011 the data-vocabulary vocabulary is still being used by the
new adopters in 2013. Similar to the overall distribution of Microdata classes,
websites newly adopting Microdata cover a broad range of different topics with
a slight focus on product related data.

As an example, we calculated a co-occurrence matrix for classes and proper-
ties on websites newly adopting schema:Product and compare the co-occurring
properties with the analysis of all schema:Product websites from the 2013 and
2012 datasets. Table 9 shows the top 20 most co-occurring properties on web-
sites newly adopting Microdata. The table also shows in column six and eight
the difference between the new adopters and the complete datasets from 2013
and 2012. Product records appearing on websites newly adopting Microdata are
more likely described by the top six properties than in the overall dataset of
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Table 7. Top ten PLDs ordered by number of Microdata records

(a) PostalAdress Records

Records
Website # (in k) %

citysearch.com 61 623 49.53
peoplefinders.com 19 089 15.34
stubhub.com 4 921 3.96
seatgeek.com 4 205 3.38
viagogo.com 2 760 2.22
apartmentguide.com 2 299 1.85
monster.com 2 257 1.81
avvo.com 1 534 1.23
zillow.com 1 453 1.17
radaris.com 1 248 1.00

(b) LocalBusiness Records

Records
Website # (in k) %

citysearch.com 64 297 84.42
yell.com 3 429 4.50
bbb.org 857 1.13
partypop.com 682 0.90
justia.com 343 0.45
vcahospitals.com 281 0.37
leisurepro.com 218 0.29
travelpod.com 215 0.28
vacationroost.com 196 0.26
nakedapartments.com 183 0.24

(c) Product Records

Records
Website # (in k) %

ebay.com 18 362 9.09
fotolia.com 16 319 8.08
aliexpress.com 9 747 4.82
ebay.co.uk 8 600 4.26
competitivecyclist.com 5 549 2.75
swatch.com 5 199 2.57
ebay.ca 5 141 2.54
crateandbarrel.com 4 303 2.13
hp.com 4 018 1.99
bentgate.com 3 776 1.87

(d) JobPosting Records

Records
Website # (in k) %

snagajob.com 5 899 27.86
indeed.com 4 176 19.72
startuphire.com 2 704 12.77
monster.com 2 418 11.42
simplyhired.com 1 847 8.73
glassdoor.com 1 492 7.05
itjobswatch.co.uk 522 2.47
spherion.com 109 0.52
glassdoor.ca 91 0.43
glassdoor.com.au 91 0.43

2013 and 2012. Further, this subset includes less rating information, but the
records are more likely to contain information about the manufacturer and the
itemConditions.

8 Microformats Data

Microformats are used on approximately 1.1 million websites within the 2013
crawl. This makes Microformats the most widely adapted markup format being
used by over 62.7% of all sites using any markup languages.

Frequent Classes: Table 10 gives an overview of the most frequently used Mi-
croformats classes. The third column shows the absolute number of records of
a certain class in the 2013 dataset. Column four shows the absolute number of
PLDs from which the records originate. The last two columns show the percent-
age of PLDs making use of a certain Microformats classes in the 2013 and 2012
datasets. The most popular Microformat class is hcard:VCard. The dataset in-
cludes over 787 million records of this class originating from almost one million
different sites. The second most frequent used class is hCard:Organization. The
2013 dataset contains over 126 million records of this class. Both classes belong
to the hCard vocabulary. The second most frequently used Microformats vocab-
ulary is geo with 75 million records of type geo:Location spread over 23 thousand
sites. Besides the over 37 million hCalendar:Vevents records and 19 million hRe-
view:Review records, the dataset also offers over one million recipes originating
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Table 8. Microdata classes used by at least 1% of websites which newly annotate data
using Microdata in 2013, ordered by the number of websites using them

PLDs PLDs
Class # % Class # %

1 s:Product 28 198 16.67 15 dv:Offer 4 512 2.67
2 s:WebPage 27 672 16.36 16 s:Review 4 498 2.66
3 s:Article 23 908 14.14 17 http:/schema.orgStore 4 213 2.49
4 s:PostalAddress 22 731 13.44 18 dv:Organization 4 086 2.42
5 s:Offer 19 185 11.34 19 s:Event 3 969 2.35
6 dv:Breadcrumb 16 972 10.03 20 dv:Address 3 596 2.13
7 s:LocalBusiness 14 515 8.58 21 s:Place 3 417 2.02
8 s:AggregateRating 14 140 8.36 22 dv:Rating 2 770 1.64
9 s:Organization 11 123 6.58 23 s:ImageObject 2 690 1.59
10 s:Blog 9 780 5.78 24 s:Rating 2 503 1.48
11 s:Person 7 350 4.35 25 s:GeoCoordinates 2 387 1.41
12 s:BlogPosting 7 083 4.19 26 s:VideoObject 1 865 1.10
13 dv:Product 6 548 3.87 27 dv:Review 1 685 1.00
14 dv:Review-aggregate 4 782 2.83

from 3 530 different sites. The top PLDs from which the data originates are
epicurious.com, grouprecipes.com and chefkoch.de. Comparing the percentage of
PLDs using Microformats annotations between the 2012 and 2013 datasets, the
deployment of Microformats does not grow significantly but appears stable.

9 Related Work

In this section we review other public Microdata, RDFa, and Microformats
datasets and refer to related work analyzing the deployment of these standards.

The only other public large-scale source of Microdata, RDFa, and Micro-
formats data – that we are aware of – is the Sindice search engine.18 Sindice
collects data from the Web and allows the data to be searched using keyword
as well as SPARQL queries. The Sindice index includes not only data gath-
ered from HTML pages but also data extracted from WebAPIs as well as data
from the Linked Data Cloud. The data is mixed by Sindice within their index
which makes it difficult to get a pure HTML-extracted dataset. Also note that
Sindice only crawls HTML pages from websites that offer a site map. Accord-
ing to the latest Sindice statistics from September 2013, their corpus contains
3.36 million different classes for which they could find at least six records within
their data sources.19 The index includes around 700 million records of class
hCard:VCard, 68 million records of class hCard:Organization, 28 million records
of class og:article and over 10 million records of class schema:Product. Unfor-
tunately, according to recent Sindice blog posts, there are no plans to keep the
SPARQL endpoint alive as well as to update their large datasets.20 As Sindice
is restricted to websites offering sitemaps, it does not cover as many websites
as our datasets. On the other hand, Sindice covers websites in a more complete

18 http://sindice.com
19 http://sindice.com/stats/direct/basic-class-stats
20 https://groups.google.com/forum/#!topic/sindice-dev/ASzK-hKzNFA
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Table 9. Top properties that are used to describe schema:Product records on websites
newly annotating data using Microdata in 2013, all websites from 2013 and all websites
from 2012 as well as the difference between the new websites and the all websites of
2012 and 2013. Outstanding differences are marked in bold.

New PLDs PLDs’13 Change PLDs’12 Change
Property # % % in % % in %

1 s:Product/name 25 679 91.07 89.62 1.62 86.34 5.48
2 s:Product/description 19 977 70.85 67.45 5.03 61.99 14.29
3 s:Product/image 19 037 67.51 61.93 9.02 48.72 38.58
4 s:Product/offers 18 179 64.47 58.68 9.86 45.42 41.94
5 s:Offer/price 16 829 59.68 54.55 9.41 41.50 43.81
6 s:Offer/availability 11 977 42.47 37.40 13.58 10.29 312.63
7 s:AggregateRating 7 809 27.69 30.25 −8.45 25.93 6.79
8 s:Product/aggregateRating 7 664 27.18 29.26 −7.12 11.87 128.96
9 s:AggregateRating/ratingValue 7 469 26.49 28.95 −8.50 24.02 10.28
10 s:Offer/priceCurrency 6 934 24.59 24.28 1.29 9.63 155.31
11 s:Product/url 5 897 20.91 21.17 −1.20 12.90 62.11
12 s:Product/manufacturer 5 671 20.11 14.85 35.44 1.98 915.47
13 s:AggregateRating/reviewCount 5 662 20.08 20.94 −4.11 8.06 149.11
14 s:Product/productID 3 983 14.13 13.11 7.76 10.52 34.24
15 s:AggregateRating/bestRating 3 089 10.95 13.87 −21.01 16.10 −31.97
16 s:Product/brand 2 959 10.49 10.43 0.65 11.94 −12.09
17 s:Offer/itemCondition 2 659 9.43 6.86 37.43 2.16 337.56
18 s:AggregateRating/ratingCount 2 651 9.40 12.37 −24.01 16.21 −41.99
19 dv:Breadcrumb/url 2 131 7.56 7.73 −2.26 10.64 −28.99
20 dv:Breadcrumb/title 2 124 7.53 7.67 −1.82 10.63 −29.15

fashion compared to our datasets which can only contain data from HTML pages
included in the Common Crawl.

The big search engine companies Google, Yahoo!, Microsoft and Yandex ex-
tract Microdata, RDFa, and Microformats data from their Web crawls but, for
economic reasons, do not provide public access to the resulting datasets. Al-
though they have published a number of studies about the deployment of the
markup languages: Mika and Potter analyze the adoption of the languages based
on Web crawls from the Bing search engine dating from 2011 and 2012 [10,11].
Guha presented an updated analysis of the deployment of Microdata with a
special focus on the Schema.org vocabulary at the LDOW 2014 workshop [5].

10 Conclusion

This paper has presented a series of publicly accessible Microdata, RDFa, Mi-
croformats datasets that we have extracted from three large Web corpora dating
from 2010, 2012 and 2013. The extracted datasets show that all three markup
standards are used by hundreds of thousands of websites. Comparing the 2012
and 2013 datasets reveals that the number of websites using Microdata has grown
by more than factor four in just one year. Altogether, the extracted datasets
consist of almost 30 billion RDF quads and contain large quantities of prod-
uct, review, address, blog post, people, organization, event, and cooking recipe
data. As far as we know, the WebDataCommons datasets are the largest publicly
accessible datasets of this kind.

We believe that the data will be useful for various applications such as building
product catalogs, address databases or event and cooking websites. The data also
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Table 10. Most frequently used Microformats classes within the 2013 dataset sorted
by the number of websites using the class, including the total number of records in
2013 as well as the number of websites using the class in 2012

2013 2012
Records PLDs Records PLDs

Class # (in k) # % # (in k) # %

1 hCard:VCard 787 859 994 829 89.14 525 300 858 1 511 467 84.03
2 hCard:Organization 126 356 119 049 10.67 62 880 238 195 493 10.87
3 geo:Location 75 945 23 044 2.06 13 206 248 48 415 2.69
4 hCalendar:vcalendar 4 173 20 981 1.88 3 883 524 37 620 2.09
5 hCalendar:Vevent 37 989 17 633 1.58 28 737 655 36 349 2.02
6 hReview:Review 19 734 12 880 1.15 27 781 420 20 781 1.16
7 hRecipe:Recipe 1 009 3 530 0.32 1 260 116 3 281 0.22
8 hListing:Lister 9 016 2 584 0.23 9 992 047 4 030 0.22
9 hListing:Listing 9 016 2 584 0.23 9 992 047 4 030 0.18

10 hRecipe:Ingredient 6 825 2 524 0.23 8 405 151 2 658 0.16
11 hListing:Item 1 656 1 793 0.16 5 236 418 2 957 0.15
12 hRecipe:Duration 344 1 044 0.09 341 601 1 323 0.07
13 hRecipe:Nutrition 399 446 0.04 1 688 412 818 0.05
14 species:species 37 109 0.01 82 610 91 0.01
15 species:Genus 21 74 0.01 40 589 61 0.00
16 species:Family 20 72 0.01 40 651 60 0.00
17 species:Kingdom 19 72 0.01 40 833 59 0.00
18 species:Order 20 70 0.01 40 462 59 0.00

constitutes a valuable source of evaluation data for testing methods from various
research areas. For evaluation purposes, the amount of data contained in the
datasets should be large and representative enough. For commercial purposes,
it has to be kept in mind that the Common Crawl only contains a subset of
the pages from each website. Thus, the extracted datasets can also only contain
a subset of the Microdata, RDFa, Microformats annotations offered by each
website and should thus rather be used to identity seeds for more complete
directed crawls. Before Microdata, RDFa, Microformats data can be used in
application settings, several challenges need to be addressed:

Information Extraction: Most entities are only marked up with a relatively
small number of properties and these properties tend to be rather generic,
such as name or description properties, leading to rather flat records. It is
thus often necessary to apply further information extraction methods to the
property values in order to reach more fine grained data structures that
allow the application of more sophisticated data integration and cleansing
methods [12].

Identity Resolution: The data hardly contains entity identifiers, such as ISBN
EAN numbers, which would make it easy to identity records from different
websites that described the same entity. Instead, applications that want to
deduplicate data from multiple websites need to match the entity descrip-
tions published by the sites. An example of how such an identity resolution
heuristic is applied to Microdata product records is given in [12].

Data Quality Assessment: As the Web is an open and unrestricted informa-
tion environment, web data might be outdated or simply wrong. Thus, before
data is used in an application context its quality should be assessed based
on its content as well as its provenance. An interesting identity resolution
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and data quality assessment challenge is for instance given by the Micro-
data address data: Which of the provided addresses is the current address
of a company? How to determine this address given that many yellow pages
websites copy from each other and simple voting thus does not work?

We believe that the adoption of the Microdata, RDFa, Microformats stan-
dards by hundreds of thousands of websites provides a huge potential for using
Web data within various applications. On the other hand, it also raises tough
challenges concerning the integration and cleansing of the data. By providing
the WebDataCommons dataset series, we hope to contribute to addressing these
challenges and to lift the potential of the data.
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Abstract. Linking Open Data (LOD) is the largest community effort
for semantic data publishing which converts the Web from a Web of
document to a Web of interlinked knowledge. While the state of the art
LOD contains billion of triples describing millions of entities, it has only
a limited number of schema information and is lack of schema-level ax-
ioms. To close the gap between the lightweight LOD and the expressive
ontologies, we contribute to the complementary part of the LOD, that is,
Linking Open Schema (LOS). In this paper, we introduce Zhishi.schema,
the first effort to publish Chinese linked open schema. We collect naviga-
tional categories as well as dynamic tags from more than 50 various most
popular social Web sites in China. We then propose a two-stage method
to capture equivalence, subsumption and relate relationships between
the collected categories and tags, which results in an integrated concept
taxonomy and a large semantic network. Experimental results show the
high quality of Zhishi.schema. Compared with category systems of DB-
pedia, Yago, BabelNet, and Freebase, Zhishi.schema has wide coverage
of categories and contains the largest number of subsumptions between
categories. When substituting Zhishi.schema for the original category
system of Zhishi.me, we not only filter out incorrect category subsump-
tions but also add more finer-grained categories.

Keywords: Linking Open Data, Linking Open Schema, Integrated
Category Taxonomy, Large Semantic Network.

1 Introduction

With the development of Semantic Web, a growing amount of structured (RDF)
data has been published on the Web. Linked Data [3] initiates the effort to
connect distributed data across the Web. Linking Open Data (LOD)1 is the
largest community for semantic data publishing and interlinking. It converts the
Web from a Web of document to a Web of knowledge. There have been over 200
datasets within the LOD project. Among these datasets, DBpedia [4], Yago [9],
and Freebase [5] serve as hubs to connect others. More recently, Zhishi.me [11]
has been developed as the first effort of Chinese LOD. It extracted RDF triples
from three largest Chinese encyclopedia Web sites, namely Baidu Baike, Hudong

1 http://linkeddata.org/
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Baike, and Chinese Wikipedia. It also creates owl:sameAs links between two
resources from different sources if these resources refer to the same entity.

While LOD contains billions of triples describing millions of entities, the num-
ber of schemas in LOD is limited. Yago defines explicit schema to describe con-
cept subsumptions as well as domains and ranges of properties. Freebase has
a very shallow taxonomy with domains and types. If we consider the schemas
having labels in Chinese, the number is even smaller. Moreover, the qualities of
schemas within these datasets are not always satisfactory. The DBpedia com-
munity creates the DBpedia Ontology project2 which lets users define mapping
rules to generate high-quality schema from ill-defined raw RDF data.

On the other hand, there exist some works to publish schema-level knowledge.
Schema.org3 provides a shared collection of schemas that webmasters can use to
markup HTML pages in ways recognized by major search providers. However, it
is manually created and does not have a Chinese version. BabelNet [10] is a mul-
tilingual encyclopedic dictionary, with lexicographic and encyclopedic coverage
of terms in 50 languages. It is also a semantic network which connects concepts
and named entities, made up of more than 9 million entries. Probase [12] is a
universal probabilistic taxonomy which contains 2.7 million concepts harnessed
automatically from a corpus of 1.68 billion Web pages. While it is the largest
taxonomy, the usage of Probase is restricted in Microsoft. Meanwhile, the devel-
opment of social media provides us a chance to create schema-level knowledge
from folksonomies. A recent survey paper [8] compares different approaches of
discovering semantics of tags. The main focus of these approaches is to capture
the hierarchical semantic structure of folksonomies.

In this paper, we contribute to Linking Open Schema (LOS). LOS aims at
adding more expressive ontological axioms between concepts. Links in LOS are
created between concepts from different sources and are not limited to equiv-
alence relations. More precisely, we introduce Zhishi.schema, the first effort to
publish Chinese linked open schema. We collect navigational categories as well
as dynamic tags from more than 50 most popular social Web sites in China.
We then propose a two-stage method to capture equivalence, subsumption and
relate relationships between the collected categories and tags. Compared with
approaches to build a taxonomy from the tag space, Zhishi.schema additionally
extracts equal and relate relations to form a large semantic network. Different
from Probase, we publish Zhishi.schema as open data for public access. BabelNet
is the closest work to ours. But it collects data from a small number of sources
including WordNet, Open Multilingual WordNet, Wikipedia, OmegaWiki, Wik-
tionary, and Wikidata while Zhishi.schema extracts semantic relations between
categories from a large number of popular Chinese social Web sites.

The rest of the paper is organized as follows. Section 2 gives an overview
of our approach. Section 3 describes the technical details. Section 4 shows the
experimental results of Zhishi.schema in terms of data size, quality, and coverage.

2 http://wiki.dbpedia.org/Ontology
3 https://schema.org/
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Section 5 introduces Web access to Zhishi.schema and finally we conclude the
paper in Section 6.

2 Overview

In this section, we start with a brief introduction of the problem, then list several
challenges, and finally provide the overall process.

2.1 Problem Definition

Input: Given a set of Chinese social media Web sitesWS={ws1, ws2, . . . , wsn},
for each Web site ws, it might contain a set of categories Cws = {c1, c2, . . . , cn}
as well as a set of tags Tws = {t1, t2, . . . , tm}. These categories are organized in
a hierarchical way. In a category hierarchy, a category might be associated with
zero or several parent categories as well as child categories. We call ci a static
category as it is relatively stable and predefined by the Web site. The tags are
organized in a flat manner. We call tj a dynamic category because it is created
on the fly by Web users. In fact, a tag can be treated as a single node category
with no parents or children.

Output: We aim at building a Chinese linked open schema called Zhishi.schema
composed of categories from the input Web sites. Zhishi.schema contains three
types of semantic relations, namely relate, subclassOf, and equal. More pre-
cisely, two categories (no matter static or dynamic) are related if their meanings
are close. One category is a subclass of another if and only if the former is a
child of the latter. Two categories are equal if and only if they refer to the same
meaning. The relate relation is the weakest semantic relation among the three
types. All these semantic relations are asymmetric just like owl:sameAs in LOD.
That is to say, c1 sr c2 is not identical to c2 sr c1 where c1, c2 are two cate-
gories, and sr ∈ {relate, subclassOf, equal}. The subclassOf relations form
an integrated concept taxonomy while the other two kinds of semantic relations
build a large semantic network.

2.2 Challenges

As categories come from various sources, extracting semantic relations between
categories is not a trivial task. In particular, we have the following challenges.

– Incorrect hierarchy of static categories. A category and its parents from the
hierarchy of a Web site might dissatisfy the subclassOf relation. For in-
stance, “Athlete” is defined as a parent category of “Athlete Type”. Clearly,
it indicates an incorrect subsumption relation. Therefore, the quality cannot
be ensured if we directly treat the existing hierarchy of static categories as
a part of the local site schema without any refinement.
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Fig. 1. The Workflow of Our Approach

– Ambiguity of categories in different contexts. If the label of a category refers
to more than one meaning, the category becomes ambiguous. In another
word, we cannot distinguish two categories sharing the common label if con-
texts are not taken into account. For example, “Apple” can be a kind of
fruit or the Apple company. We cannot determine its exact meaning until it
has a parent category labeled by “IT company”. So it is quite important to
consider context information when revealing the meaning of a category.

– Lack of representation for categories Unlike documents, categories do not
have plenty of textual information to describe them. When detecting seman-
tic relations between categories, current text mining techniques cannot be
directly applied until we find a way to enrich the representation of categories.

2.3 Workflow

We now provide a workflow to explain the whole process and its components.
As shown in Figure 1, we have two main components, namely Similar Relation
Detector (SimRD) and Semantic Relation Detector (SemRD).

The input of Similar Relation Detector is category pairs generated from dif-
ferent Web sites. SimRD tries to filter out dissimilar pairs and feeds similar
category pairs as the input of Semantic Relation Detector. Then SemRD iden-
tifies the semantic relation type (i.e. relate, subclassOf, or equal) of each
similar category pair. These semantic relations are converted into RDF triples
for building Zhishi.schema. Our approach is a two-stage method. In the first
stage, we design “cheap” features to represent each category and use lightweight
learning algorithms to find out similar pairs. This leads to a significant reduc-
tion of the number of category pairs and a much cleaner input for the second
stage. We then represent categories with more sophisticated features and treat
semantic relation detection as a multi-class classification problem to solve. The
details of SimRD and SemRD will be introduced in the next section.

3 Approach

3.1 Similar Relation Detection

Category Representation. The simplest way to represent a category c is using
its category label l(c). However, it is insufficient if the labels of two categories do
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not have any overlapped words or share very few words. For example, “NYC”
and “New York City” are synonyms, but their labels are totally different.

Inspired by Explicit Semantic Analysis (ESA) [7], we map a category into
several concepts in a knowledge base, and then use these concepts to represent
the category. The benefits are three-folds. First, the category representation is
enriched from its label into a set of concepts. Second, the dimension of concepts
is usually much lower than that of text features so that we avoid curse of dimen-
sionality and enable efficient processing. Third, the concepts are higher-quality
than texts with less ambiguities.

Here, Baidu Zhidao4, the largest Chinese community QA site, is chosen to
serve as the knowledge base. When submitting l(c) as a keyword to Baidu Zhidao,
we collect first 10 pages containing relevant questions. From these questions, their
associated categories are obtained. These categories form the related concept
set of c, denoted as RCS(c) = {rc1, rc2, . . . , rcn} where rci is the i-th related
concept. We can further use them to define the related concept vector RCV(c)
in form of < rc1(c), rc2(c), . . . , rcn(c) > where rci(c) stands for the occurrence
of the related concept rci. The occurrence is the number of questions belonging
to rci. It reflects the importance or popularity of rci. These two representations
can help discover similar category pairs if two categories share a large portion
of related concepts but vary a lot on their labels.

The key to the success of ESA lies on the coverage of the knowledge base and
the quality of concept mapping. We tried every category from a collection of Web
sites (see Section 4.1 for details), only 1.2% categories do not have any related
concepts. Then we use Baidu Zhidao’s own categories to test the mapping quality.
For 14 root categories, 10 are the most occurred related concepts of themselves,
and 4 are ranked second. For all categories (2118 in all), more than half are
ranked in top three. Only 17% (366 categories) do not contain themselves in
their related concept vectors. The above two tests show Baidu Baike has a wide
coverage to return related concepts for most categories, and therefore suitable
to be a knowledge base for concept mapping.

The label representation l(c) and two variants of the related concept repre-
sentation (i.e. RCS(c) and RCV(c)) are called local representations of c. Besides,
static categories are organized in a hierarchical way. Thus, a category c might
have ancestors and descendants which can be treated as neighbors of the cate-
gory. If we aggregate related concepts of these neighbors to RCS(c) and RCV(c),
we get enriched representations of c, denoted as RCS+(c) and RCV+(c) respec-
tively. RCS+(c) only adds related concepts of c’s neighbors which are not related
concepts of c. RCV+(c) not only counts the occurrence of the newly added re-
lated concepts, but also increases the occurrences of existing ones if they are
related concepts of some neighbor of c. Compared with the local representa-
tions, the enriched ones further capture context information to represent the
category, and thus can help disambiguate its meaning.

4 http://zhidao.baidu.com/
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Category Similarity Measures. We apply some widely-used similarity mea-
sures to the above category representations.

– Similarity based on category label. This measure is actually string matching
based on longest common substring (LCS)5. The similarity between cate-
gories c1 and c2 is defined as:

CLsim(c1, c2) =
LCS(l(c1), l(c2))

|l(c1)|
(1)

Where |l(c)| is the string length of c’s label, and LCS(l(c1), l(c2)) is the
longest common substring between l(c1) and l(c2).

– Similarity based on related concept set. This measure is actually the Jaccard
similarity6 between two sets. The similarity is defined as follows.

RCSsim(c1, c2) =
|RCS(c1) ∩ RCS(c2)|

|RCS(c1)|
(2)

– Similarity based on related concept vector. This measure is based on cosine
similarity7 between two vectors, which is defined as:

RCVsim(c1, c2) =

∑
rc∈RCS(c1)∩RCS(c2)

rc(c1) · rc(c2)∑
rc∈RCS(c1)

rc(c1)2
(3)

While the label-based string measure captures the linguistic similarity between
two categories, the related concept based measures capture structural similarities
between these categories. Thus, we consider all these three similarity measures
to estimate the relatedness of a category pair. We treat these similarity measures
as features and apply a machine learning algorithm to predicting whether the
two categories are similar or not.

Psim(c1, c2) =m(CLsim(c1, c2),RCSsim(c1, c2),RCVsim(c1, c2)) (4)

Wherem stands for some learning model and Psim(c1, c2) is the prediction prob-
ability. If Psim(c1, c2) is greater than a threshold, the two categories are consid-
ered to be similar. Analogously, we define RCSsim+(c1, c2) and RCVsim+(c1, c2)
when the enriched representations are used. P+

sim(c1, c2) is further defined when
RCSsim+(c1, c2), RCVsim

+(c1, c2), and CLsim(c1, c2) are used as features.
In fact, similar relation detection is a binary classification problem. We choose

three most popular classification models for m. They are J48 Decision Tree,
Logistic Regression, and Multi-Layer Perceptron. For all the three models, we
use the implementations in Weka8 with default parameter values to perform
experiments. For P+

sim(c1, c2), we need to decide which neighbors should be used

5 http://en.wikipedia.org/wiki/Longest_common_substring_problem
6 http://en.wikipedia.org/wiki/Jaccard_similarity
7 http://en.wikipedia.org/wiki/Cosine_similarity
8 http://sourceforge.net/projects/weka/
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for the enriched representations of c1 and c2. Here, we only consider the parents
and children of a category in some hierarchy as its neighbors. This is because
high-level ancestors and low-level descendants cannot represent the context of a
category in a discriminative way. Also, the average depth of a category hierarchy
is usually of a small value (See Table 1 in Section 4 for details). Moreover, some
improper categories are placed as the parents or children of a category in some
hierarchy for the purpose of Web site navigation only. To reduce the noise, we
filter out neighbors if the probabilities of being similar with the category are
low. More details and more experimental results will be discussed in Section 4.2.

3.2 Semantic Relation Detection

Textual Context Based Category Representation. Semantic relations are
finer-grained similar relations. The above mentioned category representations
are insufficient especially for tags to detect semantic relations. Thus, we lever-
age contextual words co-occurred with a category c frequently to represent the
category. We call it the textual context representation of c, denoted as TC(c).

A category c might be associated with several pages in a Web site. We could
use the contents of these pages for TC(c). However, the numbers of pages asso-
ciated with different categories vary a lot. Moreover, pages from different sites
differ in terms of content length and wording styles. For example, a tweet is much
shorter than a news page and contains more informal language expressions.

Instead, we use text snippets returned by a search engine to represent a cat-
egory. More precisely, we submit l(c) as a keyword to the largest Chinese search
engine Baidu9 and return a list of relevant Web pages in form of snippets. Each
snippet contains the page title, a small fraction of the page content with sur-
rounding words of l(c), and the link to the page. The snippets of top 20 search
results are selected for further processing. After word segmentation and stopword
removal, a set of terms are obtained to represent c as a “virtual” document.
In our implementation, we use Ansj10 as the Chinese word segmenter with a
widely used stopword list in Chinese. We further adopt TF-IDF (short for Term
Frequency-Inverse Term Frequency) [1] for term weighting. As a result, TC(c) is
a n-dimension vector < w1(c), w2(c), . . . , wn(c) > where the weight of the i-th
term TC(c)i is wi(c) and n is the number of all terms of all categories. If a term
w does not co-occur with l(c), the corresponding value in TC(c) is zero.

Category Similarity Measures. We additionally define TCsim(c1, c2) to mea-
sure the similarity based on textual context :

TCsim(c1, c2) =

n∑
i=1

TC(c1)i · TC(c2)i
n∑

i=1

TC(c1)2i

(5)

9 http://www.baidu.com
10 https://github.com/ansjsun/ansj_seg
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We add this similarity measure as a new feature to a learning model for predicting
the probability a certain kind of semantic relation holds. Since the prediction
accuracy of P+

sim(c1, c2) is higher that that of Psim(c1, c2) for detecting similar
relations no matter which learning model is used, we combine TCsim(c1, c2) with
CLsim(c1, c2), RCSsim

+(c1, c2), and RCVsim+(c1, c2) as follows.

Psem(c1, c2) = m(CLsim(c1, c2),RCSsim
+(c1, c2),

RCVsim+(c1, c2),TCsim(c1, c2))
(6)

Semantic relation detection is treated as a three-class classification problem
where class labels are “relate”, “subclassOf”, and “equal”. We use Support Vec-
tor Machine (SVM) form with the Radial Basis Function (known as RBF) kernel
implemented in Weka. In addition to the learning-based approach, we also pro-
pose a heuristic-based method as a baseline to detect semantic relations. For a
similar category pair (c1, c2), if l(c1) is the same as l(c2), we create an equal

relation. If l(c1) is the suffix of l(c2), a subclassOf relation is generated to in-
dicate c2 is a child category of c1. After applying these two heuristic rules, the
remaining similar category pairs are considered to have relate relations.

4 Experiments

4.1 Data Statistics

We select 51 popular social media Web sites in China. The data was crawled in
December, 2013. The detailed statistics of each site are shown in Table 1. From
the table, we list the site name, its URL, the site type, the category number, the
tag number, and the average depth of the category taxonomy. If some site does
not contain any category or tag, we use � to indicate the value of that column is
missing. Since the semantics of tags are less stable than those of static categories.
We do not take all tags from these sites to build Zhishi.schema. Instead, we only
selected popular tags during last December. In total, we collected 408,069 labels
in which 328,288 are categories and 79,781 are tags.

4.2 Accuracy Evaluation

We first carry out experiments on small labeled datasets to determine the optimal
combination of category representations and the learning algorithms. The trained
model having the best performance is then used to detect semantic relations on
the whole dataset. Finally, an evaluation theme is introduced along with quality
assessment results on Zhishi.schema.

Training on Small Labeled Datasets. Classification is supervised learning,
which requires labeled data for training. The classification performance depends
on whether the labeled data is adequate and whether training data and test data
have the similar distributions. In order to ease the burden of manual labeling and
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Table 1. Statistics for 51 Popular Social Media Web Sites in China

Site URL Type #Category #Tag Avg Depth

360 Mobile Phone Assistant http://sj.360.cn/ App Market 49 � 1.69

91 Mobile Phone Assistant http://zs.91.com/ App Market 76 � 1.55

Amazon http://www.amazon.cn/ E-commerce 3,311 � 3.65

Android Market http://apk.hiapk.com/ App Market 279 � 2.56

Apple App Store http://www.apple.com/cn/ App Markets 90 � 1.69

Baidu Baike http://baike.baidu.com/ Wiki 10,445 � 2.67

Baidu Tieba http://tieba.baidu.com/ BBS 214 � 1.57

Baidu Wenku http://wenku.baidu.com/ Document Sharing 299 � 1.87

Baidu Zhidao http://zhidao.baidu.com/ Q&A 2,118 � 3.24

BaiXing http://www.baixing.com/ Classified 55,179 � 4.08

DangDang http://www.dangdang.com/ E-commerce 6,847 � 2.59

DianDian http://www.diandian.com/ Light Blog � 14,294 �

DingDing Map http://www.ddmap.com/ Customer Review 34,142 � 2.64

Docin http://www.docin.com/ Document Sharing 734 � 1.60

Douban http://www.douban.com/ Social Network 13,172 � 4.04

FanTong http://www.fantong.com/ Customer Review 3,842 � 2.61

XianGuo http://xianguo.com/ RSS 38 � 1.62

GanJi http://www.ganji.com/ Classified 25,274 � 3.81

Guang http://guang.com/ Social E-commerce 299 � 2.61

Hudong Baike http://www.baike.com/ Wiki 23,995 � 5.49

JiangNanQingYuan http://www.88999.com/ Dating 153 � 2.02

ShiJiJiaYuan http://www.jiayuan.com/ Dating 82 � 1.83

360buy http://www.jd.com/ E-commerce 31,140 � 3.59

KaiXing http://www.kaixin001.com/ Social Network 125 � 2.45

Lvping http://www.lvping.com/ Online Travel 4,0475 � 3.57

MeiLiShuo http://www.meilishuo.com/ Social E-commerce 316 � 2.57

Mop http://www.mop.com/ BBS 25 � 1.57

PPS http://www.pps.tv/ Video Sharing 814 � 1.67

QieKe http://www.qieke.com/ LBS 6,224 � 3.51

QiongYou http://www.qyer.com/ Online Travel 107 7,400 1.68

RenHe http://www.renhe.cn/ Business Social Network 250 � 2.55

RenRen http://www.renren.com/ Social Network 119 � 1.98

RenRen Game http://wan.renren.com/ Social Gaming 43 � 1.70

RenRen XiaoZhan http://zhan.renren.com/ Light Blog � 7,038 �

RuoLin http://www.wealink.com/ Business Social Network 62 � 1.56

Sina iAsk http://iask.sina.com.cn/ Q&A 5,247 � 3.24

Sina Blog http://blog.sina.com.cn/ Blog 27 16,190 1.56

Sina Game http://games.sina.com.cn/ Social Gaming 54 � 1.67

Sina GongXiang http://ishare.sina.com.cn/ Document Sharing 234 � 1.57

Sina Micro Blog http://weibo.com/ Microblogging 184 � 2.66

TaoBao http://www.taobao.com/ E-commerce 1,845 � 3.34

Tencent Blog http://blog.qq.com/ Blog 24 � 1.65

Tencent Micro Blog http://t.qq.com/ Microblogging 16 � 1.00

TianYa http://www.tianya.cn/ BBS 1,769 � 3.18

Tudou http://www.tudou.com/ Video Sharing 755 � 1.64

TuiTa http://www.tuita.com/ Light Blog � 5,122 �

Netease Blog http://blog.163.com/ Blog 20 � 1.60

Netease Micro Blog http://t.163.com/ Microblogging � 29,737 �

Netease Reader http://yuedu.163.com/ RSS 46 � 1.83

Chinese Wikipedia http://zh.wikipedia.org/ Wiki 56,985 � 3.71

Youku http://www.youku.com/ Video Sharing 744 � 1.62

to avoid distribution bias, we propose an effective method to create labeled data.
To detect similar category pairs, the training data has two labels: “similar” as
positive and “dissimilar” as negative. A category pair (c1, c2) is considered as a
positive candidate if the arithmetic mean of CLsim(c1, c2), RCSsim(c1, c2), and
RCVsim(c1, c2) is above 0.5. Otherwise, the category pair is possibly negative.
We randomly select positive and negative candidates in a uniform way from all
the collected Web sites for further user verification. To build a labeled dataset
for semantic relation detection, we evenly sample similar category pairs from
all these sites and apply the heuristic-based method to generate possible labels.
These labels are manually verified and revised accordingly.

We apply 5-fold cross validation to train models in all experiments. Note
that K-fold cross validation is widely used in statistics to overcome the over-
fitting problem. Precision, recall, and F-measure are used for effectiveness study.
Precision is the fraction of retrieved category pairs that are relevant while recall
is the fraction of relevant category pairs that are retrieved. For similar relation
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Table 2. Effectiveness Comparison between Local and Enriched Representations

Method Precision Recall F-Measure
J48 Decision Tree 0.777 0.80 0.754 0.882 0.765 0.839
Logistic Regression 0.767 0.778 0.736 0.864 0.751 0.819
Multi-Layer Perceptron 0.749 0.783 0.781 0.922 0.765 0.847

detection, similar category pairs are relevant. For semantic relation detection,
a category pair having a certain type of semantic relation is relevant. The F-
measure (also known as F1 score) is the harmonic mean of precision and recall.

– Evaluating similar relation detection. The dataset contains 1,986 category
pairs in which 398 pairs are labeled as “similar” and 1,588 pairs are labeled
as “dissimilar”. We list the precision, recall, and F-Measure of different learn-
ing models using local representations trained on the labeled dataset on the
left side in Table 2. From the table, we can see that the Multi-Layer Percep-
tron model performs best. In the case of enriched representation, we remove
neighbors of a category if the prediction probabilities of being similar with
the category are below 0.1. The prediction probability is given by the best
model using local representations (i.e., Multi-Layer Perceptron). After fil-
tering, 76.14% static categories have one or more parents while only 10.18%
have children. The right side of Table 2 shows the evaluation results of us-
ing enriched representations. All three learning models achieve significant
improvements when enriched category representations are used. Still, Multi-
Layer Perceptron has the best accuracy performance. Thus, this model is
used to find similar category pairs in all Web sites.

– Evaluating semantic relation detection. The training data has 800 similar
category pairs. Among them, 500 are labeled as “relate”, 240 are labeled as
“subclassOf”, and 60 are labeled as “equal”. We compare three approaches
(i.e. heuristic-based, learning-based, and their combination) in our effec-
tiveness study. The combined approach first accepts equal relations and
subclassOf relations found by the heuristic rules. For the remaining sim-
ilar category pairs, it uses the learning-based approach for classification.
Table 3 shows the evaluation results of three approaches for all kinds of se-
mantic relations. From the table, we can see that the heuristic-based method
performs better than the learning-based one when dealing with equal and
subclassOf relations. This is because the heuristic-based one uses “hard”
rules, which achieves very high precisions. The learning-based approach gets
more promising results for relate relation detection since the heuristic-based
one simply treats all remaining category pairs as relate, which brings more
false positive examples. The combined one outperforms both approaches.

Accuracy of Three Semantic Relations in Zhishi.schema. Zhishi.schema
contains 1,560,725 subclassOf relations, 22,672 equal relations and 229,167
relate relations. Since there are no ground truths available, we have to verify
these relations manually. Due to the large number of semantic relations, it is
impossible to evaluate all of them by hand. Therefore, we design an evaluation
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Table 3. Heuristic-based vs. Learning-based Approach

Relation Method Precision Recall F-Measure

relate
Heuristic-based 0.794 0.981 0.787
Learning-based 0.861 0.938 0.898
Combination 0.894 0.947 0.914

subclassOf
Heuristic-based 0.927 0.543 0.685
Learning-based 0.695 0.489 0.574
Combination 0.854 0.606 0.709

equal
Heuristic-based 0.958 0.857 0.905
Learning-based 0.909 0.657 0.763
Combination 0.912 0.939 0.925

theme including a sampling strategy and a labeling process. Sampling aims to
extract a subset of relations (called samples) which can represent the distribu-
tion of the whole result set. Then we can perform manual labeling to evaluate
the correctness of samples. The accuracy assessment on samples are used to
approximate the correctness of Zhishi.schema.

Sampling. For a kind of semantic relation sr, we study the relation distribution
w.r.t. Web sites. A relation is of the form c1 sr c2 where c1 and c2 are categories.
If c1 or c2 comes from a Web site, the Web site is treated as a source of the
relation. A relation can have at most two sources. After iterating all relations
of the same type, we can get the number of sources along with the relations in
each source. For each source, we randomly select k relations. If k is greater than
the total number of relations in the source, we take all of them for evaluation.

Labeling. We use the similar labeling process as that used in Yago. Four stu-
dents participant in the labeling process. We provide them three choices namely
agree, disagree and unknown to label each sample. After they label all the sam-
ples, we can compute the average accuracy. Finally, the Wilson interval [6] at α
= 5% is used to generalize our findings on the subset to the whole Zhishi.schema.

When applying the above evaluation theme, we get encouraging results.

– 50 Web sites contains equal relations. We randomly select 10 relations from
each site and 487 samples are returned. After labeling, the average number
of agree votes is 440, and the precision achieves 90.03%± 2.63%.

– 45 sources have relate relations. We get 450 samples with k = 10. The
average number of agree votes is 404, and the precision is 89.44%± 2.80%.

– Compared with the flat structure of equal or relate relations, subclassOf
relations form a hierarchical acyclic graph (HAG). The root depth is 1 and
the maximal depth is 16. Since a category may have one or more parents, we
can traverse to the category from the roots via different paths. These paths
might have different lengths so that each category could exist at multiple
depths of HAG. On average, the depth of each category is 3.479. In order
for comprehensive evaluation, we need to cover every source at each depth
of HAG. When sampling at a depth ranging from 2 to 16, k is set to 5. As a
result, we get 2,922 subclassOf relations for manual labeling. The average
number of agree votes is 2,456, and the final precision is 84.01%± 1.33%.
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4.3 Data Distribution of Zhishi.schema

Category pairs can be grouped into three patterns, namely category+category,
category+tag, and tag+tag. For subclassOf relation, we divide category+tag
into two sub-patterns. tag+category indicates a tag is a sub concept of a cate-
gory while category+tag means a category is a sub concept of a tag. Figure 2
shows the category pair pattern distribution in all three types of semantic rela-
tions. From the figure, we can see category+category contributes to the largest
proportion (more than 75%) of relations for any kind of semantic relation. In
contract, less than 5 percent come from tag+tag. The huge gap can be explained
by the semantic stability of categories and the ambiguity nature of tags.

As shown in Figure 3, 73.16% categories (25.35% tags) appear in subclassOf

relations, 20.80% (11.32% respectively) contribute to relate relations, and 5.05%
(1.38% respectively) for equal relations. The high proportion of subclassOf re-
lations among categories (tags) enables Zhishi.schema to form a large concept
taxonomy. The ratio of equal relations is pretty low because it is the most strict
semantic relation and thus similar category pairs seldom satisfy such relation.

We also check the number of subclassOf relations already defined in some
category hierarchies. As shown in Figure 4, the proportion of existing subsump-
tions is 16.52%. Another 23.63% subclassOf relations can be inferred from cat-
egory hierarchies via intermediate paths. Notice that 59.85% new subclassOf

relations are discovered, which shows the value of Zhishi.schema.
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Table 4. Overlap between Zhishi.schema and Other Datasets

Zhishi.schema DBpedia Yago BabelNet Freebase
Category Number 408,069 142,139 49,407 619,226 2,035

Overlap with Zhishi.schema � 82,586 24,036 23,193 567
Subclass Number 1,560,725 3 256,538 55,486 1,092

Subclass Overlap with Zhishi.schema � 2 34,354 2,762 79

4.4 Comparison With Other Datasets

Overlap of Categories and Subsumptions. We compare Zhishi.schema with
other well-known datasets namely DBpedia11, Yago12, BabelNet13 and Free-
base14 in terms of categories and subclasses. Table 4 shows the category and
subclass information of each dataset. It also lists the category overlap and sub-
class overlap between Zhishi.schema and the other datasets. As for the category
number, Zhishi.schema is larger than DBpedia, Yago and Freebase. It also con-
tains half of the categories from DBpedia and Yago. In BabelNet, a category cor-
responds to a synset. Since many synsets contain Chinese labels, BabelNet has
the largest number of categories. Regarding subclassOf relations, Zhishi.schema
has the largest number (six times larger than the second largest one – Yago).
You may find that there are only 3 subclassOf relations in DBpedia. Ontolog-
ical subsumptions are only defined in the DBpedia ontology while the ontology
does not contain a Chinese version. So we leverage the multilingual nature of
Wikipedia and finally get three subclassOf relations with both sides having the
Chinese correspondences. When looking at the subclass overlap, we find only
small overlaps between Zhishi.schema and the other datasets. Thus, combining
Zhishi.schema with these datasets could form a larger linked open schema.

Overlap of Equivalence Relations with BabelNet. Zhishi.schema contains
22,672 equal relations where 4,380 of them represent the same meaning with dif-
ferent labels. BabelNet is the largest multilingual semantic network in the world.
For each conept in BabelNet, it is organized in form of a synset in which there
are synonyms representing the same concept in different labels or languages.
Therefore, we would like to check how many extracted equal relations are cov-
ered by BabelNet. Here, we do not count a equal relation when categories in a
pair have the same string. In this way, we get 1,270 equal relations covered by
BabelNet. Due to the small overlaps of both subclassOf and equal relations,
Zhishi.schema and BabelNet can complement with each other.

Refining Zhishi.me Category System. Since Zhishi.schema includes all
three Chinese encyclopedia sites (used for Zhishi.me), the resulting concept
taxonomy comprises categories and category subsumptions in these three sites.
Hence, we can compare Zhishi.schema with Zhishi.me15 to see how many

11 http://dbpedia.org/About
12 http://www.mpi-inf.mpg.de/yago-naga/yago/
13 http://babelnet.org/
14 https://www.freebase.com/
15 http://zhishi.me/
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incorrect subclassOf relations are filtered out and how many new subclassOf

relations are discovered. We have developed two variants of Zhishi.schema: ba-
sic refined Zhishi.me category system (Basic) and enriched Zhishi.me category
system (Enriched). Basic is obtained by collecting categories in Zhishi.me and
subclassOf relations between these categories from Zhishi.schema. It only con-
siders subclassOf relations in form of c1 subclassOf c2 where c1 and c2 belong
to categories in Zhishi.me and c1 is the direct child of c2. Enriched further con-
siders subclassOf relation paths with one or more intermediate categories from
other sites in Zhishi.schema. The original Zhisih.me category system contains
251,160 subclassOf relations. Basic removes 211,386 subclassOf relations and
adds 29,177 ones. Enriched additionally increases 69,776 subclassOf relations.

5 Web Access to Zhishi.schema

Besides the application of Zhishi.schema to refine the existing category system
of Zhishi.me, we also provide online Web access for Zhishi.schema. Moreover, we
allow users to download the data dump to build their own applications.

5.1 Linked Data

According to the Linked Data principles16, Zhishi.schema creates URIs for all
categories and provides sufficient information when someone looks up a URI by
the HTTP protocol. Since Zhishi.schema contains categories from different sites,
we design a URI pattern to indicate where a category comes from and whether it
is static or dynamic. The pattern http://zhishi.schema/[site]/[category
type]/[label] comprises of fours parts. http://zhishi.schema/ is the names-
pace. The second part tells the provenance of the category. If it is a tag, the third
part is dynamic. Otherwise, it is static. The last part is the category label.

When publishing Zhishi.schema, we follow the best practice recipes [2] and try
to reuse existing RDF vocabularies which have clear semantics and are widely
used. Particularly, we use skos:related for relate relations, rdfs:subClassOf
for subclassOf relations, and owl:equivalentClass for equal relations.When
Semantic Web agents that accept “application/rdf+xml” content type access our
server, resource descriptions in the RDF format will be returned.

5.2 Lookup Service

We provide a lookup service for users to access Zhishi.schema. The service is
available at http://los.linkingopenschema.info/LookUp.jsp. Given a query,
all categories whose labels exactly match the query are returned. If two categories
are equal, they are automatically merged as an integrated view for browsing.

If a user searches for “Water Purifier”, as shown in Figure 5, we return a
page integrating two equivalent categories from two e-commerce Web sites

16 http://www.w3.org/DesignIssues/LinkedData.html
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Fig. 5. An Example Page of Integrated Categories

(i.e. 360buy and DangDang). From the page, we can see provenances of two cat-
egories, other equivalent categories with different labels, their parent categories,
child categories, related categories, and links to their original pages in Web sites.
These information are organized in the Resource Site Label, EqualClass,
SuperClass, SubClass, RelatedClass and Link sections respectively.

We can click on any parent category or child category to switch to another
page view. Such an interaction stands for navigation in the integrated concept
taxonomy of Zhishi.schema. A click on one related category or an equivalent
category corresponds to traversal on the semantic network of Zhishi.schema.

5.3 SPARQL Endpoint

We also provide a SPARQL endpoint for querying Zhishi.Schema. Professional
users can submit customized queries at http://los.linkingopenschema.info/
SPARQL.jsp. We use AllegroGraph RDFStore17 as the backend triple store.

6 Conclusions and Future Work

In this paper, we introduced Zhishi.schema, the first effort of publishing Chi-
nese linked open schema. It contains an integrated concept taxonomy. It also
comprises a large semantic network composed of equal relations and relate

relations. Thus, Zhishi.schema can be a good start point to serve as the Chi-
nese version of schema.org. Moreover, since Zhishi.schema reuses RDF and OWL
vocabularies, it can be imported into any ontology editor for further refinement.

As for future work, we will apply our approach to social media Web sites
in other languages especially in English. The resulting dataset can be further
linked with Zhishi.schema to form a multilingual linked open schema. We also

17 http://www.franz.com/agraph/allegrograph/
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plan to publish links between categories in Zhishi.schema and other data sources
in LOD so as to build a global LOS.
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Abstract. Linked Data has grown to become one of the largest available
knowledge bases. Unfortunately, this wealth of data remains inaccessi-
ble to those without in-depth knowledge of semantic technologies. We
describe a toolchain enabling users without semantic technology back-
ground to explore and visually analyse Linked Data. We demonstrate
its applicability in scenarios involving data from the Linked Open Data
Cloud, and research data extracted from scientific publications. Our fo-
cus is on the Web-based front-end consisting of querying and visuali-
sation tools. The performed usability evaluations unveil mainly positive
results confirming that the Query Wizard simplifies searching, refining
and transforming Linked Data and, in particular, that people using the
Visualisation Wizard quickly learn to perform interactive analysis tasks
on the resulting Linked Data sets. In making Linked Data analysis ef-
fectively accessible to the general public, our tool has been integrated
in a number of live services where people use it to analyse, discover and
discuss facts with Linked Data.

1 Introduction

The already huge amount of valuable information available in the Linked Open
Data (LOD) cloud keeps growing at increasing rate. Unfortunately, this wealth
of openly available data is difficult to access and analyse. Without having in-
depth knowledge on semantic technologies, such as SPARQL, this abundance of
information remains inaccessible. The fact that Linked Data (LD) by definition
exhibits a graph structure, even when it describes numeric facts, further compli-
cates the situation. Graph structures, being inherently complex to evaluate and
interpret, are not what the majority of users are accustomed working with.

Our goal is to empower users without semantic technology background to
search, explore and analyse LD. We strive to make LD accessible to the general
public, enabling them to utilise the knowledge stored therein. To do so, we
developed tools and workflows designed to be as easy as possible to use. The
complexities imposed by semantic technologies and by the LD format are hidden
from the user, while at the same time we exploit the advantages arising from
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semantically rich data. Two web-based interfaces highlight our toolchain: the
Query Wizard [6] and the Visualisation Wizard (Vis Wizard)[12]. Query Wizard
makes searching in LD as simple as with standard web search engines, and
provides a tabular interface supporting transformations on the retrieved data
set (e.g., selecting/removing columns, filtering and aggregation). The Vis Wizard
automatically derives visualisations of the created data sets and supports their
interactive analysis using multiple coordinated visualisations.

A major novelty introduced by this paper is in realising integrated end-to-end
workflows bringing extraction, search, transformation and interactive analysis of
LD to ”non-experts”. While tools addressing each task separately have been pre-
viously described and evaluated in isolation, to our knowledge no single system
or combination of tools has been reported enabling either experts or non-experts
to accomplish these tasks in integrated workflows. We also present results of a
formative usability evaluation focusing on visual analysis of LD, and discuss
lessons learnt from deploying the workflows.

We draw the motivation and elicit requirements along two exemplary scenar-
ios: i) discovery and analysis of LOD, and ii) analysis of research data embedded
in scientific publications (described in Section 3). These scenarios drive the evo-
lution of our tools, developed in the CODE1 EU project, which went public and
are live since late 2012. Design decisions and implementation are detailed in Sec-
tion 4. Section 5, elaborates on the services that deploy our tools, and illustrates
the scenarios (i) and (ii) in practical use cases. We present results of a formative
usability evaluation (Section 6), and discuss benefits and lessons learnt along the
design, development, and deployment of our tools.

2 Related Work

The problem of easy-to-use interfaces for accessing LD is still largely unsolved.
The majority of current tools do not target regular web users. For example,
Sindice [17], a major Semantic Web search engine, is practically useless for ordi-
nary web users due to its complex user interface. Freebase Parallax [7] featured
the ability to browse sets of related things, and was one of the few web-based
tools that provided a table view for results. Both Freebase Parallax and the Fal-
cons Explorer [3] featured a search box as the main entry point, a central idea in
our prototype. Yet, in both cases the table view was not the central focus. Open-
Refine2 (formerly Google Refine) supports RDF and there are extensions such
as LODRefine3 that focus on LD. But its main goal is on cleaning tabular data
and, although the interface is browser-based, it is not available as a web service.
Our work has similarities with faceted search and navigation as described in [13]
or [5], and used in OpenRefine, SIMILE Exhibit [8] or DBpedia’s instance of
Virtuoso’s Faceted Search & Find feature4. Query Wizard further incorporates
interactive elements and concepts from spreadsheet applications.

1 CODE Project Website: http://code-research.eu
2 http://openrefine.org
3 http://code.zemanta.com/sparkica
4 http://dbpedia.org/fct
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Stolte et. al proposes a table-based interface for data in relational
databases [16]. The system automatically suggests visualisations and coordi-
nates the interaction between them. The mapping of data onto visual properties
of a visualisation is not performed automatically, but has to be formulated by
the user. Vispedia [2] is a web-based system to create visualisations for arti-
cles in Wikipedia. It is limited to Wikipedia data and requires users to choose
one of the available visualisations and formulate the mappings manually. Many
Eyes [18] is a public web site to upload, visualise and share visualisations. Its
data model is a raw table similar to CSV (Comma-separated Values). It uses
heuristics to determine whether a column is numeric or text, but it does not
automate visualisation. CubeViz [14], similar to the Vis Wizard, enables visu-
alisation and visual querying of statistical RDF Data Cubes. In contrast to our
approach, it does not automatically suggest possible visualisations, neither does
it support data cubes with multiple measures nor varying number of dimensions.
The framework does not rely on semantic description of charts and offers a com-
parably restricted number of chart types. In [1] a method for automatic mapping
of data attributes to visual attributes is described, but no automatic selection of
visualisations for a given data set is supported. Marcello et. al[11] confirms the
problem the semantic community is currently facing when trying to bring LOD
search results in a way that users are comfortable with.

3 Scenarios

We begin by defining two usage scenarios, and then derive the central require-
ments for the proposed web-based toolchain.

Scenario 1 – Search and Analysis of Linked Open Data is our main
scenario which focuses on the openly available information in the LOD cloud.
A well-known example is open governmental data, such as made available by
EU Open Data Portal5, which provides a wide variety of statistical facts on our
society. The capability to search for and analyse such data would benefit both
the general public as well as professionals (e.g. data journalists). Therefore, our
Scenario 1 shall consist of the following steps:

1. Searching for information in the LOD cloud.
2. Transforming and preparing the discovered data for analysis.
3. Visualising and analysing the resulting data set to generate new insights.

Using conventional means, the first two steps can be achieved by formulating
and executing complex SPARQL queries against an endpoint. Obviously, users
without knowledge of semantic technologies will need a simpler solution than
that. Concerning the visualisation step, graph visualisation is usually employed
because the information is provided as RDF. Instead, employing visualisations
suitable for the particular type of information (e.g. statistical, temporal, geo-
graphical etc.) would significantly aid the interpretation of data.

5 EU Open Data Portal: http://open-data.europa.eu
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Scenario 2 – Analysing Scientific Publication Data addresses another
source of hard to utilise, high-quality information: research data present in tables
which are embedded in scientific publications in PDF format. In order to access
and analyse such data one first needs to extract the tabular information from the
PDF. The extracted tables, which typically contain numeric information, shall
be semantically described in order to facilitate further analysis. Therefore, our
Scenario 2 shall consists of the following steps:

1. Extracting research data present in tables embedded in PDF files.
2. Visualisation and Analysis of the extracted data set.

With common tools, the first step is achieved by copy-pasting from the PDF
and transcribing the table back into the tabular form. Using a spreadsheet ap-
plication users can correct the data and move it to the correct table cells, which
is a laborious task. Visualisation is supported by spreadsheet applications, al-
though users must manually select and configure the charts. Obviously, it would
be beneficial for users if major parts of this process were automated.

3.1 Requirements

Taking into account the targeted user group and the defined scenarios, we derive
a set of high-level requirements our toolchain needs to fulfil. In the following we
differentiate between non-functional (NFR) and functional requirements (FR):

– NFR1 - Ease of Use: Tools targeting the general public should be as easy
to use as possible. We shall, wherever possible, make use of UI concepts a
typical user is already acquainted with.

– NFR2 - Automation: The tools should maximise automation and elimi-
nate unnecessary steps which currently must be performed by the user.

– NFR3 - Exploiting Semantics: The system should exploit Semantic Web
standards and the semantics of the data to the advantage of the user.

– FR1 - LOD Search: A search tool shall support retrieval in SPARQL
endpoints.

– FR2 - Data Transformation: A tool shall support transforming and re-
fining of the found/extracted data set.

– FR3 - PDF Table Extraction: A tool shall provide extraction of tabular
data from scientific publications in PDF format.

– FR4 - Data Triplification: A triplification tool shall provide functionality
for exporting of a data set as RDF.

– FR5 - Interactive Visualisation: A visualisation tool shall support visu-
alisation and interactive analysis of Linked Data sets.

4 Proof of Concept

Driven by requirements NFR1 – NFR3, we present central design decisions for
the tools introduced by FR1 – FR5. After that, as a proof of concept, we in-
troduce workflows showing how these tools are employed to realise the scenarios
defined in the previous section.
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4.1 Design Decisions

Searching in LD shall come as close as possible to what users are accustomed
with the major search engines (e.g. Google). The entry point to search shall
be a search box that works as what is expected for standard (non-semantic)
web search. After performing a full-text search the returned results shall be
presented in the form of a table, where a row corresponds to a single subject,
a column represents a predicate, and cells contain objects for the given subject
and predicate. The rationale behind using tabular representation is that users are
familiar with tables and are often proficient in using spreadsheet applications.
Also, the tabular form is suitable for refining and transforming the retrieved data
set. For example, with just a few clicks user shall be able to add and remove
columns (i.e. predicates), filter the results (rows) depending on simple criteria,
and aggregate (group by) columns. A tool supporting the described functionality,
the Query Wizard, satisfies requirements NFR1, NFR3, FR1 and FR2.

Extracting tabular data from scientific publications and exporting it as RDF
shall be the task of the Data Extractor tool. We choose the W3Cs RDF Data
Cube Vocabulary6 [4] which provides a semantic framework for expressing multi-
dimensional data sets as Linked Data. The Data Extractor is composed of three
components: i) an embedded PDF Extractor which takes a PDF file as input
and returns extracted tables as output [10], ii) an (optional) user interface for
correcting extraction errors and defining dimensions and measures of the data
cube, and iii) a triplifier which exports a tabular data set as RDF Data Cube.
Importantly, tabular data sets created by the Query Wizard already contain
semantic information, which is utilised by the triplifier to create RDF Data
Cubes in a fully automatic mode. The Data Extractor, with the embedded PDF
Extractor, satisfies the requirements NFR2, NFR3, FR3 and FR4.

Semantic information present in the RDF Data Cubes shall be utilised to en-
able automated visualisation. Depending on semantic data characteristics, au-
tomatic visualisation suggests meaningful visual representations and disables
those not suitable for the data. The automatism also includes configuring a vi-
sualisation, i.e. mapping different columns of the data set onto suitable visual
properties (e.g. axes, colours etc.) of the visualisation. When multiple visualisa-
tions and configurations are possible, the user shall have the freedom to select
only between the meaningful ones. Also, for complex multi-dimensional data, it
should be possible to generate multiple visualisations (e.g. a geo- and a time-
visualisation) in order to provide insights into different aspects of the data set. A
tool supporting the described functionality, called the Visualisation Wizard
(Vis Wizard for short), satisfies requirements NFR1, NFR2, NFR3, and FR5.

With this we have defined the design of a set of tools which satisfy the re-
quirements derived in the previous section. Next, we briefly outline workflows
specifying how these tools are employed to implement the scenarios.

6 RDF Data Cube Vocabulary: http://w3.org/TR/vocab-data-cube
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4.2 Workflows

Workflows shown in Figure 1 describe how the proposed tools are employed to
realise the two scenarios.

Fig. 1. Workflows using the proposed tools to implement the scenarios

Workflow for Scenario 1 (up in the Figure 1) implements the process of
searching the LOD, interactively transforming the data, automatically convert-
ing it into a data cube, and generating interactive visualisation of the data set.
The Query Wizard, which accesses the Linked Open Data cloud, is used to ex-
ecute full-text searches on an endpoint. Query Wizard is also employed for the
next step: displaying the retrieved data in tabular form and manipulating it (e.g.
selecting columns, filtering or aggregating). Following that, the data extractor
automatically generates an RDF Data Cube relying on semantic information in
the data. For the last step the Vis Wizard is used to automatically generate
visualisations to support interactive analysis of the data.

Workflow for Scenario 2 (bellow in the Figure 1) implements the process
of extracting tabular data from publications, converting the data into an RDF
data cube, and generating interactive visualisation of the data. In the first step
the PDF Extractor analyses the structure of a scientific paper in PDF format
and automatically extracts tables. In the next step, the extracted tabular data is
passed to the Data Extractor which provides a user interface for semi-automatic
triplification. Data Extractor analyses the data and suggests dimensions and
measures of the cube. The user can perform corrections if the automatic data
analysis produced errors. Following that an RDF Data Cube is generated and
can be stored into a Linked Data endpoint. In the last step the user can analyse
the data using the Vis Wizard. Optionally, before visualising, Query Wizard can
be applied to display and transform the data set.

4.3 Selected Implementation Details

In this section we briefly describe the most relevant technical solutions behind our
tools. For detailed reading the corresponding publications should be consulted.

Query Wizard: The Query Wizard [6] turns search terms entered by the user
into a series of SPARQL queries, which are then sent to the endpoint chosen by
the user. First, with the help of a full-text index, a search in all the rdfs:labels
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is performed, and the first 10 matching subjects are returned. Search results are
shown as a table, where a row corresponds to a single subject and a column
represents a predicate (by default the first row displays rdfs:label, the second
rdf:type). Cells contain objects, i.e. any number of literals and/or entities, de-
pending on the row and column. Using the SPARQL 1.1 COUNT feature the
total number of matching results is also retrieved. Another query is generated
to display all available predicates for the displayed subjects. When the user
selects one of these predicates from the drop-down list, another query is per-
formed to retrieve the respective data. When users set a filter on one of the
displayed columns, a whole new set of SPARQL queries is generated and sent to
the endpoint. With just a few interactions, the system can produce hundreds of
lines of SPARQL code – all completely invisible to the user. Also, thanks to the
aggregation features of SPARQL 1.1, tasks that usually involve a Pivot Table
or specialised Data Warehousing software – such as calculating averages, sums,
minima, maxima, or counts based on selected dimensions – can be performed by
the Query Wizard with the help of a simple interface. The Query Wizard can
also be used to explore available RDF Data Cubes which are publicly available
through a SPARQL endpoint. The front page features automatically generated
lists of RDF Data Cubes for endpoints such as EU Open Data7 or Vienna Linked
Open Data8). However, support for selecting endpoints based on available data
is not included, representing an opportunity for future research.

Data Extractor and PDF Extractor: The Data Extractor [15] uses a seman-
tically enriched HTML table produced by the Query Wizard to guess dimensions
and measures of a data cube. The columns of the table are automatically clas-
sified as either dimensions (if the cell content is non-numeric), measures (for
numeric cell content), or multi-value (if there are multiple values in at least
one of the cells of the given column). For extracting tabular information from
publications the embedded PDF extractor [10] analyses the structure of a PDF
document using unsupervised machine learning techniques and heuristics. Con-
tiguous text blocks and geometrical relations between them are extracted from
the character stream. The blocks are categorised into different classes resulting
in a logical structure of the document. Table extraction starts from a “table”
caption, and then labels neighbouring sparse blocks recursively as table blocks,
if their vertical distance is within a specific threshold.

Visualisation Wizard: To suggest appropriate visualisation for a data set in
a RDF Data Cube, we developed visualisation vocabulary, which describes vi-
sualisations semantically in an OWL ontology. The vocabulary describes: (1) vi-
sualisations in terms of visual channels va : hasV isualChannel(va : Chart, va :
V isualChannel) (e.g., axes, colour, size), and (2) visual channels in terms of data
types va : hasDatatype(va : V isualChannel, va : DataType) (e.g., boolean, nu-
meric). For a particular visualisation a visual channel may be optional, which
is represented in va : Occurrence. The mapping algorithm identifies valid rela-

7 http://open-data.europa.eu
8 http://cweiss.net/lod
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tions from qb : dimensions to va : V isualChannels in a va : Chart. The relation
(mapping) between the RDF Data Cube is only valid, when the data types of
the cube components and visual channels are compatible[12]. After analysing
the data type compatibility the Vis Wizard automatically suggest any of the 10
currently available visualisations and valid mapping combinations.

The Vis Wizard offers interaction facilities to organise, refine and inspect the
visualised data with coordinated brushing, mouse-over inspections, filtering and
aggregation. Brushing and linking is a powerful interactive analysis technique,
which combines different visualisations to overcome the shortcomings of single
techniques [9]. Interactive changes made in one visualisation are automatically
reflected in the other ones. Vis Wizard utilises semantic information (i.e. di-
mension URIs) to link different visualisations, which may be displaying different
Data Cubes. These are created, for example, when data sets are aggregated.

5 CODE Tools in Use

During the development of the Query and Vis Wizards we followed the “release
early, release often” principle. As soon as a new feature was complete and ready
for testing, it immediately rolled out to our staging server and, if no major
problems were found, a short time later it was publicly available at our pro-
duction server. The prototypes have been online since November 2012 and have
been under permanent scrutiny of fellow researchers and other interested col-
leagues for a year and a half now. Since then, the Query Wizard alone generated
around 100.000 SPARQL queries that users did not have to formulate them-
selves, whereby this number comprises all queries generated within interactive
exploration tasks. Both tools are available under:

– Query Wizard: http://code.know-center.tugraz.at/search
– Visualisation Wizard: http://code.know-center.tugraz.at/vis

Integration with Other Platforms: The Query Wizard and the Vis Wizard
have been integrated into the 42-data9. 42-data is a data-centric question and
answer platform, which focuses on discussions and answers backed by empiri-
cal facts in numerical LOD. Embedded Query Wizard tables and Vis Wizard
visualisations facilitate exploration and analysis of LOD sets within the plat-
form. Uptake of the 42-data social platform is steadily increasing usage of our
tools. Another integration which benefits the usage rates of our tools is with the
commercial MindMeister10 mind mapping web platform. It enables the Query
Wizard to export data sets in the form of mind maps, which can be shared and
collaboratively edited by MindMeister users. Also, visualisations generated by
the Vis Wizard can be added to mind maps as images which link back to the
original interactive charts.

The following two use cases demonstrate the implementation of the scenarios.

9 42-data Platform: http://42-data.org
10 MindMeister Mind Mapping platform: http://www.mindmeister.com/
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Fig. 2. Query Wizard: Searching (on left), tabular result representation (on right)

5.1 Use Case 1

Our first and primary use case implements Scenario 1 – Search and Analysis of
Linked Open Data. Assume the user is interested in total EU project funding for
different countries. Using the Query Wizard he selects an appropriate endpoint,
in this case the EU Open Data endpoint, and search for “funding per habitant”
(see Figure 2, on left). Search results, displayed in tabular form (Figure 2, on
right), can be manipulated through filtering and adding/removing columns. Fil-
tering by data value is performed by clicking on the specific value and selecting
filtering in the drop-down list. Columns are added by using the “Add Column”
button and selecting a predicate. Columns are removed by clicking on the col-
umn header and selecting “Remove column”. In the shown data set we added
the column “Dataset”, filtered it by the value “Total EC funding to participants
in FP7-ICT projects (in euro per habitant)”, and added the columns “Country”,
“Year” and “Value” to obtain the data we are interested in. Before visualising we
load the whole data set consisting of 158 entries using the “Load more results”
buttons.

To visualise the data set we click on “Visualize the displayed results” link
which loads the data into the Vis Wizard (see Figure 4). Six out of ten available
visualisations are enabled for our data set (“Possible Charts” in the Figure 4).
We select the scatterplot (left in the Figure 4) to visualise funding (y-axis) for
countries (x-axis) in different years (colour coding). Next, we want to find out
how the funding is spread over Europe. To achieve this we aggregate the data for
countries by averaging over the years. A simple aggregation dialogue allows us
to select “Country” and choose “average” as aggregation function. Aggregation
generates a new data set which is visualised in a geo-chart (right chart in the
3), where colour coding is used to visualise the average funding (a deeper shade
indicates higher funding). Finally, we want to discover which countries receive
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Fig. 3. Vis Wizard showing data on EC funding to participants, per habitant. The
left chart displays funding for countries in different years. The right chart shows the
average funding by country.

the lowest amounts of funding. Due to available semantic information Vis Wiz-
ard knows that “Country” has the same meaning in the original and aggregated
data set. This allows us to apply a brush in the scatterplot (shown as grey rect-
angle) selecting the countries with lowest received amounts of funding. Brushing
operation greys out all non-selected countries in both visualisations, which leads
us to a new insight: in the geo-chart we can clearly observe that countries with
the lowest amounts of funding are located in Eastern Europe. A screencast of
the use case is available on YouTube11.

5.2 Use Case 2

The second use case (schematically shown in Figure 4) briefly demonstrates the
usage of our tools in Scenario 2 – Analysing Scientific Publication Data. Our
user is interested in analysing research data available in a scientific paper. In
particular, for the paper “Combined Regression and Ranking” from D. Sculley
(2010) the user wishes to explore results found in “Table 1: RCV1 Experimental
Results” (on left in the Figure 4). We start by uploading the PDF file into the
Data Extractor which internally uses the PDF Extractor to extract the tables.
Data Extractor guesses which rows and columns represent data cube dimensions
and which cells contain observations. Next, the user selects the first table which
is presented in an interface showing dimensions marked in blue and observation
marked in green (in the middle of the Figure 4). The user has the opportunity to
edit the table and, if necessary, correct extraction errors by: marking dimensions,
removing columns and rows, modifying cell content etc. When ready, with a
single click the table is converted into an RDF Data Cube and visualised in the
Vis Wizard (parallel coordinates visualisation shown on right in the Figure 4).

11 Use case 1 screencast: http://www.youtube.com/watch?v=mA vi1F7TSE
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Fig. 4. Use Case 2 begins with a PDF document containing tables (on left), which
are extracted and annotated with the RDF Data Cube Vocabulary using the Data
Extractor (in the centre), and then visualised with the Vis Wizard (on right)

6 Formative Evaluations

This section presents formative usability evaluations performed with the precise
goal to ascertain that users can: a) search, refine and transform LD, b) perform
interactive analysis on complex data sets. The evaluations consisted of several
tasks that required a conceptual understanding of different inherently complex
operations on LD. In both cases we used the standard NASA Task Load Index
(TLX) to measure workload in loosely time constrained tasks and followed the
Thinking Aloud protocol to uncover usability issues. The time constrain was
loosely maintained, meaning the moderator kept track of the timing but was
not fully strict. No timer was shown to participants. This is a common way to
introduce time pressure that participants need to keep track of mentally while
performing the task. The time constrain combined with the Thinking Aloud
adds up to effort and frustration when participants cannot progress as expected.
Workload was computed with the simplified NASA R-TLX.

6.1 Evaluation 1: Search and Refinement

This section summarises a formative evaluation with eight participants focus-
ing on search, refinement and transformation of LD, initially reported in [6].
The evaluation showed that people could perform these tasks using the provided
abstractions (high Performance TLX), with little stress (Mental/Temporal De-
mand). Interestingly, people quickly learnt new features (mid-low Effort fluctu-
ation). The Query Wizard was generally well received, both by users with and
without a computer science background. The main point of critiques was a miss-
ing possibility to add URI filters through a menu in the table header. Additional
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suggestions for improvements were to show the total number of results more
prominently and to implement an infinite scroll mechanism that automatically
loads more data as the users scroll to the bottom of the screen.

6.2 Evaluation 2: Visual Analytics

The focus of this evaluation was the interactive analysis of complex datasets. 8
people participated in this evaluation (age in range[24− 38]), all without back-
ground in LD or semantic technologies.

Methodology. The evaluation required participants to perform operations
such as filtering, aggregation and brushing. After a demographics questionnaire,
participants received a short guide to the Query and Vis Wizards, showcas-
ing aforementioned functions but without explaining the meaning or underlying
constructs thereto. Then, participants performed 6 tasks as shown in Table 1.

Table 1. Tasks. Summary of tasks and corresponding activities in the experiment.

T1: Filtering in the Query Wizard T4: Aggregation - Multiple Categories

T2: Filtering in the Vis Wizard T5: Aggregating Multiple Values

T3: Aggregation T6: Brushing in Multiple Views

For example, the instruction for T1 was: please show the data set in Query
Wizard. We are interested only in the countries which have a CO2 Emission over
13 Tons per persons. After that, please visualise the results. You have 3 minutes
to complete this task. Upon finishing the task or when time-up was called, par-
ticipants filled the NASA TLX and a subjective assessment questionnaire. An
exit questionnaire was used to collect preferences and suggestions.

Quantitative Subjective Workload. From 54 tasks performed in total by 8
participants, 39 were successfully completed in time. Results on workload were

positively below the 1
3

rd
of the scale. T1 and T5 rated lowest on workload. T1

was the first task that we deemed less complex and received the lowest mental
demand (MD) rating (M = 12.5, Std = 10.35) accordingly. MD remained stable
in subsequent tasks. Temporal demand did not present major differences across
tasks. The main visual analytics tasks T5 and T6 present high perceived perfor-
mance ratings (M = 91.25, Std = 11.25, M = 86.25, Std = 9.16), accompanied
by relatively low frustration (T5: M = 6.25, Std = 10.60).

Qualitative Thinking Aloud. Participants found it difficult to select the
proper dataset in the first task (T1), but they clearly understood that they
needed to use a filter, set the filter correctly and visualised the data without
complications. Participants choose two general strategies to solve T2, either set
a filter in the Query Wizard first and show the filtered data (6), or visualise the
data and brush the parallel coordinates to filter (2). T3 was solved almost unan-
imously by visualising and then aggregating data. One participant aggregated
the data first and then visualised it. Participants found T4 suddenly complex,
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mainly because the initially suggested visualisation was not the appropriate one
to solve the task, but also by the need to group and aggregate data. Five partici-
pants grouped incorrectly at first, and after noting the error, had to redo it. Only
two participants solved this task without issues. In T5, participants showed all
the skills acquired throughout the experiment, three participants used parallel
coordinates and two used scatterplot matrices to solve the task, two other partic-
ipants used grouping and aggregation. Only one participant had difficulties with
multiple aggregated values. In T6, two participants were confused by a usability
issue of the brush in a scatterplot, but all could actually solve the task.

Table 2. Workload of Visual Analytics. Results on workload from the VA experiment.
Green tones show positively lowest ratings, and red tones the opposite higher ratings.

T1 T2 T3 T4 T5 T6

TLX M STD M STD M STD M STD M STD M STD

Mental Demand 12.5 10.35 33.75 18.46 28.75 26.42 35 26.18 31.25 22.32 30 27.25

Physical Demand 5 7.55 7.5 10.35 10 20.70 17.5 27.64 8.75 13.56 21.25 29.48

Temporal Demand 15 11.95 25 33.80 15 11.95 16.25 17.67 18.75 15.52 15 17.72

Effort 32.5 24.34 43.75 24.45 42.5 27.64 47.5 17.52 33.75 20.65 31.25 25.87

Frustration 15 22.67 25 25.63 16.25 26.15 17.5 25.49 6.25 10.60 16.25 24.45

Performance 83.75 15.97 66.25 34.20 77.5 8.86 68.75 25.31 91.25 11.25 86.25 9.16

Workload 16.04 11.01 28.125 21.01 22.5 15.88 27.5 18.89 17.91 10.71 21.25 20.50

Preferences and Exit Questionnaires. Users liked the workflow for data
analysis, and were in general motivated to discover facts in the data through
the provided functionality. They found it fast, simple and intuitive to use, and
regarded the design highly. They appreciated the automated suggestion and
mapping of visualisations. Still, participants rated the colours in the geo-chart
really poor, and were at times confused by the brushing functionality. To the
question, what would you use this toolset for?, participants answered: to visualise
any kind of statistical data, server log analysis, project tracking and to quickly
answer questions which involve data analysis. Finally, when asked if they could
have solved the tasks with other tools of their choice, which ones they would
have used, participants unanimously replied they would search with Google, and
manually collect and copy the data into a spreadsheet application for analysis.

6.3 Discussion and Lessons Learnt

The study was designed as formative and not comparative in nature, to dis-
cover if people could actually perform otherwise complex analytics operations
on LD. Thus instead of seeking statistical deviation from a baseline, we opted
for finding correlation between observations, the Thinking Aloud, and TLX re-
sults. The formative evaluation sheds light on the expressive power of our toolset
for interactive analysis of LD. Participants could apply complex operations with
minimal effort on large datasets. The TLX provides interesting results. Although
tasks were constrained in time, participants did not feel pressed to finish (TD
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Fig. 5. Workload from R-TLX computed inverse performance. Colours encode the type
of task (filtering: pink, aggregation: blue, multiple views: yellow).

in table 2). They had more difficulties to solve T2 and T4, observable in the
higher variance in results and confirmed in the Thinking Aloud. We hypothesise
that this effect is due to confusing paths to the solution, either in the form of
different strategies (T2) or because the Vis Wizard did not open the right tool
for the task. Yet, people were confident solving tasks that involved more com-
plex operations (performance in T5 and T6, Figure 5(a)). Indeed, participants
expressed notably less effort and frustration to achieve higher performance in
these tasks. One notable result was that people could convert narrative descrip-
tion of the task to a set of operations on the data without having to cope or
knowing the complexity of the underlying implementation of these operations. In
the following we summarise lessons learnt and directions for future work gained
throughout the process of development, testing and deployment.

Data Volume Ignored. People seemed oblivious to the volumes of data they
were actually handling. In the Query Wizard experiments people ignored the
loaded number of records in the data set in several occasions, requiring time to
realise that more records were available. Visualisations helped stress the issue,
as visual abstractions may leave people without a clue as to the size of the data.

Unrefined Suggestion of Visualisations. Visualisations are suggested based
on the characteristics of the data, whereby multiple visualisation may meaning-
fully represent a data set. However, many users were confused if the presented
visualisation would not help solve the particular problem at hand. For them,
selecting the right visualisation for a task is not trivial. Ranking of possible
visualisations depending on data and context will improve suggestion quality.

Navigating Paths to a Solution. Most problems can be solved by combining
operations in different ways. However, in cases when it became clear than an
incorrect path to the solution was taken, participants often had to restart from
the beginning. Backtracking in the operations applied to the data is not always
supported, and clearly enough, people get frustrated by having to repeat steps.

Analytics Workflow. An exploratory process is one of hypothesis, experiment
and discovery. To the experienced practitioner these stages are clear, but not so
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for novices. In this sense, although our tools let novices reach into the richness of
LD, the analytics workflow is only implicitly supported. To facilitate the work of
both novices and experts, our future tools need to include explicit representations
of this workflow, so users can move back and forth along stages.

7 Conclusion

We have deployed a toolset that makes LD accessible to the general public.
We used well-known metaphors to ensure a smooth learning of our tools, which
hide the underlying technological complexities from users (NFR1), automate
the analytical process (NFR2) through automated visualisation and Data Cube
extraction, and leverage semantic technologies (NFR3) for both automation and
interactive analysis. Our evaluations show that non-experts could pose complex
queries and discover facts from LD using interactive visual analysis.

The CODE toolset has been online since well over a year and has been actively
used for accessing and analysing Linked Open Data. Both tools are deployed as
part of the 42-data Q&A platform, with the purpose of supporting data-centric
discussions. Users of the MindMeister service benefit from the capability of our
Wizards to generate mind maps from data sets and visualisations. The presented
toolset opens a wealth of interesting avenues for research as well as for direct
deployment in productive applications. It is our hope that these results will moti-
vate other practitioners and scientists to try and incorporate described workflows
and tools in their work, to design better solutions for LOD based on lessons ex-
posed, to integrate end-points, enrich LOD with saved queries processed data to
access and utilise LOD analysis in their daily work.
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Abstract. Linked Open Data faces severe issues of scalability, avail-
ability and data quality. These issues are observed by data consumers
performing federated queries; SPARQL endpoints do not respond and
results can be wrong or out-of-date. If a data consumer finds an error,
how can she fix it? This raises the issue of the writability of Linked
Data. In this paper, we devise an extension of the federation of Linked
Data to data consumers. A data consumer can make partial copies of dif-
ferent datasets and make them available through a SPARQL endpoint.
A data consumer can update her local copy and share updates with
data providers and consumers. Update sharing improves general data
quality, and replicated data creates opportunities for federated query
engines to improve availability. However, when updates occur in an un-
controlled way, consistency issues arise. In this paper, we define fragments
as SPARQL CONSTRUCT federated queries and propose a correction
criterion to maintain these fragments incrementally without reevaluating
the query. We define a coordination free protocol based on the counting
of triples derivations and provenance. We analyze the theoretical com-
plexity of the protocol in time, space and traffic. Experimental results
suggest the scalability of our approach to Linked Data.

1 Introduction

The Linked Open Data initiative (LOD) makes millions of RDF-triples available
for querying through a federation of SPARQL endpoints. However, the LOD faces
major challenges including availability, scalability [3] and quality of data [1].

These issues are observed by data consumers when they perform federated
queries; SPARQL endpoints do not respond and results can be wrong or out-of-
date. If a data consumer finds a mistake, how can she fix it? This raises the issue
of the writability of Linked Data, as already pointed out by T. Berners-Lee [2].

We devise an extension of Linked Data with data replicated by Linked Data
consumers. Consumers can perform intensive querying and improve data qual-
ity on their local replicas. We call replicated subsets of data, fragments. First,
any participant creates fragments from different data providers and make them
available to others through a regular SPARQL Endpoint. Local fragments are
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writable, allowing modifications to enhance data quality. Original data providers
can be contacted to consume local changes in the spirit of pull requests in Dis-
tributed Version Control Systems (DVCS). Second, the union of local fragments
creates an opportunistic replication scheme that can be used by federated query
engines to improve data availability [13,17]. Finally, update propagation between
fragments is powered by live feeds as in DBpedia Live [14] or sparqlPuSH [16].

Scientific issues arise concerning the consistency of these fragments. These
questions have been extensively studied in Collaborative Data Sharing Systems
(CDSS) [11], Linked Data with adaptations of DVCS [18,4] and replication tech-
niques [10,25]. Existing approaches follow a total replication approach, i.e., full
datasets or their full histories are completely replicated at each participant or
they require coordination to maintain consistency.

In this paper, we propose Col-Graph, a new approach to solve the availability,
scalability and writability problems of Linked Data. In Col-Graph, we define
fragments as SPARQL CONSTRUCT federated queries, creating a collaboration
network, propose a consistency criterion and define a coordination-free protocol
to maintain fragments incrementally without reevaluating the query on the data
source. The protocol counts the derivations of triples for data synchronization
and keeps provenance information to make decisions in case of a conflict.

We analyze the protocol’s complexity and evaluate experimentally its effi-
ciency. The main factors that affect Col-Graph performance are the number of
concurrent insertions of the same data, the connectivity of the collaboration net-
work and the overlapping between the fragments. Experimentations show that
the overhead of storing counters is less than 6% of the fragment size, when-
ever there are up to 1,000 concurrent insertions or up to 10× 1016 simple paths
between the source and the dataset. Synchronization is faster than fragment
reevaluation up to when 30% of the triples are updated. We also report better
performance on synthetically generated social networks than on random ones.

Section 2 describes Col-Graph general approach and defines the correction cri-
terion. Section 3 formalizes Col-Graph protocol. Section 4 details the complexity
analysis. Section 5 details experimentations. Section 6 summarizes related work.
Finally, section 7 presents the conclusions and outlines future work.

2 Col-Graph Approach and Model

In Col-Graph, consumers create fragments, i.e., partial copies of other datasets,
based on simple federated CONSTRUCT queries, allowing them to perform in-
tensive queries locally on the union of fragments and make updates to enhance
data quality. In Figure 1, Consumer_1 copies fragments from DBPedia and
DrugBank, Consumer_2 copies fragments from DBPedia and MusicBrainz and
Consumer_3 copies fragments from Consumer_2 and Consumer_3.

Consumers publish the updated dataset, allowing others to also copy
fragments from them. They can also contact their data sources to ask them
to incorporate their updates, in the spirit of DVCS pull requests. Updates
at the fragment’s source are propagated to consumers using protocols like
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Fig. 1. Federation of Writable Linked Data

sparqlPuSH [16] or live feeds [14]. As replicated fragments could exist on several
endpoints, adequate federated query engines could profit to improve general data
availability and scalability [13,17]. Following this approach, data providers can
share the query load and the data curation process with data consumers. Since
data consumers become also data providers, they can gain knowledge of queries
targeting their fragments.

We consider that each Linked Data participant holds one RDF-Graph and
exposes a SPARQL endpoint. For simplicity, we use P to refer to the RDF-Graph,
the SPARQL endpoint or the name of a participant when is not confusing. An
RDF-Graph is defined as a set of triples (s, p, o), where s is the subject, p is
the predicate and o is the object. We suppose that a participant wants to copy
fragments of data from other participants, i.e., needs to copy a subset of their
RDF-Graphs for a specific application [19] as in Figure 1.

Definition 1 (Fragment). Let S be a SPARQL endpoint of a participant, a
fragment of the RDF-Graph published by S, F [S], is a SPARQL CONSTRUCT
federated query [22] where all graph patterns are contained in a single SERVICE
block with S as the remote endpoint. We denote as eval(F [S]) the RDF-Graph
result of the evaluation of F [S].

A fragment F [S] enables a participant T to make a copy of the data of S that
answers the query. We denote the result of the evaluation of F [S] materialized
by a participant T as F [S]@T , i.e., a fragment of source S materialized at target
T . A fragment is partial if F [S]@T ⊂ S or full if F [S]@T = S. The local
data of a participant is composed of its own data union the fragments copied
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from other participants. We call the directed labeled graph where the nodes are
the participants and the edges (S;T ) labeled with fragments a Collaboration
Network, CN . A CN defines how data are shared between participants and how
updates are propagated. Participants can query and update the fragments they
materialize, e.g., Consumer_1 in figure 1 can modify the fragments copied from
DBPedia and DrugBank using SPARQL 1.1 Update [23]

When a source in a CN updates its data, the materialized fragments may
become outdated. Fragments could be re-evaluated at the data source, but if
the data source has a popular knowledge base, i.e., many other participants
have defined fragments on it, the continuous execution of fragments would de-
crease the availability of the source’s endpoint. To avoid this, a participant may
synchronize its materialized fragment incrementally by using the updates pub-
lished by the source. Some popular data providers such as DBpedia Live [14]
and MusicBrainz1 publish live update feeds.

To track updates done by a participant, we consider an RDF-triple as the
smallest directly manageable piece of knowledge [15] and the insertion and dele-
tion of an RDF-triple as the two basic types of updates. Each update is globally
uniquely identifiable and it turns the RDF-Graph into a new state. SPARQL 1.1
updates are considered as an ordered set of deleted and/or inserted triples. Each
time we refer to an update, we implicitly refer to the inserted/deleted triple.
Blank nodes are considered to be skolemized, i.e., also globally identifiable2.

Incrementally synchronizing a materialized fragment using only the updates
published by a data source and the locally materialized fragment without reeval-
uating the fragment on the data source requires to exclude join conditions from
fragments [8], therefore, we restrict to basic fragments [21], i.e., fragments where
the query has only one triple pattern.

Figure 2 illustrates a CN and how updates are propagated on it. P1 starts
with data about the nationality and KnownFor properties of M_Perey (pre-
fixes are omitted for readability). P2 materializes from P1 all triples with the
knownFor property. With this information and its current data, P2 inserts the
fact that M_Perey discovered Francium. On the other hand, P3 materializes
from P1 all triples with the nationality property. P3 detects a mistake (na-
tionality should be French, not French_People) and promptly corrects it. P4
constructed a dataset materializing from P2 the fragment of triples with the
property discoverer the fragment of triples with the property nationality from
P3. P1 trusts P4 about data related to M_Perey, so she materializes the rele-
vant fragment, indirectly consuming updates done by P2 and P3.

Updates performed on materialized fragments are not necessarily integrated
by the source, e.g, the deletion done by P3 did not reach P1, therefore, equiv-
alence between source and materialized fragment cannot be used as consistency
criterion for CNs. Intuitively, each materialized fragment must be equal to the
evaluation of the fragment at the source after applying local updates, i.e., the

1 http://musicbrainz.org/doc/MusicBrainz_Database#Live_Data_Feed
2 http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
#section-skolemization
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P1:
+ (M_Perey, nationality, French_People)

+ (M_Perey,knownFor,Francium)
(M_Perey,discoverer,Francium)
(M_Perey,nationality,French)

CONSTRUCT
WHERE {

SERVICE <P1> {
?x knownFor ?y }}
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CONSTRUCT
WHERE {

SERVICE <P1> {
?x nationality ?y} }
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P2:
(M_Perey,knownFor,Francium)

+ (Francium,subject,Chemical_Element)
+ (M_Perey,discoverer,Francium)

CONSTRUCT
WHERE {

SERVICE <P2> {
?x discoverer ?y}}

���

����
���

�� ��

�� �	

P3:
(M_Perey,nationality,French_People)

+ (M_Perey,birthPlace,France)
+ (M_Perey, nationality,French)

CONSTRUCT
WHERE {

SERVICE <P3> {
?x ?y French}}

���

����
��

�� ��

�� �	

P4:
(M_Perey, discoverer, Francium)
(M_Perey, nationality, French)

CONSTRUCT
WHERE {

SERVICE <P4> {
M_Perey ?x ?y}}

��

Fig. 2. Collaboration network with Basic Fragments. Underlined triples are the ones
coming from fragments, triples preceded by a ’+’ are the ones locally inserted, struck-
through triples are the ones locally deleted.

ones executed by the participant itself and the ones executed during synchro-
nization with other fragments.

Definition 2 (Consistency Criterion). Let CN = (P,E) be a collaboration
network. Assume each Pi ∈ P maintains an ordered set of uniquely identified
updates ΔPi with its local updates and the updates it has consumed from the
sources of the fragments F [Pj ]@Pi it materializes. Given a ΔP , let ΔF [S]

P be the
ordered subset of ΔP such that all updates concern F [S], i.e., that match the
graph pattern in F [S]. Let apply(Pi, Δ) be a function that applies an ordered set
of updates Δ on Pi.
CN is consistent iff when the system is idle, i.e., no participant executes local

updates or fragment synchronization, then:

(∀Pi, Pj ∈ P : F [Pi]@Pj = apply(eval(F [Pi]), Δ
F [Pi]
Pj

\ΔPi)

The ΔF [Pi]
Pj

\ ΔPi term formalises the intuition that we need to consider only
local updates when evaluating the consistency of each fragment, i.e., from the
updates concerning the fragment, remove the ones coming from the source.

Unfortunately, applying remote operations as they come does not always com-
ply with Definition 2 as shown in Figure 3a: P3 synchronizes with P1, applying
the updates identified as P1#1 and P1#2, then with P2, applying the updates
identified as P2#1 and P2#2, however, the fragment materialized from P2 is
not consistent. Notice that, had P3 synchronized with P2 before than with P1,
its final state would be different ((s, p, o) would exist) and the fragment materi-
alized from P1 would not be consistent.
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P1:
(s,p,o)
(s,q,o)

�� ��

�� �	

P2:
(s,p,o)

P1#1 Ins(s,p,o)
P1#2 Ins(s,q,o)

∗
��

P2#1 Ins(s,p,o)
P2#2 Del(s,p,o)

∗

�����
���

���
���

�� ��

�� �	

P3:
(s,p,o)
(s,q,o)

P1#1 Ins(s,p,o)
P1#2 Ins(s,q,o)
P2#1 Ins(s,p,o)
P2#2 Del(s,p,o)

F [P1]@P3 =
apply({(s, p, o), (s, q, o)},

(P2#1 Ins(s, p, o),
P2#2Del(s, p, o)))

F [P2]@P3 �=
apply(∅,

(P1#1 Ins(s, p, o)))
P1#2 Ins(s, q, o)))

(a) Applying updates as they come does
not comply with the correction criterion.

�� ��

�� �	

P1:
(s,p,o) ↪→ 1
(s,q,o) ↪→ 1

�� ��

�� �	

P2:
(s,p,o) ↪→ 1

P1#1 (s,p,o) ↪→ 1
P1#2 (s,q,o) ↪→ 1

∗
��

P2#1 (s,p,o) ↪→ 1
P2#2 (s,p,o) ↪→ −1

∗
�����

���
���

�

�� ��

�� �	

P3:
(s,p,o) ↪→ 1
(s,q,o) ↪→ 1

P1#1 (s,p,o) ↪→ 1
P1#2 (s,q,o) ↪→ 1
P2#1 (s,p,o) ↪→ 1

P2#2 (s,p,o) ↪→ −1

F [P1]@P3 =
apply({(s, p, o) ↪→ 1,

(s, q, o) ↪→ 1},
(P2#1 (s, p, o) ↪→ 1

(P2#2 (s, p, o) ↪→ −1))

F [P2]@P3 =
apply(∅,

(P1#1 (s, p, o) ↪→ 1,
P1#2 (s, q, o) ↪→ 1))

(b) The Annotated RDF-Graph enables
a consistent Collaboration Network

Fig. 3. Illustration of the consistency criterion. Rounded boxes represent the graphs,
and shaded boxes the sequences of updates. ∗ represents a full fragment.

3 A Protocol for Synchronization of Basic Fragments

To achieve consistency in every case, we propose, in the spirit of [7], to count the
number of insertions and deletions of a triple, i.e., we annotate each RDF-triple
with positive or negative integers, positive values indicate insertions and nega-
tive values deletions. This allows a uniform representation of data and updates,
yielding a simple way to synchronize fragments.

Definition 3 (Annotated RDF-triple, Graph and Update)

1. Let t an RDF-triple and z ∈ Z∗. t ↪→ z is an annotated RDF-triple, with t
being the triple and z the annotation.

2. An annotated RDF-Graph GA is a set of annotated RDF-triples such that
(∀t, z|t ↪→ z ∈ GA : z > 0)

3. An annotated update uA is represented by an annotated RDF-triple. More
precisely, t ↪→ 1 for insertion of t and t ↪→ −1 for deletion of t.

Annotations in RDF-Graphs count the number of derivations of a triple. An
annotation value higher than one indicates that the triple exists in more than one
source or there are several paths in CN leading from the source of the triple to
the participant. Annotations in updates indicate, if positive, that z derivations
of t were inserted; if negative, that z derivations of t were deleted. For example,
an annotated RDF-triple t1 ↪→ 2 means that either t1 has been inserted by two
different sources or the same insert arrived through two different paths in the
CN . The annotated update t2 ↪→ −1 means that t2 was deleted at one source
or by some participant in the path between the source and the target; t3 ↪→ −2
means that either t3 was deleted by two sources or by some participant in the
path between two sources and the target.
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To apply annotated updates to annotated RDF-Graphs, we define an Update
Integration function:

Definition 4 (Update Integration). Let A the set of all annotated RDF-
Graphs and B the set of all annotated updates. Assume updates arrive from
source to target in FIFO order. The Update Integration function � : A×B → A
takes an annotated RDF-Graph GA ∈ A and an annotated update t ↪→ z ∈ B:

GA � t ↪→ z =

⎧⎪⎨
⎪⎩
GA ∪ {t ↪→ z} if (�w : t ↪→ w ∈ GA)

GA \ {t ↪→ w} if t ↪→ w ∈ GA ∧w + z ≤ 0

(GA \ {t ↪→ w}) ∪ {t ↪→ w + z} if t ↪→ w ∈ GA ∧w + z > 0

The first piece of the Update Integration function handles incoming updates of
triples that are not in the current state. As we are assuming FIFO in the update
propagation from source to target, insertions always arrive before corresponding
deletions, therefore, this case only handles insertions. The second piece handles
deletions, only if the incoming deletion makes the annotation zero the triple is
deleted from the current state. The third piece handles deletions that do not
make the annotation zero and insertions of already existing triples by simply
updating the annotation value.

We now consider each participant has an annotated RDF-Graph GA and
an ordered set of annotated updates UA. SPARQL queries are evaluated on the
RDF-Graph {t | t ↪→ z ∈ GA}. SPARQL Updates are also evaluated this way, but
their effect is translated to annotated RDF-Graphs as follows: the insertion of t to
the insertion of t ↪→ 1 and the deletion of t to the deletion of the annotated triple
having t as first coordinate. Specification 1.1 details the methods to insert/delete
triples and synchronize materialized fragments. Figure 3b shows the fragment
synchronization algorithm in action. A proof of correctness follows the same
case-base analysis developed to prove [10].

3.1 Provenance for Conflict Resolution

In section 3 we solved the problem of consistent synchronization of basic frag-
ments. However, our consistency criterion is based on the mere existence of
triples, instead of on the possible conflicts between triples coming from differ-
ent fragments and the ones locally inserted. Col-Graph’s strategy in this case
is that each participant is responsible for checking the semantic correctness of
its dataset, as criteria often varies and what is semantically wrong for one par-
ticipant, could be right for another. Participants can delete/insert triples to fix
what they consider wrong. Participants that receive these updates can edit in
turn if they do not agree with them.

In the event of two triples being semantically incompatible, the main criteria
to choose which one of them delete is the provenance of the triples. With this
information, the decision can be made based on the trust on its provenance.
As in [11], we propose to substitute the integer annotations of the triple by
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Annotated Graph GA ,
Ordered Set ΔPID

void insert(t) :
pre : t /∈ {t′|t ↪→ x ∈ GA}
GA := GA ∪ t ↪→ 1
Append(ΔPID, t ↪→ 1)

void delete(t) :
pre : t ∈ {t′|t′ ↪→ x ∈ GA}
GA := GA � t ↪→ −z
Append(ΔPID, t ↪→ −z)

void sync(F [Px], ΔPx) :
for t ↪→ z ∈ ΔPx :

i f t ↪→ z /∈ ΔPID :
GA := GA � t ↪→ z
Append(ΔPID, t ↪→ z)

Specification 1.1. Class Participant
when triples are annotated with ele-
ments of Z

IRI PID ,
Annotated Graph GA ,
Ordered Set ΔPID

void insert(t) :
pre : t /∈ {t′|t ↪→ x ∈ GA}
GA := GA ∪ t ↪→ PID

Append(ΔPID, t ↪→ PID)

void delete(t) :
pre : t ∈ {t′|t′ ↪→ x ∈ GA}
GA := GA � t ↪→ −m
Append(ΔPID, t ↪→ −m)

void sync(F [Px],ΔPx) :
for t ↪→ m ∈ ΔPx :

i f t ↪→ m /∈ ΔPID :
GA := GA � t ↪→ m
Append(ΔPID, t ↪→ m)

Specification 1.2. Class Participant
when triples are annotated with elements
of the monoid M

an element of a commutative monoid that embeds (Z,+, 0). We recall that a
commutative monoid is an algebraic structure comprised by a set K, a binary,
associative, commutative operation ⊕ and an identity element 0K ∈ K such
that (∀k ∈ K | k ⊕ 0K = k; a monoid M = (K,⊕, 0K) embeds another monoid
M ′ = (K ′,�, 0K′) iff there is a map f : K → K ′ such that f(0K) = f(0K′) and
(∀a, b ∈ K : f(a⊕ b) = f(a)� f(b)). If we annotate with a monoid that embeds
(Z,+, 0), only a minor change is needed in our synchronization algorithm to
achieve consistency. This monoid is used to encode extra provenance information.

Definition 5. Assume each participant in the collaboration network has a unique
ID, and let X be the set of all of them. Let M = (Z[X ],⊕, 0) be a monoid with:

1. The identity 0.
2. The set Z[X ] of polynomials with coefficients in Z and indeterminates in X.
3. The polynomial sum ⊕, for each monomial with the same indeterminate:
aX ⊕ bX = (a+ b)X

4. M embeds (Z,+, 0) through the function f(a1X1 ⊕ · · · ⊕ anXn) =
n∑
1
ai

Each time a participant inserts a triple, she annotates it with its ID with
coefficient 1. The only change in definition 4 is the use of ⊕ instead of +. Speci-
fication 1.2 describes the algorithm to insert/delete triples and synchronize frag-
ments with triples annotated with elements of M .

When annotating with Z, the only information encoded in triples is their
number of derivations. M adds (i) Which participant is the author of the triple.
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Which (s,p,x)? :
(s,p,o) or
(s,p,r) or
(s,p,v)
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P5:
(s,p,o) ↪→ 3
(s,p,r) ↪→ 1
(s,p,v) ↪→ 2

(a) Without provenance, P5 only informa-
tion is the number of derivations. She does
not know the author of the facts.
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P1:
(s,p,o) ↪→ P1

�� ����
���

��

�� ��

�� �	

P4:
(s,p,r) ↪→ P4
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P3:
(s,p,o) ↪→ P1 + P3

��
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P2:
(s,p,o) ↪→ P1
(s,p,v) ↪→ P2

��


Which (s,p,x)?:
from P1 and P2 or

from P4 or
Mine and from P2

�� ��

�� �	

P5:
(s,p,o) ↪→ 2P1 + P3

(s,p,r) ↪→ P4
(s,p,v) ↪→ P5 + P2

(b) With provenance, P5 also knows who inserted
what and if it was concurrent, enabling trust based
decisions to solve conflicts.

Fig. 4. Difference between annotating with Z (4a) versus annotating with M (4b). All
fragments are full.

A triple stored by a participant P with an annotation comprised by the sum of n
monomials indicates that the triple was inserted concurrently by n participants
from which there is a path in CN to P . (ii) The number of paths in the Collabo-
ration Network in which all edges concern the triple, starting from the author(s)
of the triple to this participant, indicated by the coefficient of the author’s ID.

Figure 4 compares annotations with Z versus annotations with M . In the
depicted collaboration network, the fact (s,p,o) is inserted concurrently by P1
and P3, (s,p,v) is inserted concurrently by P2 and P5 and (s,p,r) inserted only
by P4. When the synchronization is finished, P5 notices that it has three triples
with s and p as subject and predicate but different object values. If P5 wants to
keep only one of such triples based on trust, the Z annotations (4a) do not give
her enough information, while the M annotations (4b) give more information for
P5 to take the right decision. She can know that the triple (s, p, o) was inserted
by two participants P1 and P3, while (s, p, r) was only inserted by P4 and that
(s, p, v) was inserted by P2 and herself.

4 Complexity Analysis

In this section, we analyze the complexity in time, space and traffic of RDF-
Graphs annotated with M and their synchronization, to answer the question:
how much does it cost to guarantee the correctness of a collaboration network?.

Concerning time complexity, from specifications 1.1 and 1.2, we can see that
for the insert and delete methods is constant. For the synchronization of a frag-
ment F [Px]@Py, the complexity is n(x1+x2) where n is the number of incoming
updates, x1 the complexity of checking if an update is in ΔPy (which can be
considered linear) and x2 the complexity of the � function. For Z annotations,
� is constant, for M is linear on the size of the largest polynomial.

Concerning space complexity, the overhead is the size of the annotations. For
an annotated triple t at a participant P , the relevant factors are: (i) the set of
participants that concurrently inserted t from which there is a path to P such
that all edges concern t, that we will denote βt (ii) the number of paths to P
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in the collaboration network from the participants P1 . . . Pn that concurrently
inserted t such that all edges concern t. For a participant Pi, we denote this
number as ρt←Pi . Let sizeOf be a function that returns the space needed to
store an object. Assume that the cost of storing ids is a constant ω. Then, for
t ↪→ z, z ∈ Z[x] we have sizeOf(z) = |βt|ω +

∑
Pi∈βt

sizeOf(ρt←Pi). Therefore,

for each triple we need to keep a hash map from ids to integers of size |βt|. The
worst case for |βt| is a strongly connected Collaboration Network CN where all
participants insert t concurrently, yielding an array of size |CN | . The worst
case for ρt←Pi is a complete network, as the number of different simple paths is
maximal and in the order of |CN |!

The size of the log at a participant P depends on two factors (i) the dynamics
of P , i.e., the number of local updates it does. (ii) the dynamics of the fragments
materialized by P , i.e., the amount of updates at the sources that concern them.

In terms of the number of messages exchanged our solution is optimal, only
one contact with the update log of each source is needed. In terms of message
size, the overhead is in principle the same as the space complexity. However,
many compression techniques could be applied.

The solution described so far uses an update log that is never purged. Having
the full update history of a participant has benefits like enabling historical queries
and version control. However, when space is limited and/or updates occur often,
keeping such a log could not be possible. To adapt our solution to data feeds we
need to solve two issues: (i) How participants materialize fragments for the first
time? (ii) How to check if an incoming update has been already received?

To solve the first issue, an SPARQL extension that allows to query the an-
notated RDF-Graph and return the triples and their annotations is needed, for
example the one implemented in [24]. To solve the second issue, we propose to
add a second annotation to updates, containing a set of participant identifiers φu
representing the participants that have already received and applied the update.
When an update u is created, φu is set to the singleton containing the ID of the
author, when u is pushed downstream, the receiving participant checks if his ID
is in φu, if yes, u has already been received and is ignored, else, it is integrated,
and before pushing it downstream it adds its ID to φu. Of course, there is a price
to pay in traffic, as the use of φ increases the size of the update. The length of
φu is bounded by the length of the longest simple path in the Collaboration-
Network, which in turn is bounded by the number of participants.

To summarize, the performance of our solution is mainly affected by the fol-
lowing properties of the CN: (i) The probability of concurrent insertion of the
same data by many participants. The higher this probability, the number of
terms of the polynomials is potentially higher. (ii) Its connectivity. The more
connected, the more paths between the participants and the potential values of ρ
are higher. If the network is poorly connected, few updates will be consumed and
the effects of concurrent insertion are minimized. (iii) The overlapping between
the fragments. If all fragments are full, all incoming updates will be integrated
by every participant, maximizing the effects of connectivity and concurrent
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insertion. If all fragments are disjoint, then all updates will be integrated only
once and the effects of connectivity and concurrent insertion will be neutralized.

5 Experimentations

We implemented specification 1.2 on top of the SPARQL engine Corese3 v3.1.1.
The update log was implemented as a list of updates stored in the file sys-
tem. We also implemented the φ annotation described in section 4 to check for
double reception. We constructed a test dataset of 49999 triples by querying
the DBpedia 3.9 public endpoint for all triples having as object the resource
http://dbpedia.org/resource/France. Implementation, test dataset, and in-
structions to repeat the experiments are freely available4.

Our first experiment studies the execution time of our synchronization algo-
rithm. The goal is to confirm the linear complexity derived in section 4 and to
check its cost w.r.t fragment re-evaluation. We defined a basic fragment with the
triple pattern ?x :ontology/birthPlace ?z (7972 triples 15% of the test dataset’s
size). We loaded the test dataset in a source, materialized the fragment in a
target and measured the execution time when inserting and when deleting 1, 5,
10, 20, 30, 40 and 50% of triples concerning the fragment. As baseline, we set up
the same datasets on two RDF-Graphs and measured the time of clearing the
target and re-evaluating the fragment. Both source and target were hosted on
the same machine to abstract from latency.

We used the Java MicroBenchmark Harness5 v. 0.5.5 to measure the average
time of 50 executions across 10 JVM forks with 50 warm-up rounds, for a total
of 500 samples. Experiments were run on a server with 20 hyperthreaded cores
with 128Gb of ram an Linux Debian Wheezy. Figure 5 shows a linear behaviour,
consistent with the analysis in section 4. Synchronization is less expensive than
re-evaluation up to approx. 30% of updates. We believe that a better implemen-
tation that takes full advantage of streaming, as Corese does by processing data
in RDF/XML, could improve performance. Basic fragments are also very fast to
evaluate, we expect than in future work, when we can support a broader class
of fragments, update integration will be faster in most cases.

Our second experiment compares the impact on annotation’s size produced
by two of the factors analyzed in section 4: concurrent insertions and collabora-
tion network connectivity, in order to determine which is more significant. We
loaded the test dataset in: (i) An RDF-Graph. (ii) An annotated RDF-Graph,
simulating n concurrent insertions of all triples, at n annotated RDF-Graphs
with id http://participant.topdomain.org/$i$, with i ∈ [0, n] (iii) An an-
notated RDF-Graph, simulating the insertion of all triples in other graph with id
“http://www.example.org/participant”, arriving to this one through m different
simple paths, and measured their size in memory on a Macbook Pro running

3 http://wimmics.inria.fr/corese
4 https://code.google.com/p/live-linked-data/wiki/ColGraphExperiments
5 http://openjdk.java.net/projects/code-tools/jmh/
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Fig. 5. Comparison of execution time (ms) between synchronization and fragment
reevaluation. Error bars show the error at 95%.
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Fig. 6. Space Overhead of the Annotated Graph w.r.t a plain graph (PG). Both Con-
currency and Connectivity represent approx. 6% of overhead each.

MacOS Lion with java 1.7.0_10-ea-b13 and Java HotSpot(TM) 64-Bit Server
VM (build 23.6-b04, mixed mode).

Figure 6 shows the results. Both cases represent nearly the same overhead,
between 5 and 6 percent. Concurrency makes annotation’s size grow sub-linearly.
With respect to path number, annotation’s size grows even slower , however, after
10×1017 paths, the long type used in our implementation overflows, meaning that
in scenarios with this level of connectivity, the implementation must use BigInt
arithmetics. In conclusion, after paying the initial cost of putting annotations in
place, Col-Graph can tolerate a high number of concurrent inserts and a high
network connectivity.

The goal of our final experiment is to study the effect of network’s topology on
Col-Graph’s annotation’s size. We argue that the act of materializing fragments
and sharing updates is socially-driven, therefore, we are interested in analyzing
the behaviour of Col-Graph on social networks. We generated two sets of 40
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networks with 50 participants each, all edges defining full fragments, one follow-
ing the random Ërdos-Renyi model [5] and other following the social-network
oriented Forest Fire model [12]. Each networkset is composed of 4 subsets of
10 networks with densities {0.025, 0.05, 0.075, 0.1}. Table 1 shows the average of
the average node connectivity of each network set. Social networks in are less
connected than random ones, thus, we expect to have better performance.

We loaded the networks on the Grid5000 platform (https://www.grid5000.
fr/) and made each participant insert the same triple to introduce full con-
currency, thus, fixing the overlapping and concurrency parameter in their worst
case. Then, we let them synchronize repeatedly until quiescence with a 1 hour
timeout. To detect termination, we implemented the most naive algorithm: a
central overlord controls the execution of the whole network . We measured the
maximum and average coefficient values and the maximum and average number
of terms of annotations.

Figure 7 shows the results for Forest Fire networks. The gap between the av-
erage and maximum values indicates that topology has an important effect: only
few triples hit high values. From the Ërdos-Renyi dataset, only networks with
density 0.025 and finished before timeout without having a significant difference
with their ForestFire counterparts. These results suggest that high connectivity
affects the time the network takes to converge, and, as the number of rounds
to converge is much higher, the coefficient values should also be much higher.
We leave the study of convergence time and the implementation of a better
termination detection strategy for future work.

Table 1. Average node connectivities of the experimental network sets

0.025 0.05 0.075 0.1
Forest Fire 0.0863 0.2147 0.3887 0.5543

Ërdos-Renyi 0.293 1.3808 2.5723 3.7378

6 Related Work

Linked Data Fragments (LDF) [21] proposes data fragmentation and replication
as an alternative to SPARQL endpoints to improve availability. Instead of an-
swering a complex query, the server publishes a set of fragments that corresponds
to specific triple patterns in the query, offloading to the clients the responsibil-
ity of constructing the result from them. Col-Graph allows clients to define the
fragments based on their needs, offloading also the fragmentation. Our proposal
also solves the problem of writability, that is not considered by LDF.

[4,18] adapt the Distributed Version Control Systems Darcs and Git princi-
ples and functionality to RDF data. Their main goal is to provide versioning to
Linked Data, they do not consider any correctness criterion when networks of
collaborators copy fragments from each other, and they do not allow fragmen-
tation, i.e., the full repository needs to be copied each time.

[10,25] use eventual consistency as correctness criterion. However, this re-
quires that all updates to be eventually delivered to all participants, which is
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Fig. 7. Performance of the synchronization algorithm when applied on networks gen-
erated with the Forest Fire model

not compatible with fragmentation nor with socially-generated collaboration net-
work. [19] proposes a partial replication of RDF graph for mobile devices using
the same principles of SVN with a limited lifetime of local replica checkout-
commit cycle. Therefore, it is not possible to ensure synchronization of partial
copies with the source since a data consumer has to checkout a new partial graph
after committing changing to the data provider.

[9] formalizes an OWL-based syndication framework that uses description
logic reasoning to match published information with subscription requests. Sim-
ilar to us, they execute queries incrementally in response to changes in the
published data. However, in their model consumers do not update data, and
connection between consumers and publishers depends on syndication brokers.

Provenance models for Linked Data using annotations have been studied
in [26,6] and efficiently implemented in [24], showing several advantages with
respect to named graphs or reification. The model in [6] is based on provenance
polynomials and is more general than the one we used, however, as basic frag-
ments are a restricted class of queries, the M monoid suffices.

Collaborative Data Sharing Systems (CDSS) like Orchestra [11] use
Z-Relations and provenance to solve the data exchange problem in relational
databases. CDSS have two requirements that we do not consider: support for
full relational algebra in the fragment definition and strong consistency. How-
ever, the price to pay is limited scalability and the need of a global ordering
on the synchronization operation, that becomes blocking [20]. Both drawbacks
are not compatible with Linked Data requirements of scalability and partici-
pant’s autonomy. Col-Graph uses the same tools to solve the different fragment
synchronization problem, with an opposite trade-off: scalability and autonomy
of participants in exchange of weaker consistency and limited expressiveness of
fragment definitions.
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7 Conclusions and Future Work

In this paper, we proposed to extend Linked Data federation to data consumers
in order to improve its availability, scalability and data quality. Data consumers
materialize fragments of data from data providers and put them at disposal of
other consumers and clients. Adequate federated query engines can use these
fragments to balance the query load among federation members. Fragments can
be updated to fix errors, and these updates can be consumed by other members
(including the original sources) to collaboratively improve data quality.

We defined a consistency criterion for networks of collaborators that copy
fragments from each other and designed an algorithm based on annotated RDF-
triples to synchronize them consistently. We analyzed the complexity of our
algorithm in time, space and traffic, and determined that the main factors that
affect performance are the probability of concurrent insertion, the connectivity
of the collaboration network and the fragment overlapping.

We evaluated experimentally the incurred overhead using a 50k real dataset
on our open source implementation, finding that in space, concurrency and con-
nectivity represent approximately 6% of overhead each, and that it grows sub-
linearly; in time, our algorithm is faster than the reevaluation up to 30% of
updated triples without taking in account latency. We also found that our algo-
rithm performs better in socially generated networks than in random ones.

Future works include a large scale evaluation of Col-Graph focused on the
effect of fragment overlapping, and using real dataset dynamics. We also plan
to benchmark replication-aware federated query engines [13,17] on collaboration
networks using Col-Graph to quantify the availability boost of our solution, and
extend our model to handle dynamics on the fragment definitions themselves.

Acknowledgements. Some of the experiments presented in this paper were
carried out using the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several Universities as well
as other organizations. This work is supported by the French National Research
agency (ANR) through the KolFlow project (code: ANR-10-CONTINT-025).

References

1. Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer, S., Lehmann, J.: Crowd-
sourcing linked data quality assessment. In: Alani, H., et al. (eds.) ISWC 2013, Part
II. LNCS, vol. 8219, pp. 260–276. Springer, Heidelberg (2013)

2. Berners-Lee, T., O’Hara, K.: The read-write linked data web. Philosophical Trans-
actions of the Royal Society (2013)

3. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL web-
querying infrastructure: Ready for action? In: Alani, H. (ed.) ISWC 2013, Part II.
LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013)

4. Cassidy, S., Ballantine, J.: Version control for rdf triple stores. In: ICSOFT (2007)
5. Erdös, P., Rényi, A.: On the evolution of random graphs. Magyar Tud. Akad. Mat.

Kutató Int. Közl 5 (1960)



340 L.-D. Ibáñez et al.

6. Geerts, F., Karvounarakis, G., Christophides, V., Fundulaki, I.: Algebraic struc-
tures for capturing the provenance of sparql queries. In: ICDT (2013)

7. Green, T.J., Ives, Z.G., Tannen, V.: Reconcilable differences. Theory of Computer
Systems 49(2) (2011)

8. Gupta, A., Jagadish, H., Mumick, I.S.: Data integration using self-maintainable
views. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS,
vol. 1057, pp. 140–144. Springer, Heidelberg (1996)

9. Halaschek-Wiener, C., Kolovski, V.: Syndication on the web using a description
logic approach. J. Web Sem. 6(3) (2008)

10. Ibáñez, L.D., Skaf-Molli, H., Molli, P., Corby, O.: Live linked data: Synchronizing
semantic stores with commutative replicated data types. International Journal of
Metadata, Semantics and Ontologies 8(2) (2013)

11. Karvounarakis, G., Green, T.J., Ives, Z.G., Tannen, V.: Collaborative data sharing
via update exchange and provenance. ACM TODS (August 2013)

12. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. ACM TKDD 1(1) (March 2007)

13. Montoya, G., Skaf-Molli, H., Molli, P., Vidal, M.E.: Fedra: Query Processing for
SPARQL Federations with Divergence. Tech. rep., Université de Nantes (May 2014)

14. Morsey, M., Lehmann, J., Auer, S., Stadler, C., Hellmann, S.: Dbpedia and the
live extraction of structured data from wikipedia. Program: Electronic Library
and Information Systems 46(2), 157–181 (2012)

15. Ognyanov, D., Kiryakov, A.: Tracking changes in RDF(S) repositories. In: Gómez-
Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, p. 373.
Springer, Heidelberg (2002)

16. Passant, A., Mendes, P.N.: sparqlpush: Proactive notification of data updates in
rdf stores using pubsubhubbub. In: Sixth Workshop on Scripting and Development
for the Semantic Web, SFSW (2010)

17. Saleem, M., Ngonga Ngomo, A.-C., Xavier Parreira, J., Deus, H.F., Hauswirth,
M.: DAW: Duplicate-aWare federated query processing over the web of data. In:
Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 574–590. Springer,
Heidelberg (2013)

18. Sande, M.V., Colpaert, P., Verborgh, R., Coppens, S., Mannens, E., de Walle, R.V.:
R&wbase:git for triples. In: LDOW (2013)

19. Schandl, B.: Replication and versioning of partial RDF graphs. In: Aroyo, L., An-
toniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache,
T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 31–45. Springer, Heidelberg
(2010)

20. Taylor, N.E., Ives, Z.G.: Reliable storage and querying for collaborative data shar-
ing systems. In: ICDE (2010)

21. Verborgh, R., Sande, M.V., Colpaert, P., Coppens, S., Mannens, E., de Walle, R.V.:
Web-scale querying through linked data fragments. In: LDOW (2014)

22. W3C: SPARQL 1.1 Federated Query (March 2013),
http://www.w3.org/TR/sparql11-federated-query/

23. W3C: SPARQL 1.1 Update (March 2013),
http://www.w3.org/TR/sparql11-update/

24. Wylot, M., Cudre-Mauroux, P., Groth, P.: Tripleprov: Efficient processing of lineage
queries in a native rdf store. In: WWW (2014)

25. Zarzour, H., Sellami, M.: srce: a collaborative editing of scalable semantic stores
on p2p networks. Int. J. of Computer Applications in Technology 48(1) (2013)

26. Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for
representing, reasoning and querying with annotated semantic web data. Web
Semant 11 (March 2012)



Transferring Semantic Categories with Vertex

Kernels: Recommendations
with SemanticSVD++

Matthew Rowe

School of Computing and Communications, Lancaster University, Lancaster, UK
m.rowe@lancaster.ac.uk

Abstract. Matrix Factorisation is a recommendation approach that
tries to understand what factors interest a user, based on his past ratings
for items (products, movies, songs), and then use this factor information
to predict future item ratings. A central limitation of this approach how-
ever is that it cannot capture how a user’s tastes have evolved beforehand;
thereby ignoring if a user’s preference for a factor is likely to change. One
solution to this is to include users’ preferences for semantic (i.e. linked
data) categories, however this approach is limited should a user be pre-
sented with an item for which he has not rated the semantic categories
previously; so called cold-start categories. In this paper we present a
method to overcome this limitation by transferring rated semantic cat-
egories in place of unrated categories through the use of vertex kernels;
and incorporate this into our prior SemanticSV D++ model. We eval-
uated several vertex kernels and their effects on recommendation error,
and empirically demonstrate the superior performance that we achieve
over: (i) existing SV D and SV D++ models; and (ii) SemanticSV D++

with no transferred semantic categories.

1 Introduction

Recommender systems have become a ubiquitous information filtering device
that is prevalent across the web. At its core is the profiling of a user based on his
prior behaviour to then forecast how he will behave in the future: i.e. how he will
rate and consume items (movies, songs, products) thereafter. One of the most
widespread approaches to recommending items to users is matrix factorisation;
this method functions by mining a given user’s affinity with a range of latent
factors, in doing so allowing a user’s rating for a given item to be predicted based
on the dot-product (〈puqi〉) between the user’s latent factor vector (pu) and the
item’s latent factor vector (qi). The problem with such approaches is that one
cannot capture how a given user’s tastes have evolved over time, given that
the mined latent factors vary depending on the input - the factor consistency
problem: where the latent factor vector indices of equivalent factors differ each
time factorisation is performed. If we can capture information about how a user’s
tastes have changed then we can understand whether a user is likely to diverge
in their preferences, or not, in the future and use this information to inform

P. Mika et al. (Eds.) ISWC 2014, Part I, LNCS 8796, pp. 341–356, 2014.
c© Springer International Publishing Switzerland 2014
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what recommendations to give. This prompts two research questions: how can
we capture the evolution of a user’s tastes over time? And how can we include
taste evolution information within a recommender system?

In our recent prior work we presented a recommendation approach based on
matrix factorisation called SemanticSVD++ [9] - a modification of the existing
SVD++ model [4] - that captures a user’s preferences for semantic categories
of items, and how these preferences have evolved over time. One limitation of
this approach, however, is the existence of cold-start categories where a user has
not rated an item from a given category before. To overcome this limitation in
this paper we present a technique to transfer existing, rated semantic categories
via vertex kernels, thereby leveraging existing semantic category ratings into the
SemanticSVD++ model. Our contributions in this paper are as follows:

1. Identification and quantification of the cold-start categories problem, its im-
plications on semantic recommendation approaches, and a method to trans-
fer existing rated semantic categories via vertex kernels that function over
the linked data graph - presenting four of such vertex kernels.

2. An extension of the SemanticSVD++ recommendation approach that cap-
tures users’ taste evolution, based on semantic categories, and transfers rated
semantic categories to overcome the cold-start categories problem.

3. An empirical evaluation of our approach that demonstrates improved per-
formance when transferring semantic categories over: (i) existing SVD and
SV D ++ models; and (ii) not transferring rated semantic categories.

We have structured this paper as follows: section 2 presents the related work
within the area of semantic recommender systems and how such existing ap-
proaches have functioned to date; section 3 explains the movie recommendation
dataset that we used and the URI alignment procedure that we followed; sec-
tion 4 explains the transferring of semantic categories to overcome the cold-start
category problem; section 5 presents our approach for modelling users’ taste pro-
files and how this enables the evolution of user’s tastes to be captured; section
6 describes the SemanticSVD++ model, the factors within the model, and the
model learning procedure that we followed; section 7 presents our experimental
evaluation of the model; section 8 discusses the limitations of this work and plans
for future work; and section 9 draws the paper to a close with the conclusions
gleaned from this work.

2 Related Work

There has been a flurry of recent work to combine recommender systems with
the semantic web, and in particular linked data. Earlier work in this space was
presented by Passant [8] to perform music recommendations by using the taste
profile of a user’s listening habits. The linked data graph could then be used to
find the different pathways that connect two arbitrary nodes (e.g. resources of
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bands and artists) and how they can be linked together. These paths were then
used to gauge how close artists are, and thus recommend similar bands to what
the user had listened to. The linked data graph has also been used in recent work
by Di Noia et al. [2] to extract movie features for a content-based recommender
system in order to build user profiles. In this instance, features specific to movie
items (e.g. actors, directors of movies) were extracted from linked data based
on the surrounding context of the item. Work by Ostuni et al. [7] expanded on
the work of Di Noia et al. [2] by mining path-based features that link the past
ratings of users together; in doing so the authors were able to induce a top-
n ranking function for recommendations. Such is the potential for linked data
within recommender systems, that the Extended Semantic Web Conference 2014
has also held a recommendation challenge where participants must recommend
books to users; where such books are aligned with their semantic web URIs on
the web of linked data.1

Our recent work [9] combined semantic taste evolution information into a
recommender system by modelling users’ tastes at the semantic category level,
thereby overcoming the factor consistency problem - i.e. where mined latent fac-
tor vector indices of equivalent factors differ each time factorisation is performed.
However this approach is limited when presented with items assigned to cold-
start categories ; where a given user has not rated an item’s categories beforehand.
This paper extends our prior work by first explaining how the linked data graph
can be harnessed to identify similar, previously rated semantic categories, for
a given user, and transfer these into the recommendation approach - thereby
overcoming the problem of cold-start categories - to do this we use vertex ker-
nels. To aid reader comprehension, we provide a brief overview of how we model
and track users’ ratings for semantic categories, and how the SemanticSVD++

model functions - for a more thorough overview please see our prior work [9].

3 Movie Recommendation Dataset and URI Alignment

For our experiments we used the MovieTweetings dataset,2 obtained from the
RecSys wiki page3 after being provided with the data by Doom et al. [3]. This
dataset was obtained by crawling Twitter for Tweets that contained Internet
Movie DataBase (IMDB) links coupled with a rating (out of 10). To enable
unbiased testing of our recommendation approach, we divided the dataset up
as follows: we ordered the ratings by their creation time and maintained the
first 80% as the training set, the next 10% for the validation set, and the final
10% as the test set. As the dataset covers a period of around 30-weeks (March
2013 to September 2013), this meant that the training set contained the first
24 weeks, with the subsequent 3 weeks’ segments containing the validating and
testing portions. In the following sections the training set is analysed for users’
semantic taste evolution and used to train the recommendation model, we use

1 http://2014.eswc-conferences.org/important-dates/call-RecSys
2 This was the November 2013 version.
3 http://recsyswiki.com/wiki/Movietweetings
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the validation set for hyperparameter tuning, and the held-out test set for the
final experiments.

Movie recommendation datasets provide numeric IDs for movie items, which
users have rated, and assign metadata to these IDs: title, year, etc. As we shall
explain below, the user profiling approach models users’ affinity to semantic
categories, therefore we need to align the numeric IDs of movie items to their
semantic web URIs - to enable the semantic categories that the movie has been
placed within to be extracted.4. In this work we use DBPedia SKOS categories
as our semantic categories.

The URI alignment method functioned as follows: first, we used the SPARQL
query from [7] to extract all films (instances of dbpedia-owl:Film) from DBPe-
dia which contained a year within one of their categories.5 Using the extracted
mapping between the movie URI (?movie) and title (?title) we then iden-
tified the set of candidate URIs (C) by performing fuzzy matches between a
given item’s title and the extracted title from DBPedia - using the normalised
reciprocal Levenshtein distance and setting the similarity threshold to 0.9. We
used fuzzy matches here due to the different forms of the movie titles and ab-
breviations within the dataset and linked data labels. After deriving the set
of candidate URIs, we then dereferenced each URI and looked up its year to
see if it appears within an associated category (i.e. ?movie dcterms:subject

?category). If the year of the movie item appears within a mapped category
(?category) then we identified the given semantic URI as denoting the item.
This disambiguation was needed here as multiple films can share the same ti-
tle (i.e. film remakes). This approach achieved coverage (i.e. proportion of items
mapped) of 69%: this reduced coverage is explained by the recency of the movies
being reviewed and the lack of coverage of this on DBPedia at present. Table 1
presents the statistics of the dataset following URI alignment.

From this point on we use the following notations to aid comprehension: u, v
denote users, i, j denote items, r denotes a known rating value (where r ∈ [1, 10]),
r̂ denotes a predicted rating value, c denotes a semantic category that an item
has been mapped to, and cats(i) is a convenience function that returns the set
of semantic categories of item i.

Table 1. Statistics of the MovieTweetings dataset with the reduction from the original
dataset shown in parentheses

#Users #Items #Ratings Ratings Period

14,749 (-22.5%) 7,913 (-30.8%) 86,779 (-25.9%) [28-03-2013,23-09-2013]

4 E.g. The 1979 Sci-Fi Horrow film Alien is placed within the semantic categories of
Alien (franchise) films and 1979 horror films, by the dcterms:subject predi-
cate.

5 We used a local copy of DBPedia 3.9 for our experiments:
http://wiki.dbpedia.org/Downloads39
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4 Transferring Semantic Categories

A recommendation approach based upon semantic categories will assess how
a user has rated items (books, movies, songs) beforehand, and associate those
ratings with the items’ categories to form a taste profile of the user. This taste
profile, that captures the user’s affinity for semantic categories, will then be used
to predict how the user will rate a new item, given its semantic categories. A
problem can arise here if the item’s semantic categories have not been rated by
the user: we define this as the cold-start categories problem. To demonstrate the
extent of the problem, consider the plots shown in Fig. 1. In the left subfigure,
the leftmost plot shows the association between the number of reviewed and
unreviewed categories for each user when using the training dataset as back-
ground knowledge to form the profile of the user and the validation split to
be the unseen data; while the rightmost figure shows the same association but
with the training and validation splits as background data and the test split
as the unseen data. In this instance we see that the more categories a user has
rated, then the fewer categories they have missed. The right subfigure shows the
relative frequency distribution of these missed categories, indicating a heavy-
tailed distribution where a small number of categories are missed across many
users. This indicates that cold-start categories hold additional information that
a recommendation approach should consider.
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(b) Distribution of Unreviewed Categories

Fig. 1. The left plot shows the association between the number of reviewed and un-
reviewed categories for each user, and the right plot showing the relative frequency
distribution of unreviewed categories within each split

4.1 Category Transfer Function and Vertex Kernels

To overcome the problem of cold-start categories we can include a user’s pref-
erences for rated semantic categories, where such categories are similar to the
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unreviewed categories. This is where the utility of the semantic web becomes
evident: as the semantic categories are related to one another via SKOS rela-
tions (i.e. broader, narrower, related, etc.), we can identify semantic categories
that are similar to the unreviewed categories by how they are related within the
linked data graph - in a similar vein to prior work [8,2]:

Definition 1 (Linked Data Graph). Let G = 〈V,E, L〉 denote a linked data
graph, where c ∈ V is the set of concept vertices within the graph (i.e. resources,
classes), ecd ∈ E is an edge, or link, connecting c, d ∈ V and σ(ecd) ∈ L denotes
a label of the edge - i.e. the predicate associating c with d.

Now, let C be the set of categories that a given user has rated previously, and
D be the set of categories that a given item has been mapped to, then we define
the Category Transfer function as follows:

f(C,D) = {argmax
c∈C

k
(
c, d
)
: d ∈ D} (1)

The codomain of the Category Transfer function is therefore a subset of the
set of categories that the user has rated beforehand (i.e. C′ ⊂ C). In the above
function the vertex kernel k computes the similarity between categories c and
d: this is often between the features vectors of the categories returned by the
mapping function φ:

Definition 2 (Vertex Kernel). Given graph vertices c and d from a linked
data graph G′, we define a vertex kernel (k) as a surjective function that maps
the product of two vertices’ attribute vectors into a real valued space, where φ(c)
is a convenience function that returns kernel-specific attributes to be used by the
function (i.e. an n-dimensional attribute vector of node c: φ(c) ∈ Rn). Hence:

k : V × V → R (2)

k(φ(c), φ(d)) �−→ x (3)

Given this formulation, we can vary the kernel function (k(., .)) to measure the
similarity between arbitrary categories based on the topology of the linked data
graph that surrounds them. All the kernels considered in this paper function over
two nodes’ feature vectors. Therefore, to derive the feature vector for a given
category node (c), we include information about the objects that c is linked to
within the linked data graph. Let <c ?p ?o> define a triple where c appears
within the subject position. We can then populate a vector (x) based on the
object concepts that c links to over 1-hop: φ1 ∈ Rm - where m denotes the
dimensionality of the vector space. This can also be extended to n hops away
from c by traversing edges away from c and collecting the objects within the
traversed triples. Each element in the vector is weighted by the out-degree of
c, thereby capturing the probability of c linking to a given category. Given the
derivation of a Triple-Object Vector, using φn, for each category node, we varied
the vertex kernel between the four functions shown in Table 2.
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Table 2. Vertex kernels used to measure concept node similarities

Vertex Kernel Function

Cosine kn
cos(c, d) = arccos

φn(c) · φn(d)

‖φn(c)‖ ‖φn(d)‖

Dice kn
dice(c, d) =

2
(
φn(c) · φn(d)

)
|φn(c)|∑
i=1

φn
i (c) +

|φn(d)|∑
i=1

φn
i (d)

Squared Euclidean kn
se(c, d) =

( |φn(c)|∑
i=1

(
φn
i (c)− φn

i (d)
)2)−1

Jensen-Shannon Divergence kn
js(c, d) =

(
1

2

|φn(c)|∑
i=1

φn
i (c) ln

( 2φn
i (c)

φn
i (c)× φn

i (d)

+
1

2

|φn(d)|∑
i=1

φn
i (d) ln

( 2φn
i (d)

φn
i (c)× φn

i (d)

))−1

5 User Profiling: Semantic Categories

Semantic taste profiles describe a user’s preferences for semantic categories at
a given point in time, we are interested in understanding how these profiles
change. Recent work [6] assessed user-specific evolution in the context of review
platforms (e.g. BeerAdvocate and Beer Review) and found users to evolve based
on their own ‘personal clock ’. If we were to segment a user’s lifetime (i.e. time
between first and last rating) in our recommendation dataset into discrete life-
cycle periods where each period is the same width in time, then we will have
certain periods with no activity in them: as the user may go away, and then
return later. To counter this we divided user’s lifecycle into 5 stages where each
stage contained the same number of reviews - this was run for users with ≥ 10
ratings within the training set. Prior work has used 20 lifecycle stages [6] to
model user development, however we found this number to be too high as it dra-
matically reduced the number of users for whom we could mine taste evolution
information - i.e. a greater number of stages requires more ratings.

To form a semantic taste profile for a given user we used the user’s ratings
distribution per semantic category within the allotted time window (provided
by the lifecycle stage of the user as this denotes a closed interval - i.e. s =
[t, t′], t < t′). We formed a discrete probability distribution for category c at
time period s ∈ S (where S is the set of 5 lifecycle stages) by interpolating
the user’s ratings within the distribution. We first defined two sets, the former
(Du,s,c

train) corresponding to the ratings by u during period/stage s for items from
category c, and the latter (Du,s

train) corresponding to ratings by u during s, hence
Du,s,c

train ⊆ D
u,s
train, using the following construct:

Du,s,c
train = {(u, i, r, t) : (u, i, r, t) ∈ Dtrain, t ∈ s, c ∈ cats(i)} (4)

We then derived the discrete probability distribution of the user rating cat-
egory c favourably as follows, defining the set Cu,s

train as containing all unique
categories of items rated by u in stage s:
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Pr(c|Du,s
train) =

1

|Du,s,c
train|

∑
(u,i,r,t)∈Du,s,c

train

r

∑
c′∈Cu,s

train

1

|Du,s,c′
train |

∑
(u,i,r,t)∈Du,s,c′

train

r
(5)

We only consider the categories that item URIs are directly mapped to; i.e.
categories connected to the URI by the dbterms:subject predicate.

5.1 Taste Evolution

We now turn to looking at the evolution of users’ tastes over time in order to
understand how their preferences change. Given our use of probability distribu-
tions to model the lifecycle stage specific taste profile of each user, we can apply
information theoretic measures based on information entropy. We used condi-
tional entropy to assess the information needed to describe the taste profile of a
user at one time step (Q) using his taste profile from the previous stage (P ). A
reduction in conditional entropy indicates that the user’s taste profile is similar
to that of his previous stage’s profile, while an increase indicates the converse:

H(Q|P ) =
∑
x∈P,
y∈Q

p(x, y) log
p(x)

p(x, y)
(6)

Our second measure captures the influence that users in general have on
the taste profiles of individual users - modelling user-specific (local) taste de-
velopment and global development as two different processes. We used transfer
entropy to assess how the taste profile (Ps) of a user at one time step (s) has been
influenced by (his own) local profile (Ps−1) and global taste profile (Qs−1) at
the previous lifecycle stage (s−1). For the latter taste profile (Qs−1), we formed
a global probability distribution (as above for a single user) using all users who
posted ratings within the time interval of stage s. Now, assume that we have
a random variable that describes the local categories that have been reviewed
at the current stage (Ys), a random variable of local categories at the previous
stage (Ys−1). and a third random variable of global categories at the previous
stage (Xs−1), we then define the transfer entropy of one lifecycle stage to another
as [10]: TX→Y = H(Ys|Ys−1) − H(Ys|Ys−1, Xs−1). Using the above probability
distributions we can calculate the transfer entropy based on the joint and con-
ditional probability distributions given the values of the random variables from
Ys, Ys−1 and Xs−1:

TX→Y =
∑
y∈Ys,

y′∈Ys−1,
x∈Xs−1

p(y, y′, x) log
p(y|y′, x)
p(y|y′) (7)
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We derived the conditional entropy and transfer entropy over the 5 lifecycle
periods in a pairwise fashion, i.e. H(P2|P1), for each user, and plotted the curve
of the mean conditional and transfer entropy in Figure 2 using the training split
- including the 95% confidence intervals. For conditional entropy, we find that
users tend to diverge in their ratings and categories over time, given the increase
in the mean curve towards later portions of the users’ lifecycles. While for transfer
entropy, we find that users’ transfer entropy increases over time, indicating that
users are less influenced by global taste preferences, and therefore the ratings of
other users.
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Fig. 2. Taste evolution of users at the semantic category level: (i) comparing their di-
vergence from prior semantic category ratings (2(a)); and (ii) comparing their influence
of global semantic category taste trends (2(b))

6 SemanticSVD++

In this section we present a brief overview of SemanticSVD++ [9], an extension
of Koren et al.’s earlier matrix factorisation model: SV D++ [4]. The predictive
function of the model is shown in full in Eq. 8, we now explain each component.

r̂ui =

Static Biases︷ ︸︸ ︷
μ+ bi + bu +

Category Biases︷ ︸︸ ︷
αibi,cats(i) + αubu,cats(i)

+

Personalisation Component︷ ︸︸ ︷
qᵀ
i

(
pu + |R(u)|− 1

2

∑
j∈R(u)

yj + |cats(R(u))|−
1
2

∑
c∈cats(R(u))

zc

)

(8)
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6.1 Static Biases

The static biases include the mean rating score (μ) across all ratings within the
training segment; the item bias (bi), and the user bias (bu). The item bias is the
average deviation from the mean bias for the item i within the training segment,
while the user bias is the average deviation from the mean bias from the training
segment’s ratings by user u.

6.2 Item Biases Towards Categories

We model the biases that an item may have given the categories it has been
linked to by capturing the proportional change in category ratings - i.e. in general
over the provided training portion. Let Qs be the global taste profile (discrete
probability distribution of all categories) in stage s, and k be the number of
stages back in the training segment from which either a monotonic increase or
decrease in the probability of rating category c began from, then the global taste
development for c is defined as follows:

δc =
1

4− k

4∑
s=k

Qs+1(c)−Qs(c)

Qs(c)
(9)

From this we then calculated the conditional probability of a given category
being rated highly by accounting for the change rate of rating preference for the
category as follows:

Pr(+|c) =
Prior Rating︷ ︸︸ ︷
Q5(c) +

Change Rate︷ ︸︸ ︷
δcQ5(c) (10)

By averaging this over all categories for the item i we can calculate the evolv-
ing item bias from the provided training segment:

bi,cats(i) =
1

|cats(i)|
∑

c∈cats(i)

Pr(+|c) (11)

6.3 User Biases Towards Categories: Vertex Kernels

To capture the development of a user’s preference for a category we derived
the average change rate (δuc ) over the k lifecycle periods coming before the final
lifecycle stage in the training set. The parameter k is the number of stages back
in the training segment from which either a monotonic increase or decrease in
the probability of rating category c highly began from:

δuc =
1

4− k

4∑
s=k

Pu
s+1(c)− Pu

s (c)

Pu
s (c)

(12)

We captured the change in transfer entropy for each user over time and mod-
elled this as a global influence factor σu, based on measuring the proportional
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change in transfer entropy starting from lifecycle period k that produced a mono-
tonic increase or decrease in transfer entropy:

σu =
1

4− k

4∑
s=k

T
s+1|s
Q→P − T

s|s−1
Q→P

T
s|s−1
Q→P

(13)

By combining the average change rate (δuc ) of the user highly rating a given
category c with the global influence factor (σu), we then derived the conditional
probability of a user rating a given category highly as follows, where Pu

5 denotes
the taste profile of the user observed for the final lifecycle stage (5):

Pr(+|c, u) =
Prior Rating︷ ︸︸ ︷
Pu
5 (c) +

Change Rate︷ ︸︸ ︷
δuc P

u
5 (c) +

Global Influence︷ ︸︸ ︷
σuQ5(c) (14)

We then took the average across all categories as the bias of the user given
the categories of the item:

bu,cats(i) =
1

|cats(i)|
∑

c∈cats(i)

Pr(+|c, u) (15)

Although the above summation will quantify the bias for categories linked
to item i for which the user has provided a rating beforehand, the bias will
ignore any categories for which the user has yet to provide ratings - our so-called
cold-start categories - a limitation of the approach presented in our prior work
[9]. Therefore, to counteract this we used the Category Transfer Function for a
given vertex kernel to incorporate the most similar categories that the user u
has rated before. Let C ≡ cats(Du

train), then we define the bias of the user given
the categories of item i as follows:

bu,cats(i) =
(
βk

) Prior Rated Categories︷ ︸︸ ︷
1

|C ∩ cats(i)|
∑

c∈{cats(i)∩C}
Pr(+|c, u)

+
(
1− βk

) Transferred Categories︷ ︸︸ ︷
1

|fk(C, cats(i)/C)|
∑

c∈fk(C,cats(i)/C)

Pr(+|c, u)

(16)

Here we have βk-weighted the influence of the transferred categories on the
bias in order assess the effects of the transferred categories on recommendation
accuracy. In essence, βk forms one of our hyperparameters that we optimise
when tuning the model over the validation set for a given vertex kernel (k). As
βk ∈ [0, 1] we can assess its effect: a larger βk places more emphasis on known
information, while a lower βk places more emphasis on transferred categories by
the given kernel (k). As the category biases are, in essence, static features we
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included two weights, one for each category bias, defined as αi and αu for the
item biases to categories and the user biases to categories respectively - these
weights are then learnt during the training phase of inducing the model.

6.4 Personalisation Component

The personalisation component of the SemanticSVD++ model builds on the
existing SV D++ model by Koren et al. [4] by including four latent factor vectors:
qi ∈ Rf denotes the f latent factors associated with the item i; pu ∈ Rf denotes
the f latent factors associated with the user u; yj ∈ Rf denotes the f latent
factors for item j from the set of rated items by user u: R(u); and we have defined
a new vector zc ∈ Rf which captures the latent factor vector, of f -dimensions,
for a given semantic category c. This latter component captures the affinity of
semantic categories with latent factors.

6.5 Model Learning

In order to learn our recommendation model (item and user biases, category
bias weights, latent factor vectors) we sought to minimise the following objective
function (including L2-regularisation of parameters):

min
b∗,α∗,p∗,q∗

∑
(u,i,t,r)∈D

(rui − r̂ui)2 + λ(b2i + b2u + α2
i + α2

u + ||qi||22 + ||pu||22)

Stochastic Gradient Descent (SGD) [1] was used to learn the parameters by
first shuffling the order of the ratings within the training set, and then running
through the set of ratings one at a time. For each rating we calculated the
predicted rating based on the user and item with the current model parameters,
we then updated the model’s parameters based on the error: eui = rui− r̂ui. We
stopped the learning procedure once we converged on stable parameter vectors
(i.e. the difference in parameters is less than ε = 10−7). The update rules for our
model are shown in table 3. A single regularisation weight (λ) and learning rate
(η) are used for all parameters in the model.

One situation that arises within the data is where the user has no prior rating
information for a user within the training segment - i.e. cold-start users. In
this instance we used the mean rating (μ), the item static bias (bi) and the
category bias to the item (i) given the categories of the item (bi,cats(i)): r̂

cold
ui =

μ+ bi + αibi,cats(i). This is an improvement of our prior approach [9] which did
not address cold-start users.

7 Experiments

To test the efficacy of our recommendation model we used the existing SV D
and SV D++ models as baselines, and tested two varieties of SemanticSVD++:
SVD++ with Semantic Biases (ΨSB−SV D); and SemanticSVD++ (ΨS−SVD),
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Table 3. Update rules for each component within the SemanticSV D++ model

Model Parameter Update Rule

Item bias bi ← bi + η(eui − λbi)
User bias bu ← bu + η(eui − λbu)
Item category bias weight αi ← αi + η(eui − λαi)
User category bias weight αu ← αu + η(eui − λαu)

Item vector qi ← qi + η
(
eui(pu + |R(u)|− 1

2
∑

j∈R(u) yj

+|cats(R(u))|− 1
2
∑

c∈cats(R(u)) zc)− λqi

)
User vector pu ← pu + η(euiqi − λpu)
User items vector ∀j ∈ R(u) :

yj ← yj + η(eui|R(u)|− 1
2qi − λyj)

User categories vector ∀c ∈ cats(R(u)) :

zc ← zc + η(eui|cats(R(u))|− 1
2qi − λzc)

which was the full model that we proposed earlier that includes latent factors
for semantic categories. For these latter two models we tested the four vertex
kernels and with the use of no kernel - to see how category transfer affected
performance. We first performed model tuning, which we explain in more detail
below, before then applying the best model, once hyperparameters had been
selected. For model tuning, each recommendation model is trained using the
training split and applied to the validation split, while for model testing each
model is trained using both the training and validation split and applied to the
test split. Our aim in both instances is to minimise the Root Mean Square Error
(RMSE) over the respective test segment.

7.1 Model Tuning

In order to select the best model for application over the held-out test seg-
ment, we tuned the hyperparameters of each of the three models. For SVD and
SVD++ we had three hyperparameter to tune: the regularisation weight (λ), the
learning rate (η) and the number of factors (f). While for SV D++ with seman-
tic biases, and SemanticSVD++ we have four kernels, each of which requires
four hyperparameters to be tuned: the regularisation weight (λ), the learning
rate (η), the number of factors (f), and the preference of transferred categories
(βk).

6 We varied these hyperparameters through the following settings, using an
exhaustive grid search to find the combination that produced the lowest RMSE:
λ = {10−9, 10−8, . . . , 100}; η = {10−7, 10−6, . . . , 10−1}; f = {5, 10, 20, 50, 100};
βk = {0, 0.1, . . . , 1}. This was performed by searching the hyperparameter space
using our parallel processing cluster (11 x AMD Quad Core machines each with
16Gb RAM and 2Tb disk space) - i.e. optimising the model’s parameters with
SGD given the hyperparameters and reporting the error over the validation split.

6 We set n = 1 for each of the kernels therefore we are only forming feature vectors
that are 1-top away from each category.
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7.2 Results: Ratings Prediction Error

We now report on the results from forecasting the ratings within the test set
based on the optimised models following hyperparmater tuning. Table 4 presents
the RMSE values that we achieved. In order to assess for chance effects we per-
formed significance testing using the Mann-Whitney test to assess for differences
in location between the SVD++ baseline model and each of the proposed models
(with different kernels) - after randomly splitting the test segment into 25-folds
and macro-averaging the RMSE.7 We find that for all models we achieved a
statistically significant reduction in RMSE over the baseline - with the signif-
icance probability levels indicated. The results also indicate that the inclusion
of transferred categories reduces prediction error over the use of no vertex ker-
nel, thereby suggesting that the use of prior rating information from related
categories boosts performance.

We find that the Cosine kernel performs best over both SVD++ with semantic
biases, and SemanticSVD++, in each case with a higher βk weighting. Under
this weighting scheme, a higher βk places more emphasis on the item’s categories
that the user has previously rated, rather than transferring in ratings to cover
the unreviewed categories. We find varying levels across the other kernels where,
aside from the JS-Divergence kernel, the optimised βk places more emphasis on
using rated semantic categories that the item is aligned to.

Table 4. Root Mean Square Error (RMSE) results with each model’s best kernel is
highlighted in bold with the p-value of the Mann-Whitney with the baseline marked

Model Kernel Tuned Parameters RMSE

ΨSV D - λ = 0.001, η = 0.1, f = 50 1.786
ΨSV D++ - λ = 0.01, η = 0.05, f = 100 1.591
ΨSB−SVD++ - λ = 10−5, η = 0.05, f = 100 1.590*

Cosine λ = 10−5, η = 0.05, f = 20, βk = 0.9 1.588***
Dice λ = 0.001, η = 0.05, f = 20, βk = 0.7 1.589**
Squared-Euclidean λ = 10−5, η = 0.05, f = 20, βk = 0.6 1.589**
JS-Divergence λ = 0.01, η = 0.05, f = 50, βk = 0.3 1.590*

ΨS−SVD++ - λ = 0.001, η = 0.05, f = 20 1.590*
Cosine λ = 0.01, η = 0.05, f = 5, βk = 0.8 1.588***
Dice λ = 0.001, η = 0.05, f = 20, βk = 0.9 1.590*
Squared-Euclidean λ = 0.05, η = 0.05, f = 5, βk = 0.7 1.590*
JS-Divergence λ = 10−4, η = 0.05, f = 10, βk = 0.8 1.589**

Significance codes: p-value < 0.001 *** 0.01 ** 0.05 * 0.1 .

8 Discussions and Future Work

The introduction of semantic level taste information allows for the evolution of a
user’s preferences to be captured and used within a recommendation approach.

7 N.b. all tested models significantly outperformed SV D at p < 0.001, so we do not
report the different p-values here.
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In this paper we have considered vertex kernels that transfer previously rated
semantic categories by computing pairwise category similarity using triple-object
vectors. One future direction of work will consider how the graph-space can be
used, via traversal-based metrics, to compute the similarity between arbitrary
pairs of category nodes. For instance, measures such as random walks hitting
time and commute time, and the mixing rate of a random walk, measured over a
subgraph of the linked data graph would be one future direction of work - forming
the subgraph using the n-order egocentric network of the given category nodes.

Within this work we used a recent recommendation dataset derived from
Twitter: MovieTweetings. Unlike existing movie recommendation datasets, such
as MovieLens and NetFlix, this dataset suffers from a recency problem where
the use of existing linked data datasets, such as DBPedia, are not timely enough
to cover the items within the recommendation dataset - i.e. to provide URIs for
those movie items. That said, we chose to use this single dataset as it presented
a more recent resource to test our recommendation approach - as opposed to the
heavily-subscribed MovieLens and Netflix datasets. Future work will examine
the use of additional datasets, such as Freebase, for item to URI alignment that
are more timely and could potentially lead to increased coverage of movie items
and thus their alignment with semantic web URIs.

The objective function that we considered in this work, when optimising the
presented recommendation approach, was the minimisation of the Root Mean
Square Error. This objective has been criticised [5] as being unrealistic - i.e.
in information filtering tasks limited screen-space renders a ranked list of items
more appropriate. Therefore future work will focus on the adaptation of the ap-
proach to use a ranked-loss objective. Additionally, the optimisation procedure
followed for identifying the best hyperparameters adopted an exhaustive grid-
search approach, which is often intractable as the dimensionality of the dataset
(i.e. number of items, and number of ratings) increases. Currently being ex-
plored is the use of Gaussian Processes in conjunction with Bayesian inference
to estimate which portion of the hyperparameter space to examine next. This
approach is necessary given the anticipated increased computational complexity
that the graph-based kernels, mentioned above, will incur.

9 Conclusions

Recommender systems function by forming taste profiles of users, based on how
they have rated items beforehand, and using those profiles to predict how the
users will rate items in the future (e.g. movies, songs, products). One approach
to forming such profiles is to capture how users have rated the semantic cat-
egories of items in the past, where such categories are linked to rated items.
This approach is limited however in the presence of cold-start categories ; seman-
tic categories for which we have no prior rating information. In this paper we
proposed a solution to this problem that uses the linked data graph space to
identity similar categories that a user had previously rated, and transfer rating
information from those categories to cover the unrated ones.. To demonstrate
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the efficacy of this solution, we extended our prior SemanticSVD++ approach
[9] to transfer semantic category ratings using a variety of vertex kernels. This
new approach was evaluated using the MovieTweetings dataset, collected from
users’ movie review Tweets, against the existing SVD and SVD++ models. We
significantly outperformed these baselines with the use of no kernel, thus using
the standard SemanticSVD++ approach, while using the the four tested kernel
functions improved performance further; significantly outperforming the stan-
dard SemanticSVD++ approach. Our results indicate that the use of vertex
kernels is an effective means to leverage ratings from previously rated semantic
categories and thus overcome the cold-start categories problem.
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Abstract. Outlier detection used for identifying wrong values in data
is typically applied to single datasets to search them for values of un-
expected behavior. In this work, we instead propose an approach which
combines the outcomes of two independent outlier detection runs to get
a more reliable result and to also prevent problems arising from natu-
ral outliers which are exceptional values in the dataset but nevertheless
correct. Linked Data is especially suited for the application of such an
idea, since it provides large amounts of data enriched with hierarchi-
cal information and also contains explicit links between instances. In a
first step, we apply outlier detection methods to the property values ex-
tracted from a single repository, using a novel approach for splitting the
data into relevant subsets. For the second step, we exploit owl:sameAs

links for the instances to get additional property values and perform a
second outlier detection on these values. Doing so allows us to confirm
or reject the assessment of a wrong value. Experiments on the DBpedia
and NELL datasets demonstrate the feasibility of our approach.

Keywords: Linked Data, Data Debugging, Data Quality, Outlier
Detection.

1 Introduction

The Linked Data Cloud is constantly growing, providing more and more infor-
mation as structured data in the RDF format and interlinked between differ-
ent repositories. Instead of being created and maintained manually, most data
sources have their roots in unstructured or semi-structured information available
throughout the Web. For example, data sources like DBpedia contain some data
extracted from Wikipedia articles. However, though being a major reason for
the large amount of Linked Data available, extracting data from unstructured
or semi-structured information is error-prone. Even when extracting from semi-
structured sources, representational variety (e.g., different thousands delimiters),
can lead to problems in the parsing process and finally result in wrong Linked
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Data values. It is unrealistic to manually find errors due to the large amount of
data in the repositories, thus automatic means for detecting errors are desirable.

In this paper, we introduce a method for detecting wrong numerical values in
Linked Data. First, we determine outliers regarding a single data repository, e.g.,
on all values assigned by means of the population property. For this purpose, we
present a way of discovering data subpopulations induced by classes and prop-
erties and apply outlier detection to these subpopulations. For example, on the
full dataset, the populations of continents would be outliers for the population
property values since their population values are larger than the predominant
population values of cities or countries by several orders of magnitude.

Afterwards, as a second step, we exploit the owl:sameAs links of the instances
(also called entities) for collecting values for the same property from other repos-
itories. This is an especially important facet of our approach, since it actually
uses the links that are a core concept of Linked Data which are rarely used in
other works (see Sect. 3). If an outlier detected in the first step is only a natural
outlier, it does not show up as an outlier in the second step which allows for
mitigating the problem of falsely marking natural outliers as wrong values.

In the following, we describe this two-step approach in more detail. We first
introduce the foundations of outlier detection in Sect. 2. Afterwards, we give an
overview about other works on Linked Data error detection and Linked Data
quality in general (Sect. 3). Then, in Sect. 4, we introduce our method for de-
tecting erroneous numerical values in a Linked Data repository paying special
attention to the choice of subpopulations of values and cross-checking by means
of a second set of data. Afterwards, we evaluate the approach by an experiment
on DBpedia and provide the first explorations on the NELL dataset in Sect. 5.

2 Preliminaries

Our approach presented in this paper is relying on the concept of outlier detection
(sometimes also called anomaly detection). In this section, we give an overview
of the most important notions used in our work. A more complete overview is
given by Chandola et al. [5], where the outlier detection is defined as “finding
patterns in data that do not conform to the expected normal behavior”.

There can be different reasons for such deviations from the expected behavior.
On the one hand, outliers can be caused by erroneous data where the error in
the data leads to the actual deviation. On the other hand, there might also exist
correct instances which deviate from those patterns, as in the example given
above of the population of continents being outliers in the set of population
values for cities, countries and continents. Such outliers are sometimes called
natural outliers. Thus, when using outlier detection for finding errors in the
data, special attention has to be paid on how to tell apart such natural outliers
from outliers caused by actual data errors.

In all cases, the first step is the discovery of outliers. For this purpose, there
are different categories of methods: supervised, semi-supervised, and unsuper-
vised. Supervised and semi-supervised approaches require training data in which
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non-outlier values are labeled, and for the supervised approaches outlier values
are also labeled. In contrast, unsupervised approaches are independent from
such data. Since our approach should be able to work with many different data
distributions (e.g., values for population, height, elevation etc.), the creation of
training data would be rather expensive, so we only consider unsupervised out-
lier detection methods. In addition, the methods also differ in their output. Some
methods return a binary decision whether a given value is an outlier while other
methods provide an outlier score quantifying the degree of ,,outlierness”. We
only consider the latter group of approaches since they have the advantage that
arbitrary thresholds can be chosen to address the trade-off between removing as
many actual errors (true positives) vs. removing correct data points (false posi-
tives). There are also approaches which consider multiple dimensions of data at
once (multi-variate) instead of just a single dimension (univariate) to improve
the detection of outliers by considering values influencing each other. In this
work, we only consider univariate approaches because multi-variate methods are
more computationally expensive and require a way of determining which value
combinations to consider.

In the literature, many different approaches are proposed for unsupervised
outlier detection. Some methods assume there is an underlying distribution that
generates the data. Values which are improbable according to this distribution,
are qualified as outliers. One such approach is to assume an underlying Gaussian
distribution of the values, compute mean μ and standard deviation σ values and
then mark all values as outliers that are not contained in the interval [μ −
cσ, μ+cσ] for a given c. For example, this assumption is backed by the Gaussian
distribution’s property that 99.7% of all values are within this interval for c = 3.

An alternative method for unsupervised outlier detection is the so-called Local
Outlier Factor (LOF) proposed by Breunig et al. [2]. Compared to other globally
working outlier detection approaches, LOF is trying to detect local outliers, i.e.,
values which deviate from their local neighbors. The idea is that real-world
datasets contain data which might not be recognized as a global outlier but
its deviation is only recognizable when considering its neighborhood. For this
purpose, the LOF algorithm takes a parameter k which defines the number of
neighbors to look at. It then determines this number of neighbors and computes
an outlier score based on the comparison of the distance of the neighbors to their
nearest neighbors with the distance of the currently processed value.

3 Related Work

A number of automatic and semi-automatic approaches for correcting linked
data have been proposed, which are either internal, i.e., they use only the data
contained in the datasets at hand, or external, using either additional information
sources (such as text corpora) or expert knowledge.

Recent internal approaches are mostly concerned with validating object-
valued statements (in contrast, our approach targets at numeric literals). The
approaches discussed in [9] and [16] first enrich the data source’s schema by
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heuristically learned additional domain and range restrictions, as well as dis-
jointness axioms, and then use the enhanced ontology for error detection by rea-
soning. Heuristic approaches for finding wrong dataset interlinks exist, which,
for example, rely on finding inconsistent chains of owl:sameAs statements [13],
or use outlier detection methods [14].

External approaches involve crowdsourcing [1], using platforms like Amazon
Mechanical Turk which pay users for micro-tasks, such as the validation of a
statement. Another possibility is using games with a purpose to spot inconsis-
tencies as Waitelonis et al. [17] do. DeFacto [10] uses a pre-built pattern library
of lexical forms for properties in DBpedia. Using those lexical patterns, DeFacto
runs search engine requests for natural language representations of DBpedia
statements. While it is designed to work on object properties, the approach is
transferable to the problem of identifying errors in numerical data as well.

In this paper, we focus on outlier detection methods as a means to identify
wrong numerical values. This approach is similar to our preliminary approach
discussed in [18], but extends it in two respects. First, we identify meaningful
subpopulations in a preprocessing step, which makes the outlier detection work
more accurately. Second, most of the approaches discussed above do not use
dataset interlinks at all, despite claiming to be data cleansing approaches for
linked data. In contrast, we show in this paper that the explicit use of dataset
interlinks improves the results of outlier detection, especially with respect to
natural outliers.

4 Method

In the following, we describe our overall approach of detecting wrong values in a
Linked Data dataset. First, we shortly describe how we determine the properties
to check for wrong numerical values before we present the actual process of outlier
detection. As discussed above, applying outlier detection to the full dataset might
not result in good results since instances referring to different types of real world
objects might be contained in the dataset. Thus, we also introduce our way of
determining subsets of data to apply the outlier detection on. Finally, we describe
the actual detection of erroneous values from the outlier detection results.

4.1 Dataset Inspection

Since we assume no prior knowledge about the dataset, we first have to gather
some additional information about it. This step as well as the following steps
are most easy to perform when the data is provided by a SPARQL endpoint.

First, we determine the number of instances contained in the repository as well
as the names of all properties used in the data. Since we cannot assume to have
an OWL vocabulary and its division between object and data type properties
available in the dataset, we then determine how often each property is used with
a numerical value1 at the object position. Furthermore, we also determine how

1 Numerical values are xsd:int and xsd:float as well as their subtypes.
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many distinct numerical values are used with each property by means of the
SPARQL query:

SELECT ?p, COUNT(DISTINCT ?o) AS ?cnt

WHERE {?s ?p ?o. FILTER (isNumeric(?o))} GROUP BY ?p

We then filter the properties to apply outlier detection and remove properties
which were only used with a single distinct numerical value. All in all, this process
results in a set of properties qualifying for the application of outlier detection.

4.2 Generation of Possible Constraints

Each property is now processed separately in several steps. It is important to
note that the wrong value detection is always done for an instance-value pair
and not only for an instance since an instance might have several values assigned
by means of the same property, e.g., a city having different ZIP codes.

The first step here is to determine the set of constraints that are used to
generate subpopulations from the full instance-value set on which a more fine-
grained outlier detection is possible which in turn improves the detection of
errors. The main motivation behind these constraints is that when always con-
sidering the full set of instances, some erroneous values could be masked by
other values in the dataset while correct values could be erroneously highlighted
as being wrong. Masking could for example occur when an instance of the type
Country has an erroneous population count of 400. When considering the whole
dataset, this population count would not arouse any suspicion since there are
many instances of Village with similar population counts. However, when only
considering instances of type Country, a population count of 400 would be sus-
picious because hardly any country has such a low population count. Erroneous
highlighting of values could occur in the already provided case where instances
of the class Continent having an actually correct population count are outliers
in the dataset of all instances due to the low number of continents and their
population counts being much higher than those of countries.

Thus, an important task is to define a way of generating subsets of the full
instance set. In this work, we do this generation by applying constraints to the set
of instances so that only those instances are retained which fulfill the constraints.
We propose three different types of constraints:

– Class constraints: A class constraint on class C applied to an instance set
limits it to instances which belong to this class.

– Property constraints: A property constraint p limits the instances to those
connected to an arbitrary object (instance or data value) by means of p.

– Property value constraints: A property value constraint is defined by a prop-
erty p and a value v which can be either an instance or a data value. It limits
the instances to those which are connected to a value v by means of p.

Class constraints as also applied by [18] are the most obvious way of utilizing
the class structure already contained in the dataset. They allow capturing the
masking for the population property described before.
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In cases where the class structure is not detailed enough, the two addi-
tional constraint types can help to compensate these shortcomings. In real
world datasets, property constraints can help to deduce statements about an
instance’s missing type [15]. For example, given a class Vehicle and a property
maximumAltitude, this property can compensate for a missing class assertion to
Aircraft and thus allow to detect, e.g., too high weight values for the instances
that could otherwise be masked by other Vehicle instances such as ships. The
choice of which properties to use as constraints is based on the number of us-
ages in the current instance set. When even the property constraints are not
able to provide a sufficiently fine-grained division into subpopulations, property-
value constraints can be used. An example for such a constraint is the property
locatedIn with the value UnitedArabEmirates (UAE). Since the average tem-
perature in the UAE is higher than the temperature in most other countries, a
too low averageTemperature assigned to a city in the UAE could be masked
by cities from other countries. When only considering cities from the UAE, the
low average temperature is suspicious and thus detectable as being erroneous.

Both property-based constraints share the problem that they might introduce
a high number of constraints since the number of properties might be much
higher than the number of classes used in the dataset. This can lead to higher
computational effort for choosing the constraints. This effort is even higher for
property-value constraints that do not only require to examine the used proper-
ties but also the values connected to instances by means of these properties.

4.3 Finding Subpopulations

Applying outlier detection to all of the potentially many subpopulations which
can be defined on a dataset is impractical especially because the runtime of
outlier detection algorithms heavily depends on the number of values they are
applied on. Hence, we introduce an intermediate step for determining the most
promising subpopulations to apply outlier detection on.

The exploration is organized in a lattice as shown in Fig. 1 similar to the one
used by Melo et al. [12]. Each node of the lattice is assigned a set of constraints
which determines the instances considered at this node. The root node has the
empty constraint set assigned and thus represents all instances and correspond-
ing values of the currently considered property. For this set of instances, we
compute a histogram which represents the distribution of values in the subpop-
ulation. Starting with the root node, our approach manages a queue of all not
yet extended nodes and thus extends the lattice in a breadth-first-manner.

When processing a node from this queue, we create its child nodes, each having
an additional constraint compared to the parent node. The additional constraints
are those from the set of possible constraints which are not yet used in the parent
node. If a node for the resulting set of constraints already exists in the lattice,
we do not consider the new node further. Otherwise, we determine the instances
which adhere to this new set of constraints and compute the histogram of the
value distribution. Based on this value distribution, we enforce a set of pruning
criteria to keep the search space clean which helps us to determine interesting
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population
1000

600 193 7

710
80 28

Fig. 1. Example for subpopulation lattice for property population. Numbers to the
upper right of a node give the number of instances fulfilling the constraint set. Dashed
nodes would be pruned, the left one for too low KL divergence, the right one for not
reducing the instance set further.

subpopulations independently from any further knowledge about the constraints
and their relation to each other. In particular, we prune subpopulations which
only contain a low number of instances or maybe no instances at all since those
are considered to be too specific.2 As another criterion, we consider the instance
reduction ratio, i.e., the change ratio in the number of instances of the new node
compared to its parent node. If the additional constraint leads to a reduction of
less than 1%, our approach prunes the node. For instance, this case could occur
when adding a class constraint on PopulatedPlace to a constraint set which
was previously also constrained on Continent.

Finally, we compute the Kullback-Leibler (KL) divergence [8] between the
discrete value distributions represented by the histograms of the new node and
the parent node. If the divergence is lower than a given threshold, we assume the
additional constraint to be independent from the previously applied constraints,
i.e., the actual distribution of values was not changed but only the number of
instances. In these cases, an outlier detection run on the newly created set of
instances would not yield additional insights and thus we prune those nodes.
For example, this pruning could happen when adding a class constraint on the
class NamesStartingWithT to a constraint set for a property representing the
population count. Since each additional constraint leads to a smaller number of
instances compared to the parent node, the sampling error might also influence
the resulting KL divergence value. To address this effect in our considerations,
we normalize the values using the number of instances of the resulting node
leading to the formula

divergence(parent, child) =

∣∣∣∣∣
|child|
|parent| ·

B∑
i=1

ln

(
hparent(i)

hchild(i)

)
hparent(i)

∣∣∣∣∣ (1)

where parent and child are the nodes of the lattice, |n| the number of instances
for a node n and hparent as well as hchild the histograms representing the re-
spective value distribution which each have B bins. Furthermore, we also apply
Laplace smoothing to the histograms. We assume a higher divergence to show a
more important change in the distribution of values and thus being more inter-
esting for the further processing. Based on this assumption, we prioritize nodes

2 In our experiments, a value of 5 was used.
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having a higher KL divergence to their parents in later expansion steps, as well
as in cases where too many nodes would have to be expanded, we limit the
expansion to the highest ranked nodes.

4.4 Outlier Detection and Outlier Scores

After the lattice has been determined, we perform outlier detection on all un-
pruned nodes of the lattice and store the resulting outlier scores together with
the set of constraints which led to the corresponding instance set.

As soon as the outlier detection run is completed on the property, we have a list
of instance-value combinations with a set of pairs, consisting of a constraint set
and an outlier score. One advantage of having multiple outlier scores compared
only a single outlier score for each instance-value combination is the possibility
to apply different weighting schemas to the scores to combine them into a single
assessment for each instance-value pair. At this point, it is also possible to further
consider an ontology schema possibly contained in the dataset. For example,
outlier scores for class constraints of more specific classes can be assumed to
have more significance than those for constraints to more abstract classes and
can thus be weighted higher. In particular, we explore a measure which assigns an
instance-value combination with the outlier score of the constraint set containing
the most specific constraint according to the hierarchy which performed best
in our pre-studies in combination with the LOF outlier detection approach. It
is noteworthy, that too specific constraint sets are already filtered during the
creation of the subpopulation lattice which prevents us from choosing the outlier
scores generated for such subpopulations. For determining the specificity of an
entity in the hierarchy, we use property paths as introduced in SPARQL 1.1 like
in the following query for a class specified by its IRI CLS

SELECT COUNT(DISTINCT ?i) AS ?cnt WHERE {<CLS> rdfs:subClassOf+ ?i}

This query provides us with the number of direct and indirect super classes
of the given class which serves as an estimate for its specificness.

4.5 Cross-checking for Natural Outliers

As described in Section 2, values may not only be detected as outliers when
they are wrong but also if they are natural outliers in the considered dataset. To
prevent this false detection, we apply an additional cross-checking step to the
results of the first outlier detection.

One of the unique selling points of Linked Data is the interlinking of datasets.
Using URIs to point to resources in remote repositories, it is possible to specify
for an instance which equivalent instances can be found in other repositories.
Given that in the Linked Data and Semantic Web community the reuse and
interlinking of schema vocabularies is encouraged, these equivalence assertions
allow us to retrieve additional property values for the same instance. Even if the
vocabulary is not reused, ontology matching techniques [7] can enable the re-
trieval of additional property values by determining equivalent properties to the
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Base Dataset 2nd Dataset 3rd Dataset 4th Dataset

… …

Tskuen Island 485 - - -

Izena Island 1,764 1,591 1,783 -

Honshu 103,000,000 100,000,000 104,000,000 103,000,000

Kyushu 13,231,995 13,189,193 - 13,231,276

… …

Fig. 2. Using two independent outlier approaches for the DBpedia property
populationTotal and the instance “Honshu” to improve the detection result. Only
considering the base dataset (vertical), the actually correct value is detected as an out-
lier. The detection run on the values from different sources (horizontal) confirms the
value and thus prevents to mark the value as a wrong value.

currently relevant property. For the special case of DBpedia and its versions in
several languages, inspections [3] revealed that the number of instances described
in multiple datasets is relatively low. But even if the additional data is sparse,
we assume that natural outliers are often more interesting for humans and hence
more often described in several datasets (e.g., the highest mountain is probably
described in more datasets than some arbitrary “non-special” mountain).

Using this feature of Linked Data, we have a way of compensating problems
introduced by natural outliers. By gathering additional property values for an
instance it is possible to test the value found in the current dataset for its
“outlierness” in this second set of data. Since these values are expected to be the
same if all values are fully correct, it is sufficient to assume a normal distribution
for the values and check whether a value lies within a given number of standard
deviations around the mean value (cf. Sect. 2). If the assessed value lies within
the interval around the mean, the probability is high that the value is only a
natural outlier and thus is not an erroneous value. We only consider values as
wrong if they are outliers in both detections. This principle is depicted in the
real-world example in Fig. 2 where an outlier detection based on the vertical axis
would lead to a detection as a wrong value while the second outlier detection
run on the horizontal axis confirms the population value in the base dataset.

5 Experiments

For testing the approach described in the previous section, we performed an
evaluation on DBpedia3 and its language versions which we present in detail in
the following. Furthermore, we report on an evaluation on the NELL dataset in
combination with cross-checking on several Linked Data sources.

5.1 DBpedia Experiment

The first experiment was performed on the DBpedia 3.9 dataset. DBpedia [11]
is a large scale structured multi-lingual cross-domain knowledge base automat-
ically extracted from Wikipedia. The current version of DBpedia contains 2.46

3 http://dbpedia.org
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billion facts describing 12.6 million unique things, and is a widely used high-
impact knowledge resource with around 5,000 downloads a year. The data is
extracted from Wikipedia infoboxes (tables usually found in upper right part
of a Wikipedia page), page categories, interlanguage links and many more,
which are automatically parsed to extract facts like “population of Mannheim
is 314,931”.Data is extracted from 119 Wikipedia language editions, and is rep-
resented as a distinct language edition of the knowledge base.

We let the approach run on the whole dataset, generating ranked lists of pos-
sibly wrong values for each property. As an outlier detection algorithm, we used
the Local Outlier Factor in the implementation provided by the Rapidminer4

Extension for Anomaly Detection.5 The k parameter of LOF was set to 10 resp.
to the number of values if there were less than ten. Experiments using different
number of bins for the histogram generation turned out that the single KL diver-
gences between children and parent nodes had more variance for higher number
of bins. This increased variance led to a more exact detection of similar distri-
butions and thus more pruning in the lattice. However, increasing the number
of bins further also increased the runtime of the lattice generation without lead-
ing to an adequate reduction of the outlier detection runtime and without clear
improvements in the error detection. Thus, we used 100 bins as a compromise
between exactness of pruning and runtime. The generation of subpopulations
was done on the YAGO6 classes assigned to the instances. The YAGO classes
are very fine-grained (e.g., there is a class CitiesAndTownsInAbruzzo) which
allows us to only work with class constraints in this experiment.

For the cross-checking of outliers by means of additional instance data, we
used the multi-lingual data contained in the DBpedia dataset. This data is the
result of different Wikipedia language versions describing the same things which
leads to multiple DBpedia instances representing these things throughout the
DBpedia language versions. Notably, the entity overlap across languages is not
high: out of 2.7 million instances of the 17 most populated DBpedia ontology
classes,7 60% are described (i.e., have at least one property) only in one language
(predominantly English), and only around 23% of all entities are described in
three or more languages. Note that we consider only those language editions
for which infobox types and attributes are mapped to classes and properties of
the DBpedia ontology. In DBpedia 3.9, mappings which were manually created
by the DBpedia community for 24 languages were used for data extraction. In
the datasets based on these mappings the same property URIs are used across
languages: e.g., the DBpedia ontology property populationTotal is used for
the population property of a populated place in, e.g., German or French editions
even if the original Wikipedia infoboxes use language-specific attribute names.

To assess the performance of our approach for detecting wrong values,
we chose the three DBpedia ontology properties: height, elevation and

4 http://rapidminer.com
5 https://code.google.com/p/rapidminer-anomalydetection/
6 http://www.mpi-inf.mpg.de/yago
7 http://wiki.dbpedia.org/Datasets39/CrossLanguageOverlapStatistics
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Table 1. Inter annotator agreement observed for property samples and number of
correct instance-value combinations according to majority of annotators

elevation height populationTotal

Observed agreement 0.987 0.960 0.960
Fleiss’ κ 0.968 0.916 0.917

# correct 69 60 57

populationTotal. From each of the three ranked lists, we randomly sampled
100 instance-value combinations where we introduced a bias towards possibly
wrong combinations by scaling the selection probability proportionally to the
score determined by the outlier detection. The resulting values have been in-
dependently reviewed by three human annotators regarding the correctness of
the values. For determining the correctness of a value, a typical process of the
annotators was to first have a look at the current Wikipedia page describing
the instance. Additionally, the Wikipedia page in its version as of the time of
the extraction run was inspected. Using these two sources, it was possible in
most cases to recognize errors in the values which stemmed from parsing errors
or vandalism. If these inspections did not yet lead to the detection of an er-
ror, the most promising non-English Wikipedia articles about the instance were
consulted, e.g., the article in the language most related to the instance. Finally,
cited external sources were consulted or the annotators tried to find reliable in-
formation on the Web using search engines. If no proof for an error in the data
was found, the instance-value combination was marked as correct, otherwise as
wrong.

We computed the inter annotator agreement (IAA) between the three anno-
tators on the evaluated lists by means of Fleiss’ kappa.8 The results of the IAA
analysis are shown in Table 1. These values show a very high agreement for all
three properties. From a short analysis of the few disagreements, we discovered
that most of these were caused by an annotator not finding the relevant exter-
nal information to assess the correctness of the value. Also the table shows the
number of correct values in the datasets used for evaluation. It is important to
note that, due to the way we sampled the example instances, these values are
not able to provide an unbiased insight into the correctness of DBpedia but are
overstating its incorrectness.

Furthermore, we plotted the distribution of the wrong instance-value combina-
tions discovered during the manual evaluation and the actual value distribution
not only over the sampled values but over all values in the dataset. These di-
agrams provide us with important knowledge about the erroneous values. For
example, in Fig. 3b we see that there are two spikes of erroneous values. The first
is located at the lower bound of the value range and mostly contains errors for
entities of the class Person caused by using the wrong unit (1.98 cm instead of
1.98 m) and also values which are wrong but not directly recognizable as errors
because they fit the usual height of people. The second spike is located around

8 We used the tool at https://mlnl.net/jg/software/ira/ for computing IAA.
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Fig. 3. Distribution of all values in dataset (in log-scale) and erroneous values dis-
covered in the manual evaluation for the different properties. Property value and all
instance count scale restricted to the given ranges.

a value of 200 and again results from using the wrong unit in this case 198 m
instead of 1.98 cm. This finding especially confirms the need for using subpop-
ulations of the data instead of the full dataset since we see from the overall
data that values close to 200 not directly point to data errors (e.g., for buildings
this value is totally possible). The two other properties both show the erroneous
values to be distributed relatively homogeneously as illustrated by Fig. 3a and
not only found to be corner cases in the given ranges. These errors would not be
recognizable without considering subpopulations of the data.

Based on these manually annotated value lists, we determined the performance
of our approach with and without cross-checking as described in Section 4.5. For
each evaluated property, we also provide two baseline values. The first baseline,
which we identify by “Baseline”, is computed by determining the median of
all values and then computing the absolute difference between this median and
the current instance’s value. We use the resulting value as a score for the value
being wrong. The second baseline (referred to as “Multi-lingual baseline”) uses
the multi-lingual data also employed by the cross-checking. For getting a score
for an instance-value combination, we retrieve all values available for languages
other than English. For two or more values, we compute the score for a value v
as |v−μ|/σ where μ is the mean of the non-English values and σ their standard
deviation. Assuming a normal distribution of the values, this means that approx.
95% of the values should have a score less or equal to 2. If we only retrieve zero
or one value, we assign a score of 2. This fall-back value has been chosen since
values for which not enough information is available in the multi-lingual dataset
are more probable to be erroneous than values for which we find values which
validate their correctness. In the cross-checking step, we consider all values with
a score of at least 2 as outliers.

We plotted the receiver operating characteristic (ROC) curves for each prop-
erty using the computed scores to rank the instance-value combinations. The
results for the properties height and populationTotal are shown in Fig. 4a
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Fig. 4. ROC curves for evaluated error detection methods

Table 2. Area under the curve determined for the given samples and approaches

Approach elevation height populationTotal

Outlier Detection 0.872 0.888 0.876
Cross-Checked Outlier Detection 0.861 0.891 0.941
Baseline 0.745 0.847 0.847
Multi-lingual Baseline 0.669 0.509 0.860

and 4b, each containing the results for the raw detection approach, the filtered
one and the two baselines. We also computed the area under the curve (AUC)
for each property and each approach. The results are provided in Table 2.

First of all, we see that the AUC values of the cross-checked outlier de-
tection approach are better than the baselines for all three properties. This
approach is also superior to our non-cross-checked approach for height and
populationTotal. Only for elevation it is slightly worse. Closer evaluation
of this decrease showed that it was caused by a wrong value for elevation con-
tained not only in the English dataset but also in the multi-lingual data. This
duplication of wrong values could be caused by people copying values from one
Wikipedia page to another one without checking the values. However, during the
evaluation, this was not a frequent problem, and if it occurs more often for other
datasets, a possible solution would be to employ copy-detection approaches [6].

For the property height, the difference between baseline methods and our
methods is considerably smaller. This fact seems to be caused by a large number
of persons in the example dataset. The median value used by the baseline is
the height of one (correct) person instance. Since the height property for per-
sons follows a normal distribution as also reported in [18], the median deviation
works especially good and returns low scores for person instances. Although this
behavior leads to high scores for the non-person instances, it gives a strong base-
line for our dataset. Another interesting detail is that the multi-lingual baseline
does not perform too well which is due to 86 instances not having enough multi-
lingual data to assess their correctness. The greatest part of these instances is
made up by the person class, especially by athletes of sports mostly famous in
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Table 3. Numbers of values found for different NELL instances

Number of values 1 (only NELL) 2 3 4 5 Total

Number of instances 6,187 5,043 3,144 6,471 13,100 33,946

English-speaking countries like rugby and baseball and seemingly not exhaus-
tively described in other languages. Due to this fact, the cross-checking step
hardly improves the already good results of the base approach.

Finally, for the populationTotal property, the baseline performs well in the
first parts of the examples, where it even outperforms the basic outlier detection
approach. However, since the baseline does not perform constantly well on the
data, the final AUC value for the outlier detection approach is higher. As we
can also derive from the multi-lingual baseline’s comparably high AUC, there is
more data available in the different language versions than for the other prop-
erties. Nevertheless, for 60 values there is not enough information for assessing
the correctness. The higher availability of multi-lingual data also leads to a clear
increase for the cross-checking method and makes it the clearly best perform-
ing approach on this dataset. Furthermore, it demonstrates the advantages of
combining two orthogonal detections to reach a final correctness decision.

All in all, we see that the cross-checked method performs consistently well
for all three properties. It always produces better results than the baseline ap-
proaches. Most of the time it is also better than the non-cross-checked approach
showing that it indeed prevents natural outliers from being detected as errors.

5.2 NELL Experiment

For the second experiment, we let our approach run on the NELL dataset [4] in
its RDF version [19]. The NELL dataset is produced by crawling the Web and
extracting structured data out of the discovered unstructured information. Given
this extraction method, we can assume that parsing errors and other difficulties
result in some quality deficiencies in the data. We let our approach examine the
latitude and longitude values contained in the RDF version of NELL and try
to find wrong values in it. For getting data to cross-check the values, we used
the Wikipedia links contained in the NELL data to the corresponding DBpedia
instance. Besides the DBpedia values for longitude and latitude, we used the
owl:sameAs links assigned to the DBpedia instances to find further instances in
the Linked Data cloud which provided the desired values. We included the values
we could retrieve from Freebase, GeoNames, YAGO and DBpedia. Statistics on
the number of values we were able to find are shown in Table 3. These numbers
demonstrate that it is possible to gather additional values from the Linked Data
cloud to enable the cross-checking of detected outliers and to clean up the data.

However, during the actual run of the outlier detection only few values
with a sufficiently high outlier score showed up. An inspection of the data
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from the other repositories, and for some instance values also an inspec-
tion using a web-based map service, showed that there is close to no devia-
tion throughout the datasets. Almost all of the inspected values were correct
possibly because of the highly standardized value format for latitude and lon-
gitude which leads to only few parsing errors. The small deviations of the val-
ues seem to be caused by subjective decisions, e.g., where to exactly position
the longitude-latitude marker for the area of a county. Nevertheless, the lati-
tude value with the highest outlier score which was not filtered by the cross-
checking showed to be a data error. Being assigned to the NELL instance
http://nell-ld.telecom-st-etienne.fr/county_grey_county, the latitude value
was detected to be wrong also based on its outlierness for the population of the
class County. An inspection of the Wikipedia page assigned by NELL showed
that it should actually represent Grey County, Ontario, Canada9 whereas the co-
ordinates provided by NELL are in the area of Greymouth, New Zealand which
belongs to the Grey District.10 This hints to disambiguation problems. This re-
sult is in line with the findings of Paulheim [14] who also discovered that NELL
has problems with homonyms when linking data. In this special case, the con-
fusion could have been amplified by the near synonymy of district and county.
All in all, though not finding greater amounts of data errors, we think this use
case demonstrates the availability of data from different repositories and thus
the applicability of cross-checking for improving wrong value detection.

6 Conclusion

In this work, we presented our approach for detecting wrong numerical values in
Linked Data. The main contribution of our work is that we are especially taking
advantage of the core concepts of Linked Data: links and vast amounts of data.
By following owl:sameAs links for instances, we gather additional data for the
same facts which we then use to cross-check the assessment of correctness gained
during a first outlier detection run on a single repository. This procedure allows
us to better handle natural outliers and thus reduce the false positive rate.
In addition, we also presented a lattice-based method of detecting interesting
subsets of values to apply outlier detection to. The performance of our approach
was assessed on DBpedia and we also showed the applicability of cross-checking
on more general repositories, here represented by the NELL dataset.

In future work, we will consider additional value types for checking correctness
like dates. Furthermore, we will investigate the possibility of efficiently finding
pairs of values on which multi-variate outlier detection can be applied. We also
plan to gather human feedback on the validity of detected errors and use this
feedback to investigate the possibilities of learning more promising combinations
of different weighting schemes.

9 http://en.wikipedia.org/wiki/Grey_County
10 http://en.wikipedia.org/wiki/Grey_District
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Abstract. Semantic datasets provide support to automate many tasks such as
decision-making and question answering. However, their performance is always
decreased by the noises in the datasets, among which, noisy type assertions play
an important role. This problem has been mainly studied in the domain of data
mining but not in the semantic web community. In this paper, we study the prob-
lem of noisy type assertion detection in semantic web datasets by making use
of concept disjointness relationships hidden in the datasets. We transform noisy
type assertion detection into multiclass classification of pairs of type assertions
which type an individual to two potential disjoint concepts. The multiclass clas-
sification is solved by Adaboost with C4.5 as the base classifier. Furthermore,
we propose instance-concept compatability metrics based on instance-instance
relationships and instance-concept assertions. We evaluate the approach on both
synthetic datasets and DBpedia. Our approach effectively detect noisy type asser-
tions in DBpedia with a high precision of 95%.

1 Introduction

Real world data is never as perfect as we would like it to be and can often suffer from
corruptions that may impact interpretations of the data, models created from the data,
and decisions made based on the data [1][2]. Accuracy, relevancy, representational-
consistency and interlinking affect approximately 11.93% of DBpedia1 resources.
Among them, the detection of accuracy problem is the least to be automated [3]. We
are interested in the factual errors (called noises in this paper) in the accuracy category.
To be specific, we focus on the detection of noisy type assertions (asserting Schubert’s
last sonatas is of type artist for example), which is suggested to be more severe than
noisy property assertions (asserting TV series Wings’s opening theme is Schubert’s last
sonatas for example) [4].

While there has been a lot of research on noise identification in data mining do-
main in the past two decades, the topic has not yet received sufficient attention from
the Semantic Web community, especially the problem of noisy type detection. Zaveri
et al. [3] analysed empirically the DBpedia dataset. They manually evaluated a part of
indiviual resources, and semi-automatically evaluated the quality of schema axioms.
Fürber and Hepp [5] summarized the important problems in semantic web data, includ-
ing literal value problems and functional dependency violations, and correspondingly

1 http://dbpedia.org

P. Mika et al. (Eds.) ISWC 2014, Part I, LNCS 8796, pp. 373–388, 2014.
c© Springer International Publishing Switzerland 2014
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developed SPARQL queries to identfy them. Yu et al. [6] focused on identifying noisy
property assertions. They detected such assertions by using probabilistic rules learned
from semantic web data and checked to what extent the rules agree with the context of
assertions.

We find that noisy type assertions could be detected from knowledge hidden in real-
world datasets.

Example 1. If we execute the following SPARQL query in DBpedia

select ?x where {?x a dbpedia-owl:Person.
?x a dbpedia-owl:Place.}

which selects individuals belonging to both concept Person and Place, we get a
list of individuals returned, such as Pope2. Because we, as human-beings, believe that
concept Person and Place share no individuals, which is hidden in DBpedia be-
cause Person and Place share a very small number of individuals, it is reasonable
to guess that the assertions typing the individuals to concept Person or Place are
problematic.

In this paper, we study the problem of noisy type assertion detection in semantic web
datasets for the first time. Roughly speaking, our approach contains 2 steps: Firstly we
cache the number of individuals belonging to a pair of concepts aiming at detecting
abnomal data. We extract conflicts such as Pope belongs to both Person and Place.
After that, we transform the detection of noisy type assertions into a multiclass classi-
fication problem, where a candidate conflict assertion can be labeled (1) none of them
are noisy; (2) first assertion being noisy; (3) second assertion being noisy; (4) both of
them are noisy. The conflicts are classified by Adaboost with decision tree algorithm
C4.5 as the base classifier. In order to characterize the conflict assertions, we propose
two kinds of features: First kind of features make use of type assertions. For example,
the assertions ”Pope is a Cleric” and ”Cleric is subsumed by Person” increase
the confidence of assertion “Pope is a Person” Another kind of feature utilizes role
information, which we borrowed from [2]. For example, several individuals are linked
with Pope by role beatifiedBy, and from the dataset, beatifiedBy is always
connected with a Person, then “Pope is a Person” is more probable. To summarize,
the main contributions of this paper are to:

– study the novel problem of noisy type assertion detection in semantic web datasets;
– formalize the noisy type assertion detection problem as a multiclass classification

problem for the first time;
– propose various effective compatibility metrics that incorporate both concept and

role relationships.

The rest of the paper is organized as follows. Section 2 describes decision tree (C4.5)
and Adaboost classification algorithm. In Section 3, we motivate the approach in sec-
tion 3.1 by analyzing the co-occurrence data in DBpedia, and then we formalize the
research problem and introduce the framework. Section 4 details the approach focusing
on the features. The experimental results are presented in section 5. Section 6 introduces
related work, and section 7 concludes the paper and gives future works.

2 In DBpedia 3.9 there are 17 individuals belonging to both Person and Place.
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2 Decision Tree and Adaboost

We use Adaboost as the meta classifier with C4.5, a popular decision tree algorithm, as
the base classifier. Decision tree (DT) is a set of if-then rules representing a mapping
between data features and labels. Each internal node in a DT indicates a feature, and
each leaf node represents a label. We adopt DT as the base classifier for the following
reasons: (1) DT is a white-box model, which is easy to be understood and interpreted;
(2) Rule is the suitable representation for the features proposed in this paper.

DTs can be inductively learned from training data. C4.5 is a popular DTs learning
algorithm [7]. It builds decision trees from a set of training data using information
entropy by divide-and-conquer. At each node of the tree, C4.5 chooses the attribute of
the data that most effectively splits the examples into subsets by normalized information
gain. The attribute with the highest normalized information gain is chosen. The initial
tree is then pruned to avoid overfitting [8].

In order to improve the performance of classification algorithms, boosting iteratively
learns a single strong learner from a set of base learners. There are many variations
of boosting algorithms varying in their method for weighting training data and classi-
fiers. Adaboost [9] uses an optimally weighted majority vote of meta classifiers. More
concretely, the impact on the vote of base classifiers with small error rate is intensi-
fied by increasing their weights. The label of a data instance is predicted by the linear
combination of meta classifiers, in our case, DTs, as follows:

T (x) =

M∑
m=1

αmTm(x) (1)

whereM DTs are learned, αm is the weight of the mth DT, and Tm(x) is the output of
the mth DT.

3 Approach

In this section, we firstly motivate our approach by a co-occurrence analysis on DBpe-
dia. Then we formalize the research problem and describe the framework.

3.1 Co-occurrence Analysis on DBpedia

Before we analyse the co-occurrence on DBpedia, we first give the definition of co-
occurrence matrices as follows:

Definition 1 (Co-occurrence Matirx). A co-occurrence matrix M is a symmetric ma-
trix defined over a semantic datasetO. Mathematically, a co-occurrence matrixMN×N

is defined over N concepts C in O, where Mst = |{i|Cs(i) ∈ O and Ct(i) ∈ O, Cs ∈
C, Ct ∈ C}|.

We take 90 concepts in DBpedia containing at least 10,000 individuals, and sort them
in descending order in terms of the number of individuals they have. The values in
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Fig. 1. Co-occurrence matrix of the top-90 concepts in terms of individuals they have in DBpedia.
Left shows the co-occurrence values for each pair of concepts. The figure on the right represents
the frequency of co-occurrence values in different scopes.

the co-occurrence matrix are retrieved by executing SPARQL queries as shown in
Section 1.

The left in Fig. 1 shows directly the co-occurrence matrix. We can easily find from
this figure red squares and black circles representing co-occurrence values below 100
and above 10,000. However, the numbers in between, represented by triangles, are quite
rare. The numbers above 10,000 indicate highly overlapped concepts, while the num-
bers below 100, on the other hand, suggest abnormal data. The figure on the right shows
the percentage of co-occurrence numbers varying scopes. Besides the largest amount of
zero filling the co-occurrence matrix, more than half of the other numbers are below
100 (6.69% in 11.29%), which suggests that the amount of abnormal data can not be ig-
nored and the noisy type assertions can be detected from them. If we take a closer look
of the concept pairs sharing less than 100 individuals, we can find, for example, (Person
Place), (Person Work), (Place Work), (Place Athlete) etc. These concepts, according to
human knowledge, should share no individuals at all.

3.2 Problem Definition

We detect noisy type assertions through conflict in the semantic datasets, which is de-
fined as follows:

Definition 2 (Conflict Type Assertions). A pair of type assertions A(i) and B(i) is
called conflict if A � B  ⊥, written as < i,A,B >, where i is called the target
individual. A conflict < i,A,B > is called full noisy if A(i) and B(i) are both noisy;
1-st half noisy if only A(i) is noisy; < i,A,B > is called 2-nd half noisy if only B(i)
is noisy; It is called fake conflict if none of A(i) and B(i) are noisy.

whereA�B  ⊥ means conceptA andB are disjoint. Explicitly asserting individuals
to A and B will cause problems, if A �B  ⊥. We make use of A �B  ⊥ hidden in
the datasets. Without ambiguity, conflict type assertions are called conflicts for short.
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According to the definition of conflict type assertions, noisy type assertion detection
from conflicts can be formalized as a multiclass classification problem.

Definition 3 (Noisy Type Assertion Detection From Conflicts). Given a set of con-
flict type assertions {< i,A,B >}, the goal of noisy type assertion is to find a classifier
M :< i,A,B >→ {0, 1, 2, 3} such thatM maps the full noisy conflict to class 0, 1-st
half noisy to class 1, 2-nd half noisy to 2, and maps fake conflict to class 3.

The multiclass classification problem can be solved by traditional machine learning
algorithms, which require multidimensional features as the input. In noisy type assertion
detection, we extract a feature vector for each conflict type assertion.

Definition 4 (Feature Vector of Conflict Type Assertions). The n-dimensional fea-
ture vector v of a conflict type assertion< i,A,B > consists of n various compatibility
metrics of individual i with concepts A and B. Dimension vi = di < i,A,B >, where
di is the ith compatibility metric function for < i,A,B >.

The feature vector of a conflict type assertion indicates the compatibility of an individ-
ual i and a pair of concepts, which are computed by several metric functions.

3.3 Framework

We observe that (1) due to the dataset enrichment mechanisms or data intrinsic statistics,
when concepts share instances, they generally share a large portion of instances even
compare to the number of instances they have themselves; (2) when two concepts share
a small amount of instances (in another word, the concepts are suggested to be disjoint
according to the data), there tend to be noises inside. Based on these observations, we
propose to identify noisy types from conflict type assertions. The framework contains
the following 5 steps (cf. Fig. 2):

(1) Co-occurrence matrix construction. In this step, we construct the co-occurrence
matrix. The values in the co-occurrence matrix signify the relationship between the cor-
responding concept pair. For example, concepts Person and Place have 17 instances
in common as shown in Fig. 2. Suppose the probability of concepts A and B being dis-
joint P (A � B  ⊥) is 1 − P (A � B) = 1 − |{a|A(a) ∈ O, B(a) ∈ O,"(a) ∈
O}|/|{a|"(a) ∈ O}|, O is the semantic dataset. If the cooccurrence is very small, the
probability that the related concepts being disjoint is relatively large. If we are confident
about them being disjoint, then the assertions of instances belonging to both concepts
contain problems. The calculation of co-occurrence matrix includes executingN×N/2
SPARQL queries, whereN is the number of concepts in the dataset.

(2) Conflict type assertion generation. Based on the cooccurrence matrix and by
setting threshold, we generate disjoint concepts. By querying the dataset for list of
instances belonging to each pair of disjoint concepts, the conflict type assertions are
generated. For example, instances I(A,B) belong to disjoint concepts A and B, then
∀i ∈ I(A,B), we add the triple < i, A, B > to the conflict set.

(3) Feature extraction. We generate a feature vector for each conflict type assertion.
The details of the compatibility metrics are described in Section 4. We cache all inter-
mediate statistics required to calculate the metrics in a local relational database. Scan
the relational database once will get the feature vectors.
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(4) Classification algorithm. We use Adaboost with C4.5, a well-known classifica-
tion algorithm, as the base learner to classify the conflicts.

(5) Classification results. From the classification results, which contain conflicts be-
longing to class 0, 1, 2, and 3, we output the final noisy type assertions by seperating
conflict with class 0 into two noisy type assertions, output conflicts with class 1 or 2
into one noisy type assertion. To be specific, suppose the conflict is < i, A, B >, if its
label is 0, A(i) and B(i) are added to the final results; if its label is 1, A(i) is added,
and similarly, if the label of the conflict is 2, B(i) is added.

DataSet

1. Co-occurrence Matrix Construction

| Place
−−−−−−−−−−−−−−−−−−−−−−−

| 11472369 1123178 738 0 22 ...
Person | 1124388 17 0 13 ...

| 754415 0 531227 ...

|
. . .

... ...

2. Conflict Type Assertion Generation

1. Thumbnail : Person , Place
2. Citrix : Artist , Company
3. Moselle River: Place , Event
4. Clout (band) : Organisation, MusicalArtist

3. Feature Extraction 1. 2 3 0 0.677 0.298 0.636 17
2. 5 2 1.960 0.590 0 0 2
3. 7 2 5.701 0.590 0 0 6
4. 1 0 0.857 0 0.477 0.516 950

4. Classification Algorithms

5. Classification Results

Results

1. Thumbnail : Person , Place 0
2. Citrix : Artist , Company 1
3. Moselle River: Place , Event 2
4. Clout (band) : Organisation, MusicalArtist 3

Person(Thumbnail) Place(Thumbnail)
Artist(Citrix) Event(Moselle River)

Fig. 2. Overview of the framework

4 Feature Extraction

The compatibility metrics in the feature vector of a conflict type assertion are based
on the type assertions and property assertions of the target individual. In this section,
we first introduce the weight functions of predicates. Then we describe the details of
compatibility metrics in the feature vector.

4.1 Weighted Predicates

The importance of predicates (concepts or roles) playing in classifying conflicts may
be different, especially in imbalanced datasets where the number of individuals belong-
ing to different concepts are not approximately equally distributed. Paulheim and Bizer
([2]) defined weight of object properties. In this paper, we extend the weight to predi-
cates defined as follows:
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wp :=
∑

all concepts C

(P (C) − P (C|p′)) (2)

where

p′ =

{
p if p is a concept;
∃p." if p is an object property.

and P (C) = |{a|C(a) ∈ O}|/|{a|"(a) ∈ O}|, O is the dataset. Additionally, the
weight of concept ∃p." is written as wp, and the weight of ∃p−." is written as wp− .

4.2 Compatibility Metrics

We motivate the first kind of features by the following example.

Example 1 Revisited. Let us consider the conflict<Pope, Person, Place>. We
want to use compatibility metrics to characterize individual Pope with respect to con-
cept Person and Place. In the dataset, besides Person and Place, Pope also
belongs to Agent. We know that Person is subsumed by Agent, and Place is
not. Then we are more confident about ”Pope is a Person”. We simply compute the
number of concepts of this kind, such as Agent, and call this feature supSup (super
support), as shown in Table 1, where A �+ A′ means A is indirectly subsumed by A′.
Similarly, ”Pope is a Cleric” and ”Cleric is subsumed by Person also increases
the confidence of ”Pope is a Person”. Based on the subsumed concepts, we define the
feature subSup (subclass support). Another feature is calculated based on the equivalent
concepts (equivSup), such as Pope is asserted to be of type a:Person, an equivalent
class of Person. This kind of features is called plain concept related features. The cal-
culation of the concept related features includes transitive subsumption relationships,
which can be achieved for example from Virtuoso by:

SELECT count(?x) AS ?count WHERE{{
SELECT * WHERE {dbpedia:i a ?x.

{?x rdf:type ?y.} UNION
{?x owl:equivalentClass ?y.} UNION
{?y owl:equivalentClass ?x.}}}

OPTION (transitive, t distinct, t in (?x), t out (?y)).
FILTER (?y=dbpedia-owl:A)}

However, the contributions of predicates can be different, as we discussed in Sec-
tion 4.1. We propose two kinds of features to incorporate the differences. Firstly we
simply compute the linear combination of all weights of the predicates related to the
target individual by setting the coefficients to be 1. This kind is called simple weighted
concept related features. Let us consider the following cases to motivate the second
kind: Cleric is subsumed by Person and a:Person is equivalent with Person.
If the individuals belonging to concept Person are always of type a:Person, the
contribution of a:Person is lower than that of Cleric in classifying conflict <i,
Person, Place>, if there are a lot of differences between individuals belonging
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Table 1. Features used in the classification

Plain concept related features
Name Definition Type

subSup(i, A) |{A′|A′ �+ A, and A′(i) ∈ O}| numeric
supSup(i, A) |{A′|A �+ A′, A′ �≡ �, and A′(i) ∈ O}| numeric

equivSup(i, A) |{A′|A′ ≡+ A, and A′(i) ∈ O}| numeric
Simple weighted concept related features

Name Definition Type
simpleWSubSup(i, A)

∑
A′�+A,A′(i)∈O wA′ numeric

simpleWSupSup(i, A)
∑

A�+A′,A′ �≡	,A′(i)∈O wA′ numeric
simpleWEquivSup(i, A)

∑
A≡+A′,A′(i)∈O wA′ numeric

Weighted concept related features
Name Definition Type

wSubSup(i, A) ν1
∑

A′�+A,A′(i)∈O wA′(1− P (A′|A)) numeric
ν1 = 1/

∑
A′�+A,A′(i)∈O wA′

wSupSup(i, A) ν2
∑

A�+A′,A′ �≡	,A′(i)∈O wA′(1− P (A|A′)) numeric
ν2 = 1/

∑
A�+A′,A′ �≡	,A′(i)∈O wA′

Role related features
Name Definition Type

attrSup(i, A) ν3 ·
∑

all roles r of i wr · P (A|∃r.�) numeric
(Paulheim and Bizer [2]) ν3 = 1/

∑
all roles r of i wr

to Cleric and that of Person’s. This is because the type assertion of Pope be-
ing a a:Person probabily due to the mechanisms in constructing the dataset. For
this reason, we propose to give weight to the subclass of concept A, A′, defined as
(1 − P (A′|A)). Similarly the weight of the super class of concept A, A′, is defined
as (1 − P (A|A′)). We use the compatibility metric of property assertions as defined
in (Paulheim and Bizer [2]). There will be two numbers in the feature vector for each
metric listed in Table 1. One calculates the compatibility metric of the first concept in
the conflict, and the other one computes the metric of the second concept.

5 Experimental Evaluations

We conduct the evaluations on synthetic datasets and DBpedia. The questions we want
to answer using synthetic datasets are: (1) How does the proposed approach work in
the semantic web context? (2) What are the advantages and drawbacks of the proposed
approach? By applying the proposed method on DBpedia, we show the effectiveness of
the proposed method by manually checking the correctness of the detected triples.

5.1 Experimental Settings

For each experiment, we perform 10-fold cross-validation. We use the precision, recall,
F1 scores defined as follows:
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precision =
# correctly detected noisy type assertions

# detected noisy type assertions
(3)

=
2TP0 + TP1 + TP2

2TP0 + 2FP0 + TP1 + FP1 + TP2 + FP2
(4)

recall =
# correctly detected noisy type assertions

# noisy type assertions
(5)

=
2TP0 + TP1 + TP2

2TP0 + 2FN0 + TP1 + FN1 + TP2 + FN2
(6)

where TP0, TP1, TP2 are the number of true positives of label 0, 1, and 2 respectively,
FP0, FP1, FP2 are the number of false positives of label 0, 1 and 2, and FN0, FN1,
FN2 are the number of false negatives of label 0, 1 and 2 respectively. F1 score is the
harmonic mean of precision and recall, which is calculated by 2 × precision×recall

precision+recall . In
terms of the performance of the classifier, we use average accuracy as the final results.
In terms of the classifier implementation, we use Adaboost and J48 - the Weka 33 im-
plementation of C4.5. We set the weight threshold of Adaboost to 100, and number of
iterations to be 10. We also use resampling. All the experiments are carried out on a
laptop computer with Ubuntu 12.04 64-bit with a i7 CPU, 8 GiB of memory.

Feature Schemes. We use different combinations of features described in this paper in
the evaluations. The details of the compositions are as follows:

CS: use subSup, supSup, and equivSup features;
WCS: use wSubSup, wSupSup features;
SWCS: use simpleWSubSup, simpleWSupSup, and simpleWEquivSup as features;
AS: only use attrSup in the feature vector;
ALL: use all features.

5.2 Evaluations on Synthetic Datasets

In order to control the amount of noise in the synthetic dataset, we construct datasets
containing noises based on LUBM [10] dataset, which is an automatically constructed
dataset without any noises in the assertions. LUBM consists of 43 concepts, 25 object
properties, 36 subClassOf axioms, 6 equivalentClass axioms, 1555 individuals. We use
LUBM in order to get the full control on the noises, and we can also get a benchmark
dataset.

Noise Control Strategy. A type assertion A′(a) can be noisy in the following forms
(suppose the correct assertion is A(a)): (1) A′ intersects with A, (2) A′ and A share no
individuals, and (3) A′ is subsumed by A. To simulate these possibilities, we adopt the
following method: given a pair of classes (X, Y) and a noise level x, an instance with
its label X has a x×100% chance to be corrupted and mislabeld as Y. We use this method

3 http://www.cs.waikato.ac.nz/ml/weka/
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because in realistic situations, only certain types of classes are likely to be mislabeled.
Using this method, the percentage of the entire training set that is corrupted will be less
than x×100% because only some pairs of classes are considered problematic. In the
sections below, we construct the following 3 datasets based on LUBM:

RATA: To simulate the noisy type assertion of form (1), we corrupt the individuals of
concept TeachingAssistant with concept ResearchAssistant accord-
ing to the given noise levels.

UGS: To simulate the noisy type assertion of form (2), we corrupt the individuals of
concept GraduateStudentwith concept University according to the given
noise levels.

GCC: To simulate the noisy type assertion of form (3), we corrupt the individuals of
concept Course but not GraduateCourse with concept GraduateCourse
according to the given noise levels.

Data Partition Strategy. Semantic web datasets differ from traditional datasets in the
data linkage aspect, which makes data partition different from traditional data partition
methods. We sketched the details of partition method used in this paper here, which
prevented the training and testing set from containing uncontrolled amount of individu-
als. The datasets are partitioned by individuals. Given the original dataset, training and
testing set individuals, we try to add all concept and property assertions related to the in-
dividuals in the corresponding training and testing datasets. Object property assertions
can link individuals to others that are not in the individual set. We ignore these property
assertions in order to maintain the size of the individual set. In each run, the dataset
is randomly divided into a training set and a test set, and we corrupt the training and
testing set by adding noise with the above method, and use the testing set to evaluate
the system performance.

Experimental Results. Fig. 3 shows the evaluation results on the 4 datasets with noise
level 10% - 50% using different feature schemes. From this figure, we find:

– As the noise level grows, we expect to see a decrease in the performance of classi-
fication in all evaluations. However, in many cases, we see an increase. This is be-
cause after we get more noises, the training data is more balanced to the 4 classes.
This is the reason for the increase in the classification performance.

– We may expect the performance better on the disjoint concept pair, a.k.a. UGS.
However, this might not be found from the evaluations. Actually, the evaluations
on concept pair GCC seem to outperform others. Firstly, we corrupted Course in-
dividuals with GraduateCourse types under the condition that the individuals are
not GraduateCourse themselves. Because otherwise we are not confident about the
corruptions generated are really noises. In this way, the GCC pair is similar to pair
UGS. Secondly, in the LUBM dataset, the individuals belonged to Course are less
than that of GraduateStudent. Although the noise levels are the same, but the num-
ber of noisy type assertions in GCC is smaller than that in UGS.

– Applying the proposed approach with [ALL] gets the best results. Especially on
dataset GCC. This indicates that relying solely on concept supports or role sup-
ports is not effective enough. Since in several cases, an individual possibly only has
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Fig. 3. The average accuracy using various feature schemes with different noise levels by setting
thresholds to 30 and 70

concept labels, or only has role links, using one kind of features obviously cannot
get enough information for classification.

– On RATA, the concept intersected pair, and GCC, the concept subsumption pair,
the performance are also quite good.

In Table 2 we demonstrate the performance of the Adaboost with J48 when noise level
is set to be 50%, and the threshold is 70. From this table, we find that in most cases, the
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proposed method is able to detect all noisy type assertions. When using [AS] on RATA
and GCC, we sometimes missed some conflicts, but the precision is still quite high.

Table 2. Precision, recall, and F1 using different feature schemes (FS) when noise level is 50%,
and threshold is 70

RATA UGS GCC
FS Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score
CS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.933 0.965

WCS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.933 0.965
SWCS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.933 0.965

AS 1.000 0.867 0.929 1.000 1.000 1.000 1.000 0.867 0.929
ALL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5.3 Evaluations on DBpedia

We locally maintained a SPARQL endpoint for DBpedia 3.9, which includes newly cre-
ated type inference results with estimated precision of 95%. Please refer to
http://github.com/fresheye/NoDe for the details of packages used in our
server.

The essence of our approach is making use of disjoint concepts, however, not stated
in the DBpedia ontology yet, to discover the noisy type assertions. This idea can be clear
after we look into the frequencies of co-occurrence (the number of instances belonged
to a pair of concepts is the co-occurrence frequency for this pair) in DBpedia. We can
see one extreme from Fig. 1 which depicts the co-occurrence frequency between 1,000
and 1,000,000, that most pairs of concepts share more than 10,000 instances. The other
extreme we can see from Fig. 1 that hundreds of pairs share instances less than 100,
however each of the concepts in this pair has more than 10,000 instances itself. We
manually construct a benchmark dataset with 4067 data instances, including 170 in (0,
10), 40 in [10, 30), 96 in [30, 50), 51 in [50, 70), 90 in [70, 100), 3673 in [100, 800),
and 47 in [800, 1000]

In Fig. 4, we demonstrate the average accuracy of our approach on DBpedia by using
difference thresholds by using [ALL] feature scheme. The “all data” lines represent the
average accuracy by using all examples in the benchmark dataset. The “same data size”
lines show the results of using the same number of examples (170 examples) in the
experiment. From Fig. 4 we find:

– The accuracy grows with the threshold, especially when all data are used. This
shows that more training examples bring us better model to classify the examples.

– The average accuracy of using J48 with Adaboost is normally better than J48 with-
out Adaboost at approximately 3%.

– When we use same amount of examples in experiments, the accuracy also grows
because when the size of the training set grows, the data are more balanced.
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Table 3. Average precision (Prec.), recall (Rec.), and F1 score (F1) on DBpedia by setting thresh-
old to 800

J48 J48(boost)
Feature Precision Recall F1-score Precision Recall F1-score

CS 0.837 0.831 0.832 0.785 0.782 0.783
WCS 0.768 0.768 0.768 0.844 0.845 0.844

SWCS 0.825 0.824 0.824 0.823 0.824 0.823
AS 0.812 0.761 0.729 0.812 0.761 0.729

ALL 0.936 0.936 0.936 0.956 0.956 0.956
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Fig. 4. Average accuracy by J48 and J48(boost) on all data and same size of data with [ALL]
feature scheme. Thresholds are set to be 10, 30, 50, 70, 100, 800, and 1000.

We perform the evaluations setting concept disjoint threshold to 800. The evaluation
results are shown in Table 3. From Table 3 we find conclusions similar to that in the
synthetic evaluations. We expected [WCS] to give high level of statistics in terms of
concept support, however the effect of them is limited. Using J48, the best features are
[CS] and [SWCS]. Using Adaboost, [WCS] performs the best. Overall, the best features
in classifying DBpedia are [SWCS] and [AS]. Combining all features together get the
best average F1-score of 95.6%. Table 4 shows some examples of noisy type assertions
can be found by our approach.

6 Related Work

Noise detection was mostly studied in the data mining community in the last decades.
Zhu and Wu [4] presented a systematic evaluation on the impact of concept and role
noises, with a focus on the latter. They concluded (1) Eliminating individuals contain-
ing concept noise will likely enhance the classification accuracy; (2) In comparison
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Table 4. Examples of noises detected in DBpedia 3.9. The namespaces of the header (con-
cepts) are all http://dbpedia.org/ontology/, and the namespaces of the content (instances) are all
http://dbpedia.org/resource/.

ID Agent Person Place
1 Sponge JSON PHI

2 Kama Xbox Music
England national
field hockey team

3 SQL Xbox Video American Beaver
4 Free State Of Saxony Thumbnail URS
5 Duero Automobile Craiova Al-Qaeda

ID PopulatedPlace Settlement Work

1
Eurovision Song Anglican Church of

Daugava
Contest 2007 Southern Africa

2
England national Byzantine Catholic Metropolitan

North Coast
field hockey team Church of Pittsburgh

3 American Beaver U.S. Highway 84 (Alabama) New York State Library
4 Catholics River Blackwater, Northern Ireland Captain Underpants
5 PHI British House of Commons Goodman School of Drama

ID Organization MusicalWork Artist
1 Longfellow (horse) Mirage Press Citrix
2 Kama South African War Royal Pharmaceutical Society
3 U.S. Geological Survey Daugava Argonne National Laboratory
4 Atlantic ocean North Coast PUC-Rio
5 Juris Doctor National Broadcasting Network KOL

ID Broadcaster RecordLabel SportsTeam
1 MHz Kelin DOS
2 Tate Gallery Velas Coral Springs
3 Louisiana Tech Central Europe Kama
4 TEENick (block) Catskills FSO Warszawa

5
List of Chinese-language

Koliba West Point
television channels

with concept noise, the role noise is usually less harmful. One technique often adopted
is voting. Zhu et al. [11] inductively processed partitions of the original dataset; they
evaluated the whole dataset using the selected good rules. They adopt majority and non-
objection threshold schemes to find noises. Miranda et al. [12] used ML classifiers to
make predictions on noisy examples in Bioinfomatics domain. They use majority vot-
ing and non-objection voting to filter out erroneous predictions. They concluded that
non-objection voting was too conservative and majority voting identified low levels of
noise. Kubica and Moore [1] identified corrupted fields, and used the remaining non-
corrupted fields for subsequent modeling and analysis. They learned a probability model
containing components for clean records, noise values, and the corruption process. Reb-
bapragada and Brodley [13] assigned a vector of class membership probabilities to each
training instance, and proposed to use clustering to calculate a probability distribution
over the class labels for each instance. Valizadegan and Tan [14] formulated mislabeled
detection as an optimization problem and introduced a kernel-based approach for filter-
ing the mislabeled examples.
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Noise detection studies have just begun in the semantic web community. Fürber and
Hepp [5] developed generic SPARQL queries to identify (1) missing datatype proper-
ties or literal values, (2) illegal values, and (3) functional dependency violations. Yu et
al. [6] identified potential erroneous (the degree to which a triple deviates from similar
triples can be an important heuristic for identifying “abnormal triples”) relational de-
scriptions between objects in triples by learning probabilistic rules from the reference
data and checking to what extent these rules agree with the context of triples. Suominen
and Mader [15] analysed the quality of SKOS vocabularies, and proposed heuristics to
correct the problems in the vocabularies. The focus was mainly on syntax level, made
the use of labels consistent for example.

Besides these works dealing with noises detection, type inference works are also re-
lated. Paulheim and Bizer [2] studied type inference on dataset like DBpedia. They use
role links to infer types of individuals, but they do not detect noises. Gangemi et al.
[16] automatically typed DBpedia entities by interpreting natural language definition
of an entity. Lehmann et al. [17] validated facts by a deep fact validation algorithm,
which provided excerpts of webpages to users who create and maintain knowledge
bases. Fanizzi et al. [18] adopted a self-training strategy to iteratively predict instance
labels. Fleischhacker and Völker [19] enriched learned or manually engineered ontolo-
gies with disjointness axioms. dAmato et al. [20] used inductive methods to handle
noises in semantic search.

7 Conclusion and Future Work

In this paper, we study the problem of noisy type assertions, which plays an important
role in the performance of semantic web applications. In large datasets, such as DBpe-
dia, the numbers of type assertions are too large to be processed by most ML classifiers,
we propose a novel approach that transforms the problem into multiclass classification
of a pair of type assertions related to the same individual. We perform evaluations on
both synthetic datasets and DBpedia. From the evaluations, we conclude that: (1) Our
approach can be applicable to most situations where noises exist; (2) The feature com-
position that use both concept knowledge and role knowledge outperforms others by
conducting evaluations using different feature compositions; (3) Our approach is effec-
tive in detecting noisy type assertions in DBpedia with the average precison of 95%.

In the future, we will try to explore the following issues: (1) We will study the im-
pact of noisy types in other assertions in the dataset; (2) We will extend conflict type
assertion extraction to the general type of disjointness, to be specific, the concept in the
disjoint pair may not be atomic. (3) Currently the detected noises are recorded in a local
DB. We will study how to correct them or remove them in the future.
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Abstract. Semantic Web technologies are used in a variety of domains
for their ability to facilitate data integration, as well as enabling expres-
sive, standards-based reasoning. Deploying Semantic Web reasoning pro-
cesses directly on mobile devices has a number of advantages, including
robustness to connectivity loss, more timely results, and reduced infras-
tructure requirements. At the same time, a number of challenges arise
as well, related to mobile platform heterogeneity and limited computing
resources. To tackle these challenges, it should be possible to benchmark
mobile reasoning performance across different mobile platforms, with
rule- and datasets of varying scale and complexity and existing reason-
ing process flows. To deal with the current heterogeneity of rule formats,
a uniform rule- and data-interface on top of mobile reasoning engines
should be provided as well. In this paper, we present a cross-platform
benchmark framework that supplies 1) a generic, standards-based Se-
mantic Web layer on top of existing mobile reasoning engines; and 2) a
benchmark engine to investigate and compare mobile reasoning perfor-
mance.

Keywords: Semantic Web, benchmarks, software framework, rule-based
reasoning, SPIN.

1 Introduction

By supplying a formal model to represent knowledge, Semantic Web technology
facilitate data integration as well as expressive rule-based reasoning over Web
data. For example, in the healthcare domain, the use of specialized, Semantic
Web medical ontologies facilitate data integration between heterogeneous data
sources [10], while Semantic Web reasoning processes are employed to realize
Clinical Decision Support Systems (CDSS) [21,6].

Reflecting the importance of reasoning in the Semantic Web, a range of rule
languages and reasoning engine implementations, using an assortment of
reasoning techniques, are available. Such reasoners range from Description Logic
(DL)-based reasoners relying on OWL ontology constraints [17] to general-
purpose reasoners, supporting a variety of rule languages (e.g., RuleML [7],
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SWRL [20] and SPIN [24]) and relying on different technologies, including Prolog
(e.g., XSB1), deductive databases (e.g., OntoBroker2) and triple stores (e.g.,
Jena3). In general, rule-based reasoning techniques, as for instance used in de-
cision support systems, allow a clear separation between domain knowledge and
application logic. Consequently, domain knowledge can be easily edited, updated
and extended without the need to disrupt the underlying system.

Up until now, knowledge-centric reasoning systems are typically developed
for deployment as desktop or server applications. With the emergence of mobile
devices with increased memory and processing capabilities, a case can be made
for mobile reasoning systems. In fact, mobile RDF stores and query engines are
already available, including RDF On the Go [25], AndroJena4, i-MoCo [32], and
systems such as MobiSem [33]. As such, a logical next step is to deploy rule-based
reasoning, an essential part of the Semantic Web, on mobile devices as well.

Deploying mobile reasoning processes, as opposed to relying on remote ser-
vices, has a number of advantages. In particular, local reasoning support allows
making timely inferences, even in cases where connectivity is lacking. This is es-
pecially important in domains such as healthcare, where non- (or too late) raised
alerts can negatively impact the patient’s health. Secondly, given the myriad of
data that can be collected about mobile users, privacy issues can play a role. A
mobile user could (rightly) be uncomfortable with sharing certain information
outside of the mobile device, for instance in context-aware [29] and mobile health
scenarios [2,19]. By deploying reasoning processes locally, no privacy-sensitive
data needs to be wirelessly communicated, while the advantages of rule-based
reasoning is still accessible to mobile apps.

Performing mobile reasoning gives rise to challenges as well, both related to
mobile device and platform heterogeneity as well as limited device capabilities.
Furthermore, it is clear that each system has its own particular requirements
regarding reasoning [13], which determine the complexity and scale of the rule-
and dataset, as well as the particular reasoning process flow. In light of mobile
device limitations, this makes it paramount to supply developers with the tools
to benchmark, under their particular reasoning setup, different mobile reason-
ing engines. This way, developers may accurately study the performance impact
of mobile deployment, and identify the best reasoning engine for the job. For
instance, this may inform architecture decisions where reasoning tasks are dis-
tributed across the server and mobile device based on their complexity [2]. In
addition, considering the fragmented mobile platform market (with systems in-
cluding Android, iOS, Windows Phone, BlackBerry OS, WebOS, Symbian, ..), it
should be straightforward to execute the same benchmark setup across multiple
mobile platforms.

Compounding the problem of mobile benchmarking, current freely and pub-
licly available mobile reasoning solutions support a variety of different rule and

1 http://xsb.sourceforge.net/
2 http://www.semafora-systems.com/en/products/ontobroker/
3 http://jena.sourceforge.net/
4 http://code.google.com/p/androjena/
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data formats. In fact, the heterogeneity of rule languages is a general problem
among rule-based reasoners [26]. We also note that multiple Semantic Web rule
standards are currently available as well (e.g., RuleML, SWRL, SPIN). To avoid
developers having to re-write their rule- and dataset to suit each engine, a single
rule and data interface should be available. For our purposes, the most interest-
ing rule language is SPIN, a W3C Member Submission based on the SPARQL
query language. SPARQL is well-known and understood by most Semantic Web
developers, reducing the learning threshold compared to other alternatives.

In this paper, we present a cross-platform Benchmark Framework for mobile
Semantic Web reasoning engines. As its main goal, this framework aims to em-
power developers to investigate and compare mobile reasoning performance in
their particular reasoning setups, using their existing standards-based ruleset
and dataset. This framework comprises two main components:

– A generic, standards-based Semantic Web Layer on top of mobile rea-
soning engines, supporting the SPIN rule language. Behind the scenes, the
supplied ruleset (SPIN) and dataset (RDF) are converted to the custom rule
and data formats of the various supported reasoning engines.

– A Benchmark Engine that allows the performance of the different reason-
ing engines to be studied and compared. In this comparison, any existing
domain-specific rulesets and datasets of varying scale and complexity can be
tested, as well as different reasoning process flows.

By realizing this framework as a cross-platform solution, the same benchmarks
can be easily applied across different mobile platforms. The framework is im-
plemented in JavaScript using the PhoneGap5 development tool, which allows
mobile web apps to be deployed as native apps on a multitude of platforms (e.g.,
Android, iOS) . As a result, our framework allows benchmarking both JavaScript
and native systems. The framework further has an extensible architecture, allow-
ing new rule/data converters, reasoning flows and engines to be easily plugged
in. Finally, we present an example benchmark in an existing clinical decision
support scenario, to serve as a proof-of-concept and to investigate mobile rea-
soning performance in a real-world scenario. Our online documentation [31],
associated with the presented benchmark framework, links to the source code
and contains detailed instructions on usage and extension as well (these docs are
referenced throughout the paper).

This paper is structured as follows. In Section 2, we discuss relevant back-
ground. Section 3 elaborates on the Mobile Benchmark Framework architecture
and its main components. We continue by summarizing the measurement crite-
ria (Section 4) and how developers can use the framework (Section 5). Section 6
summarizes the results of the example benchmark. In Section 7, we present re-
lated work, and Section 8 presents conclusions and future work.

5 http://phonegap.com/
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2 Background

2.1 Semantic Web Reasoning

An important aspect of the Semantic Web is reasoning, whereby reasoners may
exploit the assigned semantics of OWL data, as well as the added expressivity
given by domain-specific rules and constraints. Current semantic rule standards
include the Semantic Web Rule Language (SWRL) [20], Web Rule Language
(WRL) [3], Rule Markup/Modeling Language (RuleML) [7] and SPARQL Infer-
encing Notation (SPIN) [24]. In addition, many reasoning engines also introduce
custom rule languages (e.g., Apache Jena6). Clearly, this multitude of semantic
rule languages prevent the direct re-use of a single ruleset when benchmarking.
To tackle this problem, our benchmark framework supplies a generic Semantic
Web layer across the supported rule engines, supporting SPIN as the input rule
language.

SPIN (SPARQL Inferencing Notation) is a SPARQL-based rule- and con-
straint language. At its core, SPIN provides a natural, object-oriented way of
dealing with constraints and rules associated with RDF(S)/OWL classes. In the
object-oriented design paradigm, classes define the structure of objects (i.e., at-
tributes) together with their behavior, including creating / changing objects and
attributes (rules) as well as ensuring a consistent object state (constraints). Re-
flecting this paradigm, SPIN allows directly associating locally-scoped rules and
constraints to their related RDF(S)/OWL classes.

To represent rules and constraints, SPIN relies on the SPARQL Protocol
and RDF Query Language (SPARQL) [14]. SPARQL is a W3C standard with
well-formed query semantics across RDF data, and has sufficient expressivity to
represent both queries as well as general-purpose rules and constraints. Further-
more, SPARQL is supported by most RDF query engines and graph stores, and
is well-known by Semantic Web developers. This results in a low learning curve
for SPIN, and thus also facilitates the re-encoding of existing rulesets to serve as
benchmark input. In order to associate SPARQL queries with class definitions,
SPIN provides a vocabulary to encode queries as RDF triples, and supplies prop-
erties such as spin:rule and spin:constraint to link the RDF-encoded queries
to concrete RDF(S)/OWL classes.

2.2 Reasoning Engines

Below, we elaborate on the reasoning engines currently plugged into the Mobile
Benchmark Framework.

AndroJena7 is an Android-ported version of the well-known Apache Jena8

framework for working with Semantic Web data. In AndroJena, RDF data can
be directly loaded from a local or remote source into an RDF store called a
Model, supporting a range of RDF syntaxes.
6 https://jena.apache.org/
7 http://code.google.com/p/androjena/
8 https://jena.apache.org/
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Regarding reasoning, AndroJena supplies an RDFS, OWL and rule-based
reasoner. The latter provides both forward and backward chaining, respectively
based on the standard RETE algorithm [12] and Logic Programming (LP). In
addition, the reasoning engine supports a hybrid execution model, where both
mechanisms are employed in conjunction9,10. Rules are specified using a cus-
tom rule language (which resembles a SPARQL-like syntax), and are parsed and
passed to a reasoner object that is applied on a populated Model, which creates
an InfModel supplying query access to the inferred RDF statements. Afterwards,
new facts can be added to this InfModel; after calling the rebind method, the
reasoning step can be re-applied.

RDFQuery11 is an RDF plugin for the well-known jQuery12 JavaScript library.
RDFQuery attempts to bridge the gap between the Semantic Web and the regu-
lar Web, by allowing developers to directly query RDF (e.g., injected via RDFa
[18]) gleaned from the current HTML page. RDF datastores can also be popu-
lated directly with RDF triples.

In addition to querying, RDFQuery also supports rule-based reasoning. Con-
ditions in these rules may contain triple patterns as well as general-purpose
filters. These filters are represented as JavaScript functions, which are called for
each currently matching data item; based on the function’s return value, data
items are kept or discarded. The reasoning algorithm is ”näıve”, meaning rule
are executed in turn until no more new results occur13.

RDFStore-JS14 is a JavaScript RDF graph store supporting the SPARQL
query language. This system can be either deployed in the browser or a Node.js15

module, which is a server-side JavaScript environment.
Comparable to AndroJena (see Section 2.2), triples can be loaded into an RDF

store from a local or remote data source, supporting multiple RDF syntaxes.
Regarding querying, RDFStore-JS supports SPARQL 1.0 together with parts of
the SPARQL 1.1 specification. However, RDFStore-JS does not natively support
rule-based reasoning. To resolve this, we extended the system with a reasoning
mechanism that accepts rules as SPARQL 1.1 INSERT queries, whereby the
WHERE clause represents the rule condition and the INSERT clause the rule
result. This mechanism is näıve, executing each rule in turn until no more new
results are inferred (cfr. RDFQuery).

Nools16 is a RETE-based rule engine, written in JavaScript. Like RDFStore-JS,
this system can be deployed both on Node.js as well as in the browser.

9 http://jena.apache.org/documentation/inference/#rules
10 Currently, we rely on the default configuration settings, which uses the hybrid exe-

cution model.
11 https://code.google.com/p/rdfquery/wiki/RdfPlugin
12 http://jquery.com
13 The engine had to be extended to automatically resolve variables in the rule result.
14 http://github.com/antoniogarrote/rdfstore-js
15 http://nodejs.org/
16 https://github.com/C2FO/nools
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In contrast to the two other evaluated JavaScript systems, Nools presents
a fully-fledged reasoning engine, supporting a non-näıve reasoning algorithm
(RETE). Also, as opposed to the other evaluated systems, Nools does not na-
tively support RDF. The engine is also used differently when performing reason-
ing. In case of Nools, a developer first supplies the rules, formulated using their
custom rule language, in the form of a flow. The supplied flow is afterwards com-
piled into an internal representation (whereby pre-compilation can be applied
to avoid repeating the compilation step each time). A session is an instance of
the flow, containing the RETE working memory in which new facts are asserted.
After creating and compiling the rule flow, the dataset is asserted in the session,
after which the asserted data is matched to the defined rules.

Summary. Despite the potential of mobile reasoning processes, we observe a
current lack of freely and publicly available mobile solutions. The above men-
tioned JavaScript engines were developed for use on either the server-side (using
an environment such as Node.js) or a desktop browser, which makes their perfor-
mance on mobile platforms uncertain. And similarly, while AndroJena represents
port to the mobile Android platform, it is unclear to what extent the reasoning
engine was optimized for mobile devices.

At the same time, our example benchmark (see Section 6), conducted in a
real-world clinical decision support scenario, shows that these reasoning engines
already have acceptable performance for small rule- and datasets. Moreover,
our Mobile Benchmark Framework empowers developers to cope with this un-
certainty of mobile performance, by allowing them to investigate the feasibility
of locally deploying particular reasoning tasks. We further note that, as mo-
bile device capabilities improve and demand for mobile reasoning deployment
increases, more mobile-optimized reasoning engines are likely to become avail-
able. Recent efforts from the literature to optimize mobile reasoning processes
in certain domains (i.e., context-awareness) have been already observed [29].

3 Mobile Benchmark Framework

In this section, we give an architecture overview of the Mobile Benchmark Frame-
work. The framework architecture comprises two main components: 1) a generic
Semantic Web layer, supplying a uniform, standards-based rule- and dataset
interface to mobile reasoning engines; and 2) a Benchmark Engine, to investi-
gate and compare mobile reasoning performance. Figure 1 shows the framework
architecture.

During benchmark execution, the particular benchmark rule- and dataset (en-
coded in SPIN and RDF, respectively) are first passed to the generic Semantic
Web layer. In this layer, a local component (called Proxy) contacts an external
Conversion Web service, to convert the given rules and data into the formats
supported by the plugged-in reasoning engines. In this Web service, conversion
is performed by custom converters, each of which supports a particular rule or
data format. Afterwards, the conversion results are returned to the Proxy and
passed on to the Benchmark Engine.
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Fig. 1. Framework Architecture

In the Benchmark Engine, reasoning can be conducted using different process
flows, to better align the benchmarks with actual, real-world reasoning systems
(e.g., decision support). A particular reasoning flow is realized by invoking the
uniform interface methods (e.g., load data, execute rules) of the benchmarked
reasoning engine. Each mobile reasoning engine requires a plugin implementing
this interface, which translates method invocations to the underlying reasoning
engine. In case of native mobile reasoning engines, these plugins communicate
with the native engine code over the PhoneGap communication bridge.

In the sections below, we elaborate on the two main architecture components.

3.1 Semantic Web Layer

This layer supplies a single, standards-based rule- and dataset interface for frame-
work, allowing developers to cope with the heterogeneous rule- and dataset for-
mats. Currently, the layer respectively supports SPIN17 and RDF as input rule
and data formats.

The conversion functionality is accessed via an intermediate JavaScript com-
ponent called the Proxy, which comprises methods for rule and data conversion.
Behind the scenes, the Proxy contacts a RESTful Conversion Web service (de-
ployed on an external Web server) to perform the conversion tasks, thus intro-
ducing a layer of abstraction. We opted for a web service approach, since the
only currently available SPIN API is developed for Java (by TopBraid [23]). The
Conversion Web service utilizes the API to convert incoming SPIN rules into
an Abstract Syntax Tree (AST). This AST is then analyzed by plugged-in con-
verters, using the provided Visitor classes (Visitor design pattern), to convert
the SPIN rules into equivalent rules18 in other formats. In case data conversion
17 The input SPIN rules do not need to be RDF-encoded.
18 While only SPIN language features can be referenced in input rules, any (SPIN-

encoded) core inferences should be mappable to a target IF-THEN rule format.
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is required as well, a data converter can utilize the Apache Jena library to deal
with incoming RDF data.

Below, we shortly elaborate on the currently developed converters. After-
wards, we discuss how the layer can be extended with new converters.

AndroJena (see Section 2.2) defines its own custom rule language, which
resembles a triple pattern-like syntax. As such, rule conversion to SPIN (which
relies on the likewise triple pattern-based SPARQL) is relatively straightforward.
Comparably, RDFQuery (see Section 2.2) utilizes triple patterns in rule def-
initions, facilitating rule conversion. To create the JavaScript filter functions,
function strings are generated and returned, which are evaluated (using the JS
eval command) by the JavaScript Proxy to obtain the actual function con-
structs. RDFStore-JS requires converting SPIN rules, which are represented
as CONSTRUCT queries19, to equivalent queries using the INSERT keyword
from SPARQL 1.1/Update [14].

As mentioned, Nools (see Section 2.2) is the only reasoning engine under
consideration without built-in Semantic Web support. At the same time however,
their generic rule language supports domain-specific extensions, by allowing rule
definitions to include custom data types (e.g., data type Message). These data
types can then be instantiated in the incoming dataset, and referenced in the
defined rules. To add Semantic Web support, we include custom RDFStatement,
RDFResource, RDFProperty and RDFLiteral data types into rule definitions,
and convert incoming SPIN rules to Nools rules referencing these data types. The
incoming RDF dataset is converted to instances of these custom data types, and
asserted as facts in the session.

Currently, the converters support SPIN functions representing primitive com-
parators (greater, equal, ..), as well as logical connectors in FILTER clauses.
Support for additional functions needs to be added to the respective converter
classes. More advanced SPARQL query constructs, such as (not-)exists, optional,
minus and union, are currently not supported, since it is difficult to convert them
to all rule engine formats, and they have not been required up until now by our
real-world test rule- and datasets (e.g., see example benchmark in Section 6).

Extensibility. To plugin a new data- or rule-format, developers create a new
converter class. Each converter class implements a uniform rule- (or data-) con-
version interface, which accepts the incoming SPIN rules / RDF data and re-
turns Strings in the correct rule / data format. Each converter class also defines
a unique identifier for the custom format, since conversion requests to the Web
service specify the target format via its unique identifier.

New converter classes need to be listed (i.e., package and class name) in a
configuration file, which is read by the Web service to dynamically load converter
class definitions. As such, converters can be easily plugged in without requiring
alterations to the web service code. Our online documentation [31] contains more
detailed instructions on developing new converters.

19 http://www.w3.org/Submission/2011/SUBM-spin-modeling-20110222/
#spin-rules-construct
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3.2 Benchmark Engine

The Benchmark Engine performs benchmarks on mobile reasoning engines un-
der particular reasoning setups, with the goal of investigating and comparing
reasoning performances. Below, we first discuss currently supported reasoning
setups; afterwards, we elaborate on the extensibility of this component.

Reasoning setups comprise the particular process flows via which reasoning
may be executed. By supporting different setups (and allowing new ones to be
plugged in), benchmarks can be better aligned to real-world reasoning systems.
From our work in clinical decision support, we identified two general process
flows:

Frequent Reasoning: In the first flow, the system stores all health measure-
ments and observations (e.g., heart rate, symptoms), collectively called clinical
facts, in a data store. To infer new clinical conclusions, frequent reasoning is ap-
plied to the entire datastore, comprising all collected clinical facts together with
the patient’s baseline clinical profile (e.g., including age, gender and ethnicity).
Concretely, this entails loading a reasoning engine with the entire datastore each
time a certain timespan has elapsed, and executing the relevant ruleset.

Incremental Reasoning: In the second flow, the system implements clinical
decision support by applying reasoning each time a new clinical fact is entered.
In this case, the reasoning engine is loaded with an initial baseline dataset,
containing the patient’s clinical profile and historical (e.g., previously entered)
clinical facts. Afterwards, the engine is kept in memory, whereby new facts are
dynamically added to the reasoning engine. After each add operation, reasoning
is re-applied to infer new clinical conclusions20.

It can be observed that the Frequent Reasoning process flow reduces respon-
siveness to new clinical facts, while also incurring a larger performance overhead
since the dataset needs to be continuously re-loaded. Although the Incremental
Reasoning flow improves upon responsiveness, it also incurs a larger consistent
memory overhead, since the reasoning engine is continuously kept in memory.
The most suitable flow depends on the requirements of the domain; for instance,
Incremental Reasoning is a better choice for scenarios where timely (clinical)
findings are essential. The Benchmark Engine enables developers to perform mo-
bile reasoning benchmarking using process flows that are most suitable for their
setting. We note that additional flows can be plugged in as well, as mentioned
at the end of this Section.

In addition, the particular reasoning engine may dictate a particular process
flow as well (see Section 2.2). For instance, in case of RDFQuery, RDFStore-JS
and AndroJena, the data is first loaded into the engine and rules are subse-
quently executed (LoadDataExecuteRules). For Nools, rules are first loaded into
the engine to compile the RETE network, after which the dataset is fed into the
network and reasoning is performed (LoadRulesDataExecute).

20 An algorithm is proposed in [16] to optimize this kind of reasoning, which is imple-
mented by the reasoning engine presented in [29].
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We note that the former type of process flow (i.e., Frequent and Incremen-
tal Reasoning) indicates the reasoning timing, and is chosen based on domain
requirements; while the latter flow type defines the operation ordering, and is
determined by the employed reasoning engine21. For a single benchmark, the rea-
soning setup thus comprises a combination of two flows of each type. Figures 2/A
and B illustrate the possible setups for our current reasoning engines.

Fig. 2. (A) Frequent Reasoning and (B) Incremental Reasoning process flow (RDF-
Query, RDFStore-JS, AndroJena)

Figure 2/A shows Frequent Reasoning (FR) and Incremental Reasoning (IR)
for LoadDataExecuteRules (RDFQuery, RDFStore-JS and AndroJena), and Fig-
ure 2/B shows the same for LoadDataRulesExecute (Nools). For both diagrams,
Frequent Reasoning entails going through the entire diagram each time a partic-
ular timespan has elapsed (time event). For Incremental reasoning, the system
traverses the diagram from start to finish at startup time, and proceeds (from
the indicated place) each time a new fact is received (receive signal event).

As mentioned, the Benchmark Engine is implemented in JavaScript and de-
ployed as a native mobile app using the PhoneGap cross-platform development
tool. We chose Android as the deployment platform since, to our knowledge, the
only (publicly and freely available) native mobile reasoning engine (AndroJena,
see Section 2.2) runs on that platform.

Extensibility. In the Benchmark Engine, each reasoning setup is represented
by a JavaScript object. Its runBenchmark method invokes operations from the
uniform reasoning engine interface (e.g., load data, execute rules) to realize its
21 We also note that, for LoadRulesDataExecute, the Execute Rules step is separated

into two steps.
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particular process flows. The object is added to a folder called setups and listed
in a mapping.json file, which maps combinations of process flows (e.g., Frequen-
tReasoning, LoadDataExecuteRules) to their corresponding setup object.

A new mobile reasoning engine is plugged into the Benchmark Engine by writ-
ing a JavaScript ”plugin” object. This object implements the uniform interface
invoked by reasoning setups (see above) and translates method invocations to
the underlying engine. In addition, each object specifies a unique engine ID, the
rule- and dataformat accepted by the engine, as well as the process flow dictated
by the engine (see Section 3.2). Each plugin object is put in a separate file and
folder, both named after the reasoning engine id.

To insert native reasoning engines, developers implement the plugin on the
native platform (e.g., Android), likewise implementing the uniform engine in-
terface and specifying the aforementioned information. The Benchmark Engine
comprises a native part (see Figure 1) to manage these plugins. In addition,
developers add a dummy JavaScript plugin object for the engine, indicating the
unique engine ID. Behind the scenes, the Benchmark Engine replaces this dummy
object by a proxy component that implements communication with the native
plugin. This setup is illustrated in the Benchmark Engine part of Figure 1.

More detailed instructions on developing Benchmark Engine extensions can
be found in our online documentation [31].

4 Measurement Criteria
The Mobile Benchmark Framework allows studying and comparing the following
metrics:

– Data and rule loading times: Time needed to load data and rules (if nec-
essary) into the reasoning engine. Data loading time is commonly used in
database benchmarks [9] as well as Semantic Web benchmarks [15,5]. Note
that this time does not include converting the initial standards-based rule-
and dataset to native formats.

– Reasoning times: Time needed to execute the rules on the dataset and infer
new facts. Typically, database benchmarks capture the query response time
as well, including Semantic Web benchmarks [15,4].

Ideally, and especially on mobile devices, these performance criteria would
include memory consumption as well. However, it is currently not technically
possible to automatically measure this criterium for all reasoning engines. An-
droid Java heap dumps accurately measure the memory consumption of Android
engines, but can only measure the entire memory size of the natively deployed
web app (comprising the JavaScript reasoning engines). The Chrome DevTools
remote debugging support22 can only be employed to record heap allocations
inside the mobile Chrome browser, and furthermore needs to be invoked manu-
ally. Other works also cite the accurate measuring of in-memory repository sizes
as a difficult problem [15].
22 https://developers.google.com/chrome-developer-tools/docs/

remote-debugging
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Some related works also investigate completeness and soundness of inferenc-
ing [15]. This criterium was presented in the context of OWL constraint-based
reasoning, which typically serves to enrich data access where incomplete infer-
ences may already be acceptable. In rule-based systems (e.g., (clinical) decision
support systems), inferencing completeness is often a hard requirement. That
said, each reasoning engine plugin in our framework outputs any inferred facts,
allowing developers to check inferencing completeness.

Other works focus on benchmarking performance for reasoning types such as
large joins, Datalog recursion and default negation [26]. Although these bench-
marks are certainly useful, the goal of the Mobile Benchmark Framework is not
to measure performance for such specific reasoning types, but instead to facili-
tate mobile reasoning benchmarking given a particular existing reasoning setup;
including rule- and datasets and reasoning process flows.

Finally, we do not measure rule- and dataset conversion performance. The goal
of the Semantic Web layer is to provide a uniform rule- and data-interface to
facilitate benchmarking; the layer will not be included in actual mobile reasoning
deployments.

5 Usage

This section gives a birds-eye view of how developers can utilize the framework.
More detailed deployment and usage instructions for the framework, including
the Conversion Web service, are available in our online documentation [31].

To perform benchmarks, developers provide a configuration file that speci-
fies the reasoning setup and engine to be used, the number of runs, as well as
the benchmark dataset and ruleset. By performing multiple runs of the same
benchmark and calculating average execution times, the impact of background
OS processes is minimized. Below, we show the configuration for our example
benchmark (see Section 6):

{
processFlow : ’frequent_reasoning’,

// options: frequent_reasoning, incremental_reasoning
engine : ’AndroJena’,

nrRuns : 20,

ruleSet : {
path : "res/rules/af/benchmark.spin-rules",
format : ’SPIN’ // options: SPIN, native

},

// in case of ’incremental reasoning’: include ’baseline’
// & ’single-item’ config under dataSet
dataSet : {

path : "res/data/af/25/benchmark.nt",
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format : ’RDF’, // options: RDF, native
syntax : ’N-TRIPLE’

// options: RDF/XML, N-TRIPLE, TURTLE, TTL, N3, RDF/XML-ABBREV
}

}

This configuration indicates the process flow (processFlow) and reasoning en-
gine (engine) to be used in the benchmark, as well as the number of benchmark
runs (nrRuns). The ruleset and dataset can either be provided respectively in
SPIN / RDF or native format (i.e., the engine’s natively supported format). In
the non-native case, the framework automatically contacts the Semantic Web
layer on-the-fly for conversion to the engine’s native format. Alternatively, a
script is available to convert rules and data beforehand, ruling out the need for
connecting to the Web service during benchmarking.

6 Example Benchmark

In this section, we present an example benchmark that serves as a proof-of-
concept of our Mobile Benchmark Framework. As an added goal, this benchmark
aims to indicate the performance of the presented mobile reasoning engines for a
real-world reasoning task, namely an existing clinical decision support scenario.
Importantly, we note that the goal of this section is not to exhaustively compare
the performance of the plugged-in mobile reasoning engines23.

Below, we shortly elaborate on the benchmark domain (including the data-
and ruleset), and indicate the utilized hardware. Afterwards, we summarize the
benchmarking results.

6.1 Benchmark Domain

The benchmark data and ruleset are taken from ongoing work on the Integrated
Management Program Advancing Community Treatment of Atrial Fibrillation
(IMPACT-AF) project [22]. IMPACT-AF aims to provide web- and mobile-based
clinical decision support tools for primary care providers and patients, with the
goal of better managing Atrial Fibrillation (AF). To improve the timeliness of
clinical alerts and increase robustness to connectivity loss, this project includes
outfitting a mobile app, used by patients to enter health measurements and
observed symptoms, with local reasoning support.

The mobile ruleset, employed in this benchmark, represents part of the com-
puterized guidelines for the treatment of Atrial Fibrillation, given by the Cana-
dian Cardiovascular Society [8] and European Society of Cardiology [11]. The
ruleset encompasses a total of 10 rules. An AF patient’s dataset comprises
health factors related to AF, including clinically relevant personal info (e.g.,
age, gender) and health measurements (e.g., blood pressure), as well as AF-
specific symptoms and the International Normalized Ratio (INR). Collectively,
23 A second paper, performing such a comparison for the same domain, is currently

under review.
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we refer to these data items as clinical facts. We generated benchmark datasets
containing the above described clinical data, whereby clinical facts were created
based on ranges encompassing both clinically normal values as well as abnormal
ones. With the goal of investigating mobile reasoning scalability, our benchmarks
consider a sequence of datasets, each containing an increasing amount of data.
Each dataset triggers 40-50% of the rules.

The rule- and dataset of this benchmark, as well as instructions on how to run
it, can be found in the online documentation [31] (for the latter, see the Usage
part).

6.2 Hardware

The benchmarks were performed on a Samsung Galaxy SIII (model number GT-
I9300), with a 1.4GHz quad-core processor, 1GB RAM and 16GB storage. The
installed Android OS was version 4.3 (Jelly Bean) with API level 18.

6.3 Results

In Section 3.2, we described two main process flows to realize mobile reasoning,
including Incremental Reasoning and Frequent Reasoning. Below, we separately
summarize and discuss the results for each process flow.

Frequent Reasoning. Table 1 shows the average loading and reasoning times
for each engine and for increasing dataset sizes. Each run of this flow involves
loading the reasoning engine with the entire dataset (load column) and then
executing the rules (execute column); the total column shows the total time of
each run.

We note that for Nools, loading times also include loading the rules into the
engine24, in order to build the internal RETE network (data loading time is
shown separately between parenthesis). For some engines, the reasoning step
includes creating rule objects as well; since this rule creation step turned out
to be trivial (never exceeding 50 ms), these times were added to the overall
reasoning times.

Incremental Reasoning. In Table 2, we again summarize average loading
and reasoning times for increasing sizes of the dataset. In this process flow, the
reasoning engine is initially loaded with a baseline dataset (typically at startup
time). As baseline dataset, we employed the dataset containing 25 clinical facts
(1673 triples). A single run of this flow involves loading an additional fact into
the engine (load column) and performing the execution step (execute column).
The total column shows the total time of a single run. We refer to Table 1 for
times on the initial loading of the baseline dataset.

24 This time remains constant for increasing dataset sizes.
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Table 1. Frequent Reasoning: Loading & Reasoning times for increasing dataset sizes
(ms)

#triples

RDFQuery RDFStore-JS Nools AndroJena

load exec total load exec total load exec total load exec total

137 95 154 249 196 985 1181 8411 (560) 52 8463 94 104 198

393 230 506 736 750 1523 2273 9256 (1245) 88 9344 160 138 298

713 362 1165 1527 1269 1479 2748 10061 (2521) 78 10139 439 466 905

1673 673 6294 6967 2468 1606 4074 14707 (7399) 58 14765 560 3205 3765

3273 1348 36603 37951 4269 2145 6414 25580 (18731) 64 25644 1036 24921 25957

4873 1680 106212 107892 5592 2496 8088 49465 (41845) 358 49823 1509 79699 81208

Table 2. Loading & Reasoning times for a single fact (ms)

RDFQuery RDFStore-JS Nools AndroJena

load 42 8 22 16

execute 5941 1677 19 3426

total 5983 1685 41 3442

6.4 Discussion

In this section, we shortly discuss the benchmark results summarized above for
each reasoning process flow.

Frequent Reasoning. Table 1 shows the Nools data loading time is problematic
for larger (> 713 triples) datasets (the rule loading time is constant and averages
ca. 7-8s). Regarding loading times, especially RDFQuery and AndroJena perform
well (< 1s) for medium datasets (< 3273 triples), whereby AndroJena has the
best loading performance overall.

At the same time, we note that AndroJena and RDFQuery, while perform-
ing well for smaller datasets, have a very problematic reasoning performance
for larger datasets (≥ 1673 triples). Nools has by far the best reasoning perfor-
mance, only exceeding 100ms for the largest dataset. Reasoning performance for
RDFStore-JS remains reasonable, rising steadily as the datasets increase in size.

From the total times, we observe that RDFStore-JS is the most scalable
solution for this particular process flow, performing best for larger datasets (>
1673 triples). AndroJena is the better solution for smaller datasets (≤ 1673
triples).

It can be observed that the domain datasets are relatively small scale. Inside
this limited scale however, the benchmark already identified clear differences in
engine performance for increasing dataset sizes. For larger datasets, problematic
mobile performance may for instance point the developer towards a distributed
solution, combining local and server-side reasoning.

Also, we note the ruleset was not optimized to suit the employed rea-
soning mechanisms (e.g., RETE, Logic Programming) or dataset composition.
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Investigating the effects of the various potential optimizations is beyond the
scope of this paper, and will be considered in future work.

Incremental Reasoning. Table 2 shows that, as expected from the discussion
above, Nools has by far the best performance in this reasoning step, with almost
negligible reasoning times compared to the other engines. In contrast, reasoning
times for the other three engines is comparable to their reasoning performance
for this dataset size in the first process flow.

Consequently, we observe that, once the initial data and rule loading is out
of the way, Nools has by far the best reasoning performance when incrementally
adding facts in this process flow. As noted in the previous section, Nools data
loading times for small datasets (≤ 713 triples) are still acceptable (while we
note that rule loading time will also decrease with the ruleset size). Therefore,
Nools is the best option for this flow in case of small datasets and rulesets, since
the low reasoning time makes up for the increased initialization time. In case
scalability is required, RDFStore-JS remains the best option.

Conclusion. The above results indicate that, as expected, the most suitable
engine depends on the target reasoning process flow, as well as the dataset (and
ruleset) scale. At the same time however, we observe that scalability represents
a serious issue for most mobile engines. We also note that, although taken from
an existing, real-world clinical decision support system, the utilized ruleset is
relatively straightforward, with for instance no rule chaining. If that had been
the case, näıve reasoning mechanisms (as employed by RDFStore-JS and RD-
FQuery) would likely have a larger disadvantage compared to the fully-fledged
AndroJena and Nools engines. If anything, this again indicates the importance
of a Mobile Benchmark Framework that allows easily performing benchmarks
with the particular rule- and dataset from the target use case.

7 Related Work

The Lehigh University Benchmark (LUBM) [15] supplies a set of test queries
and a data generator to generate datasets, both referencing a university ontol-
ogy. In addition, a test module is provided for carrying out data loading and
query testing. This work aims to benchmark data loading and querying over
large knowledge base systems featuring OWL / RDF(S) reasoning. The Univer-
sity Ontology Benchmark (UOBM) [27] builds upon this work, and extends it
to support complete OWL-DL inferencing and improve scalability testing. Sim-
ilarly, the Berlin SPARQL benchmark (BSBM) [5] supplies test queries, a data
generator and test module for an e-commerce scenario. In this case, the goal is
to compare performance of native RDF stores with SPARQL-to-SQL rewriters,
and to put the results in relation with RDBMS.

The focus of the works presented above differs from our work, which is on the
cross-platform benchmarking of mobile, rule-based Semantic Web reasoners; and
facilitating such benchmarks by providing a uniform interface across different,
natively supported rule- and data formats.
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OpenRuleBench [26] is a suite of benchmarks for comparing and analyzing the
performance of a wide variety of rule engines, spanning 5 different technologies
and 11 systems in total. These benchmarks measure performance for types of
reasoning such as large joins and Datalog recursion, targeting engines deployed
on the desktop- and server-side. Instead, we focus on benchmarking Semantic
Web reasoners deployed on mobile platforms. Additionally, we supply the tools
for developers to benchmark their existing reasoning setup, including their rule-
and dataset and particular reasoning flow.

The Intelligent Mobile Platform (IMP) supplies context-aware services to
third-party mobile apps, and relies on the Delta Reasoner [29] to determine
current context and identify appropriate actions. To cope with the particular
requirements of context-aware settings, including the dynamicity of sensor data
and the necessity of push-based access to context data, the Delta Reasoner imple-
ments features such as incremental reasoning and continuous query evaluation.
However, this reasoner is currently not publicly available; and the integration of
this reasoner into the mobile IMP still seems a work in progress.

8 Conclusions and Future Work
In this paper, we introduced a Mobile Benchmark Framework for the investi-
gation and comparison of mobile Semantic Web reasoning engine performances.
This framework was realized as a cross-platform solution, meaning a particular
benchmark setup can be easily applied across mobile platforms. Furthermore,
there is a strong focus on extensibility, allowing new rule- and data converters,
reasoning process flows and engines to be plugged in. Throughout the paper, we
indicated where and how extensions can be made by third-party developers.

An important goal of the framework is to empower developers to bench-
mark different reasoning engines, using their own particular reasoning setups
and standards-based rule-and datasets. To that end, the framework comprises
two main components:

– A generic, standards-based Semantic Web Layer on top of mobile reason-
ing engines, supporting the SPIN rule language. Given a standards-based
ruleset (SPIN) and dataset (RDF), a conversion component returns this
rule- and dataset transformed into the custom formats supported by the
mobile reasoning engines.

– A Benchmark Engine that allows the performance of the different reason-
ing engines to be studied and compared. In this comparison, any domain-
specific rule- and dataset with varying scale and complexity can be tested,
as well as multiple reasoning process flows.

As a proof-of-concept, an example benchmark was performed using the frame-
work, based on an existing clinical decision support system. Additionally, this
benchmark aimed to measure the performance of mobile reasoning engines for
such a real-world reasoning setup; and thus study the feasibility of locally deploy-
ing reasoning processes at this point in time. Although most benchmarked rea-
soning engines were not optimized for mobile use, the benchmark showed these
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engines already feature reasonable performance for limited rule- and datasets.
At the same time, we note scalability is certainly an issue, with the most efficient
overall execution times for Frequent Reasoning rising to ca. 8s for the largest
dataset (comprising 4873 triples). To support larger-scale setups, it is clear that
much more work is needed to optimize rule-based Semantic Web reasoners for
mobile deployment. Interest in performing such optimization has been observed
recently in the literature [29], and is likely to increase as demand for mobile
reasoning processes increases (e.g., from domains such as health care [1,2,19]).

Future work includes benchmarking mobile reasoning engines with rulesets
of increased complexity. Support for additional SPIN functions and more ad-
vanced SPARQL constructs should be added to the Semantic Web layer, as these
will likely be needed by such complex rulesets. Moreover, different optimization
techniques will be applied as well to systematically evaluate their impact on
performance. A number of relevant techniques can be utilized for this purpose,
for instance based on RETE [28] or borrowed from SPARQL query optimization
[30].

Currently, we are employing one of the mobile reasoning engines in the
IMPACT-AF mobile app (see Section 6.1), where it features sufficient perfor-
mance for the current rule- and dataset. As requirements for local reasoning
increase, it is possible we will investigate custom optimizations to these engines
for mobile deployment.
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Bayer Healthcare.
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Abstract. We introduce a new methodology for benchmarking the
performance per watt of semantic web reasoners and rule engines on
smartphones to provide developers with information critical for deploy-
ing semantic web tools on power-constrained devices. We validate our
methodology by applying it to three well-known reasoners and rule en-
gines answering queries on two ontologies with expressivities in RDFS
and OWL DL. While this validation was conducted on smartphones run-
ning Google’s Android operating system, our methodology is general
and may be applied to different hardware platforms, reasoners, ontolo-
gies, and entire applications to determine performance relevant to power
consumption. We discuss the implications of our findings for balancing
tradeoffs of local computation versus communication costs for seman-
tic technologies on mobile platforms, sensor networks, the Internet of
Things, and other power-constrained environments.

Keywords: reasoner, rule engine, power, performance, mobile, OWL.

1 Introduction

The vision of the Semantic Web established by Berners-Lee, Hendler, and Las-
sila [4] has brought us a web with a variety of ontologies, interlinked datasets
[5], and efforts such as Schema.org to standardize terminology and encourage
webmasters to publish structured, machine-readable web content. Since 2001,
we have also seen the rise of the smartphone as a dominant platform for web
access. Smartphone use continues to grow. The International Telecommunica-
tions Union estimates that around 90% of the world’s population has access to
cellular connectivity versus 44% with wired broadband to the home.1 The ubiq-
uity of the mobile phone offers an opportunity to build previously impossible,
content-rich applications that benefit from semantic technologies.

One challenge that semantic technologies face when deployed on mobile plat-
forms like smartphones is the amount of energy available for the device to com-
pute and communicate with other semantic agents on the web. For example,

1 http://www.itu.int/en/ITU-D/Statistics/Documents/facts/

ICTFactsFigures2014-e.pdf
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the Google Nexus One, one of the first Android smartphones, had a single core
processor operating at 1 GHz and 512 MB of RAM. Samsung’s latest offering,
the Galaxy S5, has a quad core, 2.5 GHz processor and 2 GB of RAM, more
than a 8-fold increase in processing power and 4-fold increase in capacity in 5
years. However, the battery capacity of the two phones are 1400 mAh and 2800
mAh, respectively, indicating that battery technology is progressing more slowly
than processing technology, in a time period during which the complexity of
applications has increased. We therefore need tools to help developers identify
essential queries and to select ontologies of the appropriate expressivities for lo-
cal reasoning or identify when off-device computation is a more practical use of
devices’ limited energy reserves.

Context awareness [29,14,18], ubiquitous computing [12], and other user-
centric applications will benefit greatly by reasoning about different streams
driven by smartphone sensors. However, rich data sources can pose new chal-
lenges. Access control [28] and privacy have always been critical topics to consider
and are even more-so given revelations on weaknesses in various cryptography
libraries, such as the OpenSSL Heartbleed attack.2 Therefore, one scenario to
consider is one where personal data are kept and used locally to perform com-
putation rather than sending those data to an untrusted party. Alternatively, we
may build applications that selectively expose context or perform computation
in a context-sensitive way without sharing all inputs of those computations. Con-
sider a scenario where a wine recommendation agent (e.g. [19]) wants to make a
recommendation to a user, but only if the recommendation meets dietary, medi-
cal, or other restrictions available in a privileged document such as an electronic
medical record. If a health agent were available to manage computation on the
medical record, the wine agent would provide the recommendation to it. The
health agent then responds affirmatively if the supplied recommendation is rea-
sonable given the content of the medical record. The wine agent then makes its
recommendation without ever having direct access to user’s health information.

Democratization of application programming, accomplished via tools such as
the MIT AppInventor, allows anyone to build mobile applications using pre-
defined components. A linked data extension to AppInventor [21] allows users
to take advantage of SPARQL on mobile devices. However, users are given no
feedback about how their applications might affect the performance or battery
life of their (or others’) phones, where resources are relatively scarce. Therefore,
a new set of tools are required to aid the AppInventor community to incorporate
new technologies like those provided by the semantic web.

We introduce a methodology that we believe is broadly reusable and is
specifically motivated by these different scenarios to evaluate the performance
of semantic web technologies relative to the amount of energy consumed dur-
ing operation. In particular, we are focusing on varying the reasoning engine
but varying the query engine, ontologies, and datasets are all possible with
our approach. Ultimately, these metrics will provide developers a deeper insight
into power consumption and enable next-generation applications of semantic

2 http://heartbleed.com/
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technologies for power constrained devices. The remainder of this paper is or-
ganized as follows: Section 2 compares our contributions with related work on
reasoner benchmarking; Section 3 describes our novel hardware and software
configuration used for collecting performance data; Sections 4 & 5 discuss the
ontologies, reasoners, and queries used for evaluating reasoner performance; Sec-
tion 6 presents performance per watt findings using our approach; Section 7
discusses some unanticipated results and implications for mobile semantic web
agents; and, Section 8 presents conclusions and opportunities for future research.

2 Related Work

While reasoner benchmarking is not new, performing benchmarks relative to
system power consumption and the amount of inferred statements has not been
previously explored to the best of our knowledge. We therefore look at a number
of existing benchmarks related to processing time and memory consumption as
well as evaluations performed by reasoner authors. We also consider some power
related work done in other areas of computer engineering and computer science.

The Lehigh University Benchmark (LUBM) [8] and the extended University
Ontology Benchmark (UOBM) [15] use an ontology written in OWL that models
university concepts such as classes, departments, professors, and students. The
goal of these benchmarks is to evaluate the scalability of inference systems using
a controlled ontology and a random instance set generated based on statistical
knowledge learned from real world data. We make use of LUBM as a portion
of our power benchmark for reasoners that support OWL DL, but evaluate
reasoners for memory and power consumption in addition to execution time.

The JustBench Framework [2] was developed to evaluate the performance of
reasoners using the justifications of their entailments rather than by analyzing
the reasoner’s performance on the entirety of an ontology or a random subset.
One of its goals is to aid ontology engineers in debugging performance of rea-
soners and ontologies. Bail et al. also highlighted five techniques for improving
reasoning behavior: a) introduce further training for knowledge engineers; b) re-
duce expressivity to more tractable logics, such as the OWL 2 profiles; c) generate
approximations in more tractable logics, e.g. OWL 2 EL approximation of a DL
ontology; d) apply fixed rules of thumb during ontology design; e) and, apply
analytical tools, such as profilers and benchmarks . They found that evaluating
justifications was a good first step to understanding how reasoners performed
over ontologies, but that such means are unable to test performance when no
entailment exists. While this research is promising, the short amount of time
required to generate a single justification is too small to be accurately detected
by our hardware, making this method of evaluation infeasible for our purposes.

Seitz and Schönfelder [20] present an OWL reasoner for embedded devices
based on CLIPS. The target device ran at 400 MHz with 64 MB of RAM. They
evaluated the performance and memory use of the reasoner on OWL 2 RL ontolo-
gies and identified issues with existing reasoning systems on devices with limited
resources. They benchmarked their reasoner using LUBM with 25,000 individu-
als. They found that runtime on the resource constrained platform runtime was
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O(n2) with respect to triples in their knowledge base. Memory consumption was
also observed as O(n2). Our benchmark includes a power metric to complement
their means of measuring CPU time and memory consumption to provide a more
holistic view of the resources a reasoner is consuming.

Henson, Thirunarayan, & Sheth [9] presented a novel bit vector algorithm for
performing a subset of OWL inference on sensor data in a resource constrained
device that showed performance on explanation and discrimination in a knowl-
edge base O(n) compared with Androjena, a variation of Jena designed to run
on Google’s Android operating system, at O(n3). Their evaluation introduced a
benchmark that used completely orthogonal bipartite graph matching to gener-
ate worst-case complexity in each system. While their benchmark was aimed at
resource constrained devices, it used a particularly limited subset of OWL that
would not be expressive enough to cover the use cases discussed in Section 1.

Lim, Misra, and Mo [13] present an numeric analysis of energy efficiency of
database query answering in a distributed environment. They approximate the
amount of energy consumed by wireless transmission of data in a sensor platform
using the theoretical power values for communications hardware set in the IEEE
802.11 and BlueTooth standards. Our work captures actual power use, which
includes energy consumption of the CPU and real-world noise that may include
energy consumed for checking for and retransmitting error packets, energy used
responding to multicast/broadcast from other devices on the network, among
others. We also provide figures for cellular radios not considered in that work.

The field of high-performance computing, in particular the area of fully-
programmable gate array (FPGA) design, has looked at benchmarking custom
hardware designs in a power-awaremanner. Tinmaung et al. [26] present a power-
aware mechanism for synthesizing FPGA logic. Jamieson et al. [10] present a
method for benchmarking reconfigurable hardware architectures for applications
in the mobile domain. While these works are oriented around power optimization,
they are primarily interested in hardware design for specific highly parallelizable
problems. Our benchmark focuses on establishing metrics for the semantic web
community and in particular those looking to deploy semantic web technologies
on off-the-shelf mobile hardware.

3 Power Consumption Measurement Methodology

Our methodology uses a physical device setup to capture power measurements.
Benchmark evaluation is performed on the device, discussed in Section 3.2, and
we also capture baseline measurements to provide an understanding of how rea-
soning performance compares to other basic operations, e.g. “screen on” for an
extended period of time or data access via the device radios.

3.1 Power Monitor Setup

The goal of our work is to establish a metric for determining how much energy
is consumed during reasoning tasks so developers can be aware of the effects of
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Fig. 1. Power bypass wiring for phone battery. Left, a conceptual diagram for bypassing
the battery. Right, an example of the bypass implemented for the Google Nexus One.

semantic web tools on mobile device battery life. To this end, we need to provide
a battery substitute that collects power samples during operation of the phone
and use those data to compute the performance per watt of each reasoner.

We build our experimental framework around an external power supply sold
by Monsoon Solutions3 and use it as a battery substitute for Google Android
smartphones. The power monitor captures voltage (2.1∼4.5 Volts) and current
(max. 3.0 Amperes) drawn by the phone at a frequency of 5 kHz.4 Follow-
ing the company’s instructions, we bypassed the battery of the smartphone as
demonstrated in Figure 1. The leads connected to the battery are 85 mm for
the positive lead and 77 mm for the ground, exclusive of the manufacturer’s
leads.5 The power monitor is connected to a laptop running Windows XP SP3
to collect data. We use Cygwin as a scripting environment for interacting with
the test setup. Our test script sends a start command to the device via WiFi
after which both systems wait for a period of 10 seconds to allow the WiFi radio
to enter its idle state so that power draw is minimal. The script then starts
the power monitor software set to begin recording when power increases above
750 mW and to stop recording when power falls below 60 mW. These threshold
values were determined by pilot trials where the changes in power consumption
were manually noted by the researchers. The complete code is released under
the GNU General Public License and made available on GitHub.6

3.2 Experimental Platform

We execute each test three times per trial, with thirty trials executed per query.
The first execution is run in order to warm up Android’s Dalvik virtual machine
(VM) so that classes are linked appropriately and that this linking operation
does not penalize any particular implementation. The second run is used to
determine performance as well as measure the amount of energy consumed during
reasoning. The third run is performed using the Android Dalvik Debug Monitor

3 http://www.msoon.com/LabEquipment/PowerMonitor/
4 Power is voltage times amperage.
5 Lead length affects the resistance between the power monitor and the phone, result-
ing in different power observations. We document the lengths here for reproducibility.

6 https://github.com/ewpatton/muphro-test-framework
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Fig. 2. Baseline power measurements for screen off (red), screen on (blue), data down-
load over WiFi (green), HSPA+/3G (purple), and LTE/4G (orange). Note that the
4G/LTE radio consumes power at a rate of up to 2.5 times that of the 3G/HSPA+
radio, which in turn consumes power at a rate almost two to three times the WiFi
radio. Thus, developers of distributed semantic web tools should carefully weigh the
energy costs of WiFi vs 3G vs 4G for communication.

Server (DDMS), which collects memory consumption usage whenever the Dalvik
VM collects garbage. Note that we collect memory usage separately due to the
fact that DDMS works over the Android Debug Bridge that communicates with
the device either by Universal Serial Bus (USB) or by WiFi. We cannot use
USB with the power monitor because the phone attempts to “charge” the power
monitor, resulting in bad data, and using WiFi to communicate with the device
during the tests would skew the power measurements. We therefore save the
DDMS-oriented execution for WiFi when power is not being measured to prevent
interfering with the primary focus of our evaluation. Thus, we are able to collect
and monitor time to completion, memory requirements, and performance per
watt estimations for our benchmark.

We execute our benchmark on Samsung’s Galaxy S4 running the stock An-
droid 4.3 operating system. The S4 has a quad-core 1.9 GHz CPU, 2 GB of
RAM, and a 2600 mAh battery. We note that the Dalvik VM limits process
memory to 128 MB, so any task that requires more memory than this will fail.

3.3 Baseline Power Measurements

Since we are concerned with evaluating semantic web reasoner performance, we
desire the ability to control for other phone components that may skew results.
We took baseline measurements to understand the effects of different subsystems
on power during common user actions or during normal system operation. We
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Table 1. Summary of tested ontologies

Ontology Classes Properties Subclass Subprops Assertions

Schema.org 582 778 580 1 171

LUBM 43 32 36 5 103074

measured screen off with all radios off, screen on with all radios off, and tested
two scenarios where we downloaded a 1 MB SPARQL/XML resultset from a
remote server with an artificial latency of 30 seconds between the request and
the start of the transfer over the WiFi, 3G, and 4G radios. Figure 2 charts the
outcome of these results. Important points to note are that the 3G radio during
transmission and broadcast can draw 1.56 Watt of power, which would cause the
battery to deplete in just over 5 hours. The same download over WiFi requires
significantly less power. The 4G radio draws even more power, requiring a peak
of 4.00 W.7 Overall, the amount of energy consumed by the WiFi, 3G, and 4G
radios is 4.82 kJ, 14.4 kJ, and 9.77 kJ, respectively.

4 Ontology Selection

We choose to use a selection of different ontologies for evaluation to mimic differ-
ent types of workloads that may be seen in real applications of the results of this
work. The ontologies we selected are in RDFS and OWL DL. Table 1 provides a
summary of the class and property hierarchies for the different ontologies used.

We use schema.org as it is widely known and gaining rapid adoption due
to search engines backing it. The schema.org ontology is primarily composed
of subclass axioms on primitive classes. Given the broad domain coverage of
schema.org, we anticipate easy repurposing for driving user interfaces for inter-
acting with linked data, such as those presented in our previous work on a mobile
wine recommendation agent [19].

We include the Lehigh University Benchmark (LUBM), as it has emerged as
a popular benchmark for evaluating the query answering runtime performance
of reasoning engines using 14 queries.8 Due to the memory limitations of the
platforms in question, we evaluated LUBM on a subset of the full A-Box, limiting
our queries to the first 4 files produced by the LUBM data generator (∼21
thousand triples). We intended to specify the knowledge base size explicitly, but
the LUBM generator does not provide triple-level control over the output. The
LUBM ontology is OWL DL, and thus we recognize that those reasoners that
do not support OWL DL will potentially provide incomplete solutions.

7 These peak times are taken directly from the raw data. The figure shown uses a
moving average of one half second to smooth out excessive noise, which reduces the
magnitude peak values in the visualization.

8 http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt
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5 Reasoner Selection

We focus on Java-based reasoners to enable redeployment on mobile phones
running the Android operating system.9 We selected the reasoners based on
their different algorithms (RETE networks, Tableaux, Hypertableaux) and sup-
ported expressivities in order to provide coverage of different techniques. Since
we cannot evaluate all possible reasoners due to space constraints, most reasoners
should be comparable to one of those identified here.

Jena Rules. The Jena Semantic Web Framework [6] provides an implementation
of the RETE algorithm [7] along with rule sets for RDFS, OWL Lite, and a subset
of OWL Full. We used a variant of Apache Jena 2.10.0 with references to the
Java Management Interfaces removed since they are unavailable on Android.

Pellet. The Pellet reasoner [22] provides full support for OWL 2 DL, DL-safe
SWRL, and uses the Tableaux algorithm. Due to this, its memory requirements
often prohibit its use in memory-limited devices such as mobile phones.

HermiT. The HermiT reasoner [16] uses a novel hypertableaux resolution algo-
rithm to provide complete support for OWL 2. Due to the nature of this algo-
rithm, it can perform more operations in polynomial time and reduced space,
making it useful in more scenarios than the tableaux algorithm.

We intended to include the reasoners μ-OR [1], one of the first to be designed
for OWL Lite inference on resource constrained devices, and COROR [24,25], a
Jena variant that loads rules selectively based on class expressions, but we were
unable to obtain source code or binaries from the original authors.

6 Results

We hypothesize that the amount of energy used for reasoning will be linearly
related to the amount of time required to perform the reasoning, a common
assumption that needs to be validated. We also hypothesize that the mean power
will be similar between reasoners as they are primarily CPU bound.

We define effective performance of a semantic software stack as

ρe(q) =
1

n

n∑
i=1

resultsq
timeq,i

where q is the query number, n is the number of trials run, resultsq is the number
of query results found by the reasoner for query q, and timeq,i is the execution
time for trial i. Mean power for a query is computed as:

9 We recognize that Google provides a native development toolchain for cross-
compiling existing C/C++ libraries for Android, but leave an evaluation of reasoners
written in these languages as future work.
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Listing 1. SPARQL queries used for evaluating RDFS inference on the Schema.org
ontology

# query 1

SELECT ?cls (COUNT(?super) as ?supers) WHERE {

?cls rdfs:subClassOf ?super

} GROUP BY ?cls

# query 2

SELECT ?cls (COUNT(? property) as ?props) WHERE {

?cls rdfs:subClassOf schema:Organization .

?property schema:domainIncludes ?cls .

} GROUP BY ?cls

# query 3

SELECT ?property (COUNT(?cls) AS ?range) WHERE {

?property schema:rangeIncludes ?x .

?cls rdfs:subClassOf ?x .

} GROUP BY ?property

P̄ (q) =

n∑
i=1

[P̄q,itimeq,i]

n∑
i=1

timeq,i

where P̄q,i is the mean power reported by the power monitor for trial i.

6.1 Schema.org

Schema.org provides an upper ontology in RDFS for describing content in mi-
crodata on the web. Backed by four of the world’s major search engines, it is
poised to dramatically change how structured data are published and consumed
on the web. In a recent interview,10 RV Guha of Google shared that over 5 mil-
lion websites are now publishing microdata using Schema.org. Understanding
how consuming the schema provided by Schema.org affects power consumption
on a mobile device will enable developers to determine when the local consump-
tion of Schema.org content is useful versus performing that consumption in the
cloud. We consider that the classes and relations defined by Schema.org are use-
ful for driving user interfaces for mobile linked data publishing applications and
being able to query the schema efficiently is paramount to making this vision
a reality. Three key relationships within the schema that we wish to evaluate
are subclass relationships (modeled using rdfs:subClassOf ) and the domainIn-
cludes and rangeIncludes properties. We provide three queries (Listing 1) to
cover various common user interface needs: finding subtypes of the current type,

10 http://semanticweb.com/schema-org-chat-googles-r-v-guha_b40607
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Table 2. Summary of each reasoner on the three queries we designed for Schema.org’s
ontology. Left, the effective performance for each reasoner. Right, the performance per
watt of each reasoner.

Query 1 2 3

HermiT 17.24 N/A N/A

Jena 104.8 2.158 84.65

Query 1 2 3

HermiT 22.61 N/A N/A

Jena 109.2 2.256 86.03

Table 3. Number of query answers for the subset of the 14 LUBM queries on which all
reasoners returned results. Asterisks indicate those queries for which Jena’s rule engine
was unable to provide the complete result set found by HermiT and Pellet.

Query 1 3 4 5 6* 7* 8* 9* 14

HermiT 4 6 34 719 1682 67 1682 38 1319

Pellet 4 6 34 719 1682 67 1682 38 1319

Jena 4 6 34 719 1319 59 1319 15 1319

Table 4. Performance (results/sec) for the different reasoners on LUBM queries, mea-
sured as query answers per second. Larger values indicate better performance.

Query 1 3 4 5 6* 7* 8* 9* 14

HermiT 0.0419 0.0635 0.365 7.466 42.48 0.631 16.94 0.378 33.37

Pellet 0.1893 0.2793 1.592 32.57 74.46 2.541 65.84 1.562 60.43

Jena 0.4511 0.6297 3.927 59.99 150.0 4.574 99.56 1.408 151.2

identifying properties for which the current type is in the domain, and after
selecting a property, finding valid range types, so an application can display rel-
evant instances. We note that these queries are intended to stress how many and
how quickly reasoners compute subclass and subproperty subsumptions.

Table 2 presents the reasoner evaluation results for the queries in Listing 1.
We note that both HermiT and Pellet provide different challenges due to the
fact that Schema.org’s schema is not DL-compatible it lacks distinction between
object and data properties. We were unable to execute queries 2 and 3 against
HermiT using the OWL API due to this lack of delineation in the ontology
and the API’s inability to query at the level of rdf:Property. For all queries,
Pellet used more than 128 MB of RAM, resulting in premature termination of
the virtual machine so we exclude it from this analysis. A Mann-Whitney U
test between HermiT and Jena’s power measurements indicated no statistical
difference (U = 158, p = 0.8177), thus the difference in performance per watt
can be attributed entirely to the performance of each reasoner on the ontology.

6.2 Lehigh University Benchmark

Table 3 shows the number of query solutions found when all reasoners returned
at least one answer. Due to their completeness, Pellet and Hermit generate the
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Fig. 3. Performance vs power for Jena, Pellet, and HermiT reasoners on LUBM queries.
The shaded regions represent the standard error of the linear approximation of perfor-
mance per watt.

same answer set. Jena fails to return a complete answer set in 4 queries (noted
with asterisks) and finds no results in four of five others.11 Table 4 shows the
effective performance for each reasoner in the different query conditions.

A Kruskal-Wallis non-parametric one-way analysis of variance with mean
power as a dependent variable and reasoner as the independent variable for each
LUBM query presented in Table 3 showed significant difference in power drawn
for all LUBM queries, with p < 0.001, with the exception of query 6 (H = 3.08,
2 d.f., p = 0.214). Pairwise Bonferroni-adjusted Mann-Whitney U comparisons
on the differing queries indicated a statistically significant difference in the mean
ranks of Hermit compared with Pellet and Jena. This finding is substantiated
by Figure 3, which shows a tight clustering of HermiT’s performance per watt
measurements (except that for query 6) away from those of Jena and Pellet.

7 Discussion

Ali et al. [1] and Henson et al. [9] both demonstrated scalable, low expressivity
reasoners for resource constrained devices, but also highlighted that traditional
inference systems on resource constrained devices are either very costly (as with
Jena, HermiT) or impossible (as with Pellet). We affirmed their difficulty with
deploying traditional reasoners on resource-constrained devices and have noted

11 No reasoner answered query 2 due to the subset of the dataset we are using. We
assumed a uniform distribution in the types and quantity of triples generated by
LUBM, but that assumption resulted in insufficient data to satisfy the patterns in
query 2. Jena also found no results for queries 10-13.
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where appropriate when a test failed due to a limitation of the platform as
compared with a limitation of the reasoning engine itself. As larger memory
spaces become available on mobile platforms, we anticipate that these failures
will become fewer.

One unanticipated interesting result was the difference in the device’s power
draw between HermiT’s operation and that of Pellet and Jena. We looked at the
experimental logs to determine possible causes and one significant factor that we
have identified is memory consumption. HermiT’s memory use is roughly double
that of the other reasoners, causing the virtual machine to invoke the garbage
collector more frequently. Since the short term garbage collector for Android
runs concurrently on another thread, it is possible that the energy difference
is the cost of the system engaging a second CPU core for garbage collection.
This hypothesis is partially substantiated by one outlier (query 6) observed in
Figure 3. When we compared the memory use on this query to others, it was
roughly two thirds, more in line with memory consumption observed in Pellet.
However, further experiments are required to isolate this effect.

Lastly, the combination of reasoning time and power are critical to under-
standing how to deploy semantic technologies on mobile platforms. In the case
of Jena, the total amount of energy consumed ranged anywhere from 4.5 kJ to
8.9 kJ, indicating that it takes less energy to reason about some of these ontolo-
gies than it would to request the results from an external source via the 3G or
4G radios. However, HermiT and Pellet exhibit much higher energy consumption
due to the longer running time of their algorithms, suggesting that it is always a
better use of energy to offload OWL DL reasoning to an external resource when
completeness is required by the application.

7.1 Experiences

Our original intention was to use the library OWL-BGP [11] as a SPARQL in-
terface to reasoners designed for the OWL API (e.g. HermiT). However, due to
a limitation in the Android Dalvik byte-code format, we were unable to success-
fully compile the library. In its place, we reimplemented the SPARQL queries
used in each of the different test conditions as Java classes that would accept the
OWL API’s OWLReasoner class and generate a SPARQL result set by performing
an appropriate set of operations on the reasoner.

Memory consumption was another challenge we addressed in multiple ways. In
all tests, we observed that reasoning under Jena’s OWL profile was impossible as
out-of-memory errors were thrown prior to completion and thus we limited our
tests to the RDFS profile. This evaluation performed on a Mid 2013 Macbook
Pro with a 2.8 GHz Intel Core i7 and 16 GB of RAM with a Java heap of 4
GB demonstrated that most reasoning operations would require at least 2.4 GB
and in some instances, the Jena rules engine still exhausted the entire heap and
failed to return results.

In order to execute the Jena reasoners, Hermit, and Pellet on the Android
platform, we needed to make minor modifications to each library. While we will
not explain details here, we note that all of the modified sources and binaries
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are made available under the appropriate source code license via our GitHub
repository mentioned in Section 3.1.

The findings of this paper are subject to drastic changes in hardware de-
sign and power management that cannot be predicted from this work alone. For
instance, advances in power management circuitry or power-efficient CPU archi-
tectures may have significant impact on power consumption that would improve
the performance per watt observations that we have made (assuming such ar-
chitectural changes do not negatively affect performance). Thus, we are making
this software freely available under both the Apache 2.0 and GPL 3.0 licenses so
that all of the tests performed herein can be repeated on alternative hardware
as devices are made available.

8 Conclusions

We presented a novel, reusable, open-source methodology for evaluating semantic
web reasoner performance on power-constrained hardware and evaluated three
reasoners, Jena, Pellet, and HermiT, against standard benchmark ontologies and
queries to establish the amount of power drawn during reasoning, information
previously unknown in the field. The reusable methodology is one contribution
and the use of the methodology to evaluate some best in class reasoners and
standard benchmark ontologies is another contribution. We affirmed that single-
threaded reasoners exhibit energy consumption linear in the amount of pro-
cessing time and identified some discrepancies related to the effects of garbage
collection on rate of energy consumption on an Android smartphone. We showed
that incompleteness can greatly increase performance per watt if such incom-
pleteness is acceptable in an application. Lastly, we demonstrated the effects
of different smartphone features on power consumption to gain insights into the
costs of communicating with external services to assist in making decisions about
whether to perform processing on-device or off-device.

We found that for RDFS inference, the Jena RETE rule engine performed bet-
ter than its complete OWL counterparts, a finding that is unsurprising given the
overhead of the tableaux/hypertableaux algorithms. Another interesting finding
is that while Jena was unable to perform OWL entailments on LUBM due to
memory limitations, when executed with its RDFS transitivity rule set, it was
able to answer some of the queries completely and others partially. This high-
lights how important it is for developers to identify essential queries and ontology
expressivities to improve reasoning performance and reduce energy consumption.

Furthermore, we found a nearly linear relationship between energy required to
complete an inference and the amount of computational time needed to perform
the inference. This is due to the single-threaded nature of the design of the
reasoners tested, but as our data show, there may be additional effects on power
consumption outside of CPU runtime and we expect to see further differences
as parallel and distributed techniques come to fruition.
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8.1 Future Work

This benchmark lacks coverage for the complete OWL 2 semantics. Our exami-
nation focused on RDFS and OWL DL inference, primarily to exercise existing,
well-known benchmarks used for evaluating reasoners in other contexts. A suite
of different T-boxes and A-boxes providing coverage for all of the constructs in
OWL 2 would allow us to more easily stress different parts of the reasoners and
further research into parallelization techniques will enable us to gain a better
understanding of the effects of communications on energy consumption.

We would also like to test parallel and distributed reasoning techniques such as
those presented in [3,27,30,17,23]. Our findings in this work validate existing as-
sumptions that power consumption for traditional RETE rule engines, tableaux,
and hypertableaux reasoners will be linear in the compute time, but distributed
algorithms will provide a richer execution strategy and power analysis that will
benefit from the methodology we have outlined.

Due to the physical setup complexity and to ease adoption of power analysis of
mobile semantic web applications, we intend to use a combination of factor anal-
ysis, clustering, and linear regression to build models that can consume power
profiles of various devices, ontologies, and queries to generate expectations of en-
ergy consumption. This will eliminate the hardware barrier to entry by enabling
an approximation of energy use. Furthermore, if the appropriate programming
interfaces are available, we intend to build a reasoner that can take advantage
of knowing the available energy remaining for computation to optimize its use
of local versus remote resources.

Using the experiment metadata published by our framework, we intend to
provide a portal of experimental conditions and evaluations with publicly acces-
sible URIs. This portal will enable researchers to replicate results by providing
a experiment URI to the benchmarking suite, which would download all the
necessary resources and execute the experiment on a target device.

We plan to investigate more reasoners, such as those presented by [31], as
well as those written in other languages, e.g. C or C++, to evaluate a wider
breadth of technologies and to motivate extension of this work to other mobile
platforms. In particular, we would like to provide a solution for phones without
removable batteries, such as the Apple iPhone, so that practitioners can also as-
sess performance characteristics of reasoners and ontologies for a greater breadth
of devices. One possible approach may involve capturing battery level informa-
tion from the operating system and running queries repeatedly and observing
the reported drain. One challenge with this approach is the effective of battery
degradation due to age.
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Abstract. While the Semantic Web currently can exhibit provenance informa-
tion by using the W3C PROV standards, there is a “missing link” in connect-
ing PROV to storing and querying for dynamic changes to RDF graphs using
SPARQL. Solving this problem would be required for such clear use-cases as the
creation of version control systems for RDF. While some provenance models and
annotation techniques for storing and querying provenance data originally devel-
oped with databases or workflows in mind transfer readily to RDF and SPARQL,
these techniques do not readily adapt to describing changes in dynamic RDF
datasets over time. In this paper we explore how to adapt the dynamic copy-
paste provenance model of Buneman et al. [2] to RDF datasets that change over
time in response to SPARQL updates, how to represent the resulting provenance
records themselves as RDF in a manner compatible with W3C PROV, and how
the provenance information can be defined by reinterpreting SPARQL updates.
The primary contribution of this paper is a semantic framework that enables the
semantics of SPARQL Update to be used as the basis for a ‘cut-and-paste’ prove-
nance model in a principled manner.

Keywords: SPARQL Update, provenance, versioning, RDF, semantics.

1 Introduction

It is becoming increasingly common to publish scientific and governmental data on
the Web as RDF (the Resource Description Framework, a W3C standard for structured
data on the Web) and to attach provenance data to this information using the W3C
PROV standard. In doing so, it is crucial to track not only the provenance metadata,
but the changes to the graph itself, including both its derivation process and a history
of changes to the data over time. Being able to track changes to RDF graphs could, in
combination with the W3C PROV standards and SPARQL, provide the foundation for
addressing the important use-case of creating a Git-like version control system for RDF.

The term provenance is used in several different ways, often aligning with research
in two different communities, in particular the database community and the scientific
workflow community. We introduce some terminology to distinguish different uses of
the term. There is a difference between static provenance that describes data at a given
point in time versus dynamic provenance that describes how artifacts have evolved over
time. Second, there is a difference between provenance for atomic artifacts that expose
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no internal structure as part of the provenance record, versus provenance for collections
or other structured artifacts. The workflow community has largely focused on static
provenance for atomic artifacts, whereas much of the work on provenance in databases
has focused on dynamic provenance for collections (e.g. tuples in relations). An exam-
ple of static provenance would be attaching the name of an origin and time-stamp to a
set of astronomical RDF data. Thus static provenance can often be considered metadata
related to provenance. Currently the W3C PROV data model and vocabulary [15], pro-
vides a standard way to attach this provenance, and other work such as PROV-AQ [13]
provides options for extracting this metadata by virtue of HTTP.

An example of dynamic provenance would be given by a single astronomical data-
set that is updated over time, and then if some erroneous data was added at a particular
time, the data-set could be queried for its state at a prior time before the erroneous data
was added so the error could be corrected. Thus dynamic provenance can in some cases
be reduced to issues of history and version control. Note that static and dynamic prove-
nance are not orthogonal, as we can capture static provenance metadata at every step of
recording dynamic provenance. The W3C Provenance Working Group has focused pri-
marily on static provenance, but we believe a mutually beneficial relationship between
the W3C PROV static provenance and SPARQL Update with an improved provenance-
aware semantic model will allow dynamic provenance capabilities to be added to RDF.
While fine-grained dynamic provenance imposes overhead that may make it unsuited
to some applications, there are use-cases where knowing exactly when a graph was
modified is necessary for reasons of accountability, including data-sets such as private
financial and public scientific data.

1.1 Related Literature

The workflow community has largely focused on declaratively describing causality or
derivation steps of processes to aid repeatability for scientific experiments, and these re-
quirements have been a key motivation for the Open Provenance Model (OPM) [17,18],
a vocabulary and data model for describing processes including (but certainly not lim-
ited to) runs of scientific workflows. OPM is important in its own right, and has become
the foundation for the W3C PROV data model [19]. The formal semantics of PROV
have been formalized, but do not address the relationship between the provenance and
the semantics of the processes being described [7]. However, previous work on the se-
mantics of OPM, PROV, and other provenance vocabularies focuses on temporal and
validity constraints [14] and does not address the meaning of the processes being rep-
resented — one could in principle use them either to represent static provenance for
processes that construct new data from existing artifacts or to represent dynamic prove-
nance that represents how data change over time at each step, such as needed by version
control systems. Most applications of OPM seem to have focused on static provenance,
although PROV explicitly grapples with issues concerning representing the provenance
of objects that may be changing over time, but does not provide a semantics for storing
and querying changes over time. Our approach to dynamic provenance is complemen-
tary to work on OPM and PROV, as we show how any provenance metadata vocabulary
such as the W3C PROV ontology [15] can be connected directly to query and update
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languages by presenting a semantics for a generalized provenance model and showing
how this builds upon the formal semantics of the query and update languages.

Within database research, complex provenance is also becoming increasingly seen as
necessary, although the work has taken a different turn than that of the workflow com-
munity. Foundational work on provenance for database queries distinguishes between
where-provenance, which is the “locations in the source databases from which the data
was extracted,” and why-provenance, which is “the source data that had some influence
on the existence of the data” [4]. Further, increasing importance is being placed on
how-provenance, the operations used to produce the derived data and other annotations,
such as who precisely produced the derived data and for what reasons. There is less
work considering provenance for updates; previous work on provenance in databases
has focused on simple atomic update operations: insertion, deletion, and copy [2]. A
provenance-aware database should support queries that permit users to find the ultimate
or proximate ‘sources’ of some data and apply data provenance techniques to under-
stand why a given part of the data was inserted or deleted by a given update. There is
considerable work on correct formalisms to enable provenance in databases [9]. This
work on dynamic provenance is related to earlier work on version control in unstruc-
tured data, a classic and well-studied problem for information systems ranging from
source code management systems to temporal databases and data archiving [23]. Ver-
sion control systems such as CVS, Subversion, and Git have a solid track record of
tracking versions and (coarse-grained) provenance for text (e.g. source code) over time
and are well-understood in the form of temporal annotations and a log of changes.

On the Semantic Web, work on provenance has been quite diverse. There is widely
implemented support for named graphs, where each graph G is identified with a name
URI [6], and as the new RDF Working Group has standardized the graph name in the
semantics, the new standards have left the practical use of such a graph name under-
defined; thus, the graph name could be used to store or denote provenance-related infor-
mation such as time-stamps. Tackling directly the version control aspect of provenance
are proposals such as Temporal RDF [10] for attaching temporal annotations and a
generalized Annotated RDF for any partially-ordered sets already exist [25,16]. How-
ever, by confining provenance annotations to partially-ordered sets, these approaches do
not allow for a (queryable) graph structure for more complex types of provenance that
include work such as the PROV model. Static provenance techniques have been inves-
tigated for RDFS inferences [5,8,20] over RDF datasets. Some of this work considers
updates, particularly Flouris et al. [8], who consider the problem of how to maintain
provenance information for RDFS inferences when tuples are inserted or deleted using
coherence semantics. Their solution uses ‘colouring’ (where the color is the URI of the
source of each triple) and tracking implicit triples [8].

Understanding provenance for a language requires understanding the ordinary se-
mantics of the language. Arenas et al. formalized the semantics of SPARQL [21,1], and
the SPARQL Update recommendation proposes a formal model for updates [22]. Horne
et al. [12] propose an operational semantics for SPARQL Updates, which however dif-
fers in some respects from the SPARQL 1.1 standard and does not deal with named
graphs.
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1.2 Overview

In this paper, we build on Arenas et al.’s semantics of SPARQL [21,1] and extend it
to formalize SPARQL Update semantics (following a denotational approach similar to
the SPARQL Update Formal Model [22]). Then, as our main contribution, we detail a
provenance model for SPARQL queries and updates that provides a (queryable) record
of how the raw data in a dataset has changed over time. This change history includes
a way to insert static provenance metadata using a full-scale provenance ontology such
as PROV-O [15].

Our hypothesis is that a simple vocabulary, composed of insert, delete, and copy op-
erations as introduced by Buneman et al. [2], along with explicit identifiers for update
steps, versioning relationships, and metadata about updates provides a flexible format
for dynamic provenance on the Semantic Web. A primary advantage of our methodol-
ogy is it keeps the changes to raw data separate from the changes in provenance meta-
data, so legacy applications will continue to work and the cost of storing and providing
access to provenance can be isolated from that of the raw data. We will introduce the
semantics of SPARQL queries, then our semantics for SPARQL updates, and finally
describe our semantics for dynamic provenance-tracking for RDF graphs and SPARQL
updates. To summarize, our contributions are an extension to the semantics of SPARQL
Update that includes provenance semantics to handle dynamic semantics [21,1] and a
vocabulary for representing changes to RDF graphs made by SPARQL updates, and a
translation from ordinary SPARQL updates to provenance-aware updates that record
provenance as they execute.

2 Background: Semantics of SPARQL Queries

We first review a simplified (due to space limits) version of Arenas et. al.’s formal se-
mantics of SPARQL [21,1]. Note that this is not original work, but simply a necessary
precursor to the semantics of SPARQL Update and our extension that adds provenance
to SPARQL Update. The main simplification is that we disallow nesting other opera-
tions such as ., UNION, etc. inside GRAPHA {. . .} patterns. This limitation is inessential.

Let Lit be a set of literals (e.g. strings), let Id be a set of resource identifiers, and let
Var be a set of variables usually written ?X . We write Atom = Lit ∪ Id for the set of
atomic values, that is literals or ids. The syntax of a core algebra for SPARQL discussed
in [1] is as follows:

A ::= � ∈ Lit | ι ∈ Id | ?X ∈ Var

t ::= 〈A1 A2 A3〉
C ::= {t1, . . . , tn} | GRAPH A {t1, . . . , tn} | C C′

R ::= BOUND(?x) | A = B | R ∧R′ | R ∨R′ | ¬R
P ::= C | P . P ′ | P UNION P ′ | P OPT P ′ | P FILTER R

Q ::= SELECT ?X WHERE P | CONSTRUCT C WHERE P
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Here, C denotes basic graph (or dataset) patterns that may contain variables; R de-
notes conditions; P denotes patterns, and Q denotes queries. We do not distinguish
between subject, predicate and object components of triples, so this is a mild general-
ization of [1], since SPARQL does not permit literals to appear in the subject or predi-
cate position or as the name of a graph in the GRAPHA {P} pattern, although the formal
semantics of RDF allows this and the syntax may be updated in forthcoming work on
RDF. We also do not consider blank nodes, which pose complications especially when
updates are concerned, and we instead consider them to be skolemized (or just replaced
by generic identifiers), as this is how most implementations handle blank nodes. There
has been previous work giving a detailed treatment of the problematic nature of blank
nodes and why skolemization is necessary in real-world work.

The semantics of queries Q or patterns P is defined using functions from graph
stores D to sets of valuations μ. A graph store D = (G, {gi �→ G1 . . . , gn �→ Gn})
consists of a default graph G0 together with a mapping from names gi to graphs Gi.
Each such graph is essentially just a set of ground triples. We often refer to graph stores
as datasets, although this is a slight abuse of terminology.

We overload set operations for datasets, e.g. D ∪ D′ or D \ D′ denotes the dataset
obtained by unioning or respectively subtracting the default graphs and named graphs of
D andD′ pointwise. If a graph g is defined inD and undefined inD′, then (D∪D′)(g) =
D(g) and similarly if g is undefined in D and defined in D′ then (D ∪D′)(g) = D′(g);
if g is undefined in both datasets then it is undefined in their union. For set difference,
if g is defined in D and undefined in D′ then (D \ D′)(g) = D(g); if g is undefined in
D then it is undefined in (D \ D′). Likewise, we define D ⊆ D′ as D′ = D ∪ D′.

A valuation is a partial function μ : Var ⇀ Lit ∪ Id. We lift valuations to functions
μ : Atom ∪ Var→ Atom as follows:

μ(?X) = μ(X)

μ(a) = a a ∈ Atom

that is, if A is a variable ?X then μ(A) = μ(X) and otherwise if A is an atom then
μ(A) = A. We thus consider all atoms to be implicitly part of the domain of μ. Fur-
thermore, we define μ applied to triple, graph or dataset patterns as follows:

μ(〈A1 A2 A3〉) = 〈μ(A1) μ(A2) μ(A3)〉
μ({t1, . . . , tn}) = ({μ(t1), . . . , μ(tn)}, ∅)

μ(GRAPH A {t1, . . . , tn}) = (∅, {μ(A) �→ {μ(t1), . . . , μ(tn)}})
μ(C C′) = μ(C) ∪ μ(C′)

where, as elsewhere, we define D ∪ D′ as pointwise union of datasets.
The conditions R are interpreted as three-valued formulas over the lattice L =

{true, false, error}, where false ≤ error ≤ true, and ∧ and ∨ are minimum
and maximum operations respectively, and ¬true = false, ¬false = true, and
¬error = error. The semantics of a condition is defined as follows:
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�BOUND(?X)�μ =

{
false if ?X �∈ dom(μ)
true if ?X ∈ dom(μ)

�A = B�μ =

⎧⎨
⎩
error if {A,B} �⊆ dom(μ)
true if μ(A) = μ(B) where A,B ∈ dom(μ)
false if μ(A) �= μ(B) where A,B ∈ dom(μ)

�¬R�μ = ¬�R�μ
�R ∧R′�μ = �R�μ ∧ �R′�μ
�R ∨R′�μ = �R�μ ∨ �R′�μ

We write μ |= R to indicate that �R� = true.
We say that two valuations μ, μ′ are compatible (or write μ compat μ′) if for all

variables x ∈ dom(μ) ∩ dom(μ′), we have μ(x) = μ′(x). Then there is a unique
valuation μ ∪ μ′ that behaves like μ on dom(μ) and like μ′ on dom(μ′). We define the
following operations on sets of valuationsΩ.

Ω1 � Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2, μ1 compat μ2}
Ω1 ∪Ω2 = {μ | μ ∈ Ω1 or μ ∈ Ω2}
Ω1 \Ω2 = {μ ∈ Ω1 |� ∃μ′ ∈ Ω2.μ compat μ′}
Ω1 �Ω2 = (Ω1 � Ω2) ∪ (Ω1 \Ω2)

Note that union is the same as ordinary set union, but difference is not, since Ω1 \ Ω2

only includes valuations that are incompatible with all those in in Ω2.
Now we can define the meaning of a pattern P in a dataset D as a set of valuations

�P �D , as follows:

�C�D = {μ | dom(μ) = vars(C) and μ(C) ⊆ D}
�P1 . P2�D = �P1�D � �P2�D

�P1 UNION P2�D = �P1�D ∪ �P2�D
�P1 OPT P2�D = �P1�D � �P2�D

�P FILTER R�D = {μ ∈ �P �D | μ |= R}

Note that, in contrast to Arenas et al.’s semantics for SPARQL with named graphs [1],
we do not handle GRAPH A {. . .} patterns that contain other pattern operations such as
. or UNION, and we do not keep track of the “current graph” G. Instead, since graph
patterns can only occur in basic patterns, we can build the proper behavior of pattern
matching into the definition of μ(C), and we select all matches μ such that μ(C) ⊆ D
in the case for �C�D .
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Finally, we consider the semantics of selection and construction queries. A selection
query has the form SELECT ?X WHERE P where ?X is a list of distinct variables. It
simply returns the valuations obtained by P and discards the bindings of variables not
in X . A construction query builds a new graph or dataset from these results. Note that
in SPARQL such queries only construct anonymous graphs; here we generalize in order
to use construction queries to build datasets that can be inserted or deleted.

�SELECT ?X WHERE P �D = {μ|X | μ ∈ �P �D}
�CONSTRUCT C WHERE P �D =

⋃
{μ(C) | μ ∈ �P �D}

Here, note that μ|X stands for μ restricted to the variables in the list X .
We omit discussion of the FROM components of queries (which are used to initialize

the graph store by pulling data in from external sources) or of the other query forms
ASK, and DESCRIBE, as they are described elsewhere [1] in a manner coherent with
our approach.

3 The Semantics of SPARQL Update

We will describe the semantics of the core language for atomic updates, based upon [22]:

U ::= INSERT {C} WHERE P | DELETE {C} WHERE P
| DELETE {C} INSERT {C′} WHERE P | LOAD g INTO g′ | CLEAR g
| CREATE g | DROP g | COPY g TO g′ | MOVE g TO g′ | ADD g TO g′

We omit the INSERT DATA and DELETE DATA forms since they are definable in terms
of INSERT and DELETE.

SPARQL Update [22] specifies that transactions consisting of multiple updates should
be applied atomically, but leaves some semantic questions unresolved, such as whether
aborted transactions have to roll-back partial changes. It also does not specify whether
updates in a transaction are applied sequentially (as in most imperative languages), or
using a snapshot semantics (as in most database update languages). Both alternatives
pose complications, so in this paper we focus on transactions consisting of single atomic
updates.

We model a collection of named graphs as a dataset D, as for SPARQL queries.
We consider only a single graph in isolation here, and not the case of multiple named
graphs that may be being updated concurrently. The semantics of an update operation
u on dataset D is defined as �U�D .
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The semantics of a SPARQL Update U in dataset D is defined as follows:

�DELETE {C} WHERE P �D = D \ �CONSTRUCT C WHERE P �D
�INSERT {C} WHERE P �D = D ∪ �CONSTRUCT C WHERE P �D

�DELETE {C} INSERT {C′} WHERE P �D = (D \ �CONSTRUCT C WHERE P �D)
∪ �CONSTRUCT C′ WHERE P �D

�LOAD g1 INTO g2�D = D[g2 := D(g1) ∪ D(g2)]
�CLEAR g�D = D[g := ∅]

�CREATE g�D = D � {g �→ ∅}
�DROP g�D = D[g := ⊥]

�COPY g1 TO g2�D =

{
D[g2 := D(g1)] if g1 �= g2
D otherwise

�MOVE g1 TO g2�D =

{
D[g2 := D(g1), g1 := ⊥] if g1 �= g2
D otherwise

�ADD g1 TO g2�D = D[g2 := D(g1) ∪ D(g2)]

Here, D[g := G] denotesD updated by setting the graph named g toG, and D[g := ⊥]
denotesD updated by making g undefined, and finally D� [g := G] denotesD updated
by adding a graph named g with valueG, where g must not already be in the domain of
D. Set-theoretic notation is used for graphs, e.g.G∪G′ is used for set union andG\G′

for set difference, and ∅ stands for the empty graph. Note that the COPY g TO g′ and
MOVE g TO g′ operations have no effect if g = g′. Also, observe that we do not model
external URI dereferences, and the LOAD g INTO g′ operation (which allows g to be an
external URI) behaves exactly as ADD g TO g′ operation (which expects g to be a local
graph name).

4 Provenance Semantics

A single SPARQL update can read from and write to several named graphs (and possi-
bly also the default graph). For simplicity, we restrict attention to the problem of track-
ing the provenance of updates to a single (possibly named) RDF graph. All operations
may still use the default graph or other named graphs in the dataset as sources. The
general case can be handled using the same ideas as for a single anonymous graph, only
with more bureaucracy to account for versioning of all of the named graphs managed
in a given dataset.

A graph that records all the updates of triples from a given graph g is considered a
provenance graph for g. For each operation, a provenance record is stored that track of
the state of the graph at any given moment and their associated metadata. The general
concept is that in a fully automated process one should be able to re-construct the state
of the given graph at any time from its provenance graph by following the SPARQL
queries and metadata given in the provenance records for each update operation tracked.
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Fig. 1. Example provenance graph

We model the provenance of a single RDF graph G that is updated over time as a
set of history records, including the special provenance graph named prov which con-
sists of indexed graphs for each operation such as G_v0,. . . ,G_vn and G_u1. . . ,G_um.
These provenance records are immutable; that is, once they have been created and ini-
tialized, the implementation should fixed so that their content cannot be changed. The
index of all provenance records then is also strictly linear and consistent (i.e. non-
circular), although branching could be allowed. They can be stored as a special im-
mutable type in the triple-store. Intuitively, G_vi is the named graph showing G’s
state in version i and G_ui is another named graph showing the triples inserted into or
deleted from G by update i. An example illustration is given in Figure 1.

The provenance graph of named graph G includes several kinds of nodes and edges:

– G_vi upd:version G_vi+1 edges that show the sequence of versions. When-
ever a upd:version link is added between G_vi and G_vi+1, a backlink called
upd:prevVersion between G_vi+1 and G_vi;

– nodes u1,. . . ,un representing the updates that have been applied to G, along with
a upd:type edge linking to one of upd:insert, upd:delete, upd:load,
upd:clear, upd:create, or upd:drop.

– For all updates except create, an upd:input edge linking ui to G_vi.
– For all updates except drop, an upd:output edge linking ui to G_vi+1.
– For insert and delete updates, an edge ui upd:data G_ui where G_ui is a

named graph containing the triples that were inserted or deleted by ui.
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– Edges ui upd:source n linking each update to each named graph n that was
consulted by ui. For an insert or delete, this includes all graphs that were consulted
while evaluatingP (note that this may only be known at run time); for a load update,
this is the name of the graph whose contents were loaded; create, drop and clear
updates have no sources.

– Additional edges from ui providing metadata for the update (such as author, com-
mit time, log message, or the source text of the update); possibly using a standard
vocabulary such as Dublin Core, or using OPM or PROV vocabulary terms.

Note that this representation does not directly link triples in a given version to places
from which they were “copied” as it only contains the triples directly concerning the
update in the history record. However, each history record in combination with the rest
of the history records in the provenance graph does provide enough information to re-
cover previous versions on request. As we store the source text of the update statements
performed by each update in each history record of the provenance graph, we can trace
backwards through the update sequence to to identify places where triples were in-
serted or copied into or deleted from the graph. For queries, we consider a simple form
of provenance which calculates a set of named graphs “consulted” by the query. The set
of sources of a pattern or query is computed as follows:

S�C�D =
⋃
{namesμ(C) | μ ∈ �C�D}

S�P1 . P2�D = S�P1�D ∪ S�P2�D
S�P1 UNION P2�D = S�P1�D ∪ S�P2�D
S�P1 OPT P2�D = S�P1�D ∪ S�P2�D

S�P FILTER R�D = S�P �D
S�SELECT ?X WHERE P �D = S�P �D

S�CONSTRUCT C WHERE P �D = S�P �D
where the auxiliary function namesμ(C) collects all of the graph names occurring in a
ground basic graph pattern C:

namesμ({t1, . . . , tn}) = {DEFAULT}
namesμ(GRAPH A {t1, . . . , tn}) = {μ(A)}

namesμ(C C′) = namesμ(C) ∪ namesμ(C
′)

Here, we use the special identifier DEFAULT as the name of the default graph; this can
be replaced by its URI.

The S�P �D function produces a set S of graph identifiers such that replaying
�Q�D|S = �Q�D , whereD|S isD with all graphs not in S set to ∅ (including the default
graph if DEFAULT /∈ S). Intuitively, S identifies graphs that “witness” Q, analogous to
why-provenance in databases [4]. This is not necessarily the smallest such set; it may be
an overapproximation, particularly in the presence of P1 OPT P2 queries [24]. Alterna-
tive, more precise notions of source (for example involving triple-level annotations [8])
could also be used.

We define the provenance of an atomic update by translation to a sequence of up-
dates that, in addition to performing the requested updates to a given named graph, also
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constructs some auxiliary named graphs and triples (provenance record) in a special
named graph for provenance information called prov (the provenance graph). We ap-
ply this translation to each update posed by the user, and execute the resulting updates
directly without further translation. We detail how provenance information should be
attached to each SPARQL Update operation.

We consider simple forms of insert and delete operations that target a single, stati-
cally known, named graph g; full SPARQL Updates including simultaneous insert and
delete operations can also be handled. In what follows, we write “(metadata)” as a
placeholder where extra provenance metadata (e.g. time, author, etc. as in Dublin Core
or further information given by the PROV vocabulary [15]) may be added. DROP com-
mands simply end the provenance collection, but previous versions of the graph should
still be available.

– A graph creation of a new graph CREATE g is translated to

CREATE g;
CREATE g v0;
INSERT DATA {GRAPH prov {
〈g version g v0〉, 〈g current g v0〉,
〈u1 type create〉, 〈u1 output g v0〉,
〈u1 metami〉, (metadata)

}}

– A drop operation (deleting a graph) DROP g is handled as follows, symmetrically to
creation:

DROP g;
DELETE WHERE {GRAPH prov {〈g current g vi〉}};
INSERT DATA {GRAPH prov {
〈ui type drop〉, 〈ui input g vi〉,
〈ui metami〉, (metadata)

}}

where g vi is the current version of g. Note that since this operation deletes g, after
this step the URI g no longer names a graph in the store; it is possible to create a
new graph named g, which will result in a new sequence of versions being created
for it. The old chain of versions will still be linked to g via the version edges, but
there will be a gap in the chain.

– A clear graph operation CLEAR g is handled as follows:

CLEAR g;
DELETE WHERE {GRAPH prov {〈g current g vi〉}};
INSERT DATA {GRAPH prov {
〈g version g vi+1〉, 〈g current g vi+1〉,
〈ui type clear〉, 〈ui input g vi〉,
〈ui output g vi+1〉, 〈ui metami〉,
(metadata)

}}
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– A load graph operation LOAD h INTO g is handled as follows:

LOAD h INTO g;
DELETE WHERE {GRAPH prov {〈g current g vi〉}};
INSERT DATA {GRAPH prov {
〈g version g vi+1〉, 〈g current g vi+1〉,
〈ui type load〉, 〈ui input g vi〉,
〈ui output g vi+1〉, 〈ui source hj〉,
〈ui metami〉, (metadata)

}}

where hj is the current version of h. Note that a load will not create any new graphs
because both the source and target should already exist. If no target exists, a new
graph is created as outlined above with using the create operation.

– An insertion INSERT {GRAPH g {C}} WHERE P is translated to a sequence of up-
dates that creates a new version and links it to URIs representing the update, as
well as links to the source graphs identified by the query provenance semantics and
a named graph containing the inserted triples:

CREATE g ui;
INSERT {GRAPH g ui {C}} WHERE P ;
INSERT {GRAPH g {C}} WHERE P ;
CREATE g vi+1;
LOAD g INTO g vi+1;
DELETE DATA {GRAPH prov {〈g current g vi〉}};
INSERT DATA {GRAPH prov {
〈g version g vi+1〉, 〈g current g vi+1〉,
〈ui input g vi〉, 〈ui output g vi+1〉,
〈ui type insert〉, 〈ui data g ui〉
〈ui source s1〉, . . . , 〈ui source sm〉,
〈ui metami〉, (metadata)}}

where s1, . . . , sm are the source graph names of P .
– A deletion DELETE {GRAPH g {C}} WHERE P is handled similarly to an insert,

except for the update type annotation.

CREATE g ui;
INSERT {GRAPH g ui {C}} WHERE P ;
DELETE {GRAPH g {C}} WHERE P ;
CREATE g vi+1;
LOAD g INTO g vi+1;
DELETE DATA {GRAPH prov {〈g current g vi〉}};
INSERT DATA {GRAPH prov {
〈g version g vi+1〉, 〈g current g vi+1〉,
〈ui input g vi〉, 〈ui output g vi+1〉,
〈ui type delete〉, 〈ui data g ui〉
〈ui source s1〉, . . . , 〈ui source sm〉,
〈ui metami〉, (metadata)}}
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Note that we still insert the deleted tuples into the g ui.
– The DELETE {C} INSERT {C′} WHERE P update can be handled as a delete fol-

lowed by an insert, with the only difference being that both update steps are linked
to the same metadata.

– The COPY h TO g, MOVE h TO g, and ADD h TO g commands can be handled similarly
to LOAD h INTO g; the only subtlety is that if g = h then these operations have no
visible effect, but the provenance record should still show that these operations
were performed.

Our approach makes a design decision to treat DELETE {C} INSERT {C′} WHERE P
as a delete followed by an insert. In SPARQL Update, the effect of a combined delete–
insert is not the same as doing the delete and insert separately, because both phases of
a delete–insert are evaluated against the same data store before any changes are made.
However, it is not clear that this distinction needs to be reflected in the provenance
record; in particular, it is not needed to ensure correct reconstruction. Moreover, the
connection between the delete and insert can be made explicit by linking both to the
same metadata, as suggested above. Alternatively, the deletion and insertion can be
treated as a single compound update, but this would collapse the distinction between
the “sources” of the inserted and deleted data, which seems undesirable for use-cases
such as version control.

Also note that our method does not formally take into account tracking the prove-
nance of inferences. This is because of the complex interactions between SPARQL
Update and the large number of possible (RDFS and the many varieties of OWL and
OWL2) inference mechanisms and also because, unlike other research in the area [8],
we do not consider it a requirement or even a desirable feature that inferences be pre-
served between updates. It is possible that an update will invalidate some inferences
or that a new inference regime will be necessary. A simple solution would be that if
the inferences produced by a reasoning procedure are necessary to be tracked with a
particular graph, the triples resulting from this reasoning procedure should be material-
ized into the graph via an insert operation, with the history record’s metadata specifying
instead of a SPARQL Update statement the particular inference regime used. We also
do not include a detailed treatment of blank nodes that takes their semantics as existen-
tial variables, as empirical research has in general shown that blank nodes are generally
used as generic stable identifiers rather than existential variables, and thus can be treated
as simply minting unique identifiers [11].

5 Update Provenance Vocabulary

For the provenance graph itself, we propose the following lightweight vocabulary called
the “Update Provenance Vocabulary” (UPD) given in Table 2. Every time there is a
change to a provenance-enabled graph by SPARQL Update, there is the addition of a
provenance record to the provenance graph using the UPD vocabulary, including infor-
mation such as an explicit time-stamp and the text of the SPARQL update itself. Every
step in the transaction will have the option of recording metadata using W3C PROV vo-
cabulary (or even some other provenance vocabulary like OPM) explicitly given by the
“meta” link in our vocabulary and semantics, with UPD restricted to providing a record
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of the ‘cut-and-paste’ operations needed for applications of dynamic provenance like
version control. We align the UPD vocabulary as a specialization of the W3C PROV
vocabulary. A graph (upd:graph) is a subtype of prov:Entity and an update of
a graph (upd:update) is a subtype of prov:Activity. For inverse properties, we
use the inverse names recommended by PROV-O [15].

Name Description PROV Subtype
upd:input Link to provenance record from graph before an update prov:wasUsedBy

upd:output Link from provenance record to a graph after update prov:generated
upd:data Changed data in insert/delete operation prov:wasUsedBy

upd:version Sequential link forward in time between a version of a
graph and an update

prov:hadRevision

upd:prevVersion sequential link backwards in time between a version of
a graph and an update

prov:wasRevisionOf

upd:type Type of update operation (insert, delete, load, clear, cre-
ate, or drop)

prov:type

upd:current Link to most current state of graph prov:hadRevision
upd:source Any other graph that was consulted by the update prov:wasUsedBy
upd:meta Link to any metadata about the graph rdfs:seeAlso
upd:user User identifier (string or URI) prov:wasAttributedTo
upd:text Text of the SPARQL Update Query prov:value
upd:time Time of update to the graph prov:atTime

Fig. 2. Lightweight Update Provenance Vocabulary (UPD)

6 Implementation Considerations

So far we have formalized a logical model of the provenance of a graph as it evolves
over time (which allow us to derive its intermediate versions), but we have not detailed
how to store or query the intermediate versions of a graph efficiently. For any given
graph one should likely store the most up-to-date graph so that queries on the graph
in its present state can be run without reconstructing the entire graph. One could to
simply store the graph G_vi resulting from each update operation in addition to the
provenance record, but this would lead to an explosive growth in storage requirements.
This would also be the case even for the provenance graph if the storage of an aux-
iliary graph G_ui in a provenance record involved many triples, although we allow
this in the UPD vocabulary as it may be useful for some applications. For those op-
erating over large graphs, the contents of the named graphs G_ui that store inserted
or deleted triples can be represented more efficiently by just storing the original graph
and the SPARQL Update statements themselves in each provenance record given by the
upd:text property, and not storing the auxiliary named graphs given by upd:data.

Strategically, one can trade computational expense for storage in provenance, due to
the immutability of the provenance information. A hybrid methodology to ameliorate
the cost of reconstruction of the version of a graph would be to store the graph at various
temporal intervals (i.e. “snapshots”). For small graphs where storage cost is low and
processing cost is high, it would make more sense to store all provenance information
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for the entire graph. In situations where the cost of processing is high and storage cost
is low, storing the SPARQL Updates and re-running them makes sense to reconstruct
the graph. In this case, it also makes sense to store “snapshots” of the graph at various
intervals to reduce processing cost. Simulation results for these scenarios are available.1

7 Conclusion

Provenance is a challenging problem for RDF. By extending SPARQL Update, we have
provided a method to use W3C PROV (and other metadata vocabularies) to keep track
of the changes to triple-stores. We formalized this approach by drawing on similar work
in database archiving and copy-paste provenance, which allow us to use SPARQL Up-
date provenance records to reconstruct graphs at arbitrary instances in time. This work
is a first step in addressing the important issue of RDF version control. We hope this will
contribute to discussion of how to standardize descriptions of changes to RDF datasets,
and even provide a way to translate changes to underlying (e.g. relational or XML)
databases to RDF representations, as the same underlying “cut-and-paste” model has
already been well-explored in these kinds of databases [2]. Explorations to adapt this
work to the Google Research-funded DatabaseWiki project, and implementation per-
formance with real-world data-sets is a next step [3]. A number of areas for theoretical
future work remain, including the subtle issue of combining it with RDFS inferences [8]
or special-purpose SPARQL provenance queries [25,16].
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Abstract. Updates in RDF stores have recently been standardised in the
SPARQL 1.1 Update specification. However, computing entailed answers by on-
tologies is usually treated orthogonally to updates in triple stores. Even the W3C
SPARQL 1.1 Update and SPARQL 1.1 Entailment Regimes specifications ex-
plicitly exclude a standard behaviour for entailment regimes other than simple
entailment in the context of updates. In this paper, we take a first step to close this
gap. We define a fragment of SPARQL basic graph patterns corresponding to (the
RDFS fragment of) DL-Lite and the corresponding SPARQL update language,
dealing with updates both of ABox and of TBox statements. We discuss possible
semantics along with potential strategies for implementing them. In particular,
we treat both, (i) materialised RDF stores, which store all entailed triples explic-
itly, and (ii) reduced RDF Stores, that is, redundancy-free RDF stores that do not
store any RDF triples (corresponding to DL-Lite ABox statements) entailed by
others already. We have implemented all semantics prototypically on top of an
off-the-shelf triple store and present some indications on practical feasibility.

1 Introduction

The availability of SPARQL as a standard for accessing structured Data on the Web may
well be called one of the key factors to the success and increasing adoption of RDF and
the Semantic Web. Still, in its first iteration the SPARQL [24] specification has neither
defined how to treat ontological entailments with respect to RDF Schema (RDFS) and
OWL ontologies, nor provided means how to update dynamic RDF data. Both these
gaps have been addressed within the recent SPARQL 1.1 specification, which provides
both means to define query answers under ontological entailments (SPARQL 1.1 Entail-
ment Regimes [9]), and an update language to update RDF data stored in a triple store
(SPARQL 1.1 Update [8]). Nonetheless, these specifications leave it open how SPARQL
endpoints should treat entailment regimes other than simple entailment in the context
of updates; the main issue here is how updates shall deal with implied statements:

– What does it mean if an implied triple is explicitly (re-)inserted (or deleted)?
– Which (if any) additional triples should be inserted, (or, resp., deleted) upon up-

dates?

For the sake of this paper, we address such questions with the focus on a deliber-
ately minimal ontology language, namely the minimal RDFS fragment of [19].1 As
it turns out, even in this confined setting, updates as defined in the SPARQL 1.1 Update

1 We ignore issues like axiomatic triples [13], blank nodes [17], or, in the context of OWL,
inconsistencies arising through updates [5]. Neither do we consider named graphs in SPARQL,
which is why we talk about “triple stores” as opposed to “graph stores” [8].
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© Springer International Publishing Switzerland 2014
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Table 1. DL-LiteRDFS assertions vs. RDF(S), where A, A′ denote concept (or, class) names, P , P ′

denote role (or, property) names, Γ is a set of constants, and x, y ∈ Γ . For RDF(S) vocabulary,
we make use of similar abbreviations (sc, sp, dom, rng, a) introduced in [19].

TBox RDFS

1 A′ � A A′ sc A.
2 P ′ � P P ′ sp P .

TBox RDFS

3 ∃P � A P dom A.
4 ∃P − � A P rng A.

ABox RDFS

5 A(x) x a A.
6 P (x, y) x P y.

specification impose non-trivial challenges; in particular, specific issues arise through
the interplay of INSERT, DELETE, and WHERE clauses within a single SPARQL up-
date operation, which —to the best of our knowledge— have not yet been considered
in this combination in previous literature on updates under entailment (such as for in-
stance [5, 11]).

Example 1. As a running example, we assume a triple store G with RDF (ABox)
data and an RDFS ontology (TBox) Ofam about family relationships (in Turtle syn-
tax [2]), where :hasP, :hasM, and:hasF, resp., denote the parent, mother, and father
relations.

ABox: :joe :hasP :jack. :joe :hasM :jane.
TBox: :Father sc :Parent. :Mother sc :Parent.

:hasF sp :hasP. :hasM sp :hasP.
:hasF rng :Father; dom :Child. :hasM rng :Mother; dom :Child.
:hasP rng :Parent; dom :Child.

The following query should return :jack and :jane as (RDFS entailed) answers:
SELECT ?Y WHERE { :joe :hasP ?Y. }

SPARQL engines supporting simple entailment would only return :jack, though.

The intended behaviour for the query in Ex. 1 is typically achieved by either (i) query
rewriting techniques computing entailed answers at query run-time, or (ii) by ma-
terialising all implied triples in the store, normally at loading time. That is, on the
one hand, borrowing from query rewriting techniques from DL-Lite (such as, e.g.,
PerfectRef [4]2) one can reformulate such a query to return also implied answers.
While the rewritten query is worst case exponential wrt. the length of the original query
(and polynomial in the size of the TBox), for moderate size TBoxes and queries rewrit-
ing is quite feasible.

Example 2 (cont’d). The rewriting of the query in Ex. 1 according to PerfectRef [4]
with respect to Ofam as a DL TBox in SPARQL yields

SELECT ?Y WHERE { {:joe :hasP ?Y}
UNION {:joe :hasF ?Y} UNION {:joe :hasM ?Y}}

Indeed, this query returns both :jane and :jack.

On the other hand, an alternative3 is to materialise all inferences in the triple store,
such that the original query can be used ’as is’, for instance using the minimalistic
inference rules for RDFS from [19]4 shown in Fig. 1.

2 Alg. 1 in the Appendix shows a version of PerfectRef reduced to the essentials of RDFS.
3 This alternative is viable for RDFS, but not necessarily for more expressive DLs.
4 These rules correspond to rules 2), 3), 4) of [19]; they suffice since we ignore blank nodes.
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Example 3 (cont’d). The materialised version of G would contain the following
triples—for conciseness we only show assertional implied triples here, that is triples
from the four leftmost rules in Fig. 1.

:joe a :Child; :hasP :jack; :hasM :jane; :hasP :jane.
:jack a :Parent. :jane a :Mother, :Parent.

On a materialised triple store, the query from Ex. 1 would return the expected results.

However, in the context of SPARQL 1.1 Update, things become less clear.

Example 4 (cont’d). The following operation tries to delete an implied triple and at the
same time to (re-)insert another implied triple.
DELETE {?X a :Child} INSERT {?Y a :Mother} WHERE {?X :hasM ?Y}

Existing triple stores offer different solutions to these problems, ranging from ig-
noring entailments in updates altogether, to keeping explicit and implicit (materialised)
triples separate and re-materialising upon updates. In the former case (ignoring entail-
ments) updates only refer to explicitly asserted triples, which may result in non-intuitive
behaviours, whereas the latter case (re-materialisation) may be very costly, while still
not eliminating all non-intuitive cases, as we will see. The problem is aggravated by
no systematic approach to the question of which implied triples to store explicitly in
a triple store and which not. In this paper we try to argue for a more systematic ap-
proach for dealing with updates in the context of RDFS entailments. More specifically,
we will distinguish between two kinds of triple stores, that is (i) materialised RDF
stores, which store all entailed ABox triples explicitly, and (ii) reduced RDF Stores,
that is, redundancy-free RDF stores that do not store any assertional (ABox) triples
already entailed by others. We propose alternative update semantics that preserve the
respective types (i) and (ii) of triple stores, and discuss possible implementation strate-
gies, partially inspired by query rewriting techniques from ontology-based data access
(OBDA) [15] and DL-Lite [4]. As already shown in [11], erasure of ABox statements
is deterministic in the context of RDFS, but insertion and particularly the interplay of
DELETE/INSERT in SPARQL 1.1 Update has not been considered therein. Finally, we
relax the initial assumption that terminological statements (using the RDFS vocabu-
lary) are static, and discuss the issues that arise when also TBox statement are subject
to updates.

The remainder of the paper continues with preliminaries (RDFS, SPARQL, DL-Lite,
SPARQL update operations) in Sec. 2. We introduce alternative semantics for ABox
updates in materialised and reduced triple stores in Sec. 3, and discuss them in Sec. 4
and Sec. 5, respectively. In Sec. 6, we present our results on TBox updates. After pre-
senting in Sec. 7 an implementation on top of an off-the-shelf triple store along with
experiments, followed in Sec. 8 by a discussion of future and related work, we conclude
in Sec. 9.

?C sc ?D. ?S a ?C.
?S a ?D.

?P sp ?Q. ?S ?P ?O.
?S ?Q ?O.

?P dom ?C. ?S ?P ?O.
?S a ?C.

?P rng ?C. ?S ?P ?O.
?O a ?C.

?C sc ?D. ?D sc ?E.
?C sc ?E.

?P sp ?Q. ?Q sp ?R.
?P sp ?R.

Fig. 1. Minimal RDFS inference rules
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2 Preliminaries

We introduce some basic notions about RDF graphs, RDFS ontologies, and SPARQL
queries. Since we will draw from ideas coming from OBDA and DL-Lite, we introduce
these notions in a way that is compatible with DLs.

Definition 1 (RDFS ontology, ABox, TBox, triple store). We call a set T of inclusion
assertions of the forms 1–4 in Table 1 an RDFS ontology, or (RDFS) TBox, a set A of
assertions of the forms 5–6 in Table 1 an (RDF) ABox, and the union G = T ∪ A an
(RDFS) triple store.

In the context of RDF(S), the set Γ of constants coincides with the set I of IRIs.
We assume the IRIs used for concepts, roles, and individuals to be disjoint from IRIs
of the RDFS and OWL vocabularies.5 In the following, we view RDF and DL notation
interchangeably, i.e., we treat any RDF graph consisting of triples without non-standard
RDFS vocabulary as a set of TBox and ABox assertions. To define the semantics of
RDFS, we rely on the standard notions of (first-order logic) interpretation, satisfaction
of assertions, and model (cf. e.g., [1, Def. 14]).

As for queries, we again treat the cases of SPARQL and DLs interchangeably. Let V
be a countably infinite set of variables (written as ’?’-prefixed alphanumeric strings).

Definition 2 (BGP, CQ, UCQ). A conjunctive query (CQ) q, or basic graph pattern
(BGP), is a set of atoms of the forms 5–6 from Table 1, where now x, y ∈ Γ ∪ V . A
union of conjunctive queries (UCQ) Q, or UNION pattern, is a set of CQs. We denote
with V(q) (or V(Q)) the set of variables from V occurring in q (resp., Q).

Notice that in this definition we are considering only CQs in which all variables are
distinguished (i.e., are answer variables), and that such queries correspond to SPARQL
basic graph patterns (BGPs). From the SPARQL perspective, we allow only for
restricted forms of general SPARQL BGPs that correspond to standard CQs as for-
mulated over a DL ontology; that is, we rule out on the one hand more complex pat-
terns in SPARQL 1.1 [12] (such as OPTIONAL, NOT EXISTS, FILTER), and queries with
variables in predicate positions, and on the other hand “terminological” queries, e.g.,
{?x sc ?y.}. We will relax this latter restriction later (see Sec. 6). Also, we do not con-
sider here blank nodes separately6. By these restrictions, we can treat query answering
and BGP matching in SPARQL analogously and define it in terms of interpretations and
models (as usual in DLs). Specifically, an answer (under RDFS Entailment) to a CQ q
over a triple store G is a substitution θ of the variables in V(q) with constants in Γ such
that every model of G satisfies all facts in qθ. We denote the set of all such answers with
ansrdfs(q, G) (or simply ans(q, G)). The set of answers to a UCQ Q is

⋃
q∈Q ans(q, G).

From now on, let rewrite(q, T ) be the UCQ resulting from applying PerfectRef (or,
equivalently, the down-stripped version Alg. 1) to a CQ q and a triple store G = T ∪ A,

5 That is, we assume no “non-standard use” [23] of these vocabularies. While we could assume
concept names, role names, and individual constants mutually disjoint, we rather distinguish
implicitly between them “per use” (in the sense of “punning” [18]) based on their position in
atoms or RDF triples.

6 Blank nodes in a triple store may be considered as constants and we do not allow blank nodes
in queries, which does not affect the expressivity of SPARQL.
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and let mat(G) be the triple store obtained from exhaustive application on G of the
inference rules in Fig. 1.

The next result follows immediately from, e.g., [4, 11, 19] and shows that query
answering under RDF can be done by either query rewriting or materialisation.

Proposition 1. Let G = T ∪ A be a triple store, q a CQ, and A′ the set of ABox
assertions in mat(G). Then, ans(q, G) = ans(rewrite(q, T ), A) = ans(q, A′).

Various triple stores (e.g., BigOWLIM [3]) perform ABox materialisation directly
upon loading data. However, such triple stores do not necessarily materialise the TBox:
in order to correctly answer UCQs as defined above, a triple store actually does not need
to consider the two rightmost rules in Fig. 1. Accordingly, we will call a triple store or
(ABox) materialised if in each state it always guarantees G\T = mat(G)\mat(T ). On
the other extreme, we find triple stores that do not store any redundant ABox triples. By
red(G) we denote the hypothetical operator that produces the reduced “core” of G, and
we call a triple store (ABox) reduced if G = red(G). We note that this core is uniquely
determined in our setting whenever T is acyclic (which is usually a safe assumption)7;
it could be naïvely computed by exhaustively “marking” each triple that can be inferred
from applying any of the four leftmost rules in Fig. 1, and subsequently removing all
marked elements of A. Lastly, we observe that, trivially, a triple store containing no
ABox statements is both reduced and materialised.

Finally, we introduce the notion of a SPARQL update operation.

Definition 3 (SPARQL update operation). Let Pd and Pi be BGPs, and Pw a BGP
or UNION pattern. Then an update operation u(Pd, Pi, Pw) has the form

DELETE Pd INSERT Pi WHERE Pw.

Intuitively, the semantics of executing u(Pd, Pi, Pw) on G, denoted as Gu(Pd,Pi,Pw)
is defined by interpreting both Pd and Pi as “templates” to be instantiated with the
solutions of ans(Pw, G), resulting in sets of ABox statements Ad to be deleted from G,
and Ai to be inserted into G. A naïve update semantics follows straightforwardly.

Definition 4 (Naïve update semantics). Let G = T ∪ A be a triple store, and
u(Pd, Pi, Pw) an update operation. Then, naive update of G with u(Pd, Pi, Pw), de-
noted Gu(Pd,Pi,Pw), is defined as (G \ Ad) ∪ Ai, where Ad =

⋃
θ∈ans(Pw ,G) gr(Pdθ),

Ai =
⋃

θ∈ans(Pw,G) gr(Piθ), and gr(P ) denotes the set of ground triples in pattern P .

As easily seen, this naïve semantics neither preserves reduced nor materialised triple
stores. Consider, e.g., the update from Ex. 4, respectively on the reduced triple store
from Ex. 1 and on the materialised triple store from Ex. 3.

3 Defining Alternative Update Semantics

We investigate now alternative semantics for updates that preserve either materialised or
reduced ABoxes, and discuss how these semantics can—similar to query answering—
be implemented in off-the-shelf SPARQL 1.1 triple stores.

7 We note that even in the case when the TBox is cyclic we could define a deterministic way
to remove redundancies, e.g., by preserving within a cycle only the lexicographically smallest
ABox statements. That is, given TBox A � B � C � A and ABox A(x), C(x); we would
delete C(x) and retain A(x) only, to preserve reducedness.
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Definition 5 (Mat-preserving and red-preserving semantics). Let G and
u(Pd, Pi, Pw) be as in Def. 4. An update semantics Sem is called mat-
preserving, if GSem

u(Pd,Pi,Pw) = mat(GSem
u(Pd,Pi,Pw)), and it is called red-preserving, if

GSem
u(Pd,Pi,Pw) = red(GSem

u(Pd,Pi,Pw)).

Specifically, we consider the following variants of materialised ABox preserving
(or simply, mat-preserving) semantics and reduced ABox preserving (or simply, red-
preserving) semantics, given an update u(Pd, Pi, Pw):
Semmat

0 : As a baseline for a mat-preserving semantics, we apply the naïve semantics,
followed by (re-)materialisation of the whole triple store.

Semmat
1 : An alternative approach for a mat-preserving semantics is to follow the so-
called “delete and rederive” algorithm [10] for deletions, that is: (i) delete the in-
stantiations of Pd plus “dangling” effects, i.e., effects of deleted triples that after
deletion are not implied any longer by any non-deleted triples; (ii) insert the instan-
tiations of Pi plus all their effects.

Semmat
2 : Another mat-preserving semantics could take a different viewpoint with re-
spect to deletions, following the intention to: (i) delete the instantiations of Pd plus
all their causes; (ii) insert the instantiations of Pi plus all their effects.

Semmat
3 : Finally, a mat-preserving semantics could combine Semmat

1 and Semmat
2 , by

deleting both causes of instantiations of Pd and (recursively) “dangling” effects.8

Semred
0 : Again, the baseline for a red-preserving semantics would be to apply the naïve
semantics, followed by (re-)reducing the triple store.

Semred
1 : This red-preserving semantics extends Semred

0 by additionally deleting the
causes of instantiations of Pd.

The definitions of semantics Semmat
0 and Semred

0 are straightforward.

Definition 6 (Baseline mat-preserving and red-preserving update semantics). Let
G and u(Pd, Pi, Pw) be as in Def. 4. Then, we define Semmat

0 and Semred
0 as follows:

G
Semmat

0
u(Pd,Pi,Pw) = mat(Gu(Pd,Pi,Pw)) G

Semred
0

u(Pd,Pi,Pw) = red(Gu(Pd,Pi,Pw))

Let us proceed with a quick “reality-check” on these two baseline semantics by
means of our running example.

Example 5. Consider the update from Ex. 4. It is easy to see that neither under Semmat
0

executed on the materialised triple store of Ex. 3, nor under Semred
0 executed on the

reduced triple store of Ex. 1, it would have any effect.

This behaviour is quite arguable. Hence, we proceed with discussing the implications
of the proposed alternative update semantics, and how they could be implemented.

4 Alternative Mat-Preserving Semantics

We consider now in more detail the mat-preserving semantics. As for Semmat
1 , we rely

on a well-known technique in the area of updates for deductive databases called “delete

8 Note the difference to the basic “delete and rederive” approach. Semmat
1 in combination with

the intention of Semmat
2 would also mean to recursively delete effects of causes, and so forth.
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and rederive” (DRed) [6,10,16,26,27]. Informally translated to our setting, when given
a logic program Π and its materialisation T ω

Π , plus a set of facts Ad to be deleted and a
set of facts Ai to be inserted, DRed (i) first deletes Ad and all its effects (computed via
semi-naive evaluation [25]) from T ω

Π , resulting in (T ω
Π)′, (ii) then, starting from (T ω

Π)′,
re-materialises (Π \ Ad) ∪ Ai (again using semi-naive evaluation).

The basic intuition behind DRed of deleting effects of deleted triples and then re-
materialising can be expressed in our notation as follows; as we will consider a variant
of this semantics later on, we refer to this semantics as Semmat

1a .

Definition 7. Let G = T ∪ A, u(Pd, Pi, Pw), Ad, and Ai be defined as in Def. 4. Then

G
Semmat

1a

u(Pd,Pi,Pw) = mat(T ∪ (A \ mat(T ∪ Ad)) ∪ Ai).

As opposed to the classic DRed algorithm, where Datalog distinguishes between
view predicates (IDB) and extensional knowledge in the Database (EDB), in our set-
ting we do not make this distinction, i.e., we do not distinguish between implicitly and
explicitly inserted triples. This means that Semmat

1a would delete also those effects that
had been inserted explicitly before.

We introduce now a different variant of this semantics, denoted Semmat
1b , that makes

a distinction between explicitly and implicitly inserted triples.

Definition 8. Let u(Pd, Pi, Pw) be an update operation, and G = T ∪Aexpl ∪Aimpl a
triple store, where Aexpl and Aimpl respectively denote the explicit and implicit ABox

triples. Then G
Semmat

1b

u(Pd,Pi,Pw) = T ∪ A′
expl ∪ A′

impl, where Ad and Ai are defined as in
Def. 4, A′

expl = (Aexpl \ Ad) ∪ Ai, and A′
impl = mat(A′

expl ∪ T ) \ T .

Note that in Semmat
1b , as opposed to Semmat

1a , we do not explicitly delete effects of
Ad from the materialisation, since the definition just relies on re-materialisation from
scratch from the explicit ABox A′

expl. Nonetheless, the original DRed algorithm can
still be used for computing Semmat

1b as shown by the following proposition.

Proposition 2. Let us interpret the inference rules in Fig. 1 and triples in G respec-
tively as rules and facts of a logic program Π; accordingly, we interpret Ad and Ai

from Def. 8 as facts to be deleted from and inserted into Π , respectively. Then, the
materialisation computed by DRed, as defined in [16], computes exactly A′

impl.

None of Semmat
0 , Semmat

1a , and Semmat
1b are equivalent, as shown in Ex. 6 below.

Example 6. Given the triple store G = {:C sc :D . :D sc :E}, on which
we perform the operation INSERT{:x a :C, :D, :E.}, explicitly adding three
triples, and subsequently perform DELETE{:x a :C, :E.}, we obtain, according
to the three semantics discussed so far, the following ABoxes:
Semmat

0 : {:x a :D. :x a :E.} Semmat
1a : {}

Semmat
1b : {:x a :D. :x a :E.}

While after this update Semmat
0 and Semmat

1b deliver the same result, the difference
between these two is shown by the subsequent update DELETE{:x a :D.}
Semmat

0 : {:x a :E.} Semmat
1a : {} Semmat

1b : {}
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As for the subtle difference between Semmat
1a and Semmat

1b , we point out that none
of [16, 26], who both refer to using DRed in the course of RDF updates, make it clear
whether explicit and implicit ABox triples are to be treated differently.

Further, continuing with Ex. 5, the update from Ex. 4 still would not have any effect,
neither using Semmat

1a , nor Semmat
1b . That is, it is not possible in any of these update

semantics to remove implicit information (without explicitly removing all its causes).

Semmat
2 aims at addressing this problem concerning the deletion of implicit infor-

mation. As it turns out, while the intention of Semmat
2 to delete causes of deletions can-

not be captured just with the mat operator, it can be achieved fairly straightforwardly,
building upon ideas similar to those used in query rewriting.

As we have seen, in the setting of RDFS we can use Alg. 1 rewrite to expand a CQ
to a UCQ that incorporates all its “causes”. A slight variation can be used to compute
the set of all causes, that is, in the most naïve fashion by just “flattening” the set of sets
returned by Alg. 1 to a simple set; we denote this flattening operation on a set S of sets
as flatten(S). Likewise, we can easily define a modified version of mat(G), applied to
a BGP P using a TBox T 9. Let us call the resulting algorithm mateff (P, T )10. Using
these considerations, we can thus define both rewritings that consider all causes, and
rewritings that consider all effects of a given (insert or delete) pattern P :

Definition 9 (Cause/Effect rewriting). Given a BGP insert or delete template P for
an update operation over the triple store G = T ∪A, we define the all-causes-rewriting
of P as P caus = flatten(rewrite(P, T )); likewise, we define the all-effects-rewriting
of P as P eff = mateff (P, T ).

This leads (almost) straightforwardly to a rewriting-based definition of Semmat
2 .

Definition 10. Let u(Pd, Pi, Pw) be an update operation. Then

G
Semmat

2
u(Pd,Pi,Pw) = Gu(P caus

d
,P eff

i
,{Pw}{P fvars

d
}),

where P fvars
d = {?v a rdfs:Resource. | for each ?v ∈ Var(P caus

d ) \ Var(Pd)}.

The only tricky part in this definition is the rewriting of the WHERE clause, where
Pw is joined11 with a new pattern P fvars

d that binds “free” variables (i.e., the “fresh”
variables denoted by ‘_’ in Table 2, introduced by Alg. 1, cf. Appendix) in the rewritten
DELETE clause, P caus

d . Here, ?v a rdfs:Resource. is a shortcut for a pattern which
binds ?v to any term occurring in G, cf. Sec. 7 below for details.

Example 7. Getting back to the materialised version of the triple store G from Ex. 3,
the update u from Ex. 4 would, according to Semmat

2 , be rewritten to

9 This could be viewed as simply applying the first four inference rules in Fig. 1 exhaustively to
P ∪ T , and then removing T .

10 Note that it is not our intention to provide optimised algorithms here, but just to convey the
feasibility of this rewriting.

11 A sequence of ’{}’-delimited patterns in SPARQL corresponds to a join, where such joins can
again be nested with UNIONs, with the obvious semantics, for details cf. [12].
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DELETE {?X a :Child. ?X :hasF ?x1. ?X :hasM ?x2. ?X :hasP ?x3.}
INSERT {?Y a :Mother. ?Y a :Parent. }
WHERE {{?X :hasM ?Y.} {?x1 a rdfs:Resource.

?x2 a rdfs:Resource. ?x3 a rdfs:Resource.}}

with G
Semmat

2
u containing :jane a :Mother, :Parent. :jack a :Parent.

It is easy to argue that Semmat
2 is mat-preserving. However, this semantics might still

result in potentially non-intuitive behaviours. For instance, subsequent calls of INSERTs
and DELETEs might leave “traces”, as shown by the following example.

Example 8. Assume G = Ofam from Ex. 1 with an empty ABox. Under Semmat
2 , the

following sequence of updates would leave as a trace —among others— the resulting
triples as in Ex. 7, which would not be the case under the naïve semantics.
DELETE{} INSERT {:joe :hasM :jane; :hasF :jack} WHERE{};
DELETE {:joe :hasM :jane; :hasF :jack} INSERT{} WHERE{}

Semmat
3 tries to address the issue of such “traces”, but can no longer be for-

mulated by a relatively straightforward rewriting. For the present, preliminary paper
we leave out a detailed definition/implementation capturing the intention of Semmat

3 ;
there are two possible starting points, namely combining Semmat

1a + Semmat
2 , or

Semmat
1b + Semmat

2 , respectively. We emphasise though, that independently of this
choice, a semantics that achieves the intention of Semmat

3 would still potentially run
into arguable cases, since it might run into removing seemingly “disconnected” im-
plicit assertions, whenever removed assertions cause these, as shown by the following
example.

Example 9. Assume a materialised triple store G consisting only of the TBox triples
:Father sc :Person, :Male . The behaviour of the following update sequence
under a semantics implementing the intention of Semmat

3 is arguable:
DELETE {} INSERT {:x a :Father.} WHERE {};
DELETE {:x a :Male.} INSERT {} WHERE {}

We leave it open for now whether “recursive deletion of dangling effects” is intuitive: in
this case, should upon deletion of x being Male, also be deleted that x is a Person?

In a strict reading of Semmat
3 ’s intention, :x a :Person. would count as a dan-

gling effect of the cause for :x a :Male., since it is an effect of the inserted triple
with no other causes in the store, and thus should be removed upon the delete opera-
tion.

Lastly, we point out that while implementations of (materialised) triple stores may
make a distinction between implicit and explicitly inserted triples (e.g., by storing ex-
plicit and implicit triples separately, as sketched in Semmat

1b already), we consider the
distinction between implicit triples and explicitly inserted ones non-trivial in the context
of SPARQL 1.1 Update: for instance, is a triple inserted based upon implicit bindings in
the WHERE clause of an INSERT statement to be considered “explicitly inserted” or not?
We tend towards avoiding such distinction, but we have more in-depth discussions of
such philosophical aspects of possible SPARQL update semantics on our agenda. For
now, we turn our attention to the potential alternatives for red-preserving semantics.



450 A. Ahmeti, D. Calvanese, and A. Polleres

5 Alternative Red-Preserving Semantics

Again, similar to Semmat
3 , for both baseline semantics Semred

0 and Semred
1 we leave

it open whether they can be implemented by rewriting to SPARQL update operations
following the naïve semantics, i.e., without the need to apply red(G) over the whole
triple store after each update; a strategy to avoid calling red(G) would roughly include
the following steps:

– delete the instantiations Pd plus all the effects of instantiations of Pi, which will be
implied anyway upon the new insertion, thus preserving reduced;

– insert instantiations of Pi only if they are not implied, that is, they are not already
implied by the current state of G or all their causes in G were to be deleted.

We leave further investigation of whether these steps can be cast into update requests
directly by rewriting techniques to future work. Rather, we show that we can capture
the intention of Semred

1 by a straightforward extension of the baseline semantics.

Definition 11 (Semred
1 ). Let u(Pd, Pi, Pw) be an update operation. Then

G
Semred

1
u(Pd,Pi,Pw) = red(Gu(P caus

d
,Pi,{rewrite(Pw)}{P fvars

d
})),

where P caus
d and P fvars

d are as before.

Example 10. Getting back to the reduced version of the triple store G from Ex. 1, the
update u from Ex. 4 would, according to Semred

1 , be rewritten to
DELETE { ?X a :Child. ?X :hasFather ?x1.

?X :hasMother ?x2. ?X :hasParent ?x3. }
INSERT { ?Y a :Mother. }
WHERE { { ?X :hasMother ?Y. }

{ ?x1 a rdfs:Resource.
?x2 a rdfs:Resource.
?x3 a rdfs:Resource.} }

with G
Semred

1
u containing the triple :jane a :Mother.. Observe here the deletion of

the triple :joe :hasParent :jack., which some might view as non-intuitive.

In a reduced store effects of Pd need not be deleted, which makes the considerations
that lead us to Semmat

3 irrelevant for a red-preserving semantics, as shown next.

Example 11. Under Semred
1 , as opposed to Semmat

2 , the update sequence of Ex. 8
would leave no traces. However, the update sequence of Ex. 9 would likewise result
in an empty ABox, again losing idempotence of single triple insertion followed by
deletion.

Note that, while the rewriting for Semred
1 is similar to that for Semmat

2 , post-processing
for preserving reducedness is not available in off-the-shelf triple stores. Instead,
Semmat

2 could be readily executed by rewriting on existing triple stores, preserving
materialisation.
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6 TBox Updates

So far, we have considered the TBox as static. As already noted in [11], additionally
allowing TBox updates considerably complicates issues and opens additional degrees
of freedom for possible semantics. While it is out of the scope of this paper to explore
all of these, we limit ourselves to sketch these different degrees of freedom and suggest
one pragmatic approach to extend updates expressed in SPARQL to RDFS TBoxes.

In order to allow for TBox updates, we have to extend the update language: in the
following, we will assume general BGPs, extending Def. 2.

Definition 12 (general BGP). A general BGP is a set of triples of any of the forms from
Table 1, where x, y, A, A′, P, P ′ ∈ Γ ∪ V .

We observe that with this relaxation for BGPs, updates as per Def. 3 can query TBox
data, since they admit TBox triples in Pw. In order to address this issue we need to also
generalise the definition of query answers.12

Definition 13. Let Q be a union of general BGPs and [[Q]]G the simple SPARQL se-
mantics as per [21], i.e., essentially the set of query answers obtained as the union of
answers from simple pattern matching of the general BGPs in Q over the graph G.
Then we define ansRDFS(Q, G) = [[Q]]mat(G).

In fact, Def. 13 does not affect ABox inferences, that is, the following corollary
follows immediately from Prop. 1 for non-general UCQs as per Def. 2.

Corollary 1. Let Q be a UCQ as per Def. 2. Then ansRDFS(Q, G) = ansrdfs(Q, G).

As opposed to the setting discussed so far, where the last two rules in Fig. 1 used for
TBox materialisation were ignored, we now focus on the discussion of terminological
updates under the standard “intensional” semantics (essentially defined by the inference
rules in Fig. 1) and attempt to define a reasonable (that means computable) semantics
under this setting. Note that upon terminological queries, the RDFS semantics and DL
semantics differ, since this “intensional” semantics does not cover all terminological
inferences derivable in DL, cf. [7]; we leave the details of this aspect to future work.

Observation 1. TBox updates potentially affect both materialisation and reducedness
of the ABox, that is, (i) upon TBox insertions a materialised ABox might need to be
re-materialised in order to preserve materialisation, and, respectively, a reduced ABox
might no longer be reduced; (ii) upon TBox deletions in a materialised setting, we have
a similar issue to what we called “dangling” effects earlier, whereas in a reduced setting
indirect deletions of implied triples could cause unintuitive behaviour.

Observation 2. Whereas deletions of implicit ABox triples can be achieved determin-
istically by deleting all single causes, TBox deletions involving sc and sp chains
can be achieved in several distinct ways, as already observed by [11].

Example 12. Consider the graph G = {:A sc :B. :B sc :C. :B sc :D.
:C sc :E. :D sc :E. :E sc :F.} with the update DELETE{:A sc :F.}

Independent of whether we assume a materialised TBox, we would have various
choices here to remove triples, to delete all the causes for :A sc :F.

12 As mentioned in Fn. 5, elements of Γ may act as individuals, concept, or roles names in
parallel.
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In order to define a deterministic semantics for TBox updates, we need a canonical
way to delete implicit and explicit TBox triples. Minimal cuts are suggested in [11]
in the sc (or sp , resp.) graphs as candidates for deletions of sc (or sp , resp.)
triples. However, as easily verified by Ex. 12, minimal multicuts are still ambiguous.

Here, we suggest two update semantics using rewritings to SPARQL 1.1 property
path patterns [12] that yield canonical minimal cuts.
Definition 14. Let u(Pd, Pi, Pw) be an update operation where Pd, Pi, Pw are general
BGPs. Then

G
Semmat

outcut
u(Pd,Pi,Pw) = mat(Gu(P ′

d
,Pi,P ′

w)),
where each triple {A1 scp A2} ∈ Pd such that scp ∈ {sc, sp} is replaced within P ′

d by
{A1 scp ?x.}, and we add to P ′

w the property path pattern {A1 scp ?x. ?x scp∗ A2}.
Analogously, Semmat

incut is defined by replacing {?x scp A2} within P ′
d, and adding

{A1 scp∗ ?x. ?x scp A2} within P ′
w instead.

Both Semmat
outcut and Semmat

incut may be viewed as straightforward extensions of
Semmat

0 , i.e., both are mat-preserving and equivalent to the baseline semantics for non-
general BGPs (i.e., on ABox updates):
Proposition 3. Let u(Pd, Pi, Pw) be an update operation, where Pd, Pi, Pw are (non-
general) BGPs. Then

G
Semmat

outcut
u(Pd,Pi,Pw) = G

Semmat
incut

u(Pd,Pi,Pw) = G
Semmat

0
u(Pd,Pi,Pw).

The intuition behind the rewriting in Semmat
outcut is to delete for every deleted A scp B.

triple, all directly outgoing scp edges from A that lead into paths to B, or, resp., in
Semmat

incut all directly incoming edges to B. The intuition to choose these canonical
minimal cuts is motivated by the following proposition.

Proposition 4. Let u = DELETE {A scp B}, and G a triple store with materialised

TBox T . Then, the TBox statements deleted by G
Semmat

outcut
u(Pd,Pi,Pw) (or, G

Semmat
incut

u(Pd,Pi,Pw), resp.)
form a minimal cut [11] of T disconnecting A and B.

Proof (Sketch). In a materialised TBox, one can reach B from A either directly or via n
direct neighbours Ci �= B, which (in)directly connect to B. So, a minimal cut contains
either the multicut between A and the Cis, or between the Cis and B; the latter multicut
requires at least the same amount of edges to be deleted as the former, which in turn
corresponds to the outbound cut. This proves the claim for Semmat

outcut . We can proceed
analogously for Semmat

incut . ��
The following example illustrates that the generalisation of Prop. 4 to updates in-

volving the deletion of several TBox statements at once does not hold.

Example 13. Assume the materialised triple store G = {:A scp :B,:C,:D. :B
scp :C, :D.} and u = DELETE{:A scp :C. :A scp :D.}. Here, Semmat

incut
does not yield a minimal multicut in G wrt disconnecting (:A,:C) and (:A,:D).13

As the example shows, the extension of the baseline ABox update semantics to TBox
updates already yields new degrees of freedom. We leave a more in-depth discussion of
TBox updates also extending the other semantics from Sec. 3 for future work.
13 We can give an analogous example where Semmat

outcut does not yield a minimal multicut.
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7 Prototype and Experiments

We have implemented the different update semantics discussed above in Jena TDB14

as a triple store that both implements the latest SPARQL 1.1 specification and supports
rule based materialisation: our focus here was to use an existing store that allows us
to implement the different semantics with its on-board features; that is, for computing
mat(G) we use the on-board, forward-chaining materialisation in Jena.15

We have implemented all the above-mentioned mat-preserving semantics, with
two concrete variants of P fvars

d . In the first variant, we replace ?v a rdfs:Resource
by {{?v ?vp ?vo} UNION {?vs ?v ?vo} UNION {?vs ?vp ?v}}, to achieve a
pattern that binds ?v to every possible term in G. This is not very efficient. In fact, note
that P fvars

d is needed just to bind free variables ?v (corresponding to ‘_’ in Table 2) in
patterns P?v of the form P (x, ?v) or P (?v, x) in the rewritten DELETE clause. Thus,

we can equally use P fvars′
d = {OPTIONAL{

⋃
?v∈Var(P caus

d
)\Var(Pd)} P?v}. We denote

implementations using the latter variant Semmat
2′ and Semred

1′ , respectively.
As for reduced semantics, remarkably, for the restricted set of ABox rules in Fig. 1

and assuming an acyclic TBox, we can actually compute red(G) also by “on-board”
means of SPARQL 1.1 compliant triple-stores, namely by using SPARQL 1.1 Update
in combination with SPARQL 1.1 property paths [12, Section 9] with the following
update:
DELETE { ?S1 a ?D1. ?S2 a ?C2. ?S3 ?Q3 ?O3. ?O4 a ?C4. }
WHERE {{ ?C1 sc+ ?D1. ?S1 a ?C1. }

UNION { ?P2 dom/sc* ?C2. ?S2 ?P2 ?O2. }
UNION { ?P3 sp+ ?Q3. ?S3 ?P3 ?O3. }
UNION { ?P4 rng/sc* ?C4. ?S4 ?P4 ?O4. }}

We emphasise that performance results should be understood as providing a general
indication of feasibility of implementing these semantics in existing stores rather than
actual benchmarking: on the one hand, the different semantics are not comparable in
terms of performance benchmarking, since they provide different results; on the other
hand, for instance, we only use naive re-materialisation provided by the triple store in
our prototype, instead of optimised versions of DRed, such as [26].

For initial experiments we have used data generated by the LUBM generator for 5, 10
and 15 Universities, which correspond to different ABox sizes merged together with an
RDFS version of the LUBM ontology as TBox; this version of LUBM has no complex
restrictions on roles, no transitive roles, no inverse roles, and no equality axioms, and
axioms of type A 	 B � C are split into two axioms A 	 B and A 	 C. Besides, we
have designed a set of 7 different ABox updates in order to compare the proposed mat-
preserving and red-preserving semantics. Both our prototype, as well as files containing
the data, ontology, and the updates used for experiments are available on a dedicated
Web page.16

We first compared, for each update semantics, the time elapsed for rewriting and ex-
ecuting the update. Secondly, in order to compare mat-preserving and red-preserving
semantics, we also need to take into account that red-preserving semantics imply

14 http://jena.apache.org/documentation/tdb/
15 http://jena.apache.org/documentation/inference/
16 http://dbai.tuwien.ac.at/user/ahmeti/sparqlupdate-rewriter/
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additional effort on subsequent querying, since rewriting is required (cf. Prop. 1). In
order to reflect this, we also measured the aggregated times for executing an update and
subsequently processing the standard 14 LUBM benchmark queries in sequence.

Details of the results can be found on the above-mentioned Web page, we only pro-
vide a brief summary here: In general, among the mat-preserving semantics, the se-
mantics implementable in terms of rewriting (Semmat

2 ) perform better than those that
need rematerialisation (Semmat

1a,b), as could be expected. There might be potential for
improvement here on the latter, when using tailored implementaions of DRed. Also,
for both mat-preserving (Semmat

2′ ) and red-preserving (Semred
1′ ) semantics that rely on

rewritings for deleting causes, the optimisation of using variant P fvars′
d instead of P fvars

d
paid off for our queries. As for a comparison between mat-preserving vs. red-preserving,
in our experiments re-reduction upon updates seems quite affordable, whereas the addi-
tionally needed query rewriting for subsequent query answering does not add dramatic
costs. Thus, we believe that, depending on the use case, keeping reduced stores upon
updates is a feasible and potentially useful strategy, particularly since – as shown above
– red(G) can be implemented with off-the-shelf feratures of SPARQL 1.1.

While further optimisations, and implementations in different triple stores remain on
our agenda, the experiments confirm our expectations so far.

8 Further Related Work and Possible Future Directions

Previous work on updates in the context of tractable ontology languages such as
RDFS [11] and DL-Lite [5] typically has treated DELETEs and INSERTs in isolation, but
not both at the same time nor in combination with templates filled by WHERE clauses, as
in SPARQL 1.1; that is, these approaches are not based on BGP matching but rather on a
set of ABox assertions to be updated, known a priori. Pairing both DELETE and INSERT,
as in our case, poses new challenges, which we tried to address here in the practically
relevant context of both materialised and reduced triple stores. In the future, we plan to
extend our work in the context of DL-Lite, where we could build upon thoroughly stud-
ied query rewriting techniques (not necessarily relying on materialisation), and at the
same time benefit from a more expressive ontology language. Expanding beyond our
simple minimal RDFS language towards more features of DL-Lite or coverage of unre-
stricted RDF graphs would impose new challenges: for instance, consistency checking
and consistency-preserving updates (as those treated in [5]), which do not yet play a role
in the setting of RDFS, would become relevant; extensions in these directions, as well as
practically evaluating the proposed semantics on existing triple stores is on our agenda.

As for further related works, in the context of reduced stores, we refer to [22], where
the cost of redundancy elimination under various (rule-based) entailment regimes, in-
cluding RDFS, is discussed in detail. In the area of database theory, there has been a
lot of work on updating logical databases: Winslett [28] distinguishes between model-
based and formula-based updates. Our approach clearly falls in the latter category; more
concretely, ABox updates could be viewed as sets of propositional knowledge base up-
dates [14] generated by SPARQL instantiating DELETE/INSERT templates. Let us fur-
ther note that in the more applied area of databases, there are obvious parallels between
some of our considerations and CASCADE DELETEs in SQL (that is, deletions under
foreign key constraints), in the sense that we trigger additional deletions of causes/ef-
fects in some of the proposed update semantics discussed herein.
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9 Conclusions

We have presented possible semantics of SPARQL 1.1 Update in the context of RDFS.
To the best of our knowledge, this is the first work to discuss how to combine RDFS
with the new SPARQL 1.1 Update language. While we have been operating on a very
restricted setting (only capturing minimal RDFS entailments, restricting BGPs to dis-
allow non-standard use of the RDFS vocabulary), we could demonstrate that even in
this setting the definition of a SPARQL 1.1 Update semantics under entailments is a
non-trivial task. We proposed several possible semantics, neither of which might seem
intuitive for all possible use cases; this suggests that there is no “one-size-fits-all” up-
date semantics. Further, while ontologies should be “ready for evolution” [20], we
believe that more work into semantics for updates of ontologies alongside with data
(TBox & ABox) is still needed to ground research in Ontology Evolution into standards
(SPARQL, RDF, RDFS, OWL), particularly in the light of the emerging importance of
RDF and SPARQL in domains where data is continuously updated (dealing with dy-
namics in Linked Data, querying sensor data, or stream reasoning). We have taken a
first step in this paper.

Acknowledgments. This work has been funded by WWTF (project ICT12-015), by the
Vienna PhD School of Informatics, and by EU Project Optique (grant n. FP7-318338).
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Appendix

Algorithm 1: rewrite(q, T )
Input: Conjunctive query q, TBox T
Output: Union (set) of conjunctive queries

1 P := {q}
2 repeat
3 P ′ := P
4 foreach q ∈ P ′ do
5 foreach g in q do // expansion
6 foreach inclusion assertion I in T

do
7 if I is applicable to g then
8 P := P ∪

{
q[g/ gr(g, I)]

}

9 until P ′ = P
10 return P

Table 2. Semantics of gr(g, I) in Alg.1

g I gr(g/I)

A(x) A′ � A A′(x)
A(x) ∃P � A P (x, _)
A(x) ∃P − � A P (_, x)

P1(x, y) P2 � P1 P2(x, y)
Here, ‘_’ stands for a “fresh” variable.
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Abstract. Over the last decades, several billion Web pages have been
made available on the Web. The ongoing transition from the current
Web of unstructured data to the Web of Data yet requires scalable and
accurate approaches for the extraction of structured data in RDF (Re-
source Description Framework) from these websites. One of the key steps
towards extracting RDF from text is the disambiguation of named en-
tities. While several approaches aim to tackle this problem, they still
achieve poor accuracy. We address this drawback by presenting AGDIS-
TIS, a novel knowledge-base-agnostic approach for named entity disam-
biguation. Our approach combines the Hypertext-Induced Topic Search
(HITS) algorithm with label expansion strategies and string similarity
measures. Based on this combination, AGDISTIS can efficiently detect
the correct URIs for a given set of named entities within an input text.
We evaluate our approach on eight different datasets against state-of-the-
art named entity disambiguation frameworks. Our results indicate that
we outperform the state-of-the-art approach by up to 29% F-measure.

1 Introduction

The vision behind the Web of Data is to provide a new machine-readable layer
to the Web where the content of Web pages is annotated with structured data
(e.g., RDFa [1]). However, the Web in its current form is made up of at least
15 billion Web pages.1 Most of these websites are unstructured in nature. Re-
alizing the vision of a usable and up-to-date Web of Data thus requires scal-
able and accurate natural-language-processing approaches that allow extracting
RDF from such unstructured data. Three tasks play a central role when ex-
tracting RDF from unstructured data: named entity recognition (NER), named
entity disambiguation (NED), also known as entity linking [16], and relation
extraction (RE). For the first sentence of Example 1, an accurate named entity
recognition approach would return the strings Barack Obama and Washington,

1 Data gathered from http://www.worldwidewebsize.com/ on January 4th, 2014.
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D.C.. A high-quality DBpedia-based named entity disambiguation (NED) ap-
proach would use these already recognized named entities and map the strings
Barack Obama resp. Washington, D.C. to the resources dbr:Barack Obama and
dbr:Washington, D.C.2 [14].

Example 1. Barack Obama arrived this afternoon in Washington, D.C..
President Obama’s wife Michelle accompanied him.

While NER has been explored extensively over the last decades [7], the disam-
biguation of named entities, i.e., the assignment of a resource’s URI from an
existing knowledge base to a string that was detected to label an entity remains
a difficult task.

Current NED approaches suffer from two major drawbacks: First, they poorly
perform on Web documents [20]. This is due to Web documents containing re-
sources from different domains within a narrow context. An accurate processing
of Web data has yet been shown to be paramount for the implementation of
the Web of Data [8]. Well-know approaches such as Spotlight [15] and TagMe
2 [6] have been designed to work on a particular knowledge base. However,
Web data contains resources from many different domains. Hence, we argue that
NED approaches have to be designed in such a way that they are agnostic of
the underlying knowledge base. Second, most state-of-the-art approaches rely
on exhaustive data mining methods [4,21] or algorithms with non-polynomial
time complexity [11]. However, given the large number of entities that must be
disambiguated when processing Web documents, scalable NED approaches are
of central importance to realize the Semantic Web vision.

In this paper, we address these drawbacks by presenting AGDISTIS, a novel
NED approach and framework. AGDISTIS achieves higher F-measures than the
state of the art while remaining polynomial in its time complexity. AGDISTIS
achieves these results by combining the HITS algorithm [12] with label expansion
and string similarity measures. Overall, our contributions can be summed up
as follows: (1) We present AGDISTIS, an accurate and scalable framework for
disambiguating named entities that is agnostic to the underlying knowledge base
(KB) and show that we are able to outperform the state of the art by up to 29%
F-measure on these datasets. (2) We show that our approach has a quadratic
time complexity. Thus, it scales well enough to be used even on large knowledge
bases. (3) We evaluate AGDISTIS on eight well-known and diverse open-source
datasets.3

The rest of this paper is organized as follows: We first give a brief overview
of related work in Section 2. Then, we introduce the AGDISTIS approach in
Section 3. After presenting the datasets, we evaluate our approach against the
state of the art frameworks AIDA and TagMe 2 and the well-known DBpedia
Spotlight. Furthermore, we measure the influence of using surface forms, i.e.,

2 dbr: stands for http://dbpedia.org/resource/
3 Further data, detailed experimental results and source code for this paper are pub-
licly available on our project homepage http://aksw.org/Projects/AGDISTIS
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synonymous label for a specific resource, in Section 4. We conclude in Section 5
by highlighting research questions that emerged from this work. A demo of our
approach (integrated into the Named Entity Recognition framework FOX [25])
can be found at http://fox.aksw.org.

2 Related Work

AGDISTIS is related to the research area of Information Extraction [19] in gen-
eral and to NED in particular. Several approaches have been developed to tackle
NED. Cucerzan presents an approach based on extracted Wikipedia data to-
wards disambiguation of named entities [4]. The author aims to maximize the
agreement between contextual information of Wikipedia pages and the input
text by using a local approach. Epiphany [2] identifies, disambiguates and anno-
tates entities in a given HTML page with RDFa. Ratinov et al. [21] described
an approach for disambiguating entities from Wikipedia KB. The authors argue
that using Wikipedia or other ontologies can lead to better global approaches
than using traditional local algorithms which disambiguate each mention sepa-
rately using, e.g., text similarity. Kleb et al. [11,10] developed and improved an
approach using ontologies to mainly identify geographical entities but also peo-
ple and organizations in an extended version. These approaches use Wikipedia
and other Linked Data KBs. LINDEN [23] is an entity linking framework that
aims at linking identified named entities to a knowledge base. To achieve this
goal, LINDEN collects a dictionary of the surface forms of entities from different
Wikipedia sources, storing their count information.

Wikipedia Miner [17] is the oldest approach in the field of wikification. Based
on different machine learning algorithms, the systems disambiguates w.r.t. prior
probabilities, relatedness of concepts in a certain window and context qual-
ity. The authors evaluated their approach based on a Wikipedia as well as an
AQUAINT subset. Unfortunately, the authors do not use the opportunities pro-
vided by Linked Data like DBpedia.

Using this data the approach constructs candidate lists and assigns link proba-
bilities and global coherence for each resource candidate. The AIDA approach [9]
for NED tasks is based on the YAGO24 knowledge base and relies on sophis-
ticated graph algorithms. Specifically, this approach uses dense sub-graphs to
identify coherent mentions using a greedy algorithm enabling Web scalability.
Additionally, AIDA disambiguates w.r.t. similarity of contexts, prominence of
entities and context windows.

Another approach is DBpedia Spotlight [15], a framework for annotating and
disambiguating Linked Data Resources in arbitrary texts. In contrast to other
tools, Spotlight is able to disambiguate against all classes of the DBpedia on-
tology. Furthermore, it is well-known in the Linked Data community and used
in various projects showing its wide-spread adoption.5 Based on a vector-space

4 http://www.mpi-inf.mpg.de/yago-naga/yago/
5 https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/Known-uses
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model and cosine similarity DBpedia Spotlight is publicly available via a web
service6.

In 2012, Ferragina et al. published a revised version of their disambiguation
system called TagMe 2. The authors claim that it is tuned towards smaller
texts, i.e., comprising around 30 terms. TagMe 2 is based on an anchor catolog
(<a> tags on Wikipedia pages with a certain frequency), a page catalogue (com-
prising all original Wikipedia pages, i.e., no disambiguations, lists or redirects)
and an in-link graph (all links to a certain page within Wikipedia). First, TagMe
2 identifies named entities by matching terms with the anchor catalog and sec-
ond disambiguates the match using the in-link graph and the page catalog via a
collective agreement of identified anchors. Last, the approach discards identified
named entities considered as non-coherent to the rest of the named entities in
the input text.

In 2014, Babelfy [18] has been presented to the community. Based on random
walks and densest subgraph algorithms Babelfy tackles NED and is evaluated
with six datasets, one of them the later here used AIDA dataset. In constrast
to AGDISTIS, Babelfy differentiates between word sense disambiguation, i.e.,
resolution of polysemous lexicographic entities like play, and entity linking, i.e.,
matching strings or substrings to knowledge base resources. Due to its recent
publication Babelfy is not evaluated in this paper.

Recently, Cornolti et al. [3] presented a benchmark for NED approaches. The
authors compared six existing approaches, also using DBpedia Spotlight, AIDA
and TagMe 2, against five well-known datasets. Furthermore, the authors de-
fined different classes of named entity annotation task, e.g. ‘D2W’, that is the
disambiguation to Wikipedia task which is the formal task AGDISITS tries to
solve. We consider TagMe 2 as state of the art w.r.t. this benchmark although
only one dataset has been considered for this specific task. We analyze the per-
formance of DBpedia Spotlight, AIDA, TagMe 2 and our approach AGDISTIS
on four of the corpora from this benchmark in Section 4.

3 The AGDISTIS Approach

3.1 Named Entity Disambiguation

The goal of AGDISTIS is to detect correct resources from a KB K for a vector
N of n a-priori determined named entities N1, . . . , Nn extracted from a certain
input text T . In general, several resources from a given knowledge base K can be
considered as candidate resources for a given entity Ni. For the sake of simplicity
and without loss of generality, we will assume that each of the entities can be
mapped to m distinct candidate resources. Let C be the matrix which contains
all candidate-entity mappings for a given set of entities. The entry Cij stands
for the jth candidate resource for the ith named entity. Let μ be a family of
functions which maps each entity Ni to exactly one candidate Cij . We call such

6 https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/Web-service
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functions assignments. The output of an assignment is a vector of resources of
length |N | that is such that the ith entry of the vector maps with Ni.

Let ψ be a function which computes the similarity between an assignment
μ(C,N) and the vector of named entities N . The coherence function φ calculates
the similarity of the knowledge base K and an assignment μ, cf. Ratinov et
al. [21], to ensure the topical consistency of μ. The coherence function φ is
implemented by the HITS algorithm, which calculates the most pertinent entities
while the similarity function ψ is, e.g., string similarity. Given this formal model,
the goal is to find the assignment μ� with

μ� = argmax
μ

(ψ(μ(C,N), N) + φ(μ(C,N),K)) .

The formulation of the problem given above has been proven to be NP-hard,
cf. Cucerzan et al. [4]. Thus, for the sake of scalability, AGDISTIS computes
an approximation μ+ by using HITS, a fast graph algorithm which runs with
an upper bound of Θ(k · |V |2) with k the number of iterations and |V | the
number of nodes in the graph. Furthermore, using HITS leverages 1) scalability,
2) well-researched behaviour and 3) the ability to explicate semantic authority.

3.2 Architecture

Our approach to NED thus consists of three main phases as depicted in Figure 1.
Given an input text T and a named entity recognition function (e.g., FOX [25]),
we begin by retrieving all named entities from the input text. Thereafter, we
aim to detect candidates for each of the detected named entities. To this end, we
apply several heuristics and make use of known surface forms [15] for resources
from the underlying KB. The set of candidates generated by the first step is used
to generate a disambiguation graph. Here, we rely on a graph search algorithm
which retrieves context information from the underlying KB. Finally, we employ
the HITS algorithm to the context graph to find authoritative candidates for
the discovered named entities. We assume that the resources with the highest
authority values represent the correct candidates. All algorithms in AGDISTIS
have a polynomial time complexity, leading to AGDISTIS also being polynomial
in time complexity. Choosing candidates relates to the notion of φ while calcu-
lating the authority values confers to ψ. In the following, we present each of the
steps of AGDISTIS in more detail.

Fig. 1. Overview of AGDISTIS
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3.3 Candidate Detection

In order to find the correct disambiguation for a certain set of named entities,
we first need to detect candidate resources in the KB. We begin by creating an
index comprising all labels of each resource. Our approach can be configured
to use any set of properties as labeling properties (e.g., those in Ell et al. [5]).
For our experiments, we only considered rdfs:label as labeling property. In
addition, our approach can make use of known surface forms for each of the
resources in case such knowledge is available [15]. These are simply strings that
are used on the Web to refer to given resources. Surface forms are simply added
to the set of available labels for each resource, cf. Section 4.1. In this paper, we
do not consider abbreviations although these could be easily regarded by adding
further labels into the KB (e.g., via WordNet7).

Next to searching the index we apply a string normalization approach and
an expansion policy to the input text: The string normalization is based on
eliminating plural and genitive forms, removing common affixes such as postfixes
for enterprise labels and ignoring candidates with time information (years, dates,
etc.) within their label. For example, the genitive New York’s is transformed into
New York, the postfix of Microsoft Ltd. is reduced to Microsoft and the time
information of London 2013 is ignored. Our expansion policy is a time-efficient
approach to coreference resolution, which plays a central role when dealing with
text from the Web, cf. Singh et al. [24]. In web and news documents, named
entities are commonly mentioned in their full length the first time they appear,
while the subsequent mentions only consist of a substring of the original mention
due to the brevity of most news data. For example, a text mentioning Barack
Obama’s arrival in Washington D.C. will commonly contain Barack Obama in
the first mention of the entity and use strings such as Obama or Barack later
in the same text (see Example 1). We implement this insight by mapping each
named entity label (e.g., Obama) which is a substring of another named entity
label that was recognized previously (e.g., Barack Obama) to the same resource
, i.e., dbr:Barack Obama. If there are several possible expansions, we choose the
shortest as a fast coreference resolution heuristic for web documents. Without
the expansion policy AGDISTIS suffers from a loss of accuracy of ≈ 4%.

Additionally, AGDISTIS can be configured to fit named entities to certain
domains to narrow the search space. Since our goal is to disambiguate persons,
organizations and places, AGDISTIS only allows candidates of the types men-
tioned in Table 1 when run on DBpedia and YAGO2. Adding general types will
increase the number of candidates and thus decrease the performance. Obviously,
these classes can be altered by the user as required to fit his purposes.

The resulting candidate detection approach is explicated in Algorithm 1. In
its final step, our system compares the heuristically obtained label with the label
extracted from the KB by using trigram similarity which is an n-gram similarity
with n = 3.

7 http://wordnet.princeton.edu/
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Table 1. DBpedia and YAGO2 classes used for disambiguation classes. Prefix dbo

stands for http://dbpedia.org/ontology/, foaf for http://xmlns.com/foaf/0.1/

and yago for http://yago-knowledge.org/resource/.

Class rdf:type

DBpedia Person dbo:Person, foaf:Person
DBpedia Organization dbo:Organization, dbo:WrittenWork (e.g., Journals)
DBpedia Place dbo:Place, yago:YagoGeoEntity

YAGO2 Person yago:yagoLegalActor
YAGO2 Organization yago:yagoLegalActor,

yago:wordnet exchange 111409538 (e.g., NASDAQ)
YAGO2 Place yago:YagoGeoEntity

Algorithm 1. Searching candidates for a label.

Data: label of a certain named entity Ni, σ trigram similarity threshold
Result: C candidates found
C ←− ∅;
label ←− normalize(label);
label ←− expand(label);
C̄ ←− searchIndex(label);
for c ∈ C̄ do

if ¬c .matches([0-9]+) then
if trigramSimilarity(c, label)≥ σ then

if fitDomain(c) then
C ←− C∪ c;

3.4 Computation of Optimal Assignment

Given a set of candidate nodes, we begin the computation of the optimal as-
signment by constructing a disambiguation graph Gd with search depth d. To
this end, we regard the input knowledge base as a directed graph GK = (V,E)
where the vertices V are resources of K, the edges E are properties of K and
x, y ∈ V, (x, y) ∈ E ⇔ ∃p : (x, p, y) is an RDF triple in K. Given the set of
candidates C, we begin by building an initial graph G0 = (V0, E0) where V0
is the set of all resources in C and E0 = ∅. Starting with G0 we extend the
graph in a breadth-first search manner. Therefore, we define the extension of a
graph Gi = (Vi, Ei) to a graph ρ(Gi) = Gi+1 = (Vi+1, Ei+1) with i = 0, . . . , d as
follows:

Vi+1 = Vi ∪ {y : ∃x ∈ Vi ∧ (x, y) ∈ E} (1)

Ei+1 = {(x, y) ∈ E : x, y ∈ Vi+1} (2)

We iterate the ρ operator d times on the input graph G0 to compute the initial
disambiguation graph Gd.
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After constructing the disambiguation graph Gd we need to identify the cor-
rect candidate node for a given named entity. Using the graph-based HITS al-
gorithm we calculate authoritative values xa, ya and hub values xh, yh for all
x, y ∈ Vd. We initialize the authoritative and hub values (3) and afterwards
iterate the equations (4) k times as follows:

∀x ∈ Vd, xa = xh =
1

|Vd|
(3) and xa ←−

∑
(y,x)∈Ed

yh, yh ←−
∑

(y,x)∈Ed

xa(4)

We choose k according to Kleinberg [12], i.e., 20 iterations, which suffice to
achieve convergence in general. Afterwards we identify the most authoritative
candidate Cij among the set of candidates Ci as correct disambiguation for
a given named entity Ni. When using DBpedia as KB and Cij is a redirect
AGDISTIS uses the target resource. AGDISTIS’ whole procedure is presented
in Algorithm 2. As can be seen, we calculate μ+ solely by using polynomial time
complex algorithms.

Algorithm 2.Disambiguation Algorithm based on HITS and Linked Data.

Data: N = {N1, N2 . . . Nn} named entities, σ trigram similarity threshold, d
depth, k number of iterations

Result: C = {C1, C2 . . . Cn} identified candidates for named entities
E ←− ∅;
V ←−insertCandidates(N, σ);
G ←− (V,E);
G ←−breadthFirstSearch(G, d);
HITS(G(V, E), k);
sortAccordingToAuthorityValue(V);
for Ni ∈ N do

for v ∈ V do
if v is a candidate for Ni then

store(Ni,v);
break;

For our example, the graph depicted in Figure 2 shows an excerpt of the
input graph for the HITS disambiguation algorithm when relying on DBpedia
as knowledge base. The results can be seen in Table 2.

4 Evaluation

4.1 Experimental Setup

The aim of our evaluation was two-fold. First, we wanted to determine the F-
measure achieved by our approach on different datasets. Several definitions of
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Fig. 2. One possible graph for the example sen-
tence, with candidate nodes in grey

Table 2. Authority weights for ex-
ample graph

Node xa

db:Barack Obama 0.273
db:Barack Obama, Sr. 0.089
db:Washington, D.C. 0.093
db:Washington, D.C. (novel) 0.000

F-measure have been used in previous work on NED. Cornolti et al. [3] define the
micro F-measure (F1) w.r.t. a strong annotation match (i.e., a binary relation)
and the possibility of assigning null to an entity. This F-measure, which we
use throughout our evaluation, aggregates all true/false positives/negatives over
all documents. Thus, it accounts for larger contexts in documents with more
annotations, cf. Cornolti et al. [3].

Second, we wanted to know how AGDISTIS performs in comparison to other
state-of-the-art NED approaches. Thus, we compare AGDISTIS with TagMe 2,
the best approach according to [3] as well as with AIDA and DBpedia Spot-
light because they are well-known in the Linked Data community. AGDISTIS
is designed to be agnostic of the underlying knowledge base. Thus, we use the
German and English DBpedia KB as well as the English YAGO 2 KB.

Within our experiments, we ran AGDISTIS with the following parameter
settings: the threshold σ for the trigram similarity was varied between 0 and
1 in steps of 0.01. Additionally, we evaluated our approach with d = 1, 2, 3 to
measure the influence of the size of the disambiguation graph on AGDISTIS’
F-measure. For our experiments, we fitted AGDISTIS to the domain of named
entity recognition and only allow candidates of the types mentioned in Table 1.
We report more details on the evaluation setup as well as complete results at
the project homepage.

4.2 Datasets

Noisy and incorrect datasets can affect the performance of NED approaches
which can be prevented by using well-known datasets. We carried out our evalu-
ation on the following eight different, publicly available datasets, which consists
of the three corpora from the benchmark dataset N3 [22], the original AIDA
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evaluation corpus8 and four of the five datasets from the Cornolti et al. [3]
benchmark:

1. Reuters-21578 Dataset. The first of the N3 datasets comprises 145 news
articles randomly sampled from the Reuters-21578 news articles dataset.
Two domain experts determined the correct URI for each named entity us-
ing an online annotation tool reaching a initial voter agreement of 74%. In
cases where the judges did not agree initially, they concerted each other and
reached an agreement. This initial agreement rate hints towards the difficulty
of the disambiguation task. The corpus does not annotate ticker symbols of
companies (e.g., GOOG for Google Inc.), abbreviations and job descriptions
because those are always preceded by the full company name respectively a
person’s name.

2. news.de Dataset. This real-world dataset is the second of the N3 datasets
and was collected from 2009 to 2011 from the German web news portal
news.de ensuring that each message contains the German word Golf. This
word is a homonym that can semantically mean a geographical gulf, a car
model or the sport discipline. This dataset contains 53 texts comprising
over 600 named entities that were annotated manually by a domain expert.
Although some meanings of Golf are not within the class range of our eval-
uation, they are kept for evaluation purposes.

3. RSS-500 Dataset. This corpus has been published in Gerber et al. [8] and
is the third of the of the N3 datasets. It consists of data scrapped from
1,457 RSS feeds. The list includes all major worldwide newspapers and a
wide range of topics, e.g., World, U.S., Business, Science etc. This list was
crawled for 76 hours, which resulted in a corpus of about 11.7 million sen-
tences. A subset of this corpus has been created by randomly selecting 1%
of the contained sentences. Finally, domain experts annotated 500 sentences
manually. Further information about the corpora and the datasets them-
selves can be found on the project homepage.9

4. AIDA-YAGO2 Dataset. This is the original dataset that was used while
evaluating AIDA [9], stemming from the CoNLL 2003 shared task [26] and
comprising 1,393 news articles which were annotated manually.

5. AIDA/CO-NLL-TestB. This dataset (like all the subsequent datasets)
comes from the Cornolti et al. benchmarks and originates from the evaluation
of AIDA [9]. As mentioned above, this dataset was derived from the CO-
NLL 2003 shared task [26] and comprises 1,393 news articles which were
annotated manually. Two students annotated each entity resolving conflicts
by the authors of AIDA [9]. Cornolti et al.’s benchmark consists only of the
second test part comprising 231 documents with 19.4 entities per document
on average.

6. AQUAINT. In this dataset, only the first mention of an entity is annotated.
The corpus consists of 50 documents which are on average longer than the

8 https://www.mpi-inf.mpg.de/departments/databases-and-information-

systems/research/yago-naga/aida/downloads/
9 http://aksw.org/Projects/N3NERNEDNIF.html
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Table 3. Test corpora specification including the number of documents (#Doc.) and
the number of named entities (#Ent.) per dataset

Corpus Language #Doc. #Ent. Ent./Doc. Annotation

AIDA/CO-NLL-TestB English 231 4458 19.40 voter agreement
AQUAINT English 50 727 14.50 voter agreement
IITB English 103 11,245 109.01 domain expert
MSNBC English 20 658 31.90 domain expert
Reuters-21578 English 145 769 5.30 voter agreement
RSS 500 English 500 1,000 2.00 domain expert
news.de German 53 627 11.83 domain expert
AIDA-YAGO2 English 1,393 34,956 25.07 voter agreement

AIDA/CO-NLL-TestB documents. Each document contains 14.5 annotated
elements on average The documents originate from different news services,
e.g. Associated Press and have been annotated using voter agreement. The
dataset was created by Milne et al. [17].

7. IITB The IITB corpus comprises 103 manually annotated documents. Each
document contains 109.1 entities on average. This dataset displays the high-
est entity/document-density of all corpora. This corpus has been presented
by Kulkarni et al. [13] in 2009.

8. MSNBC This corpus contains 20 news documents with 32.9 entities per
document. This corpus was presented in 2007 by Cucerzan et al. [4].

We did not use the Meij dataset from Cornolti et al. since it comprises only
tweets from twitter with 1.6 entities per document. The number of entities avail-
able in the datasets is shown in Table 3. All experiments were carried out on a
MacBook Pro with a 2.7GHz Intel Core i7 processor and 4 GB 1333MHz DDR3
RAM using Mac OS 10.7.

4.3 Results

First, we evaluate AGDISTIS against AIDA and DBpedia Spotlight on three
different knowledge bases using N3 corpora and the AIDA-YAGO2 corpus.

Table 4. Evaluation of AGDISTIS against AIDA and DBpedia Spotlight. Bold indi-
cates best F-measure.

Corpus AGDISTIS AIDA Spotlight

K DBpedia YAGO2 YAGO2 DBpedia

F-measure σ d F-measure σ d F-measure F-measure

Reuters-21578 0.78 0.87 2 0.60 0.29 3 0.62 0.56
RSS-500 0.75 0.76 2 0.53 0.82 2 0.60 0.56
news.de 0.87 0.71 2 — — —- —- 0.84

AIDA-YAGO2 0.73 0.89 2 0.58 0.76 2 0.83 0.57
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AGDISTIS performs best on the news.de corpus, achieving a maximal 0.87
F-measure for σ = 0.71 and d = 2 (see Table 4). Our approach also outperforms
the state of the art on Reuters-21578 corpus (see Figure 3), where it reaches
0.78 F-measure for σ = 0.87 and d = 2. Considering the AIDA-YAGO2 dataset
AGDISTIS achieves an F-measure of 0.73 for σ = 0.89 and d = 2. Our results
suggest that d = 2, σ = 0.82 and using DBpedia as KB are a good setting
for AGDISTIS and suffice to perform well. In the only case where σ = 0.29
leads to better results (Reuters-21578 corpus), the setting 0.7 < σ < 0.9 is only
outperformed by 0.03 F-measure using YAGO as KB for AGDISTIS.

Table 5. Performance of AGDISTIS, DBpedia Spotlight and TagMe 2 on four different
datasets using micro F-measure (F1)

Dataset Approach F1-measure Precision Recall

AIDA/CO-
NLL-TestB

TagMe 2 0.565 0.58 0.551
DBpedia Spotlight 0.341 0.308 0.384
AGDISTIS 0.596 0.642 0.556

AQUAINT
TagMe 2 0.457 0.412 0.514
DBpedia Spotlight 0.26 0.178 0.48
AGDISTIS 0.547 0.777 0.422

IITB
TagMe 2 0.408 0.416 0.4
DBpedia Spotlight 0.46 0.434 0.489
AGDISTIS 0.31 0.646 0.204

MSNBC
TagMe 2 0.466 0.431 0.508
DBpedia Spotlight 0.331 0.317 0.347
AGDISTIS 0.761 0.796 0.729

Second, we compared our approach with TagMe 2 and DBpedia using the
datasets already implemented in the framework of Cornolti et al. AGDISTIS has
been setup to use a breadth-first search depth d = 2 and a trigram similarity of
σ = 0.82. All approaches used disambiguate w.r.t. the English DBpedia. AIDA
was ommitted from this evaluation because it has been shown to be outperformed
by TagMe 2 in [3] on the datasets we consider.

AGDISTIS achieves F-measures between 0.31 (IITB) and 0.76 (MSNBC) (see
Table 5). We outperform the currently best disambiguation framework, TagMe
2, on three out of four datasets by up to 29.5% F-measure. Our poor perfor-
mance on IITB is due to AGDISTIS not yet implementing a paragraph-wise
disambiguation policy. By now, AGDISTIS performs disambiguation on full doc-
uments. The large number of resources in the IITB documents thus lead to our
approach generating very large disambiguation graphs. The explosion of errors
within these graphs results in an overall poor disambiguation. We will address
this drawback in future work by fitting AGDISTIS with a preprocessor able
to extract paragraphs from input texts. The local vector-space model used by
Spotlight performs best in this setting.
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Fig. 3. F-measure on the Reuters-21578 corpus using DBpedia as KB

Delving deeper into AGDISTIS’ results lead to the following insights: (1)
Varying the search depth d does not significantly improve F-measure because
within the underlying documents there are many similar named entities forming
a shallow semantic background. However, using only string similarity measures
(d = 0) results in lower F-measure (see Figure 3). (2) The expansion policy can
have considerable knock-on effects: Either the first entity and its expansions are
disambiguated correctly or the wrong disambiguation of the first entity leads
to an avalanche of false results in a loss of ≈ 4% accuracy. (3) We observed a
significant enhancement of AGDISTIS when adding surface forms to the labels
of resources as explained in Section 3.3. Employing additional labels (such as
surface forms gathered from Wikipedia) increased the F-measure of AGDISTIS
by up to 4%. (5) Using n = 1, 2, 4 as n-gram similarity has been proven to
perform worse than using trigram similarity, i.e., n = 3. Our results suggest that
d = 2 while using DBpedia as KB is a good setting for AGDISTIS and suffice to
perform well. The iteration of σ between 0.7 and 0.9 can lead to an improvement
of up to 6% F-measure while σ < 0.7 and σ > 0.9 leads to a loss of F-measure.

Overall, our results suggest that σ = 0.82 and d = 2 is generally usable across
datasets and knowledge bases leading to high quality results.10

10 See also http://139.18.2.164/rusbeck/agdistis/supplementary.pdf and
http://139.18.2.164/rusbeck/agdistis/appendix.pdf
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5 Conclusion

We presented AGDISTIS a novel named entity disambiguation that combines
the scalable HITS algorithm and breadth-first search with linguistic heuristics.
Our approach outperforms the state-of-the-art algorithms TagMe 2, AIDA and
DBpedia Spotlight while remaining quadratic in its time complexity. Moreover,
our evaluation suggests that while the approach performs well in and of itself,
it can benefit from being presented with more linguistic information such as
surface forms. We see this work as the first step in a larger research agenda.
Based on AGDISTIS, we aim to develop a new paradigm for realizing NLP
services which employ community-generated, multilingual and evolving Linked
Open Data background knowledge. Other than most work, which mainly uses
statistics and heuristics, we aim to truly exploit the graph structure and seman-
tics of the background knowledge.

Since AGDISTIS is agnostic of the underlying knowledge base and language-
independent, it can profit from growing KBs as well as multilingual Linked Data.
In the future, we will thus extend AGDISTIS by using different underlying KBs
and even more domain-specific datasets. An evaluation of Babelfy against our
approach will be published on the project website. Moreover, we will implement
a sliding-window-based extension of AGDISTIS to account for large amounts of
entities per document.

Acknowledgments. Parts of this work were supported by the
ESF and the Free State of Saxony and the FP7 project Geo-
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Abstract. Many tasks in which a system needs to mediate between nat-
ural language expressions and elements of a vocabulary in an ontology
or dataset require knowledge about how the elements of the vocabulary
(i.e. classes, properties, and individuals) are expressed in natural lan-
guage. In a multilingual setting, such knowledge is needed for each of
the supported languages. In this paper we present M-ATOLL, a frame-
work for automatically inducing ontology lexica in multiple languages
on the basis of a multilingual corpus. The framework exploits a set of
language-specific dependency patterns which are formalized as SPARQL
queries and run over a parsed corpus. We have instantiated the system
for two languages: German and English. We evaluate it in terms of pre-
cision, recall and F-measure for English and German by comparing an
automatically induced lexicon to manually constructed ontology lexica
for DBpedia. In particular, we investigate the contribution of each single
dependency pattern and perform an analysis of the impact of different
parameters.

1 Introduction

For many applications that need to mediate between natural language and ele-
ments of a formal vocabulary as defined by a given ontology or used in a given
dataset, knowledge about how elements of the vocabulary are expressed in nat-
ural language is needed. This is the case, e.g., for question answering over linked
data [23,20,10] and natural language generation from ontologies or RDF data [4].
Moreover, in case a system is supposed to handle different languages, this knowl-
edge is needed in multiple languages. Take, for example, the following question
from the Question Answering over Linked Data1 (QALD-4) challenge, provided
in seven languages:

1. English: Give me all Australian nonprofit organizations.
2. German: Gib mir alle gemeinnützigen Organisationen in Australien.
3. Spanish: Dame todas las organizaciones benéficas de Australia.
4. Italian: Dammi tutte le organizzazioni australiane non a scopo di lucro.
5. French: Donnes-moi toutes les associations australiennes à but non lucratif.
6. Dutch: Noem alle Australische organisaties zonder winstoogmerk.
7. Romanian: Dă-mi toate organizaţiile non-profit din Australia.

1 www.sc.cit-ec.uni-bielefeld.de/qald/

P. Mika et al. (Eds.) ISWC 2014, Part I, LNCS 8796, pp. 472–486, 2014.
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All these questions can be interpreted as the same, language-independent query
to the DBpedia dataset:

1 PREFIX dbo: <http :// dbpedia.org/ontology/>

2 PREFIX res: <http :// dbpedia.org/resource/>

3 SELECT DISTINCT ?uri

4 WHERE {

5 ?uri dbo:type res: Nonprofit_organization .

6 { ?uri dbo:locationCountry res:Australia . }

7 UNION

8 { ?uri dbo:location ?x .

9 ?x dbo:country res:Australia . }

10 }

In order to either map the natural language questions to the query or vice versa, a
system needs to know how the individual Nonprofit organization is verbalized
in the above languages. In addition, it needs to know that the adjective Australian
corresponds to the class of individuals that are related to the indivual Australia
either directly via the property locationCountry or indirectly via the properties
location and country. This goes beyond a simple matching of natural language
expressions and vocabulary elements, and shows that the conceptual granularity
of language often does not coincide with that of a particular dataset.

Such lexical knowledge is crucial for any system that interfaces between nat-
ural language and Semantic Web data. A number of models have been proposed
to represent such lexical knowledge, realizing what has been called the ontology-
lexicon interface [18], among them lemon2 [12]. lemon is a model for the declar-
ative specification of multilingual, machine-readable lexica in RDF that capture
syntactic and semantic aspects of lexical items relative to some ontology. The
meaning of a lexical item is given by reference to an ontology element, i.e. a
class, property or individual, thereby ensuring a clean separation between the
ontological and lexical layer.

We call the task of enriching an ontology with lexical information ontology
lexicalization. In this paper we propose a semi-automatic approach, M-ATOLL,
to ontology lexicalization which induces lexicalizations from a multilingual cor-
pus. In order to find lexicalizations, M-ATOLL exploits a library of patterns
that match substructures in dependency trees in a particular language. These
patterns are expressed declaratively in SPARQL, so that customizing the sys-
tem to another language essentially consists in exchanging the pattern library.
As input, M-ATOLL takes a RDF dataset as well as a broad coverage corpus in
the target language. We present an instantiation of the system using DBpedia as
dataset and Wikipedia as corpus, considering English and German as languages
to proof that our approach can be adapted to multiple languages. As output,
M-ATOLL generates a lexicon in lemon format.

The paper is structured as follows: In the following section, we present the
architecture of M-ATOLL and discuss its instantiation to both English and Ger-
man, in particular describing the patterns used for each of these languages. In

2 http://lemon-model.net
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Section 3 we evaluate the system by comparing to existing manually constructed
lexica for DBpedia. We discuss related work in Section 4, and provide a conclu-
sion as well as an outlook on future work in Section 5.

2 Architecture

In this section we present the architecture behind M-ATOLL. The input is a
RDF dataset with or without an underlying ontology as well as a parsed corpus
for each of the languages into which the ontology is to be lexicalized; the output
is an ontology lexicon in lemon format. M-ATOLL comprises two approaches:
a label-based approach for extracting lexicalizations using ontology labels and
additional information, such as synonyms, from external lexical resources, and a
dependency-based approach for extracting lexicalizations of ontology properties
from an available text corpus. We will present both approaches as instantiated
for the DBpedia dataset and an English Wikipedia corpus, and then sketch how
the system can be ported to other languages, in our case to German.

2.1 Dependency-Based Approach

Figure 1 presents an overview of the dependency-based approach. The main idea
is to start from pairs of entities that are related by a given property, find occur-
rences of those entities in the text corpus, and generalize over the dependency
paths that connect them. The assumption behind this is that a sentence con-
taining both entities also contains a candidate lexicalization of the property in
question.

Fig. 1. Overview of the dependency-based approach



M-ATOLL – Multilingual Ontology Lexicalization 475

First, M-ATOLL expects an index of the available text corpus that stores the
dependency parses of all sentences occuring in the corpus in CoNLL format3.
Using such an index as input instead of raw text increases the flexibility for
the adaptation to different languages, as the parsing of a text corpus with a
specific dependency parser for the language is an external preparation step. In
particular, relying only on an input in CoNLL format keeps the processing itself
independent of a specific parser and tag set. In the following we describe all
processing steps in detail.

Triple Retrieval and Sentence Extraction. Given a property, the first step
of M-ATOLL consists in extracting all entities that are connected through the
property from a given RDF knowledge base. For the DBpedia property board,
for example, the following triples are returned (together with 873 other triples):4

<res:Woolf_Fisher, dbpedia:board, res:Auckland_Racing_Club>

<res:Ram_Shriram, dbpedia:board, res:Google>

For those triples, all sentences that contain both the subject and object labels
are retrieved from the text corpus. For example, for the second triple above, one
of the retrieved sentences is Kavitark Ram Shriram is a board member of

Google and one of the first investors in Google. The dependency parse
of the sentence is displayed in Figure 2.

Converting Parse Trees to RDF. After extracting all dependency parses of
the relevant sentences, they are converted into RDF using our own vocabulary
(inspired by the CoNLL format) and stored using Apache Jena5.

Pattern Extraction. After storing all parses in an RDF store, dependency
patterns that capture candidate lexicalizations are extracted from the parses. In
order to minimize noise, we define common, relevant dependency patterns that
the extraction should consider. These patterns are implemented as SPARQL
queries that can be executed over the RDF store. In this paper we consider the
following six dependency patterns (given with an English and a German example
each):

1. Transitive verb

– Plato influenced Russell.
– Plato beeinflusste Russel.

2. Intransitive verb with prepositional object

– Lincoln died in Washington, D.C.
– Lincold starb in Washington, D.C.

3. Relational noun with prepositional object (appositive)

3 http://nextens.uvt.nl/depparse-wiki/DataFormat
4 Throughout the paper, we use the prefix dbpedia for
<http://dbpedia.org/ontology/> and res for <http://dbpedia.org/resource/>

5 https://jena.apache.org/
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Fig. 2. Dependency tree for the sentence Kavitark Ram Shriram is a board member of
Google and one of the first investors in Google

– Murdoch, creator of the Fox Broadcasting Company, retired.
– Murdoch, der Gründer der Fox Broadcasting Company, hat sich zur Ruhe

gesetzt.
4. Relational noun with prepositional object (copulative construction)

– Penelope is the wife of Odysseus.
– Penelope is die Ehefrau von Odysseus.

5. Relational adjective
– Portugese is similar to Spanish.
– Portugiesisch ist ähnlich zu Spanisch.

6. Relational adjective (verb participle)
– Audrey Hepburn was born in Belgium.
– Audrey Hepburn wurde in Belgien geboren.

Note that these patterns cover relatively general grammatical structures and
could be instantiated by several SPARQL queries. The appositive relational noun
pattern, for example, is captured by two SPARQL queries that differ only in the
direction of a particular dependency relation (both of which occur in the data,
leading to the same kind of lexicalizations).

After extracting candidate lexicalizations using these patterns, the final step is
to construct a lexical entry. To this end, we use WordNet [14] with the MIT Java
Wordnet Interface [6] in order to determine the lemma of a word, e.g marry for the
verb form marries, or member for the noun form members. Also, we determine
the mapping between syntactic and semantic arguments. For example, in our
example in 2, the subject of the property board (Ram Shriram) corresponds to
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the subject of the sentence, while the object of the property (Google) corresponds
to the prepositional object. The lexical entry created for the noun lexicalization
board member then looks as follows:

RelationalNoun("board member",dbpedia:board,

propSubj = CopulativeArg,

propObj = PrepositionalObject("of"))

This entry makes use of one of the macros for common lexicalization patterns
defined in [13], a relational noun macro representing the prototypical syntactic
frame x is a board member of y. This entry is equivalent to the following RDF
representation:

:boardMember a lemon:LexicalEntry;

lexinfo:partOfSpeech lexinfo:noun;

lemon:canonicalForm [ lemon:writtenRep "board member"@en ];

lemon:sense [ lemon:reference dbpedia:board;

lemon:subjOfProp :x;

lemon:objOfProp :y ] ;

lexinfo:synBehavior [ a lexinfo:NounPPFrame;

lexinfo:copulativeArg :x;

lexinfo:prepositionalObject :y ].

:y lemon:marker [ lemon:canonicalForm

[ lemon:writtenRep "of"@en ]].

For each generated lexical entry we also store how often it was generated and
with which SPARQL query it was retrieved.

2.2 Label-Based Approach

The label-based approach to the induction of lexical entries differs from the
dependency-based approach described above in that it does not rely on a text
corpus but only on the label of the ontology element in question (classes and
properties) as well as on external lexical resources to find possible lexicalizations.

In particular, we use BabelNet [16] for finding synonyms. Currently we pick
the first synset that is returned, but we plan to disambiguate the relevant synset
by extending our approach to use Babelfy [15], using Wikipedia articles as dis-
ambiguation texts.

The label of the DBpedia class Activity, for example, is activity, for which
we retrieve the synonym action from BabelNet. The following lexical entries are
generated:

ClassNoun("activity",dbpedia:Activity)

ClassNoun("action",dbpedia:Activity)

The same processing is done for labels of properties, yielding, for example,
the following entries for the property spouse:
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RelationalNoun("spouse",dbpedia:spouse,

propSubj = PossessiveAdjunct,

propObj = CopulativeArg)

RelationalNoun("partner",dbpedia:spouse,

propSubj = PossessiveAdjunct,

propObj = CopulativeArg))

RelationalNoun("better half",dbpedia:spouse,

propSubj = PossessiveAdjunct,

propObj = CopulativeArg)

2.3 Adaptation to Other Languages

This section gives an overview on how to adapt the dependency-based approach
of M-ATOLL to other languages, in our case German, for which we present
results in Section 3.

The adaptation of the label-based approach largely depends on the availability
of external lexical resources, such as BabelNet, for the target language.

In order to adapt the dependency-based approach to German, we first parsed a
corpus of around 175, 000 sentences (sentences related to the QALD-3 lexicaliza-
tion task) from the German Wikipedia, using the ParZu dependency parser [19],
storing the resulting parses in CoNLL format in our corpus index. The ParZu
parser has the advantage to also lemmatize the tokens of an input sentence, e.g.
if the past tense verb form is heiratete, the parser also returns the infinitive verb
form heiraten. Therefore no additional resources, such as WordNet, for retrieving
the lemma of a word were needed. The next and final step for the adaptation is
defining relevant dependency patterns as SPARQL queries in order to retrieve
candidate lexicalizations, based on the part-of-speech tag set and dependency
relations used by the parser. To this end, we transformed the SPARQL queries
used for English into SPARQL queries that we can use for German. This mainly
consisted in exchanging the part-of-speech tags and dependencies.

In general, the adaptation of queries to other languages might also involve
changing the structure of the dependency patterns it queries for, but the patterns
we currently employ are general enough to work well across languages that are
structurally similar to English.

3 Evaluation

In this section we describe the evaluation measures and datasets, and then dis-
cuss results for English and German.

3.1 Methodology and Datasets

For English, we developed M-ATOLL using both training and test data of the
ontology lexicalization task of the QALD-3 challenge [5] as development set,
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i.e. for creating the dependency patterns we query for. It comprises 20 DBpedia
classes and 60 DBpedia properties that were randomly selected from different
frequency ranges, i.e. including properties with a large amount of instances as
well as properties with very few instances. M-ATOLL was then evaluated in
terms of precison, recall and F-measure on the manually constructed English
lemon lexicon for DBpedia6 [21]. It comprises 1,217 lexicalizations of 326 classes
and the 232 most frequent properties. From this dataset we removed all classes
and properties used for development, in order to avoid any overlap, leaving a test
dataset that is approximately 14 times bigger than the training dataset. As text
corpus we use around 60 million parsed sentences from the English Wikipedia.

For German, we use the train/test split of the ontology lexicalization task of
the QALD-3 challenge, and evaluate the approach with respect to a preliminary
version of a manually constructed German lemon lexicon for DBpedia. This
results in a training set of 28 properties and a test dataset of 27 properties (all
those properties from the QALD-3 dataset that have lexicalizations in the gold
standard lexicon). As text corpus, we use around 175,000 parsed sentences from
the German Wikipedia.

3.2 Evaluation Measures

For each property and class, we evaluate the automatically generated lexical
entries by comparing them to the manually created lexical entries in terms of
lexical precision, lexical recall and lexical F-measure at the lemma level. To
this end, we determine how many of the gold standard entries for a property
are generated by our approach (recall), and how many of the automatically
generated entries are among the gold standard entries (precision), where two
entries count as the same lexicaliztation if their lemma, part of speech and sense
coincide. Thus lexical precision Plex and recall Rlex for a property p are defined
as follows:

Plex(p) =
|entriesauto(p) ∩ entriesgold(p)|

|entriesauto(p)|

Rlex(p) =
|entriesauto(p) ∩ entriesgold(p)|

|entriesgold(p)|

Where entriesauto(p) is the set of entries for the property p in the automati-
cally constructed lexicon, while entriesgold(p) is the set of entries for the property
p in the manually constructed gold lexicon. The F-measure Flex(p) is then defined
as the harmonic mean of Plex(p) and Rlex(p), as usual.

All measures are computed for each property and then averaged for all prop-
erties. In the sections below, we will report only the average values.

As mentioned in Section 2, for each generated lexical entry we store how often
it was generated. This frequency is now used to calculate a probability expressing
how likely it is that this entry is used to lexicalize a particular property in
question.

6 https://github.com/cunger/lemon.dbpedia
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3.3 Results for English

Figure 3 shows results of the dependency-based approach on the training and
test dataset in terms of precision, recall and F-measure, considering the top-
k generated lexical entries, with k = 1, 5, 10, 15, 20 as well as considering all
generated entries. The best precision (0.47 on train and 0.44 on test) is reached
with k = 1, while the best recall (0.29 on train and 0.32 on test) is reached when
considering all candidate entries, which also yields the best F-measure (0.30 on
train and 0.35 on test).

Training Test

Precision Recall F-measure Precision Recall F-measure

Top 1 0.47 0.11 0.18 0.44 0.06 0.11

Top 5 0.37 0.20 0.26 0.42 0.19 0.26

Top 10 0.33 0.22 0.27 0.40 0.24 0.30

Top 15 0.32 0.24 0.27 0.40 0.27 0.32

Top 20 0.31 0.26 0.28 0.39 0.27 0.31

All 0.30 0.29 0.30 0.37 0.32 0.35

Fig. 3. Results of the dependency-based approach on the English dataset

Figure 4 presents the overall results on the English training and test set for
the label-based approach, the dependency-based approach, and when combin-
ing both approaches. For performance reasons (especially for the test dataset)
we limited the number of considered entity pairs per property to 2,500 pairs, al-
though taking more entity pairs into account will increase the recall significantly,
as preliminary tests showed.

Note that the label-based and the dependency-based approach complement
each other in the sense that they find different lexicalizations, which leads to an
increased recall when combining both.

Training Test

Precision Recall F-measure Precision Recall F-measure

Dependency-based 0.30 0.29 0.30 0.37 0.32 0.35

Label-based 0.53 0.24 0.33 0.56 0.30 0.40

Both 0.35 0.44 0.39 0.43 0.43 0.43

Fig. 4. Overall results on the English dataset, considering all generated entries

Finally, Figure 5 shows the contribution of each dependency pattern for En-
glish to the results over the training and test sets, when taking all generated
entries into account.



M-ATOLL – Multilingual Ontology Lexicalization 481

Training Test

Precision Recall F-measure Precision Recall F-measure

Transitive Verb 0.48 0.06 0.10 0.47 0.07 0.13

Intransitive Verb 0.41 0.12 0.18 0.43 0.10 0.16
with prepositional object

Relational noun (appositive) 0.42 0.04 0.07 0.44 0.07 0.12
with prepositional object

Relational noun (copulative) 0.42 0.04 0.07 0.46 0.07 0.12
with prepositional object

Relational adjective 0.79 0.04 0.07 0.70 0.02 0.04

Relational adjective 0.40 0.08 0.13 0.45 0.06 0.10
(verb participle)

Fig. 5. Contribution of each dependency pattern for English to the results over training
and test, taking all generated entries into account

3.4 Results for German

Figure 6 shows the results of the dependency-based approach on the training and
test dataset for German. As for English, the highest precision is reached with
the lowest k, while the highest recall and F-measure are achieved with higher k
or considering all candidate entries.

Training Test

Precision Recall F-measure Precision Recall F-measure

Top 1 0.57 0.02 0.04 0.63 0.06 0.11

Top 5 0.56 0.04 0.07 0.52 0.07 0.13

Top 10 0.56 0.04 0.07 0.50 0.08 0.15

Top 15 0.55 0.06 0.10 0.50 0.08 0.15

Top 20 0.55 0.07 0.12 0.50 0.08 0.15

All 0.55 0.07 0.13 0.50 0.08 0.15

Fig. 6. Results of the dependency-based approach on the German dataset

The main reason for recall being so low is the rather small set of sentences
contained in the text corpus sample. As a result, the approach finds candidate
lexicalizations for a bit less than half of the properties. A manual inspection of the
generated lexicalizations shows that the found candidates are indeed appropriate.
For example, for the property spouse, our approach finds the lexicalizations
heiraten (English to marry), Ehefrau von (English wife of), Gatte von (English
husband of), leben mit (English to live with), among others, and for the property
source (specifying the source of a river), our approach finds the lexicalizations
entspringen in (English to originate from) and beginnen (English to begin), among
others. We are therefore optimistic that moving to a larger corpus for German
will yield results similar to the ones achieved for English.
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3.5 Discussion of Results

Overall, the English results of the joining the label-based and the dependency-
based approach over the test dataset is decent but still far from being able to
be used in a fully automatic setting. Roughly, every second lexical entry that is
generated is not appropriate. In fact, we rather envision our approach as the basis
of a semi-automatic scenario, in which lexical entries are generated automatically
and then are manually checked by a lexicon engineer and corrected if necessary.
From this perspective, our approach has a clear potential to reduce the amount
of manual work required to develop a high-quality lexicon.

The current lack in recall for English is mainly due to the limited number of
defined dependency patterns. In addition, not all relevant lexicalizations occur in
the available corpus. For example, for the property birthDate the gold standard
lexicon contains three entries: born, birth date and date of birth, but only the first
one occurs in the Wikipedia corpus in combination with one of our entity pairs
from the given property. Capturing a wider variety of lexicalizations thus would
require moving to a larger scale (and more diverse) corpus.

Also note that our approach only extracts verbalizations of classes and prop-
erties, not of property chains (e.g. grandchild as verbalization of child ◦ cild) or
property-object pairs (e.g. Australian as verbalization of country Australia).
Dealing with conceptual mismatches between ontological structures and natural
language verbalizations will be subject of future work.

4 Related Work

An approach to extracting lexicalization patterns from corpora that is similar
in spirit to our approach is Wanderlust [2], which relies on a dependency parser
to find grammatical patterns in a given corpus—Wikipedia in their case as in
ours. These patterns are generic and non-lexical and can be used to extract
any semantic relation. However, Wanderlust also differs from our approach in
one major aspect. We start from a given property and use instance data to
find all different lexical variants of expressing one and the same property, while
Wanderlust maps each dependency path to a different property (modulo some
postprocessing to detect subrelations). They are therefore not able to find dif-
ferent variants of expressing one and the same property, thus not allowing for
semantic normalization across lexicalization patterns.

Another related tool is DIRT [9] (Discovery of Inference Rules from Text),
also very similar to Snowball [1], which is based on an unsupervised method
for finding inferences in text, thereby for example establishing that x is author
of y is a paraphrase of x wrote y. DIRT relies on a similarity-based approach
to group dependency paths, where two paths count as similar if they show a
high degree of overlap in the nouns that appear at the argument positions of
the paths. Such a similarity-based grouping of dependency paths could also be
integrated into our approach, in order to find further paraphrases. The main
difference to our approach is that DIRT does not rely on an existing knowledge
base of instantiated triples to bootstrap the acquisition of patterns from textual
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data, thus being completely unsupervised. Given the fact that nowadays there
are large knowledge bases such as Freebase and DBpedia, there is no reason why
an approach should not exploit the available instances of a property or class to
bootstrap the acquisition process.

A system that does rely on existing triples from a knowledge base, in par-
ticular DBpedia, is BOA [7]. BOA applies a recursive procedure, starting with
extracting triples from linked data, then extracting natural language patterns
from sentences and inserting this patterns as RDF data back into the Linked
Data Cloud. The main difference to our approach is that BOA relies on simple
string-based generalization techniques to find lexicalization patterns. This makes
it difficult, for example, to discard optional modifiers and thus can generate a
high amount of noise, which has been corroborated by initial experiments in our
lab on inducing patterns from the string context between two entities.

Espresso [17] employs a minimally supervised bootstrapping algorithm which,
based on only a few seed instances of a relation, learns patterns that can be used
to extract more instances. Espresso is thus comparable to our approach in the
sense that both rely on a set of seed sentences to induce patterns. In our case,
these are derived from a knowledge base, while in the case of Espresso they are
manually annotated. Besides a constrast in the overall task (relation extraction in
the case of Espresso and ontology lexicalization in our case), one difference is that
Espresso uses string-based patterns, while we rely on dependency paths, which
constitutes a more principled approach to discarding modifiers and yielding more
general patterns. A system that is similar to Espresso and uses dependency
paths was proposed by Ittoo and Bouma [8]. A further difference is that Espresso
leverages the web to find further occurrences of the seed instances. The corpus we
use, Wikipedia, is bigger than the compared text corpora used in the evaluation
by Espresso. But it would be bery interesting to extend our approach to work
with web data in order to overcome data sparseness, e.g. as in [3], in case there
is not enough instance data or there are not enough seed sentences available in
a given corpus to bootstrap the pattern acquisition process.

The more recent approach by Mahenda et al. [11] also extracts lexicalizations
of DBpedia properties on the basis of a Wikipedia corpus. In contrast to our
approach, they do not consider the parse of a selected sentence, but the longest
common substring between domain and range of the given property, normalizing
it by means of DBpedia class labels, such as Person or Date.

Another multilingual system is WRPA [22], which extracts English and Span-
ish lexicalization patterns from the English and Spanish Wikipedia, respectively.
Like other approaches, WRPA, considers only the textual pattern between two
anchor texts from Wikipedia, no parse structure. WRPA is applied to four rela-
tions (date of birth, date of death, place of birth and authorship) on an English
and Spanish corpus.

5 Conclusion and Future Work

We presented M-ATOLL as a first approach for the automatic lexicalization of
ontologies in multiple languages and instantiated it for DBpedia in English and
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German. It employs a combination of a dependency-based and a label-based
approach, benefiting from the complementary lexicalizations they find. Further-
more, by extracting candidate lexicalizations by means of matching dependency
parses with pre-defined dependency patterns, implemented as SPARQL queries,
M-ATOLL offers much flexibility when adapting it to other languages.

However, M-ATOLL is still limited to a few dependency patterns, capturing
the most basic grammatical structures. One main goal for future work thus is to
increase recall by including more specialized structures. In order to minimize the
manual effort in doing so, we intend to develop a procedure for automatically
generating relevant patterns along the following lines: On the basis of already
existing entries (either extracted by means of some general pre-defined patterns,
or part of a gold standard lexicon), we will automatically generate SPARQL
queries that retrieve the necessary parts from all sentences that contain the
entity labels and the canonical form of the lexical entry. In a next step, these
SPARQL queries will be generalized into commonly occurring patterns. This
method can also reduce the cost of adapting M-ATOLL to other languages, as
the process only needs a few basic patterns in order to bootstrap the pattern
learning step would then provide the basis for the large-scale extraction of lexical
entries.

Furthermore, we plan to improve the ranking of the generated lexical entries.
Currently only the frequency of a certain entry is taken into account, whereas
also the frequency of the underlying entity pair plays a role. For example, for
properties that have an overlap in their entity pairs, the same verbalizations
would be found. Confusing these lexicalizations could be avoided by ranking
entries lower that were generated on the basis of entity pairs that also occur
with other properties.

Moreover, we want to extend the evaluation of the German ontology lexical-
ization, running it on a much larger corpus. We plan to instantiate the approach
also for Spanish, and finally intend to show that it can be adapted easily not
only to other languages but also to other ontologies.
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Abstract. This paper describes TableMiner, the first semantic Table Interpre-
tation method that adopts an incremental, mutually recursive and bootstrapping
learning approach seeded by automatically selected ‘partial’ data from a table.
TableMiner labels columns containing named entity mentions with semantic con-
cepts that best describe data in columns, and disambiguates entity content cells
in these columns. TableMiner is able to use various types of contextual infor-
mation outside tables for Table Interpretation, including semantic markups (e.g.,
RDFa/microdata annotations) that to the best of our knowledge, have never been
used in Natural Language Processing tasks. Evaluation on two datasets shows
that compared to two baselines, TableMiner consistently obtains the best perfor-
mance. In the classification task, it achieves significant improvements of between
0.08 and 0.38 F1 depending on different baseline methods; in the disambigua-
tion task, it outperforms both baselines by between 0.19 and 0.37 in Precision
on one dataset, and between 0.02 and 0.03 F1 on the other dataset. Observation
also shows that the bootstrapping learning approach adopted by TableMiner can
potentially deliver computational savings of between 24 and 60% against classic
methods that ‘exhaustively’ processes the entire table content to build features for
interpretation.

1 Introduction

Recovering semantics from tables on the Web is becoming a crucial task towards real-
izing the vision of Semantic Web. On the one hand, the amount of high-quality tables
containing useful relational data is growing rapidly to hundreds of millions [5, 4]; on
the other hand, classic search engines built for unstructured free-text perform poorly on
such data as they ignore the underlying semantics in table structures at indexing time
[12, 16]. Semantic Table Interpretation [12, 21–23, 16] aims to address this issue by
solving three tasks: given a well-formed relational table1 and a knowledge base defin-
ing a set of reference concepts and entities interlinked by relations, 1) recognize the
semantic concept (or a property of a concept) that best describes the data in a column
(i.e., classify columns); 2) identify the semantic relations between columns (i.e., rela-
tion enumeration); and 3) disambiguate content cells by linking them to existing (if any)
entities in the knowledge base (i.e., entity disambiguation). Essentially, the knowledge

1 Same as others, this work assumes availability of well-formed relational tables while methods
of detecting them can be found in, e.g., [5]. A typical relational table is composed of regular
rows and columns resembling those in traditional databases.
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base is a linked data set where resources are connected as triples. The outcome of se-
mantic Table Interpretation is semantically annotated tabular data, which does not only
enable effective indexing and search of the data, but ultimately can be transformed to
new triples (e.g., new instances of concepts and relations) to populate the Linked Open
Data (LOD) cloud.

The tasks resemble the classic Natural Language Processing tasks that have been
extensively researched for decades, i.e., Named Entity Classification [18], Relation Ex-
traction [19] and Named Entity Disambiguation [7]. However, classic approaches often
fails at tabular data since they are trained for well-formed, unstructured sentences which
are rare in table structures. Semantic Table Interpretation methods [12, 21–23, 16] typi-
cally depend on background knowledge bases to build features for learning. The typical
workflow involves 1) retrieving candidates matching table components (e.g., a column
header) from the knowledge base, 2) constructing features of candidates and model se-
mantic interdependence between candidates and table components, and among various
table components, and 3) applying inference to choose the best candidates.

This paper introduces TableMiner, designed to classify columns and disambiguate
the contained cells in an unsupervised way that is both efficient and effective, addressing
two limitations in existing works. First, existing methods have predominantly adopted
an exhaustive strategy to build the candidate space for inference, e.g., column classi-
fication depends on candidate entities from all cells in the column [12, 16]. However,
we argue this is unnecessary. Consider the table shown in Figure 1 as a snapshot of a
rather large table containing over 50 rows of similar data. One does not need to read the
entire table in order to label the three columns. Being able to make such inference using
partial (as opposed to the entire table) data can improve the efficiency of Table Interpre-
tation algorithms as the first two phases in the Table Interpretation workflow can cost
up to 99% of computation time [12]. Second, inference algorithms of state-of-the-art
are almost exclusively based on two types of features: those derived from background
knowledge bases (in generic form, triples from certain linked data sets) and those de-
rived from table components such as header text, and row content. This work notes
that the document context that tables occur in (i.e., around and outside tables e.g., cap-
tions, page titles) offers equally useful clues for interpretation. In particular, another
source of linked data - the pre-defined semantic markups within Webpages such as
RDFa/microdata2 annotations - provide important information about the Webpages and
tables they contain. However such data have never been used in Table Interpretation
tasks, even not in any NLP tasks in general.

TableMiner adopts a two-phase incremental, bootstrapping approach to interpret
columns. A forward-learning phase uses an incremental inference with stopping al-
gorithm (I-inf ) that builds initial interpretation on an iterative row-by-row basis un-
til TableMiner is ‘sufficiently confident’ (automatically determined by convergence)
about the column classification result. Next, a backward-update phase begins by using
initial results from the first phase (seeds) to constrain and guide interpretation of the
remaining data. This can change the classification results on a column due to the newly
disambiguated entity content cells. Therefore it is followed by a process to update clas-
sification and disambiguation results in the column in a mutually recursive pattern until

2 E.g., with the schema.org vocabulary.
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they become stabilized. In both tasks, TableMiner uses various types of table context
(including pre-defined semantic markups within Webpages where available) to assist
interpretation.

Evaluation on two datasets shows that TableMiner significantly outperforms two
baselines in both classification (between 0.08 and 0.38 in F1) and disambiguation (be-
tween 0.19 and 0.37 Precision on one dataset based on manual inspection, and 0.02
to 0.03 F1 on another) tasks, and offers substantial potential to improve computational
efficiency.

The remainder of this paper is organized as follows: Section 2 discusses related work,
Section 3 introduces the methodology, Section 4 describes evaluation and discusses
results, and Section 5 concludes this paper.

Fig. 1. Lakes in Central Greece (adapted from Wikipedia)

2 Related Work

This work belongs to the general domain of table information extraction covering a
wide range of topics such as table structure understanding [25] that aims to uncover
structural relations underlying table layout in complex tables; relational table identifi-
cation that aims to separate tables containing relational data from noisy ones used for,
e.g., page formatting, and then subsequently identifying table schema [5, 4, 1]; table
schema matching and data integration that aims to merge tables describing similar data
[2, 3, 13]; and semantic Table Interpretation, which is the focus of this work. It also
belongs to the domain of (semi-)structured Information Extraction, where an extensive
amount of literature is marginally related.

2.1 Semantic Table Interpretation

Venetis et al. [22] annotate columns in a table with semantic concepts and identify re-
lations between the subject column (typically containing entities that the table is about)
and other columns using a database mined with regular lexico-syntactic patterns such
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as the Hearst patterns [9]. The database records co-occurrence statistics for each pair
of values extracted by such patterns. A maximum likelihood inference model is used to
predict the best concepts and relations from candidates using these statistics.

Similarly, Wang et al. [23] first identify a subject column in the table, then based on
subject entity mentions in the column and their corresponding values in other columns,
associate a concept from the Probase knowledge base [24] that best describes the table
schema (hence properties of the concept are used to label the columns). Essentially
this classifies table columns and identifies relations between the subject column and
other columns. Probase is a probabilistic database built in the similar way as that in
Venetis et al. [22] and contains an inverted index that supports searching and ranking
candidate concepts given a list of terms describing possible concept properties, or names
describing possible instances. Interpretation heavily depends on these features and the
probability statistics gathered in the database.

Limaye et al. [12] use factor graph to model a table and the interdependencies be-
tween its components. Table components are modeled as variables represented as nodes
on the graph; then the interdependencies among variables and between a variable and
its candidates are modeled by factors. The task of inference amounts to searching for
an assignment of values to the variables that maximizes the joint probability. A unique
feature of this method is it addresses all three tasks simultaneously. Although the key
motivation is using joint inference about each of the individual components to boost the
overall quality of the labels, later study showed that this does not necessarily guaran-
tee advantages over models that address each task separately and independently [22].
Furthermore, Mulwad et al. [16] argue that computing the joint probability distribution
in the model is very expensive. Thus built on their earlier work by [21, 17, 15], they
introduce a semantic message passing algorithm that applies light-weight inference to
the same kind of graphical model. TableMiner is similar in the way that the iterative
backward-update phase could also be considered a semantic message passing process
that involves fewer variables and factors, hence is faster to converge.

One limitation of the above methods is that the construction of candidate space and
their feature representation is exhaustive, since they require evidence from all content
cells of a column in order to classify that column. This can significantly damage the
efficiency of semantic Table Interpretation algorithms as it is shown that constructing
candidate space and their feature representations is the major bottleneck in Table In-
terpretation [12]. However, as illustrated before, human cognition does not necessarily
follow the similar process but can be more efficient as we are able to infer on partial
data.

Another issue with existing work is that many of them make use of non-generalizable,
knowledge base specific features. For example, Venetis et al. [22] and Wang et al. [23]
use statistics gathered during the construction of the knowledge bases, which is un-
available in resources such as Freebase3 or DBpedia4. Syed et al. [21] and Mulwad et
al. [17, 15, 16] use search relevance scores returned by the knowledge base that is also
resource-specific and unavailable in, e.g., Freebase and DBpedia. TableMiner however,
uses only generic features present in almost every knowledge base.

3 http://www.freebase.com/
4 http://dbpedia.org/
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2.2 Information Extraction in General

The three subtasks tackled by semantic Table Interpretation are closely related to Named
Entity Recognition (NER), Named Entity Disambiguation and Relation Extraction in
the general Information Extraction domain. State-of-the-art methods [20, 10] however,
are tailored to unstructured text content that is different from tabular data. The inter-
dependency among the table components cannot be easily taken into account in such
methods [14]. For NER and Relation Extraction, a learning process is typically required
for each semantic label (i.e., class or relation) that must be known a-priori and training
or seed data must be provided. In Table Interpretation however, semantic classes and
relations are unknown a-priori. Further, due to the large candidate space, it is infeasible
to create sufficient training or seed data in such tasks.

Wrapper induction [11, 8] automatically learns wrappers that can extract informa-
tion from structured Webpages. It builds on the phenomenon that the same type of
information are typically presented in similar structures in different Webpages and ex-
ploits such regularities to extract information. Technically, Wrapper induction can be
adapted to partially address Table Interpretation by learning wrappers able to classify
table columns. However, the candidate classes must be defined a-priori and training data
are essential to build such wrappers. As discussed above, these are infeasible in the case
of semantic Table Interpretation.

3 Methodology

This section describes TableMiner in details. T denotes a regular, horizontal, relational
table containing i rows of content cells (excluding the row of table headers) and j
columns, Ti denotes row i, Tj denotes column j, THj is the header of column j, and
Ti,j is a cell at row Ti and column Tj . X denotes different types of context used to
support Table Interpretation. Cj is a set of candidate concepts for column j. Ei,j is a
set of candidate entities for the cell Ti,j . Both Cj and Ei,j are derived from a reference
knowledge base, details of which is to be described below. Function l(o) returns the
string content if o is a table component (e.g., in Figure 1 l(T2,1) =‘Yliki’), or the
label if o is an annotation (i.e., any cj ∈ Cj or any ei,j ∈ Ei,j ). Unless otherwise
stated, bow(o) returns a bag-of-words (multiset) representation of o by tokenizing l(o),
then normalizing each token by lemmatization and removing stop words. bowset(o)
is the de-duplicated set based on bow(o). w is a single token and freq(w, o) counts
the frequency of w in bow(o). | · | returns the size of a collection, either containing
duplicates or de-duplicated.

TableMiner firstly identifies table columns that contain mostly (> 50% of non-empty
rows) named entities (NE-columns). This is done by using regular expressions based on
capitalization and number of tokens in each content cell. The goal is to distinguish such
columns from others that are unlikely to contain named entities (e.g., columns contain-
ing numeric data, such as column ‘Area’ in Figure 1 and thus do not need classification.
Then given an NE-column Tj , column interpretation proceeds in a two-phase boot-
strapping manner, where each phase deals with both column classification and cell en-
tity disambiguation. The first forward-learning phase builds initial interpretation based
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Table 1. Table context elements

Context
Webpage title out-table context
Table caption
Semantic markups if any
Surrounding paragraphs
Column header in-table context
Row content
Column content

on partial data in the column, while the second backward-update phase interprets re-
maining cells and iteratively updates annotations (concept and entity) for the entire
column until they are stablized.

3.1 Context

A list of the context types used for semantic Table Interpretation is shown in Table 1. A
key innovation in TableMiner is using context outside tables, including table captions,
Webpage title, surrounding paragraphs, and semantic markups inserted by certain
websites.

Table captions and the title of the Webpage may mention key terms that are likely to
be the focus concept in a table. Paragraphs surrounding tables may describe the content
in the table, thus containing clue words indicating the concepts or descriptions of en-
tities in the table. Furthermore, an increasing number of semantically annotated Web-
pages are becoming available under the heavily promoted usage of semantic markup
vocabularies (e.g., microdata format at schema.org) by major search engines [6]. An
example of this is IMDB.com, on which Webpages about movies contain microdata
annotations such as movie titles, release year, directors and actors, which are currently
used by Google Rich Snippet5 to improve content access. Such data provides important
clues on the ‘aboutness’ of a Webpage, and therefore tables (if any) within the Webpage.

3.2 The forward-learning Phase

Algorithm 1 shows the incremental inference with stopping (I-inf ) algorithm used by
forward-learning. Each iteration disambiguates a content cell Ti,j by comparing can-
didate entities from Ei,j against their context and choosing the highest scoring (i.e.,
winning) candidate (Candidate search and Disambiguation). Then the concepts asso-
ciated with the entity are gathered to create Cj the set of candidate concepts for column
Tj , and each member cj ∈ Cj is scored based on its context and those already dis-
ambiguated entities (Classification). At the end of each iteration, Cj from the current
iteration is compared with the previous to check for convergence, by which ‘satisfac-
tory’ initial annotations are created and forward-learning ends.

5 http://www.google.com/webmasters/tools/richsnippets
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Algorithm 1. Forward learning
1: Input: Tj ; Cj ← ∅
2: for all cell Ti,j in Tj do
3: prevCj ← Cj

4: Ei,j ←disambiguate(Ti,j )
5: Cj ←updateclass(Cj , Ei,j )
6: if convergence(Cj , prevCj) then
7: break
8: end if
9: end for

Candidate Search. In this step, the text content of a cell l(Ti,j) is searched in a knowl-
edge base and entities whose labels l(ei,j) overlaps with l(Ti,j) is chosen as candi-
dates (Ei,j) for the cell (the number of overlapping words/tokens does not matter).
For example, ‘Trichonida’ will retrieve candidate named entities ‘Lake Trichonida’ and
‘Trichonida Province’. TableMiner does not use relevance-based rankings or scores re-
turned by the knowledge base as features for inference, while others [21, 17, 15, 16]
do.

Disambiguation (disambiguate(Ti,j)). Each content cell Ti,j is disambiguated by
candidate entity’s confidence score, which is based on two components: a context score
ctxe and a name match score nm.

The context score measures the similarity between each candidate entity and the con-
text of Ti,j , denoted as xi,j ∈ Xi,j . Firstly, a bow(ei,j) representation for each ei,j ∈
Ei,j is created based on triples containing ei,j as subject. Let<ei,j , predicate, object>
be the set of such triples retrieved from a knowledge base, then bow(ei,j) simply con-
catenates object from all triples, tokenizes the concatenated string, and normalizes the
tokens by lemmatization and stop words removal. For each xi,j , bow(xi,j) converts the
text content of the corresponding component into a bag-of-words representation follow-
ing the standard definition introduced before. Finally, to compute the similarity between
ei,j and xi,j , two functions are used. For each type of out-table context shown in Table
1, the similarity is computed using a frequency weighted dice function:

dice(ei,j , xi,j) =

2×
∑

w∈bowset(ei,j)∩bowset(xi,j)

(freq(w, ei,j) + freq(w, xi,j))

|bow(ei,j)|+ |bow(xi,j)|
(1)

For in-table context, the similarity is computed by ‘coverage’:

coverage(ei,j , xi,j) =

∑
w∈bowset(ei,j)∩bowset(xi,j)

freq(w, xi,j)

|bow(xi,j)|
, (2)

because the sizes of bow(ei,j) and bow(xi,j) can be often different orders of magni-
tude and Equation 1 may produce negligible values. Specifically, row content is the
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concatenation of l(Ti,j′) for all columns j′, j �= j′ (e.g., for the cell ‘Yliki’ in Fig-
ure 1 this includes ‘Boeotia’,‘22,731’). Intuitively, these are likely to be attribute data
of the concerning entity. Column content is the concatenation of l(Ti′,j) for all rows
i′, i �= i′ (e.g., for the cell ‘Yliki’ in Figure 1 this includes ‘Trichonida’,‘Amvrakia’,
and ‘Lysimachia’). Intuitively, these are names of entities that are semantically similar.

Therefore, the similarity score between ei,j and each xi,j ∈ Xi,j is computed as
above and summed up to obtain the context score ctxe(ei,j).

The name match score examines the overlap between the name of the entity and the
cell content, to promote entities whose name matches exactly the content string:

nm(ei,j, Ti,j) =

√
2× |bowset(l(ei,j)) ∩ bowset(Ti,j)|
|bowset(l(ei,j))|+ |bowset(Ti,j)|

(3)

The final confidence score of a candidate entity, denoted by fse(ei,j), is the product
of ctxe(ei,j) and nm(ei,j, Ti,j).

Classification (updateclass(Cj)). In each iteration, the entity with the highest
fse(ei,j) score is selected for the current cell and its associated concepts are used to
update the candidate set of concepts Cj for the column. Each cj ∈ Cj is associated
with a confidence score fsc(cj) also consisting of two elements: a base score bs and a
context score ctxc.

The base score is based on the fse scores of the winning entities from already disam-
biguated content cells by the current iteration. Let disamb(cj) be the sum of fse(ei,j)
where ei,j is a winning entity from a content cell and is associated with cj , then bs(cj)
is disamb(cj) divided by the number of rows in T . Note that as additional content cells
are disambiguated in new iterations, new candidate concepts may be added to Cj ; or
for existing candidate concepts, their base scores can be updated if the winning entities
from newly disambiguated content cell also select them.

The context score is based on the overlap between l(cj) and its context, and is com-
puted in the similar way as the context score for candidate entities. Let xj ∈ Xj denotes
various types of context for the column headerTHj . All types of context shown in Table
1 except row content is used. For each context xj ∈ Xj , a similarity score is computed
between cj and xj using the weighted dice function introduced before but replacing
ei,j with cj , and xi,j with xj . bow(cj) and bowset(cj) is created following the standard
definitions. Then the sum of the similarity scores becomes the context score ctxc(cj).

The final confidence score of a candidate concept fsc(cj) adds up bs(cj) and ctxc(cj)
with equal weights.

Convergence (convergence(Cj, prevCj)). Results of the two above operations at
each iteration may either create new concept candidates for the column, or resetting
the scores of existing candidates, thus changing the ‘state’ of Cj . TableMiner does not
exhaustively process every cell in a column. Instead, it automatically stops by detecting
the convergence of ‘entropy’ of the state of Cj at the end of an iteration as measured
below. Convergence happens if the difference between the current and previous state’s
entropy is less than a threshold of t.
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entropy(Cj) = −
∑

cj∈Cj

P (cj) log2 P (cj) (4)

P (cj) =
fsc(cj)∑

c′j∈Cj
fsc(c′j)

(5)

The intuition is that when the entropy level stabilizes, the contribution by each P (cj)
to the state is also expected to stabilize. In other words, the relative confidence score of
cj to the collective sum (the denominator in Equation 5) changes little. As a result, the
ranking of candidate concepts also stabilizes, and so winning candidates will surface.

3.3 The backward-update Phase

The backward-update phase begins (i.e., first iteration) by taking the classification out-
comeCj from the forward phase as constraints on the disambiguation of remaining cells
in the same column. Let C+

j ⊂ Cj be the set of highest scoring classes (‘winning’ con-
cepts, multiple concepts with the same highest score is possible) for column j computed
by the forward phase. For each remaining cell in the column, disambiguation candidates
are restricted to entities whose associated concepts overlap with C+

j . Effectively, this
reduces the number of candidates thus improving efficiency. Disambiguation follows
the same procedure as in the forward phase, and its results may revise classificationCj

for the column, either adding new elements to Cj , or resetting scores of existing ones
(due to changes of fsc(cj)).

Thus after disambiguating the remaining cells, C+
j is re-selected. If the new C+

j is
different from the previous, a new update operation is triggered. It repeats the disam-
biguation and classification operations on the entire column, while using the new C+

j

as constraints to restrict candidate entity space. This procedure repeats until C+
j and the

winning entity in each cell stabilizes (i.e., no change), completing interpretation.
In theory, starting from the second iteration, new candidate entities may be retrieved

and processed due to the change in C+
j . Empirically, it is found that 1) in most cases the

update phase completes in one iteration; and 2) in cases where it doesn’t, it converges
fast and following iterations mostly re-selects from the pool of candidates that were
already processed in the beginning of the update phase (first iteration), thus incurring
little computational cost.

4 Evaluation

TableMiner is evaluated by the standard Precision, Recall and F1 metrics in the column
classification and entity disambiguation tasks. It is compared against two baselines on
two datasets (shown in Table 2). The knowledge base used in this experiment is Free-
base. Freebase is currently the largest well-maintained knowledge base in the world,
containing over 2.4 billion facts about over 43 million topics (e.g., entities, concepts),
largely exceeding other popular knowledge bases such as DBpedia and YAGO.
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4.1 Datasets

Limaye112 contains a randomly selected 112 tables from the Limaye dataset [12]. The
original dataset is annotated by Wikipedia article titles referring to named entities and
YAGO concepts and relations. The dataset contains about 90% of Wikipedia article
pages, while the other 10% are randomly crawled Webpages. Each Webpage contains
a ‘focus’ relational table to be interpreted, together with the context such as page ti-
tles, table captions, and paragraphs around it. These Webpages do not have Microdata
annotations. The dataset covers multiple domains, such as film, music, games, loca-
tion, organization, events etc. These tables must be re-annotated due to the significant
changes of such resources, also due to the usage of a different knowledge base in this
work.

To create the ground truth for the classification task, the NE-columns in these tables
are manually annotated following a similar process as Venetis et al. [22]. Specifically,
TableMiner and the baselines (Section 4.2) are ran on these tables and the candidate
concepts for all NE-columns are collected and presented to annotators. The annotators
mark each label as best, okay, or incorrect. The basic principle is to prefer the most
specific concept among all suitable candidates. For example, given a content cell ‘Pen-
rith Panthers’, the concept ‘Rugby Club’ is the best candidate to label its parent column
while ‘Sports Team’ and ‘Organization’ are okay. The annotators may also insert new
labels if none of the candidates are suitable.

The top ranked prediction by TableMiner is checked against the classification ground
truth. Each best label is awarded a score of 1 while each okay label is awarded 0.5.
Further, if there are multiple top-ranked candidates, each candidate considered correct
only receives a fraction of its score as score

#topranked . For example, if a column containing
film titles has two top-ranked concept candidates with the same score: ‘Film’ (best) and
‘Book’ (incorrect), this prediction receives a score of 0.5 instead of 1. This is to penalize
the situation where the Table Interpretation system fails to discriminate false positives
from true positives.

To create the ground truth for the disambiguation task, each Wikipedia article title
in the original tables is automatically mapped to a Freebase topic (e.g., an entity or a
concept) id by using the MediaWiki API6 and the Freebase MQL7 interface. As it will
be discussed later, evaluation of entity disambiguation on this dataset reveals that the
original dataset could be biased, possibly due to the older version of Wikipedia used in
the original experiments. Therefore, a manual inspection of the output of TableMiner
and the baselines evaluation is carried out to further evaluate the different systems.

IMDB contains 7,354 tables extracted from a random set of IMDB movie Webpages.
They are annotated automatically to evaluate entity disambiguation. Each IMDB movie
Webpage8 contains a table listing a column of actors/actresses and a column of corre-
sponding characters played. Cells in the actor/actress column are linked with an IMDB
item ID, which, when searched in Freebase, returns a unique (if any) mapped Freebase
topic. Thus these columns are annotated automatically in such a way. The ‘character’
column is not used since they are not mapped in Freebase.

6 http://www.mediawiki.org/wiki/API:Main_page
7 http://www.freebase.com/query
8 e.g., http://www.imdb.com/title/tt0071562/
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Table 2. Datasets for evaluation. The number in bracket shows the number of annotated columns
for the corresponding 112 tables in the original Limaye dataset. The re-created dataset doubles
the size of annotations.

Limaye112 IMDB
Tables 112 7,354
Annotated columns 254 (119) 7,354
Annotated entity cells 2,089 92,317

4.2 Configuration and Baseline

The convergence threshold in the I-inf algorithm is set to 0.01. Semantic markups are
only available in the IMDB dataset. To use this type of context for semantic Table In-
terpretation, Any239 is used to extract the microdata format annotations as RDF triples
and the objects of triples are concatenated as contextual text. Annotations within the
HTML <table> tags are excluded.

Two baselines are created. Baseline ‘first result’ (Bfirst) firstly disambiguates every
content cell in a column by choosing the top ranked named entity candidate in the
Freebase search result. Freebase implements a ranking algorithm for its Search API to
promote popular topics. TableMiner however, does not use such features. Then each
disambiguated cell casts a vote to the set of concepts the winning named entity belongs
to, and the concept that receives the majority vote is selected to label the column.

Baseline ‘similarity based’ (Bsim) uses both string similarity methods and a sim-
ple context-based similarity measure to disambiguate a content cell. Given a content
cell and its candidate named entities, it computes a string similarity score between a
candidate entity’s name and the cell content using the Levenshtein metric. It then uses
Equation 1 to compute a context overlap score between the bag-of-words representa-
tion of a candidate entity and the row context of its containing cell in the table. The
two scores are added together as the final disambiguation score for a candidate named
entity for the cell and the winning candidate is chosen for the cell. Candidate concepts
for the column are derived from winning named entity for each content cell, then the
score of a candidate concept is based on the fraction of cells that cast vote for that
concept, plus the string similarity (Levenshtein) between the label of the concept and
the column header text. Baseline Bsim can be considered as an ‘exhaustive’ Table In-
terpretation method, which disambiguates every content cell before deriving column
classification and uses features from in-table context that are commonly found in state-
of-the-art [12, 21, 17, 15, 16].

Table 3 compares the three methods in terms of the contextual features used for
learning.

4.3 Results and Discussion

Effectiveness. Table 4 shows disambiguation results obtained on the two datasets.
TableMiner obtains the best F1 on both datasets. It also obtains the highest Precision

9 https://any23.apache.org/
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Table 3. Use of context features in the three methods for comparison

Bfirst Bsim TableMiner
In-table context No Yes Yes
Out-table context No No Yes

Table 4. Disambiguation results on the two datasets. The highest F1 on each dataset is marked in
bold.

Limaye112 IMDB
Precision Recall F1 Precision Recall F1

Bfirst 0.927 0.918 0.922 0.927 0.922 0.925
Bsim 0.907 0.898 0.902 0.937 0.932 0.935
TableMiner 0.923 0.921 0.922 0.96 0.954 0.956

and Recall on the IMDB dataset, and the highest Recall on the Limaye112 dataset. It
is surprising to note that even the most simplistic baseline Bfirst obtains very good
results: it achieves over 0.9 F1 on the IMDB dataset, while on the Limaye112 dataset
it obtains results that betters Bsim and equally compares to TableMiner. Note that the
figures are significantly higher than those reported originally by Limaye et al (in the
range of 0.8 and 0.85) [12].

The extremely well performance on the IMDB dataset could be attributed to the
domain and the Freebase search API. As mentioned before, the Freebase search API
assigns higher weights to popular topics. The result is that topics in the domains such
as movie, book, pop music and politics are likely to be visited and edited more fre-
quently, subsequently increasing their level of ‘popularity’. Therefore, by selecting the
top-ranked result, Bfirst is very likely to make the correct prediction.

To uncover the contributing factors to its performance on the Limaye112 dataset, the
ground truth is analyzed and it is found that, each of the 112 tables has on average only
1.1 (minimum 1, maximum 2) columns that are annotated with entities, while TableM-
iner annotates on average 2.3 NE-columns. This suggests that the entity annotations in
the ground truth are sparse. Moreover, the average length of entity names by number
of tokens is 2.3, with the maximum being 12, and over 33% of entity names have 3
or more tokens while only 22% have a single-token name. This could possibly explain
the extremely well performance by Bfirst as typically, short names are much more am-
biguous than longer names. By using a dataset that is biased toward entities with long
names, the strategy by Bfirst is very likely to succeed.

Hence to obtain a more balanced perspective, the results created by the three systems
are manually inspected and re-annotated. To do so, for each method, the predicted en-
tity annotations that are already covered by the automatically created ground truth are
excluded. Then, in the remaining annotations, those that all three systems predict the
same are removed. The remainder (932 entity annotations, of which 572 is predicted
correctly by at least one system) are the ones that the three systems ‘disagree’ on, and
are manually validated. Table 5 shows the analysis results. TableMiner significantly
outperforms the two baseline. Manual inspection on 20% of the wrong annotations by
all three methods reveals that it is largely (> 80%) because the knowledge base does
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Table 5. Precision based on manual analysis of 932 entity annotations that the three systems
disagree on

Precision Precision either-or
Bfirst 0.265 0.431
Bsim 0.306 0.498
TableMiner 0.491 0.801

Table 6. Classification result on the Limaye112 dataset. The highest F1 is marked in bold.

best only best or ok
Precision Recall F1 Precision Recall F1

Bfirst 0.258 0.247 0.252 0.505 0.484 0.494
Bsim 0.487 0.481 0.484 0.667 0.658 0.662
TableMiner 0.646 0.618 0.632 0.761 0.729 0.745

not contain the correct candidate. When only annotations that are correct by any one
method are considered (Precision either-or), TableMiner achieves a precision of 0.8
while Bfirst 0.431 and Bsim 0.498.

Table 6 shows the classification result on the Limaye112 dataset. TableMiner almost
tripled the performance of Bfirst and significantly outperforms Bsim. Again surpris-
ingly, the superior performance by Bfirst on the disambiguation task does not trans-
late to equal performance on the classification task. Manual inspection shows that it is
significantly penalized by predicting multiple top-ranked candidate concepts. In other
words, it fails to discriminate true positives from false positives. It has been noted that
the state-of-the-art methods often use a concept hierarchy defined within knowledge
bases to solve such cases by giving higher weights to more specific concepts [12, 16].
However, concept hierarchies are not necessarily available in all knowledge bases. For
example, Freebase has a rather loose concept network instead of a hierarchy. Neverthe-
less, TableMiner is able to predict a single best concept candidate in most cases without
such knowledge. It also outperforms Bsim by a substantial margin, suggesting the us-
age of various table context is very effective and that exhaustive approaches may not
necessarily offer advantage but causes additional computation.

While not directly comparable due to the datasets and knowledge bases used, the
classification results by TableMiner is higher than 0.56 in [12], 0.6-0.65 (best or okay)
in [22], and 0.5-0.6 (best or okay) in [16].

Efficiency. The potential efficiency improvement by TableMiner can be assessed by
observing the reduced number of candidate entities. As discussed earlier, candidate
retrieval and feature space construction account the majority (>90%) of computation
[12]. Experiments in this work show that retrieving candidate entities and their data
(triples) from Freebase accounts for over 90% of CPU time, indeed a major bottleneck
in semantic Table Interpretation.

TableMiner reduces the quantity of candidate entities to be processed by 1) gen-
erating initial interpretation (forward-learning) using partial instead of complete data
as an exhaustive method would otherwise do; and 2) using the initial interpretation
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Table 7. Number of iterations until convergence in the forward learning phase

Max Min Mean
Limaye112 42 2 9
IMDB 15 2 8

outcome to constrain further learning (backward-update). Compared against Bsim that
exhaustively disambiguates every content cells in a table before classifying the columns,
TableMiner reduces the total number of candidate entities to be considered by disam-
biguation operations by 32% in the Limaye112 and 24% in the IMDB datasets respec-
tively. When only content cells processed in the backward-update phase are considered,
the figures amount to 38% and 61%.

Furthermore, Table 7 shows the convergence speed in the forward-learning phase.
Considering the column classification task only and using the Limaye112 dataset as
an example, it suggests that on average only 9 rows are needed to create initial clas-
sification labels on NE-columns, as opposed to using all rows in a table (average of
27) by an exhaustive method. The slowest convergence happens in a table of 78 rows
(converged at 46). The average fractions of rows that need not to be processed (i.e.,
savings) in the forward phase are 57% for Limaye112 and 43% for IMDB. Then In the
backward phase, the number of columns that actually need iterative update is 10% of
all columns in both datasets. The average number of iterations for those needing iter-
ative update is 3 for both datasets. To summarize again using the Limaye112 dataset,
TableMiner manages to produce ‘stable’ column classification for 90% of columns us-
ing only forward-learning with an average of 9 rows, resulting in a potential 57% of
savings than an exhaustive method for this very specific task.

Final Remark. In summary, by using various types of in- and out-table context in
semantic Table Interpretation, TableMiner obtains the best performance on both clas-
sification and disambiguation tasks. On the classification task, it delivers significant
improvement by between 8 and 38% over the baselines, none of which uses features
from out-table context. By adopting an incremental, bootstrapping pattern of learning,
TableMiner can potentially deliver between 24 and 60% computational savings com-
pared against exhaustive methods depending on tasks.

5 Conclusion

This paper introduced TableMiner, a Table Interpretation method that makes use of var-
ious types of context both within and outside tables for classifying table columns and
disambiguating content cells, and learns in an incremental, bootstrapping, and mutually-
recursive pattern. TableMiner contributes to the state-of-the-art by introducing 1) a
generic Table Interpretation method able to be adapted to any knowledge bases; 2) a
generic model of using various table context in such task, the first that uses semantic
markups within Webpages as features; 3) an automatic method for determining sample
data to bootstrap Table Interpretation.
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TableMiner is evaluated on two datasets against two baselines, one of which repre-
sents an exhaustive method that only uses features from within-table context. TableM-
iner consistently obtains the best results on both tasks. It significantly outperforms both
baselines in the classification task and on the re-annotated dataset (i.e., manual inspec-
tion and validation) in the disambiguation task.

One limitation of the current work is that the contribution of each type of out-table
and in-table context in the task is not extensively evaluated. This will be addressed in
future work. Further, future work will also focus on extending TableMiner to a full Table
Interpretation method addressing all three subtasks. Other methods of sample selection
will also be explored and compared.
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Abstract. In this paper, we present Semano — a generic framework for anno-
tating natural language texts with entities of OWL 2 DL ontologies. Semano
generalizes the mechanism of JAPE transducers that has been introduced within
the General Architecture for Text Engineering (GATE) to enable modular devel-
opment of annotation rule bases. The core of the Semano rule base model are
rule templates called japelates and their instantiations. While Semano is generic
and does not make assumptions about the document characteristics used within
japelates, it provides several generic japelates that can serve as a starting point.
Also, Semano provides a tool that can generate an initial rule base from an ontol-
ogy. The generated rule base can be easily extended to meet the requirements of
the application in question. In addition to its Java API, Semano includes two GUI
components — a rule base editor and an annotation viewer. In combination with
the default japelates and the rule generator, these GUI components can be used by
domain experts that are not familiar with the technical details of the framework
to set up a domain-specific annotator. In this paper, we introduce the rule base
model of Semano, provide examples of adapting the rule base to meet particular
application requirements and report our experience with applying Semano within
the domain of nano technology.

1 Introduction

It is widely acknowledged that finding particular information within unstructured nat-
ural language documents is significantly harder than finding it within structured data
sets. Despite the impressive state of the art in the area of intelligent information infras-
tructure, accessing information enclosed within natural language documents remains a
big challenge. For instance, if we are looking for scientists married to politicians on the
Web using the Google search engine, we get back results that cover in detail the topic of
same-sex marriage. However, we do not get back a single document that mentions mar-
riage between scientists and politicians. In contrast, if we look within documents that
contain the relevant information in form of semantic annotations — markup indicating
the meaning of document parts — we can find relevant results by means of structured
queries.

In recent years, semantic annotations have significantly gained in popularity due to
the Schema.org1 initiative and semantic wikis such as Semantic MediaWiki [9]. Despite

1 https://schema.org/
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the very recent introduction of Schema.org, around 30% of web pages crawled by Bing2

early this year include semantic annotations [12].
While semantic annotations can be easily added to dynamically generated content on

the Web, a considerable proportion of digital information is stored as natural language.
For instance, PubMed – the online database of biomedical literature [20] – currently
comprises over 23 million entries and continues growing at a rate of 1.5 publications
per minute [18]. As a consequence, this information is inaccessible for a wide range of
important applications.

In the recent years, considerable effort has been invested into research on extracting
structured information from natural language resources. Numerous domain-specific and
corpus-specific information extraction (IE) systems have been developed in the past to
give rise to valuable, high-quality data sets such as Yago [17], DBpedia [4] and a large
part of the Freebase [5] data set. These data sets are being intensively used by the
community for a wide range of applications. For instance, the latter is being used by
Google to enhance certain search results.

While those IE systems demonstrate that extracting high-quality structured data from
unstructured or semi-structured corpora is possible in principle, the development of
such systems involves a substantial amount of work. Recently, numerous tools have
emerged facilitating the development of IE systems. Among them is General
Architecture for Text Engineering (GATE) [6] – an open source framework for the
development of IE systems. GATE has over 100,000 users3 and around 70 plugable
components. GATE supports the development of systems that annotate documents —
recording specific characteristics of text within a document. The focus of this frame-
work are ontology-based semantic annotators — systems that identify and record
occurrences of ontology entities within documents.

At the core of the GATE framework are JAPE transducers — generic annotators that
manipulate annotations within documents in accordance with a set of annotation rules
provided by user. We refer to this set of rules as a rule base. While the mechanism of
JAPE transducers can notably speed-up the development of annotators by reducing the
amount of code that needs to be written, it still takes a considerable amount of work to
develop a comprehensive rule base. The reason for this is the rule base model of JAPE
transducers which does not support modularity. In particular in case of ontology-based
annotators, JAPE rule bases tend to contain a significant amount of redundancy. As
rules usually undergo numerous revisions, modifications are very common in rule base
development. Thus, the lack of modularity results in substantial cost.

In this paper, we present Semano — a framework that can significantly reduce the
effort of rule base development by enabling modularity. Semano is a modular rule store
that has been designed to efficiently support the development of ontology-based anno-
tators. The core of Semano are Japelates — JAPE-style rule templates — and Japelate
instantiations — statements that define actual annotation rules by binding Japelate pa-
rameters to concrete values. As we will discuss in our paper, representing a rule base as
Japelates and their instantiations significantly reduces redundancy within the rule base.
For instance, the Semano representation of our example rule base NanOn is by an order

2 https://www.bing.com/
3 http://en.wikipedia.org/wiki/General_Architecture_for_Text_Engineering
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of magnitude smaller due to the reduced amount of redundancy and is notably easier to
update in comparison to its representation as a JAPE rule base. A further improvement
is achieved in Semano by introducing abstract instantiations — japelate instantiations
that bind only the values of certain parameters and can be reused in other instantiations
— and variable number of arguments in analogy to varargs in programming languages
such as Java.

Another important contribution of Semano to the community of GATE users is a
module for accessing OWL 2 DL ontologies within GATE. Currently, GATE provides
only a rudimentary support for ontology-based annotation. The built-in ontology mod-
ule is based on OWLIM [3], which supports RDF(S) and a fragment of OWL Lite. This
is a notable limitation as many domain-specific ontologies make use of more expres-
sive ontology languages. Semano overcomes this limitation and introduces support for
OWL 2 DL ontologies. Since many annotation rules rely on class hierarchies within
ontologies, Semano can classify ontologies prior to document annotation. For this task,
Semano has a choice of six different built-in reasoners. This is an important feature,
as different reasoners work best for different fragments of the OWL 2 DL ontology
language [2].

Further, Semano provides two GUI components — a rule base editor and an annota-
tion viewer. They build on the GATE framework and enable an efficient use of a Semano
rule base within GATE-based applications. The rule base editor provides a convenient
way of exploring and extending the rule base. Its core features are assistance in creating
japelate instantiations and flexible rule filters. The annotation viewer enables engineers
to efficiently test a rule base on a particular document and update particular rules. In
general, the annotation viewer can serve as a platform for evaluating the quality of gen-
erated annotations and building up a training corpus, which is otherwise significantly
more work.

The paper is structured as follows. In Section 2, we discuss the impact of ontologies
on the modularity of annotators and give a brief overview of Semano. In Section 3, we
present the Semano rule base model and discuss its role in modular rule base devel-
opment. In Section 4, we demonstrate how Semano’s default features can be extended
to meet application-specific requirements. Section 5 outlines the annotation of corpora
with Semano and reports our experience of annotating a corpus with the NanOn rule
base. In Section 6, we give an overview of the annotation viewer and the rule base
editor before concluding in Section 7.

The Semano framework including example japelates and a test document is available
at https://github.com/naditina/gate-semano. A demo video showing the main features of
Semano is also available4.

2 Supporting Ontology-Based Annotation with Semano

Semano has been developed within the context of a project called NanOn. The aim of
NanOn was to annotate scientific literature within the domain of nano technology in
order to make literature search more efficient. Over the course of the project, we found
that ontologies bring certain important advantages for document annotation as opposed

4 https://www.youtube.com/watch?v=nunxWXgWcBU&feature=youtu.be
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to a simple set of semantic labels. In particular, we found the following benefits to be
very prominent:

Class Hierarchies: We can use subsumption relationships between classes encoded
within the ontology instead of repeating this information within annotation rules and
annotated documents. If, for instance, the ontology includes the information that a
Scientist is a Person, and we find an occurrence of a Scientist in a document,
then we know that this is also an occurrence of Person. Thus, we do not need to in-
clude the second annotation into our annotated document. We also do not need to in-
clude rules for identifying occurrences of scientists into the set of rules for identifying
occurrences of a person. Thus, systems that rely on class hierarchies within ontologies
are more modular.

Domain and Range Restrictions: Detecting relations between entities within docu-
ments is a very difficult task. While classes often occur within a document as specific
expressions, e.g., Indium Tin Oxide or ITO, the indication for a relation between en-
tities is typically much more subtle and requires a detailed analysis of the corresponding
document part. Among other things, the precision of relation annotation can be signif-
icantly improved by specifying which types of entities can be related to each other. In
ontologies, this information can be modelled in an natural way as domain and range
restrictions. In NanOn, we found the domain and range restrictions from the ontology
to be indispensable indicators for the corresponding relations in documents. For ex-
ample, the relation materialProperyOfwithin the expression conductivity of ITO is
easy to detect, but only if we know that conductivity is a MaterialPropery and
ITO is a Material and that materialProperyOf typically connects entities of type
MaterialPropery and Material. In combination with class hierarchies, domain and
range restrictions in ontologies allow us to significantly simplify the development of
annotation rules and foster modularity of IE systems.

Within the NanOn project, an ontology specified in the Web Ontology Language
OWL 2 DL[13] modelling the scientific domain of nano technology has been used to
automatically annotate scientific publications. Within this context, the Semano frame-
work has been developed to specifically address the needs of ontology-based annota-
tion. We found that Semano has helped us to boost the productivity over the course of
rule base development. The core functionality of Semano is accessible via a Java API
as well as through a GUI application loadable within GATE and includes the following:

Generating a Generic Rule Base from an Ontology: To speed-up the development
of a rule base, Semano can generate an initial rule base from an ontology that can
serve as a starting point and can be refined into more specific annotation rules. For this
purpose, we use the information within the ontology such as class names, labels as well
as domain and range restrictions. This features can easily be customized or extended to
be based on further information sources.

Accessing and Manipulating a Rule Base: The Semano Java API includes common
manipulation operations for loading, exploring and updating a rule base. All these op-
erations are also available within the Semano rule base editor. It is further possible to
export a rule base in JAPE format for further processing in GATE.
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Loading and Classifying OWL 2 DL Ontologies: To enable the use of OWL 2 DL
ontologies in GATE-based applications, Semano provides a GATE module that is based
on the OWL API [7] and supports numerous formats5. Semano enables the user to
choose a reasoner for classifying a particular ontology. This is important as, depending
on the ontology, the right choice of the reasoner has a notable impact on the overall
performance. For instance, in order to use Snomed CT [16] as a basis for annotation,
Snorocket [10] or ELK [8] have to be selected as other reasoners fail to classify it.
However, for ontologies making use of further OWL 2 DL features, these reasoners
might miss some subsumption relationships as they have not been designed to deal
with the entire set of OWL 2 DL features. Currently, Semano provides access to six
reasoners that can be used for document annotation including HermiT [14], FacT++
[19], Pellet [15], MoRe [1], Snorocket [10] and ELK [8]. In general, Semano can be
easily extended to include further reasoners that implement the corresponding Reasoner
interface in OWL API.

Annotating Corpora with a Rule Base: Semano can be used to annotate documents
or entire corpora with given a rule base and an OWL ontology. Semano builds on JAPE
transducers. It translates the rule base into a JAPE rule base before instantiating a JAPE
transducer. Per default, Semano saves annotated documents in GATE format. However,
it can also export annotations as ontology instances, triples or quads.

GUI Components: Semano includes two GUI components — a rule base editor and an
annotation viewer. The former provides convenient means of accessing and updating the
rule base, while the annotation viewer is designed to efficiently support an evaluation
of generated annotations in documents.

In the subsequent sections, we elaborate on selected features of Semano. In partic-
ular, we discuss the modularity of Semano rule bases, the two GUI components and
demonstrate how Semano can be used to implement rules that meet application-specific
requirements.

3 Achieving Modularity with the Semano Rule Base Model

The rule base model of Semano builds on the framework of JAPE transducers and
provides an abstraction layer to add support for modularity. Like JAPE rules, Semano
rules operate on annotations enclosed within documents and their characteristics called
features. The richer the information provided within these annotations, the more infor-
mation can be accessed within Semano rules. In our examples within this section, we
assume that documents have been pre-processed using an English tokenizer, a sentence
splitter, a part of speech (POS) tagger and an orthoMatcher, which are all included
within the standard GATE application ANNIE. Our examples refer to annotations of
type Token, Sentence and Mention. The former annotate distinctive words within the
document with certain characteristics, from which we use category — the POS category
of the token, e.g., NN for noun and JJ for adjective, and string — the actual value of

5 http://owlapi.sourceforge.net/index.html
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1 Phase : metaPropertyOf
2 I n p u t : Ment ion
3 O p t i o n s : c o n t r o l = a p p e l t debug = t r u e
4

5 Rule : ru le113
6 (
7 ( { Ment ion . c l a s s=="Meta_property" } ) : domain
8 ( { Ment ion . c l a s s=="M ater ia l_p rop erty " } ) : r a n g e
9 ) : b i n d i n g

10 −−>
11 { . . . 40 more l i n e s of Java code
12 t o c r e a t e an a n n o t a t i o n . . .
13 }

Fig. 1. JAPE rule for the ontology relation metaPropertyOf

the token within the document. Annotations of type Mention are generated by Semano
and include arbitrary features set by annotation rules. We use the feature class, which
refers to the ontology entity occurring in the annotated document part.

We now discuss the differences within the rule base model of JAPE transducers and
Semano. To this end, we briefly introduce the former before elaborating on the latter.
Annotation rules passed to JAPE transducers are defined within scripts written in a lan-
guage specifically introduced for programming JAPE transducers, and Java. An exam-
ple of a JAPE script is given in Fig. 1. A JAPE script typically consists of a header (lines
1-3) and a set of rule definitions (line 5 onwards). In this example, we have only one rule
— rule113 — that annotates documents with the ontology relation metaPropertyOf.
Each such rule definition in turn consists of a rule body (lines 6-9) — a JAPE-style
regular expression over an annotation set — and a head (line 11 onwards) — code that
will be executed when the rule body matches a certain part of the document. In Fig.
1, the rule body matches two consecutive annotations of type Mention that record an
occurrence of the ontology classes Meta_property and Material_property, respec-
tively. The rule head is Java code that creates an annotation of type Mention and sets
its features.

While the mechanism of JAPE transducers enables a development of sophisticated
annotation rules, it is not suitable as a basis for large rule bases. The reason for this
is the poor support for modularity, which makes the development of annotation rules
unnecessarily cumbersome. For instance, if we consider the JAPE script given in Fig. 1
and examine other rules developed for NanOn, we notice that 18 rule definitions within
the NanOn rule base are identical except for the values in blue. The most frequently
shared rule structure is used in NanOn in over 16,000 different rules. An even larger
number of rules share a large proportion of the code within the rule head. Thus, while
the functionality provided by transducers is highly valuable for the development of IE
applications, the mechanism of JAPE scripts in its current form leads to a significant
amount of redundancy in rule specifications. Since extension and modification of rule
specifications are rather common in IE development, the problem needs to be addressed
in order to avoid a substantial overhead. In the following, we discuss the mechanisms
developed within Semano to achieve higher modularity.
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3.1 Introducing Parameters

The first step taken in Semano to increase modularity of rule bases is introducing param-
eters for rules analogously to parameters of methods which are typical in programming
languages. Semano introduces japelates — rule templates that define the basic struc-
ture of an annotation rule based on a set of parameters. At a later point, a japelate can
be instantiated to form a concrete rule by specifying actual values for the parameters
declared within the japelate. For instance, the JAPE script given in Fig. 1 can be trans-
formed into a japelate consecutiveDomainRangeMatcher that accepts parameters
for the values in blue, i.e., the rule name and two class IRIs. Additionally, we introduce
parameters for the ontology IRI and the relation IRI, which are used within the rule
header. The japelate consecutiveDomainRangeMatcher is shown in Fig.2. Based on
this japelate, can then obtain a definition of rule113 by instantiating it as follows:

1 JAPELATE PARAMETERS:
2 0 : LITERAL , Rule ID
3 1 : LITERAL , Ontology IRI
4 2 : ENTITY , R e l a t i o n IRI
5 3 : ENTITY , Domain c l a s s IRI
6 4 : ENTITY , Range c l a s s IRI
7

8

9 JAPELATE BODY:
10 Rule : $0$
11 (
12 ( { Ment ion . c l a s s=="$3$" } ) : domain
13 ( { Ment ion . c l a s s=="$4$" } ) : r a n g e
14 ) : b i n d i n g
15 −−>
16 { . . . J ava code r e f e r r i n g t o $1$ and $2$ . . . }

Fig. 2. Japelate consecutiveDomainRangeMatcher

ru le113 : domainRangeBased ( ht tp : / /www. nanon . de / on to logy / ,
metaPropertyOf , Meta_property , M ater ia l_p rop erty )

Within the NanOn rule base, the separation into japelates and rules was very effective
for increasing modularity. Overall, over 17,000 rules instantiated from in total seven
japelates encode the entire NanOn rule base, which otherwise would be represented by
the same number of relatively long JAPE rules. As a result, the NanOn rule base is not
only significantly smaller, but also notably easier to update. For instance, renaming an
annotation feature that is being set within the Java code in the rule head (lines 11-13,
Fig.1) will affect over 1,000 JAPE rules. In contrast, within a Semano rule base it affects
only a few japelates and no rules.
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3.2 Variable Number of Arguments

While introducing parameters is already a big step towards modular rule base develop-
ment, the result can be further improved as demonstrated by the following example. We
consider the rule head of the japelate nonINMatcher, which is a simplified version of
the corresponding japelate within the NanOn rule base:

Rule : $0$
(

{ Token . s t r i n g==~"$3$ ( $4$ ) " , Token . c a t e g o r y != IN}
) : b i n d i n g

This japelate can be instantiated, for instance, by setting $3$ to (?i) and setting $4$
to absorbed|absorption. This will match all annotations of type Token that are not a
preposition (ensured by Token.category!=IN) and whose string value contains either
absorbed or absorption ignoring the case. While this japelate can be used for all terms
consisting of a single word that is not a preposition, we need a new japelate for terms
consisting of n such words. For instance, if we would like to match the term Tin oxide,
we would need a japelate for n = 2. Such a japelate can look as follows:

Rule : $0$
(

{ Token . s t r i n g==~"$3$ ( $4$ ) " , Token . c a t e g o r y != IN}
{ Token . s t r i n g==~"$5$ ( $6$ ) " , Token . c a t e g o r y != IN}

) : b i n d i n g

Clearly, these two japelates share a large proportion of code and will need to be
updated in case of a change within the rule head. This problem has been addressed in
the Java programming language by introducing the possibility of methods accepting a
variable number of arguments of the same type. We transfer this notion to japelates as
follows:

Rule : $0$
(

${ Token . s t r i n g ==~"$3$ ( $4$ ) " , Token . c a t e g o r y != IN}$
) : b i n d i n g

This version of the nonINMatcher japelate accepts a variable number of arguments
and repeats the expression enclosed by ${ and }$ while using a different value for pa-
rameter 4 in each line. Within NanOn, this construct has been excessively used to match
annotations against ontology classes whose names consist of more than one word.
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3.3 Abstract Instantiations

The introduction of parameters and variable number of arguments help to reduce the
amount of JAPE code within a rule base. However, it should be observed that there
is a trade-off between the redundancy within japelates and the redundancy within the
actual rules: by introducing an additional parameter, we might be able to reduce the
number of japelates and the redundancy within those, but we also increase the number
of arguments that need to be passed within each japelate instantiation. For instance, we
could generalize two japelates that are identical apart from one single expression (A
and B in Fig.3) into a single japelate by introducing a parameter within this expression
(expression C in Fig.3).

${ Token . s t r i n g ==~"$3$ ( $4$ ) " , Token . c a t e g o r y =~NN}$ (A)

${ Token . s t r i n g ==~"$3$ ( $4$ ) " , Token . c a t e g o r y =~ J J }$ (B)

${ Token . s t r i n g ==~"$3$ ( $5$ ) " , Token . c a t e g o r y =~$4$}$ (C)

Fig. 3. Expressions accepting sequences of strings with certain POS tags

If we have a considerable number of rules that have the same value for parameter 5,
the overall redundancy within the rule base will increase. We now have to provide an
additional value for every instantiation of the japelate in question. Moreover, sometimes
it is convenient to be able to update certain values for parameter 5 all at once, e.g. in
order to change the value JJ to JJS in all rules. In order to overcome the problem of
redundancy within japelate instantiations and to provide more flexibility for reusing
rule definitions, Semano introduces abstract instantiations — instantiations that do not
bind all parameters to certain values and in turn need to be instantiated before being
used for document annotation. Fig.4 shows an abstract instantiation seqWithPOS that
includes expression C from Fig.3.

Overall, the Semano representation of the NanOn annotation rules is by an order of
magnitude smaller than its JAPE representation due to the reduced amount of redun-
dancy. It should be noted that the above difference is uninfluenced by the fact that the
JAPE grammar provides the construct MACRO which can be applied to reuse identical
parts within rule bodies. For instance, if the expression in line 7, Fig. 1 occurs several
times within the rule body, we can introduce a MACRO and use it instead of the above
expression. While this construct can be useful in large rule bodies, within the NanOn
rule base we did not encounter a single rule body with two or more identical parts.

4 Extendability of Annotation Features

To maximize the recall and precision achieved by an ontology-based annotator, it is
usually necessary to optimize the rule base for a particular corpus, ontology and the
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1 JAPELATE HEADER:
2 0 : LITERAL , Rule ID
3 1 : LITERAL , Ontology IRI
4 2 : ENTITY , C l a s s IRI
5 3 : LITERAL , Case i n s e n s i t i v i t y e x p r e s s i o n ( ? i ) o r empty
6 4 : ENTITY , Main e x p r e s s i o n
7

8

9 ABSTRACT JAPELATE BODY:
10 $0$ : seqWithPOS ( $1$ ,$2$ ,$3$ ,NN, $4$ )

Fig. 4. Abstract japelate instantiation seqWithPOS with a concrete value for parameter 4

particular application requirements in question. Consequently, the concrete characteris-
tics of the generated annotations can vary significantly from application to application.
Semano is a generic framework and accounts for the diversity of application require-
ments. In particular, it does not make any assumptions about application-specific anno-
tation features, which can be used in japelates in the same way as the default features.
In this section, we discuss how japelates can be extended to implement application-
specific annotation rules.

Semano provides a selection of generic default japelates that can serve as a starting
point for developing a rule base and can be extended into application-specific ones. In
our example, we are using the default japelate domainRangeMatcher shown in Fig. 5.
This japelate finds sentences enclosing an occurrence of a domain and a range class for
a particular ontology relation.

Fig. 5 shows how a selection of default features are set in annotations of type Men-
tion (lines 19-26). In addition to the ontology IRI (line 19) and the IRI of the ontology
relation (line 23), which are set from the parameters 1 and 2, the japelate sets the ref-
erences to the two entities connected to each other by this relation (lines 21-22). It also
sets some meta information that is interpreted by the Semano annotation viewer pre-
sented in Section 6. For instance, it records that this annotation has been created by
Semano (as opposed to annotations created manually by an engineer) and which rule
and japelate have been used.

We now demonstrate how we can add a confidence value to annotations by extending
domainRangeMatcher. In NanOn, we found it useful to be able to assign confidence
values to annotation rules. Along other things, this enabled us to divide the entire rule
base into precise and recall-boosting annotation rules. The former aim at identifying
only candidates with a high chance of being correct and tend to be very specific. In
contrast, the latter rules aim at identifying as many potential candidates as possible and
are deliberately vague. We found recall-boosting rules to be very helpful at an early
stage of rule base development to identify candidates for precise annotation rules. In
fact, many precise annotation rules within the NanOn rule base that aim at identifying
ontology relations are concretizations of recall-boosting rules.

One way to add a confidence feature to an annotation would be to set a particular
value within the japelate, for instance, by adding the following line after line 26, Fig. 5:
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1 JAPELATE PARAMETERS:
2 0 : LITERAL , Rule ID
3 1 : LITERAL , Ontology IRI
4 2 : ENTITY , R e l a t i o n IRI
5 3 : ENTITY , Domain c l a s s IRI
6 4 : ENTITY , Range c l a s s IRI
7

8 JAPELATE BODY:
9 Rule : $0$

10 ( {
11 S e n t e n c e c o n t a i n s { Ment ion . c l a s s=="$3$"} ,
12 S e n t e n c e c o n t a i n s { Ment ion . c l a s s=="$4$"}
13 } ) : b i n d i n g
14 −−>
15 {
16 . . . J ava code t o i n i t i a l i z e some a n n o t a t i o n f e a t u r e s . . .
17

18 g a t e . FeatureMap f e a t u r e s = F a c t o r y . newFeatureMap ( ) ;
19 f e a t u r e s . p u t ( " o n t o l o g y " , "$1$" ) ;
20 f e a t u r e s . p u t ( " a u t o a n n o t a t i o n " , " t r u e " ) ;
21 f e a t u r e s . p u t ( " domain " , domainAnnota t i on . g e t I d ( ) ) ;
22 f e a t u r e s . p u t ( " r a n g e " , r a n g e A n n o t a t i o n . g e t I d ( ) ) ;
23 f e a t u r e s . p u t ( " r e l a t i o n " ,"$2$" ) ;
24 f e a t u r e s . p u t ( " l a n g u a g e " , " en " ) ;
25 f e a t u r e s . p u t ( " r u l e " , "$0$" ) ;
26 f e a t u r e s . p u t ( " j a p e l a t e " , " domainRangeMatcher " ) ;
27

28 . . . J ava code c r e a t i n g t h e a n n o t a t i o n . . .
29 }

Fig. 5. Japelate domainRangeMatcher with confidence values

f e a t u r e s . p u t ( " c o n f i d e n c e " , " 0 . 2 " ) ;

This would be sufficient if all rules instantiating this japelate have the same con-
fidence. However, later, we might notice that the confidence varies depending on the
ontology relation in question. For instance, this japelate might yield good results for
materialPropertyOf, but rather poor results for hasFabricationProcess as the
latter relation has the same domain and range as another relation inputMaterialOf.
To make it possible to set the confidence value in a rule rather than a japelate, we can
add a parameter for confidence value after line 6, Fig. 5:

5 : LITERAL , Conf idence v a l u e

and then set the confidence of the annotation to parameter 5 as follows after line 26,
Fig. 5:

f e a t u r e s . p u t ( " c o n f i d e n c e " , "$5$" ) ;
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As we expect this japelate to serve as a basis for recall-boosting rules rather then precise
ones, we might find it cumbersome to repeat a low confidence value in numerous rules.
In that case, we can add an abstract instantiation, e.g., domainRangeMatcherLowConf,
which fixes confidence to some low value as shown in Fig. 6.

1 JAPELATE HEADER:
2 0 : LITERAL , Rule ID
3 1 : LITERAL , Ontology IRI
4 2 : ENTITY , R e l a t i o n IRI
5 3 : ENTITY , Domain c l a s s IRI
6 4 : ENTITY , Range c l a s s IRI
7

8 ABSTRACT JAPELATE BODY:
9 $0$ : domainRangeMatcher ( $1$ ,$2$ ,$3$ ,$4$ , 0 . 2 )

Fig. 6. Abstract japelate instantiation domainRangeMatcherLowConf

Thus, we can use the more flexible japelate domainRangeMatcher for rules with a
low confidence value, while not having to repeat frequently occurring confidence values
in other rules.

5 Semano in Action

We used Semano to annotate all volumes (1-12) of the Journal of Applied Physics from
2009 with the NanOn rule base. In total, the corpus consists of 3,358 articles. We pre-
annotated the corpus with the standard GATE application ANNIE. On average, after this
step each article contained around 8,000 annotations. Subsequently, we annotated the
corpus with the NanOn rule base, which included 17,292 rules. On average, each rule
within the rule base had 7 arguments.

The default workflow of corpus annotation is shown in Fig. 7. First, rules and japelates
are compiled into JAPE files. Then, a set of transducers is initialized with a classified
OWL ontology and the JAPE files produced in the previous step. Subsequently, they are
run on the document corpus. During the initialization of transducers, GATE compiles
JAPE scripts into binary Java code, which can take some time for a large rule base.
Annotated documents are saved as XML files in GATE format and can be viewed and
evaluated with the Semano annotation viewer as described in Section 6.

The annotation has been carried out on a MacBook Pro notebook with 16 GB of
memory and 2.3 GHz Intel Core processor and yielded around 1000 ontology annota-
tions per document, which corresponds to one ontology annotation for every four words
within a document. The compilation of japelates and rules into JAPE files took in total
24 seconds for the entire rule base. The initialisation of transducers took in total 215
seconds. Thus, the additional time required for compiling japelates and rules into JAPE
files is small in comparison to the overall initialization time. In our evaluation, we used a
parallelized version of Semano, which has internally initialized four JAPE transducers.
The annotation of the corpus with this parallelized version took on average 19 seconds
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Japelates Compile Rules

Jape Files

Initialize
Transducer

Ontology

AnnotateCorpus

Fig. 7. Annotating a corpus with Semano

per document, which was 2.8 times faster than a single JAPE transducer that has been
initialized in a usual way through GATE (54 seconds). We conclude that, on a machine
with multiple cores, it is worthwhile parallelizing the annotation with Semano in order
to speed up the annotation of large corpora.

6 GUI Components

In this section, we give an overview of the two GUI components within Semano — the
annotation viewer and the rule base editor.

6.1 Annotation Viewer

Evaluating generated annotations is a crucial task in IE development. Appropriate soft-
ware support is essential as it can take up a significant proportion of the overall project
budget. Semano includes an annotation viewer that has been developed to make this
process as efficient as possible. Fig.8 shows its general User Interface.

Supporting the evaluation of generated annotations is the key purpose of the annota-
tion viewer. Given a GATE document, an ontology and a rule base, Semano annotation
viewer highlights the relevant annotations within the current document and enables the
engineer to record his/her feedback about their correctness. It provides a flexible way
to filter the highlighted annotations within the document. For instance, it is possible to
de-highlight annotations for particular japelates, rules and ontology entities.

Often it is during the evaluation of annotations that errors in rules or examples for
further annotation rules are encountered. To support an efficient update of the rule base,
the annotation viewer enables editing rules used within generated annotations or adding
a new rule to the rule base and applying it to the current document. In this way, the new
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Fig. 8. Semano Annotation Viewer

rule can be tested immediately after its creation. A rule-wise document annotation is
also significantly faster than the annotation with the entire rule base.

In addition to the above features, the annotation viewer provides a shortcut for an-
notating the current document with the entire rule base and ontology and exporting the
annotations as ontology entities.

6.2 Rule Base Editor

In case of large rule bases, finding a particular rule becomes difficult. The Semano
rule base editor provides flexible filters that enable an engineer to explore a particular
part of the rule base. Further, it provides a convenient way of updating, adding and
deleting rules from the rule base. Among other things, it assists the user in instantiating
a particular japelate, for instance, by auto-completing the entity names for parameters
of type ENTITY based on the available entities within the ontology.

7 Summary and Future Work

In this paper, we have discussed the role of ontologies within IE systems and presented
Semano, which is a generic framework for ontology-based annotation. We have dis-
cussed various features of Semano such as its module for accessing OWL 2 DL ontolo-
gies within the GATE framework and access to services of various reasoners. We have
presented Semano’s rule base model and have discussed its role in modular rule base
development. We have also discussed the generality of Semano and have shown an ex-
ample of how this model can be used to implement rules given particular requirements.
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We have further outlined the features of the two GUI components — a rule base
editor and an annotation viewer — that provide a convenient access to a Semano rule
base and Semano-generated annotations within documents, respectively. Overall, we
can conclude that various features of Semano, in particular the modular rule base model,
can help to significantly reduce the budget required for developing ontology-based an-
notators. In case of our example rule base NanOn, we have observed a significant in-
crease in modularity: NanOn was by an order of magnitude smaller and significantly
easier to update than its representation as a JAPE rule base, which is the original GATE
rule base model.

As for any software framework, there are numerous features that could be added to
Semano. One such feature is a more flexible type system for japelate parameters, which
could be used to assist the engineer in creating japelate instantiations. Another direction
for extending the functionality of Semano is to enable import of declarative ontology
lexica such as lemon lexica [11].
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Abstract. A considerable portion of the information on the Web is still only
available in unstructured form. Implementing the vision of the Semantic Web
thus requires transforming this unstructured data into structured data. One key
step during this process is the recognition of named entities. Previous works sug-
gest that ensemble learning can be used to improve the performance of named
entity recognition tools. However, no comparison of the performance of existing
supervised machine learning approaches on this task has been presented so far.
We address this research gap by presenting a thorough evaluation of named entity
recognition based on ensemble learning. To this end, we combine four different
state-of-the approaches by using 15 different algorithms for ensemble learning
and evaluate their performace on five different datasets. Our results suggest that
ensemble learning can reduce the error rate of state-of-the-art named entity recog-
nition systems by 40%, thereby leading to over 95% f-score in our best run.

Keywords: Named Entity Recognition, Ensemble Learning, Semantic Web.

1 Introduction

One of the first research papers in the field of named entity recognition (NER) was
presented in 1991 [32]. Today, more than two decades later, this research field is still
highly relevant for manifold communities including Semantic Web Community, where
the need to capture and to translate the content of natural language (NL) with the help
of NER tools arises in manifold semantic applications [15, 19, 20, 24, 34]. The NER
tools that resulted from more than 2 decades of research now implement a diversity
of algorithms that rely on a large number of heterogeneous formalisms. Consequently,
these algorithms have diverse strengths and weaknesses.

Currently, several services and frameworks that consume NL to generate semi-
structured or even structured data rely on solely one of the formalisms developed for
NER or simply merging the results of several tools (e.g., by using simple voting). By do-
ing so, current approaches fail to make use of the diversity of current NER algorithms.
On the other hand, it is a well-known fact that algorithms with diverse strengths and
weaknesses can be aggregated in various ways to create a system that outperforms the
best individual algorithms within the system [44]. This learning paradigm is known as
ensemble learning. While previous works have already suggested that ensemble learn-
ing can be used to improve NER [34], no comparison of the performance of existing
supervised machine-learning approaches for ensemble learning on the NER task has
been presented so far.
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We address this research gap by presenting and evaluating an open-source framework
for NER that makes use on ensemble learning. In this evaluation, we use four state-of-
the-art NER algorithms, fifteen different machine learning algorithms and five datasets.
The statistical significance our results is ensured by using Wilcoxon signed-rank tests.

The goal of our evaluation is to answer the following questions:

1. Does NER based on ensemble learning achieve higher f-scores than the best NER
tool within the system?

2. Does NER based on ensemble learning achieve higher f-scores than simple voting
based on the results of the NER tools?

3. Which ensemble learning approach achieves the best f-score for the NER task?

The rest of this paper is structured as follows. After reviewing related work in
Section 2, we give an overview of our approach in Section 3. Especially, we present
the theoretical framework that underlies our approach. Subsequently, in Section 4, we
present our evaluation pipeline and its setup. Thereafter, in Section 5, we present the
results of a series of experiments in which we compare several machine learning al-
gorithms with state-of-the-art NER tools. We conclude by discussing our results and
elaborating on some future work in Section 6. The results of this paper were integrated
into the open-source NER framework FOX.1 Our framework provides a free-to-use
RESTful web service for the community. A documentation of the framework as well as
a specification of the RESTful web service can be found at FOX’s project page.

2 Related Work

NER tools and frameworks implement a broad spectrum of approaches, which can
be subdivided into three main categories: dictionary-based, rule-based and machine-
learning approaches [31]. The first systems for NER implemented dictionary-based ap-
proaches, which relied on a list of named entities (NEs) and tried to identify these in
text [2,43]. Following work then showed that these approaches did not perform well for
NER tasks such as recognizing proper names [39]. Thus, rule-based approaches were
introduced. These approaches rely on hand-crafted rules [8,42] to recognize NEs. Most
rule-based approaches combine dictionary and rule-based algorithms to extend the list
of known entities. Nowadays, hand-crafted rules for recognizing NEs are usually im-
plemented when no training examples are available for the domain or language to pro-
cess [32]. When training examples are available, the methods of choice are borrowed
from supervised machine learning. Approaches such as Hidden Markov Models [46],
Maximum Entropy Models [10] and Conditional Random Fields [14] have been applied
to the NER task. Due to scarcity of large training corpora as necessitated by supervised
machine learning approaches, the semi-supervised [31, 35] and unsupervised machine
learning paradigms [13, 33] have also been used for extracting NER from text. In [44],
a system was presented that combines with stacking and voting classifiers which were
trained with several languages, for language-independent NER. [31] gives an exhaustive
overview of approaches for the NER task.

1 Project page:http://fox.aksw.org. Source code, evaluation data and evaluation
results:http://github.com/AKSW/FOX



Ensemble Learning for Named Entity Recognition 521

Over the last years, several benchmarks for NER have been proposed. For exam-
ple, [9] presents a benchmark for NER and entity linking approaches. Especially, the
authors define the named entity annotation task. Other benchmark datasets include the
manually annotated datasets presented in [38]. Here, the authors present annotated
datasets extracted from RSS feeds as well as datasets retrieved from news platforms.
Other authors designed datasets to evaluate their own systems. For example, the Web
dataset (which we use in our evaluation) is a particularly noisy dataset designed to eval-
uate the system presented in [37]. The dataset Reuters, which we also use, consists
annotated documents chosen out of the Reuters-215788 corpus and was used in [4].

3 Overview

3.1 Named Entity Recognition

NER encompasses two main tasks: (1) The identification of names2 such as
“Germany”, “University of Leipzig” and “G. W. Leibniz” in a given
unstructured text and (2) the classification of these names into predefined entity types3,
such as Location, Organization and Person. In general the NER task can be
viewed as the sequential prediction problem of estimating the probabilities
P (yi|xi−k...xi+l, yi−m...yi−1), where x = (x1, .., xn) is an input sequence (i.e., the
preprocessed input text) and y = (y1, ..., yn) the output sequence (i.e., the entity
types) [37].

3.2 Ensemble Learning

The goal of an ensemble learning algorithm S is to generate a classifier F with a high
predictive performance by combining the predictions of a set of m basic classifiers
C1, . . . , Cm [12]. One central observation in this respect, is that combining C1, . . . , Cm
can only lead to a high predictive performance when these classifiers are accurate and
diverse [45]. Several approaches have been developed to allow an efficient combination
of basic classifiers. The simplest strategy is voting, where each input token is classi-
fied as belonging to the class that was predicted by the largest number of basic classi-
fiers [12]. Voting can be extended to weighted voting, where each of the basic classifiers
is assigned a weight and S returns the class with the highest total prediction weight.
More elaborate methods try to ensure the diversity of the classifiers. Approaches that
aim to achieve this goal include drawing random samples (with replacement) from the
training data (e.g., bagging, [5]) or generating sequences of classifiers of high diversity
that are trained to recognized each other’s mistakes (e.g., boosting, [40]). The results of
all classifiers are finally combined via weighted voting.

Here, we consider ensemble learning for NER. Thanks to the long research tradition
on the NER topic, the diversity and accuracy of the tools is already available and can
be regarded as given. However, classical ensemble learning approaches present the dis-
advantage of relying on some form of weighted vote on the output of the classifiers.

2 Also referred as instances.
3 Also referred as classes.
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Thus, if all classifiers Ci return wrong results, classical ensemble learning approaches
are bound to make the same mistake [12]. In addition, voting does not take the different
levels of accuracy of classifiers for different entity types into consideration. Rather, it
assigns a global weight to each classifier that describes its overall accuracy. Based on
these observations, we decided to apply ensemble learning for NER based at entity-type
level. The main advantage of this ensemble-learning setting is that we can now assign
different weights to each tool-type pair.

Formally, we model the ensemble learning task at hand as follows: Let the matrix
Mmt×n (Equation 1) illustrate the input data for S, where Pm

n,t are predictions of the
m-th NER tool that the n-th token is of the t-th type.⎛

⎜⎝
P1
1,1 · · · P1

1,t P2
1,1 · · · P2

1,t · · · Pm
1,1 · · · Pm

1,t
...

. . .
...

...
. . .
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...

. . .
...

P1
n,1 · · · P1

n,t P2
n,1 · · · P2

n,t · · · Pm
n,1 · · · Pm

n,t

⎞
⎟⎠ (1)

The goal of ensemble learning for NER is to detect a classifier that leads to a correct
classification of each of the n tokens into one of the types t.

4 Evaluation

We performed a thorough evaluation of ensemble learning approaches by using five dif-
ferent datasets and running a 10-fold cross-validation for 15 algorithms. In this section,
we present the pipeline and the setup for our evaluation as well as our results.

4.1 Pipeline

Figure 1 shows the workflow chart of our evaluation pipeline. In the first step of our
evaluation pipeline, we preprocessed our reference dataset to extract the input text for
the NER tools as well as the correct NEs, which we used to create training and testing
data. In the second step, we made use of all NER tools with this input text to calculate
the predictions of all entity types for each token in this input. At this point, we rep-
resented the output of the tools as matrix (see Equation 1). Thereafter, the matrix was
randomly split into 10 disjoint sets as preparation for a 10-fold cross-validation. We

Fig. 1. Workflow chart of the evaluation pipeline
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trained the different classifiers at hand (i.e., S) with the training dataset (i.e., with 9 of
10 sets) and tested the trained classifier with the testing dataset (i.e., with the leftover
set). To use each of the 10 sets as testing set once, we repeated training and testing of
the classifiers 10 times and used the disjoint sets accordingly. Furthermore, the pipeline
was repeated 10 times to deal with non-deterministic classifiers. In the last step, we
compared the classification of the 10 testing datasets with the oracle dataset to calculate
measures for the evaluation.

We ran our pipeline on 15 ensemble learning algorithms. We carried out both a
token-based evaluation and an entity-based evaluation. In the token-based evaluation,
we regarded partial matches of multi-word units as being partially correct. For example,
our gold standard considered “Federal Republic of Germany” as being an in-
stance of Location. If a tool generated “Germany” as being a location and omitted
“Federal Republic of”, it was assigned 1 true positive and 3 false negatives.
The entity-based evaluation only regarded exact matches as correct. In the example
above, the entity was simply considered to be incorrect. To provide transparent results,
we only used open-source libraries in our evaluation. Given that some of these tools at
hand do not allow accessing their confidence score without any major alteration of their
code, we considered the output of the tools to be binary (i.e., either 1 or 0).

We integrated four NER tools so far: the Stanford Named Entity Recognizer4 (Stan-
ford) [14], the Illinois Named Entity Tagger5 (Illinois) [37], the Ottawa Baseline Infor-
mation Extraction6 (Balie) [30] and the Apache OpenNLP Name Finder7 (OpenNLP)
[3]. We only considered the performance of these tools on the classes Location,
Organization and Person. To this end, we mapped the entity types of each of
the NER tools to these three classes. We utilized the Waikato Environment for Knowl-
edge Analysis (Weka) [21] and the implemented classifiers with default parameters:
AdaBoostM1 (ABM1) [16] and Bagging (BG) [5] with J48 [36] as base classifier,
Decision Table (DT) [26], Functional Trees (FT) [18, 27], J48 [36], Logistic Model
Trees (LMT) [27, 41], Logistic Regression (Log) [28], Additive Logistic Regression
(LogB) [17], Multilayer Perceptron (MLP), Naı̈ve Bayes (NB) [23], Random Forest
(RF) [6], Support Vector Machine (SVM) [7] and Sequential Minimal Optimization
(SMO) [22]. In addition, we used voting at class level (CVote) and a simple voting
(Vote) approach [44] with equal weights for all NER tools. CVote selects the NER tool
with the highest prediction performance for each type according to the evaluation and
uses that particular tool for the given class. Vote as naive approach combines the re-
sults of the NER tools with the Majority Vote Rule [25] and was the baseline ensemble
learning technique in our evaluation.

4.2 Experimental Setup

We used five datasets and five measures for our evaluation. We used the recommended
Wilcoxon signed-rank test to measure the statistical significance of our results [11]. For

4 http://nlp.stanford.edu/software/CRF-NER.shtml (version 3.2.0).
5 http://cogcomp.cs.illinois.edu/page/software_view/NETagger (ver-

sion 2.4.0).
6 http://balie.sourceforge.net (version 1.8.1).
7 http://opennlp.apache.org/index.html (version 1.5.3).
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this purpose, we applied each measurement of the ten 10-fold cross-validation runs for
the underlying distribution and we set up a 95% confidence interval.

Datasets. An overview of the datasets is shown in Table 1. The Web dataset consists
of 20 annotated Web sites as described in [37] and contains the most noise compared
to the other datasets. The dataset Reuters consists of 50 documents randomly chosen
out of the Reuters-215788 corpus8 [4]. News∗ is a small subset of the dataset News that
consists of text from newspaper articles and was re-annotated manually by the authors
to ensure high data quality. Likewise, Reuters was extracted and annotated manually
by the authors. The last dataset, All, consists of the datasets mentioned before merged
into one and allows for measuring how well the ensemble learning approaches perform
when presented with data from heterogenous sources.

Table 1. Number of entities separated according entity types and in total

Class News News∗ Web Reuters All

Location 5117 341 114 146 5472
Organization 6899 434 257 208 7467
Person 3899 254 396 91 4549
Total 15915 1029 767 445 17488

Measures. To assess the performance of the different algorithms, we computed the
following values on the test datasets: The number of true positives TPt, the number of
true negatives TNt, the number of false positives FPt and the number of false neg-
atives FNt. These numbers were collected for each entity type t and averaged over
the ten runs of the 10-fold cross-validations. Then, we applied the one-against-all ap-
proach [1] to convert the multi-class confusion matrix of each dataset into a binary
confusion matrix.

Subsequently, we determined with macro-averaging the classical measures recall
(rec), precision (pre) and f-score (F1) as follows:

rec =

∑
t∈T

TPt

(TPt+FNt)

|T | , pre =

∑
t∈T

TPt

TPt+FPt

|T | , F1 =

∑
t∈T

2pretrect
pret+rect

|T | . (2)

For the sake of completeness, we averaged the error rate (error) (Equation 3) and the
Matthews correlation coefficient (MCC) [29] (Equation 4) similarly.

error =

∑
t∈T

FPt+FNt

TPt+TNt+FPt+FNt

|T | (3)

MCC =

∑
t∈T

TPtTNt−FPtFNt√
(TPt+FPt)(TPt+FNt)(TNt+FPt)(TNt+FNt)

|T | (4)

8 The Reuters-215788 corpus is available at: http://kdd.ics.uci.edu/databases/
reuters21578/reuters21578.html
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The error rate monitors the fraction of positive and negative classifications for that
the classifier failed. The Matthews correlation coefficient considers both the true posi-
tives and the true negatives as successful classification and is rather unaffected by sam-
pling biases. Higher values indicating better classifications.

5 Results

Table 2–Table 11 show the results of our evaluation for the 15 classifiers we used within
our pipeline and the four NER tools we integrated so far. The best results are marked
bold and the NER tools are underlined. Figure 2–Figure 4 depict the f-scores separated
according classes of the four NER tools, the simple voting approach Vote and the best
classifier for the depicted dataset.

Table 2. News∗ token-based

S rec pre F1 error MCC

MLP 95.19 95.28 95.23 0.32 0.951
RF 95.15 95.28 95.21 0.32 0.951

ABM1 94.82 95.18 95.00 0.33 0.948
SVM 94.86 95.09 94.97 0.33 0.948
J48 94.78 94.98 94.88 0.34 0.947
BG 94.76 94.93 94.84 0.34 0.947

LMT 94.68 94.95 94.82 0.34 0.946
DT 94.63 94.95 94.79 0.34 0.946
FT 94.30 95.15 94.72 0.35 0.945

LogB 93.54 95.37 94.44 0.37 0.943
Log 94.05 94.75 94.40 0.37 0.942

SMO 94.01 94.37 94.19 0.39 0.940
NB 94.61 92.64 93.60 0.42 0.934

Stanford 92.36 91.01 91.68 0.53 0.914
CVote 92.02 90.84 91.42 0.54 0.911
Vote 89.98 82.97 85.92 0.94 0.857

Illinois 82.79 87.35 84.95 0.92 0.845
Balie 77.68 82.05 79.80 1.21 0.792

OpenNLP 71.42 90.47 79.57 1.13 0.797

Table 3. News∗ entity-based

S rec pre F1 error MCC

FT 93.95 92.27 93.10 0.30 0.930
MLP 94.10 92.13 93.09 0.30 0.929
LMT 94.08 91.91 92.97 0.31 0.928
RF 93.76 92.07 92.90 0.31 0.928
BG 93.51 92.18 92.83 0.31 0.927

SVM 93.85 91.46 92.62 0.32 0.925
ABM1 93.30 91.65 92.47 0.33 0.923

J48 93.30 91.65 92.47 0.33 0.923
Log 93.42 91.39 92.37 0.33 0.922

LogB 92.89 91.68 92.27 0.33 0.921
SMO 92.55 91.26 91.90 0.36 0.917
DT 92.44 91.29 91.86 0.34 0.917
NB 94.08 88.26 91.01 0.40 0.909

Stanford 92.00 87.58 89.72 0.45 0.895
CVote 91.43 86.94 89.10 0.47 0.889
Illinois 82.07 84.84 83.34 0.67 0.831

Vote 91.42 76.52 82.67 0.83 0.829
Balie 81.54 79.66 80.48 0.79 0.801

OpenNLP 69.36 85.02 75.78 0.88 0.760

We reached the highest f-scores on the News∗ dataset (Table 2 and Table 3) for both
the token-based and the entity-based evaluation. In the token-based evaluation, the MLP
and RF classifiers perform best for precision (95.28%), error rate (0.32%) and Matthews
correlation coefficient (0.951). MLP performs best for f-score (95.23%) with 0.04%
more recall than RF. The baseline classifier (i.e., simple voting) is clearly outperformed
by MLP by up to +5.21% recall, +12.31% precision, +9.31% f-score, -0.62% error rate
and +0.094 MCC. Furthermore, the best single approach is Stanford and outperformed
by up to +2.83% recall, +4.27% precision, +3.55% f-score, -0.21% error rate (that is a
reduction by 40%) and +0.037 MCC. Slightly poorer results are achieved in the entity-
based evaluation, where MLP is second to FT with 0.01% less f-score.
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(a) News∗ token-based (b) News∗ entity-based

(c) News token-based (d) News entity-based

Fig. 2. News and News∗ dataset

On the News dataset (Table 4-Table 5), which was the largest homogenous dataset
in our evaluation, we repeatedly achieved high f-scores. The best approach w.r.t. the
token-based evaluation is LMT with an f-score of 92.94%. Random Forest follows the
best approach with respect to f-score again. Moreover, the best single tool Stanford and
the baseline classifier Vote are repeatedly outperformed by up to +2.6% resp. +19.91%
f-score. Once again, the entity-based results are approximately 2% poorer, with LMT
leading the table like in the token-based evaluation.

On the Web dataset (Table 6-Table 7), which is the worst-case dataset for NER tools
as it contains several incomplete sentences, the different classifiers reached their lowest
values. For the token-based evaluation, AdaBoostM1 with J48 achieves the best f-score
(69.04%) and Matthews correlation coefficient (0.675) and is followed by Random For-
est again with respect to f-score. Naı̈ve Bayes performs best for recall (96.64%), Lo-
gistic Regression for precision (77.89%) and MLP and RF for the error rate (3.33%).
Simple voting is outperformed by ABM1 by up to +3.5% recall, +20.08% precision,
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Table 4. News token-based

S rec pre F1 error MCC

LMT 93.73 92.16 92.94 0.51 0.927
RF 93.56 92.19 92.87 0.51 0.926
DT 93.64 92.10 92.86 0.51 0.926
J48 93.50 92.20 92.84 0.52 0.926

ABM1 93.49 92.17 92.83 0.52 0.926
BG 93.11 92.49 92.79 0.52 0.925
FT 93.44 92.15 92.79 0.52 0.925

MLP 93.22 92.26 92.73 0.52 0.925
SVM 92.19 92.49 92.31 0.54 0.920
SMO 92.15 91.90 92.01 0.57 0.917
Log 91.38 91.36 91.35 0.63 0.910

LogB 91.42 91.32 91.34 0.62 0.910
Stanford 92.70 88.09 90.34 0.68 0.900
CVote 92.70 88.09 90.34 0.68 0.900

NB 93.36 86.17 89.58 0.77 0.893
Illinois 82.43 78.11 80.20 1.37 0.795

OpenNLP 75.21 74.41 73.71 2.06 0.732
Vote 83.13 69.14 73.03 2.36 0.735
Balie 70.81 72.86 71.54 1.90 0.707

Table 5. News entity-based

S rec pre F1 error MCC

LMT 92.95 88.84 90.84 0.44 0.906
BG 92.82 88.95 90.83 0.44 0.906
DT 92.89 88.88 90.83 0.44 0.906

ABM1 92.87 88.82 90.79 0.44 0.906
J48 92.87 88.82 90.79 0.44 0.906
FT 92.90 88.78 90.78 0.44 0.906
RF 92.84 88.77 90.74 0.44 0.906

MLP 92.83 88.69 90.70 0.44 0.905
SVM 91.56 89.22 90.33 0.45 0.901
SMO 91.13 88.36 89.69 0.49 0.895
Log 90.62 88.09 89.29 0.51 0.891

LogB 90.76 87.83 89.22 0.51 0.890
Stanford 91.78 83.92 87.66 0.58 0.875
CVote 91.78 83.92 87.66 0.58 0.875

NB 92.54 81.16 86.34 0.69 0.863
Illinois 81.66 72.50 76.71 1.11 0.763
Balie 71.58 68.67 69.66 1.42 0.692

OpenNLP 72.71 67.29 67.89 1.80 0.681
Vote 82.71 61.30 67.10 2.19 0.686

Table 6. Web token-based

S rec pre F1 error MCC

ABM1 64.40 74.83 69.04 3.38 0.675
RF 64.36 74.57 68.93 3.38 0.674

MLP 63.86 75.11 68.81 3.33 0.674
FT 62.98 75.47 68.25 3.33 0.670

LMT 63.39 74.24 68.04 3.43 0.666
DT 62.80 74.18 67.85 3.43 0.664

CVote 63.16 73.54 67.66 3.49 0.662
SVM 62.94 73.45 67.60 3.49 0.661
LogB 60.47 77.48 67.57 3.40 0.665
Log 60.31 77.89 67.50 3.39 0.666

SMO 63.47 72.45 67.49 3.57 0.659
BG 61.06 76.19 67.46 3.34 0.663
J48 62.21 73.78 67.21 3.49 0.658
NB 71.19 63.42 66.88 4.42 0.647

Stanford 60.57 72.19 65.81 3.51 0.643
Illinois 69.64 60.56 64.44 5.09 0.621

Vote 66.90 54.75 58.59 6.02 0.567
OpenNLP 45.71 58.81 49.18 5.93 0.477

Balie 38.63 43.83 40.15 7.02 0.371

Table 7. Web entity-based

S rec pre F1 error MCC

MLP 64.95 61.86 63.36 1.99 0.624
Stanford 64.80 61.31 62.83 1.95 0.619

LogB 61.25 64.10 62.60 1.94 0.616
FT 63.67 61.10 62.21 2.09 0.612

ABM1 63.49 61.01 62.17 2.08 0.611
Log 60.43 63.62 61.95 1.99 0.610

CVote 65.69 59.54 61.82 2.05 0.612
J48 63.21 59.72 61.39 2.12 0.603
BG 64.04 59.10 61.30 2.13 0.603
RF 64.15 55.88 59.69 2.27 0.587

SVM 62.36 57.26 59.57 2.15 0.586
DT 61.92 57.05 59.34 2.17 0.583

LMT 61.25 56.89 58.96 2.19 0.579
SMO 62.44 56.01 58.83 2.21 0.579
NB 74.18 49.20 58.55 3.17 0.586

Illinois 69.31 45.85 54.25 3.82 0.541
Vote 67.42 37.77 47.12 4.84 0.477

OpenNLP 46.94 46.78 43.99 3.71 0.437
Balie 38.07 32.92 35.07 3.63 0.334
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(a) Web token-based (b) Web entity-based

(c) Reuters token-based (d) Reuters entity-based.

Fig. 3. Web and Reuters dataset

+10.45% f-score, -2.64% error rate and +0.108 MCC, while Stanford (the best tool for
this dataset) is outperformed by up to +3.83% recall, +2.64% precision, +3.21% f-score,
-0.13% error rate and +0.032 MCC. Similar insights can be won from the entity-based
evaluation, with some classifiers like RF being approximately 10% poorer that at token
level.

On the Reuters dataset (Table 8-Table 9), which was the smallest dataset in our
evaluation, Support Vector Machine performs best. In the token-based evaluation, SVM
achieves an f-score of 87.78%, an error rate of 0.89% and a Matthews correlation co-
efficient of 0.875%. They are followed by Random Forest with respect to f-score once
again. Naı̈ve Bayes performs best for recall (86.54%). In comparison, ensemble learn-
ing outperforms Vote with SVM by up to +4.46% recall, +3.48% precision, +2.43% f-
score, -0.54% error rate and +0.082 MCC. Moreover, the best NER tool for this dataset,
Illinois, is outperformed by up to +0.83% recall, +3.48% precision, +2.43% f-score,
-0.20% error rate and +0.024 MCC. In Figure 3a, we barely see a learning effect as
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Table 8. Reuters token-based

S rec pre F1 error MCC

SVM 84.57 91.75 87.78 0.89 0.875
RF 86.11 89.24 87.58 0.90 0.872

MLP 85.89 89.46 87.55 0.90 0.871
LMT 84.41 91.08 87.43 0.89 0.871
J48 84.64 90.70 87.33 0.93 0.870
Log 84.33 90.85 87.27 0.89 0.870

LogB 84.22 91.01 87.22 0.90 0.870
ABM1 84.51 90.47 87.15 0.93 0.868

BG 84.70 90.16 87.14 0.94 0.868
FT 85.25 88.75 86.87 0.95 0.864
DT 84.41 89.00 86.43 0.99 0.861

SMO 84.45 88.49 86.28 0.98 0.859
Illinois 83.74 88.27 85.35 1.09 0.851

NB 86.54 83.18 84.77 1.10 0.842
CVote 81.96 88.66 84.64 1.14 0.844

Stanford 81.57 84.85 82.85 1.20 0.824
Vote 80.11 81.15 79.41 1.43 0.793

OpenNLP 67.94 82.08 73.96 1.76 0.736
Balie 64.92 68.61 64.78 2.62 0.645

Table 9. Reuters entity-based

S rec pre F1 error MCC

SVM 81.37 88.85 84.71 0.69 0.846
ABM1 80.60 88.72 84.15 0.73 0.840
LMT 80.80 87.92 83.96 0.73 0.838
J48 80.41 88.50 83.95 0.73 0.838
BG 80.55 87.70 83.75 0.75 0.836

Illinois 82.77 85.73 83.74 0.72 0.836
LogB 80.70 86.23 83.32 0.75 0.830
DT 81.11 85.20 82.95 0.79 0.827
RF 80.08 86.11 82.86 0.78 0.826
Log 80.01 85.51 82.62 0.78 0.823
MLP 80.27 84.09 81.98 0.83 0.817
SMO 79.62 83.21 81.36 0.88 0.809
FT 80.00 82.71 81.32 0.85 0.809

CVote 77.86 85.42 81.00 0.85 0.809
NB 83.80 77.68 80.61 0.92 0.802

Stanford 77.56 82.38 79.68 0.90 0.794
Vote 80.35 76.25 77.37 1.03 0.773

OpenNLP 66.85 80.33 72.89 1.18 0.726
Balie 68.90 70.14 68.71 1.39 0.684

(a) All token-based. (b) All entity-based.

Fig. 4. All dataset

ABM1 is almost equal to one of the integrated NER tools assessed at class level es-
pecially for the class Organization on the Web dataset but in Figure 3c on the
Reuters dataset we clearly see a learning effect for the class Organization and
Person with the SVM approach.

On the All dataset for token-based evaluation (Table 10), the Random Forest ap-
proach performs best for f-score (91.27%), error rate (0.64%) and Matthews correlation
coefficient (0.909). Support Vector Machine achieves the best precision (91.24%) and
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Table 10. All token-based

S rec pre F1 error MCC

RF 91.58 90.97 91.27 0.64 0.909
LMT 91.67 90.86 91.26 0.64 0.909

ABM1 91.49 90.99 91.24 0.64 0.909
J48 91.46 90.98 91.22 0.64 0.909
DT 91.59 90.84 91.21 0.64 0.909
FT 91.49 90.82 91.16 0.65 0.908
BG 91.25 91.00 91.12 0.65 0.908

MLP 90.94 91.05 90.99 0.66 0.907
SVM 90.15 91.24 90.67 0.67 0.903
SMO 90.13 90.48 90.27 0.71 0.899
Log 88.69 90.57 89.59 0.76 0.892

LogB 88.92 90.21 89.53 0.76 0.892
Stanford 90.75 87.73 89.21 0.78 0.888
CVote 90.75 87.73 89.21 0.78 0.888

NB 92.00 85.27 88.46 0.89 0.881
Illinois 81.66 77.61 79.54 1.48 0.788

Vote 81.85 69.96 72.90 2.44 0.733
OpenNLP 72.63 75.60 72.65 2.19 0.723

Balie 67.75 71.65 69.40 2.09 0.685

Table 11. All entity-based

S rec pre F1 error MCC

J48 92.68 88.62 90.59 0.44 0.904
ABM1 92.66 88.59 90.56 0.44 0.904
LMT 92.59 88.50 90.48 0.45 0.903
DT 92.56 88.44 90.44 0.45 0.902
RF 92.51 88.33 90.35 0.45 0.902
FT 92.47 88.37 90.35 0.45 0.902
BG 92.17 88.55 90.31 0.45 0.901

MLP 92.07 88.60 90.28 0.45 0.901
SVM 90.91 88.97 89.88 0.46 0.897
SMO 90.94 87.31 89.00 0.52 0.888
Log 89.49 88.10 88.70 0.53 0.885

LogB 89.21 87.68 88.36 0.54 0.881
Stanford 92.00 84.48 88.05 0.56 0.879
CVote 92.00 84.48 88.05 0.56 0.879

NB 92.69 80.59 86.04 0.71 0.860
Illinois 81.43 71.82 76.25 1.12 0.759
Balie 69.27 67.47 67.82 1.48 0.674

OpenNLP 71.29 69.44 67.66 1.80 0.682
Vote 81.97 62.17 67.27 2.17 0.687

Naı̈ve Bayes the best recall (91.00%) again. In comparison, ensemble learning outper-
formed Vote with RF by up to +9.71% recall, +21.01% precision, +18.37% f-score,
-1.8% error rate and +0.176% MCC and Stanford, the best tool for this dataset, by up
to +0.83% recall, +3.24% precision, +2.06% f-score, -0.14% error rate and +0.021%
MCC. Again, entity-based evaluation (Table 11) compared to token-based evaluation,
the f-score of J48, the best ensemble learning approach here, is approximately 1%
poorer with higher recall but lower precision. In Figure 4, we clearly see a learning
effect for RF and J48 at class level.

Overall, ensemble learning outperform all included NER tools and the simple voting
approach for all datasets with respect to f-score, which answers our first and second
question. Here, it is worth mentioning that Stanford and Illinois are the best tools in
our framework. The three best classifiers with respect to the averaged f-scores over our
datasets for token-based evaluation are the Random Forest classifier with the highest
value, closely followed by Multilayer Perceptron and AdaBoostM1 with J48 and for
entity-based evaluation AdaBoostM1 with J48 with the highest value, closely followed
by MLP and J48. We cannot observe a significant difference between these.

In Table 12 and Table 13, we depict the f-scores of these three classifiers at class level
for our datasets. The statistically significant differences are marked in bold. Note that
two out of three scores being marked bold for the same setting in a column means that
the corresponding approaches are significantly better than the third one yet not signif-
icantly better than each other. In the token-based evaluation, the Multilayer Perceptron
and Random Forest classifier surpass the AdaBoostM1 with J48 on the News∗ and Web
datasets. On the News∗ dataset, MLP surpasses RF for Location but RF surpasses
MLP for Person. On the Web dataset, RF is better than MLP for Location but not
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Table 12. F-score of the best 3 classifiers on class level token-based

S Class News News∗ Web Reuters All
RF Location 92.12 94.96 54.58 82.25 89.98
RF Organization 89.45 92.44 65.60 90.53 87.93
RF Person 97.02 98.25 86.61 89.95 95.91

MLP Location 91.79 95.22 53.78 82.13 89.62
MLP Organization 89.34 92.45 65.72 90.38 87.63
MLP Person 97.07 98.04 86.94 90.14 95.73

ABM1 Location 91.75 95.10 55.11 81.19 89.90
ABM1 Organization 89.49 92.00 65.47 89.91 87.96
ABM1 Person 97.12 97.89 86.53 90.37 95.87

Table 13. F-score of the best 3 classifiers on class level entity-based

S Class News News∗ Web Reuters All
ABM1 Location 91.26 95.71 58.21 78.99 90.05
ABM1 Organization 85.19 85.87 50.66 80.45 85.43
ABM1 Person 95.91 95.81 77.63 93.02 96.21
MLP Location 91.14 95.35 56.72 76.32 89.63
MLP Organization 85.17 87.30 52.29 78.74 85.38
MLP Person 95.79 96.61 81.09 90.88 95.83
J48 Location 91.27 95.71 56.53 78.99 90.08
J48 Organization 85.18 85.87 50.56 80.49 85.44
J48 Person 95.91 95.81 77.10 92.36 96.23

significantly different from one another for Person. Also, for the Organization
class, no significant difference could be determined on both datasets. On the Reuters
dataset, MLP and RF are better than ABM1 for Location and Organization,
but do not differ one another. For the class Person, no significant difference could be
determined for all three classifiers. On the News and All dataset, Random Forest is
significantly best for Location. Random Forest and AdaBoostM1 with J48 surpass
the Multilayer Perceptron for Organization but are not significantly different. For
the class Person, ABM1 is significantly best on the News dataset and RF is best on
the All dataset. The entity-level results also suggest shifts amongst the best systems
depending on the datasets. Interestingly, MLP and ABM1 are the only two classes of
algorithm that appear as top algorithms in both evaluation schemes.

Consequently, our results suggest that while the four approaches RF, MLP, ABM1
and J48 perform best over the datasets at hand, MLP and ABM1 are to be favored. Note
that significant differences can be observed across the different datasets and that all four
paradigms RF, MLP, ABM1 and J48 should be considered when applying ensemble
learning to NER. This answers the last and most important question of this evaluation.

6 Conclusion and Future Work

In this paper, we evaluated named entity recognition based on ensemble learning, an
approach to increase the performance of state-of-the-art named entity recognition tools.
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On all datasets, we showed that ensemble learning achieves higher f-scores than the
best named entity recognition tool integrated in our system and higher f-scores com-
pared with a simple voting on the outcome of the integrated tools. Our results suggest
that Multilayer Perceptron and AdaBoostM1 with J48 as base classifier work best for
the task at hand. We have now integrated the results of this evaluation into the FOX
framework, which can be found at http://fox.aksw.org. The main advantages
of our framework are that it is not limited to the integration of named entity recognition
tools or ensemble learning algorithms and can be easily extended. Moreover, it provides
additional features like linked data and a RESTful web service to use by the community.
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Abstract. Given a source relational database, a target OWL ontology and a map-
ping from the source database to the target ontology, Ontology-Based Data Ac-
cess (OBDA) concerns answering queries over the target ontology using these
three components. This paper presents the development of UltrawrapOBDA, an
OBDA system comprising bidirectional evaluation; that is, a hybridization of
query rewriting and materialization. We observe that by compiling the ontological
entailments as mappings, implementing the mappings as SQL views and materi-
alizing a subset of the views, the underlying SQL optimizer is able to reduce the
execution time of a SPARQL query by rewriting the query in terms of the views
specified by the mappings. To the best of our knowledge, this is the first OBDA
system supporting ontologies with transitivity by using SQL recursion. Our con-
tributions include: (1) an efficient algorithm to compile ontological entailments
as mappings; (2) a proof that every SPARQL query can be rewritten into a SQL
query in the context of mappings; (3) a cost model to determine which views to
materialize to attain the fastest execution time; and (4) an empirical evaluation
comparing with a state-of-the-art OBDA system, which validates the cost model
and demonstrates favorable execution times.

1 Introduction

Given a source relational database, a target OWL ontology and a mapping from the
relational database to the ontology, Ontology-Based Data Access (OBDA) concerns
answering queries over the target ontology using these three components. Commonly,
researchers have taken two approaches to developing OBDA systems: materialization
or rewriting. In the materialization approach, the input relational database D, target
ontologyO and mappingM (fromD to O) are used to derive new facts that are stored
in a database Do, which is the materialization of the data in D given M and O. Then
the answer to a queryQ over the target ontology is computed by directly posingQ over
Do [3]. In the rewriting approach, three steps are executed. First, a new query Qo is
generated from the query Q and the ontology O: the rewriting of Q w.r.t to O. The
majority of the OBDA literature focuses on this step [19]. Second, the mapping M is
used to compile Qo to a SQL query Qsql over D [21,22]. Finally, Qsql is evaluated on
the database D, which gives us the answer to the initial queryQ.

We develop an OBDA system, UltrawrapOBDA, which combines materialization and
query rewriting. Our objective is to effect optimizations by pushing processing into the
Relational Databases Management Systems (RDBMS) and closer to the stored data,
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hence making maximal use of existing SQL infrastructure. We distinguish two phases:
a compile and runtime phase. In the compile phase, the inputs are a relational database
D, an ontologyO and a mappingM fromD to O. The first step is to embed in M the
ontological entailments ofO, which gives rise to a new mappingM�, the saturation of
M w.r.t. O. The mapping M� is implemented using SQL views. In order to improve
query performance, an important issue is to decide which views should be materialized.
This is the last step of the compilation phase. In the runtime phase, the input is a query
Q over the target ontology O, which is written in the RDF query language SPARQL,
and the problem is to answer this query by rewriting it into some SQL queries over the
views. A key observation at this point is that some existing SQL optimizers are able to
perform rewritings in order to execute queries against materialized views.

To the best of our knowledge, we present the first OBDA system which supports on-
tologies with transitivity by using SQL recursion. More specifically, our contributions
are the following. (1) We present an efficient algorithm to generate saturated mappings.
(2) We provide a proof that every SPARQL query over a target ontology can be rewritten
into a SQL query in our context, where mappings play a fundamental role. It is impor-
tant to mention that such a result is a minimal requirement for a query-rewriting OBDA
system relying on relational database technology. (3) We present a cost model that help
us to determine which views to materialize to attain the fastest execution time. And
(4) we present an empirical evaluation using (i) Oracle, (ii) two benchmarks including
an extension of the Berlin SPARQL Benchmark, and (iii) six different scenarios. This
evaluation includes a comparison against a state-of-the-art OBDA system, and its results
validate the cost model and demonstrate favorable execution times for UltrawrapOBDA.

Related Work. This research builds upon the work of Rodriguez-Muro et. al. imple-
mented in Ontop [24,25] and our previous work on Ultrawrap [27]. Rodriguez-Muro
et. al. uses the tree-witness rewriting algorithm and introduced the idea of compiling
ontological entailments as mappings, which they named T -Mappings. There are three
key differences between Rodriguez-Muro et. al. and our work in this paper: (1) we
have extended the work of Rodriguez-Muro et. al. to support more than hierarchy of
classes and properties, including transitivity; (2) we introduce an efficient algorithm
that generates saturated mappings while Rodriguez-Muro et. al. has not presented an
algorithm before; and (3) we represent the mappings as SQL views and study when the
views should be materialized. Ultrawrap is a system that encodes a fix mapping, the
direct mapping [4,26], of the database as RDF. These mappings are implemented us-
ing unmaterialized SQL views. The approach presented in this paper extends Ultrawrap
in three important aspects: (1) supports a customized mapping language; (2) supports
reasoning through saturated mappings; and (3) considers materializing views for query
optimization. Another related work is the combined approach [16], which materializes
entailments as data, without considering mappings, and uses a limited form of query
rewriting. The main objective of this approach is to deal with the case of infinite mate-
rialization, which cannot occur for the type of ontologies considered in this paper.
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2 Preliminaries

Relational Databases. Assume, a countably infinite domain D. A schema R is a finite
set of relation names, where for each R ∈ R, att(R) denotes the nonempty finite set
of attributes names associated to R and arity(R) is the arity of R (that is, arity(R) is
the number of elements of the set att(R)). An instance I of R assigns to each relation
symbolR ∈ R a finite set RI = {t1, . . . , t�} of tuples, where each tuple tj (1 ≤ j ≤ �)
is a function that assigns to each attribute in att(R) a value from D. We use notation
t.A to refer to the value of a tuple t in an attribute A. Moreover, we say that R(t) is a
fact in I if t ∈ RI , and we use notation R(t) ∈ I in this case (that is, we also view
instances as sets of facts).

Example 1. We use a relational database for an organization as a running example. The
schema of this database consists of the table EMP with att(EMP) = {SID, NAME, JOB},
and the following is an instance of this schema: I = {EMP(1, Alice, CEO),
EMP(2, Bob, JavaProgrammer), EMP(3, John, SysAdmin)}.

In what follows, we assume some familiarity with the syntax and semantics of first-
order logic. In particular, we assume that a formula over a relational schema R is con-
structed by using the relation names in R, the equality predicate = and the elements
(also referred as constants) in D. Moreover, a tuple of variables is denoted by x̄ and
a tuple of elements from D is denoted by c̄, notation ϕ(x̄) is used to indicate that the
free variables of ϕ are exactly the variables in x̄, and ϕ(c̄) is the formula obtained from
ϕ(x̄) by replacing every variable in x̄ by the corresponding element in c̄. Finally, given
an instance I over a relational schema R and a set Σ of first-order formulae over R,
notation I |= ψ is used to indicate that a first-order formula ψ over R holds in I , while
notationΣ |= ψ is used to indicate that ψ is implied by Σ.

RDF and Ontologies. Assume there are disjoint countably infinite sets U (URIs) and
L (literals). A tuple (s, p, o) ∈ U ×U × (U ∪ L) is called an RDF triple,1 where s is
the subject, p is the predicate and o is the object. A finite set of RDF triples is called an
RDF graph.

In order to define the notion of ontology, define O as the following set of re-
served keywords: {subClass, subProp, dom, range, type, equivClass, equivProp,
inverse, symProp, transProp}, and assume that O ⊆ U. Moreover, following [28]
say that an RDF triple (a, b, c) is ontological if : (1) a ∈ (U � O), and (2) either
b ∈ (O � {type}) and c ∈ (U � O), or b = type and c is either symProp or
transProp. Additionally, say that an RDF triple (a, b, c) is assertional if (a, b, c) is not
ontological. Then an ontology O is simply defined as a finite set of ontological triples.
The semantics of an ontologyO is usually defined by representing it as a set of descrip-
tion logic axioms, and then relying on the semantics of this logic [5] (which, in turn,
is inherited from the semantics of first-order logic). For our purpose, it is more conve-
nient to directly define a setΣO of first-order formulae encoding the ontologyO. More
precisely, assume that triple is a ternary predicate that is used to store RDF graphs in

1 For simplicity, we do not consider blank nodes as a skolemization process can be used to
replace them by URIs.
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the obvious way: every triple (a, b, c) ∈ G is stored as triple(a, b, c). Then for every
triple t ∈ O, define a first-order formula ϕt over triple as follows:

ϕ(a,subClass,b) = ∀x (triple(x, type, a) → triple(x, type, b))

ϕ(a,subProp,b) = ∀x∀y (triple(x, a, y) → triple(x, b, y))

ϕ(a,dom,b) = ∀x∀y (triple(x, a, y) → triple(x,type, b))

ϕ(a,range,b) = ∀x∀y (triple(x, a, y) → triple(y,type, b))

ϕ(a,equivClass,b) = ∀x (triple(x, type, a) ↔ triple(x, type, b))

ϕ(a,equivProp,b) = ∀x∀y (triple(x, a, y) ↔ triple(x, b, y))

ϕ(a,inverse,b) = ∀x∀y (triple(x, a, y) ↔ triple(y, b, x))

ϕ(a,type,symProp) = ∀x∀y (triple(x, a, y) → triple(y, a, x))

ϕ(a,type,transProp) = ∀x∀y∀z (triple(x, a, y) ∧ triple(y, a, z) → triple(x, a, z)),

and defineΣO as {ϕt | t ∈ O}.
Note that subClass, subProp, dom, range, type, equivClass, equivProp are in

RDFS [7], inverse, symProp are in OWL 2 QL but not in OWL 2 EL and transProp

is in OWL 2 EL but not in OWL 2 QL [17]. Actually, the ontologies we consider are in
the non-standard profiles known as RDFS-Plus [1], OWL-LD2 and RDFS 3.03.

In an OBDA system, we need to map relational databases into RDF graphs, which
forces us to transform every constant from D into either a URI or a literal. This process
is usually carried over by using some built-in transformation functions [4,26]. For the
sake of simplicity, we assume that D = (U � O) ∪ L, which allows us to use the
constants in a relational database directly as URIs or literals in an RDF graph, and
which also allows us to view a set of facts of the form triple(a, b, c) as an instance
over the relational schema {triple}. Notice that the keywords in O are not allowed in
D, as these as reserved for the specification of ontologies.

3 Mapping Relational Databases to RDF for OBDA

We describe how mappings are handled in our approach. We start by defining the map-
pings from relational databases to RDF, which are called RDB2RDF mappings, and
then introduce the notion of saturation of an RDB2RDF mapping w.r.t. an ontology,
which plays a fundamental role in our approach. We provide an efficient algorithm
to compute it for ontologies not containing transitive predicates, and then show how
our results can be extended to deal with transitive predicates. Finally, we show how
RDB2RDF mappings are implemented in our system.

3.1 Relational Databases to RDF Mappings

We introduce the notion of mapping from a relation database to RDF, which is denoted
as an RDB2RDF mapping. Two proposals to standardize this notion can be found in
[4,11]. However, we follow here an alternative approach that has been widely used in

2 http://semanticweb.org/OWLLD/
3 http://www.w3.org/2009/12/rdf-ws/papers/ws31
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the data exchange [3] and data integration areas [15], and which is based on the use of
first-order logic and its semantics to define mappings. More precisely, given a relational
schema R such that triple �∈ R, a class RDB2RDF-rule ρ over R is a first-order
formula of the form:

∀s∀p∀o∀x̄ α(s, x̄) ∧ p = type ∧ o = c→ triple(s, p, o), (1)

where α(s, x̄) is a domain-independent first-order formula over R and c ∈ D. More-
over, a predicate RDB2RDF-rule ρ over R is a first-order formula of the form:

∀s∀p∀o∀x̄ β(s, o, x̄) ∧ p = c→ triple(s, p, o), (2)

where β(s, o, x̄) is a domain-independentfirst-order formula overR and c ∈ D. Finally,
an RDB2RDF-rule over R is either a class or a predicate RDB2RDF-rule over R. In
what follows, we omit the universal quantifiers ∀s∀p∀o∀x̄ from RDB2RDF rules, and
we implicitly assume that these variables are universally quantify.

Example 2. Consider the relational database from Example 1. Then the following
RDB2RDF rule maps all the instances of the EMP table as instances of the Employee

class: EMP(s, x1, x2) ∧ p = type ∧ o = Employee→ triple(s, p, o).

Let R be a relational schema. An RDB2RDF mapping M over R is a finite set of
RDB2RDF rules over R. Given an RDB2RDF mapping M and an instance I over R,
the result of applying M over I , denoted by �M�I , is an instance over the schema
{triple} that is defined as the result of the following process. For every RDB2RDF
rule of the form (1) and value c1 ∈ D, if there exists a tuple of values d̄ from D such that
I |= α(c1, d̄),4 then triple(c1, type, c) is included as a fact of �M�I , and likewise
for every RDB2RDF rule of the form (2). Notice that this definition coincides with
the notion of canonical universal solution in the context of data exchange [3]. Besides,
notice that �M�I represents an RDF graph and, thus, mappingM can be considered as
a mapping from relational databases into RDF graphs.

Example 3. Consider the relational database from our running example, and letM be
an RDB2RDF mapping consisting of the rule in Example 2 and the following rule:

EMP(s, x1, CEO) ∧ p = type ∧ o = Executive→ triple(s, p, o). (3)

If I is the instance from Example 1, then �M�I consists of the following facts:

triple(1, type, Employee), triple(2, type, Employee),

triple(3, type, Employee), triple(1, type, Executive).

3.2 Saturation of RDB2RDF Mappings

As mentioned in Section 1, being able to modify an RDB2RDF mapping to embed a
given ontology is a fundamental step in our approach. This process is formalized by
means of the notion of saturated mapping.

4 Given that α(s, x̄) is domain-independent, there exists a finite number of tuples (c1, d̄) such
that I |= α(c1, d̄).
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Table 1. Inference rules to compute saturated mappings

(A, subClass, B) :
α(s, x̄) ∧ p = type ∧ o = A → triple(s, p, o)

α(s, x̄) ∧ p = type ∧ o = B → triple(s, p, o)

(A, subProp, B) :
β(s, o, x̄) ∧ p = A → triple(s, p, o)

β(s, o, x̄) ∧ p = B → triple(s, p, o)

(A, dom, B) :
β(s, o, x̄) ∧ p = A → triple(s, p, o)

β(s, y, x̄) ∧ p = type ∧ o = B → triple(s, p, o)

(A, range, B) :
β(s, o, x̄) ∧ p = A → triple(s, p, o)

β(y, s, x̄) ∧ p = type ∧ o = B → triple(s, p, o)

(A, equivClass, B)
or (B, equivClass, A) :

α(s, x̄) ∧ p = type ∧ o = A → triple(s, p, o)

α(s, x̄) ∧ p = type ∧ o = B → triple(s, p, o)

(A, equivProp, B)
or (B, equivProp, A) :

β(s, o, x̄) ∧ p = A → triple(s, p, o)

β(s, o, x̄) ∧ p = B → triple(s, p, o)

(A, inverse, B)
or (B, inverse, A) :

β(s, o, x̄) ∧ p = A → triple(s, p, o)

β(o, s, x̄) ∧ p = B → triple(s, p, o)

(A, type, symProp) :
β(s, o, x̄) ∧ p = A → triple(s, p, o)

β(o, s, x̄) ∧ p = A → triple(s, p, o)

Definition 1 (Saturated mapping). Let M and M� be RDB2RDF mappings over a
relational schema R and O an ontology. Then M� is a saturation of M w.r.t. O if for
every instance I over R and assertional RDF-triple (a, b, c):

�M�I ∪ΣO |= triple(a, b, c) iff triple(a, b, c) ∈ �M��I .
In this section, we study the problem of computing a saturated mapping from a given
mapping and ontology. In particular, we focus on the case of ontologies not mention-
ing any triple of the form (a, type, transProp), which we denote by non-transitive
ontologies. In Section 3.3, we extend these results to the case of arbitrary ontologies.

In our system, the saturation step is performed by exhaustively applying the inference
rules in Table 1, which allow us to infer new RDB2RDF rules from the existing ones
and the input ontology. More precisely, given an inference rule t:ρ1

ρ2
from Table 1, where

t is a triple and ρ1, ρ2 are RDB2RDF rules, and given an RDB2RDF mappingM and
an ontologyO, we need to do the following to apply t:ρ1

ρ2
overM andO. First, we have

to replace the letters A and B in t with actual URIs, say a ∈ U and b ∈ U, respectively.5

Second, we need to check whether the triple obtained from t by replacing A by a and B

by b belongs toO, and whether the RDB2RDF rule obtained from ρ1 by replacing A by
a belongs toM. If both conditions hold, then the inference rule can be applied, and the
result is an RDB2RDF mappingM′ consisting of the rules inM and the rule obtained
from ρ2 by replacing A by a and B by b.

5 If t = (A, type, symProp), then we only need to replace A by a.
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Example 4. Consider the RDB2RDF rule (3) from Example 3, and assume that we are
given an ontology O containing the triple (Executive, subClass, Employee). Then
by applying the first inference rule in Table 1, we infer the following RDB2RDF rule:
EMP(s, x1, CEO) ∧ p = type ∧ o = Employee→ triple(s, p, o).

Given an RDB2RDF mappingM and an ontologyO, we denote by SAT(M,O) the
RDB2RDF mapping obtained from M and O by successively applying the inference
rules in Table 1 until the mapping does not change. The following theorem shows that
SAT(M,O) is a saturation ofM w.r.t. O, which justifies its use in our system.

Theorem 1. For every RDB2RDF mappingM and ontologyO in RDFS, it holds that
SAT(M,O) is a saturation ofM w.r.t. O.

Theorem 1 is a corollary of the fact that the first six rules in Table 1 encode the rules
to infer assertional triples from an inference system for RDFS given in [18]. A natural
question at this point is whether SAT(M,O) can be computed efficiently. In our setting,
the approach based on exhaustively applying the inference rules in Table 1 can be easily
transformed into a polynomial time algorithm for this problem. However, if this trans-
formation is done in a naı̈ve way, then the resulting algorithm is not really efficient. For
this reason, we present here an efficient algorithm to compute SAT(M,O) that is linear
in the size of the input RDB2RDF mappingM and ontologyO, which are denoted by
‖M‖ and ‖O‖, respectively.

Theorem 2. There exists an algorithm that, given an RDB2RDF mapping M and a
non-transitive ontologyO, computes SAT(M,O) in time O(‖M‖ · ‖O‖).

We now give the main ingredients of the algorithm mentioned in Theorem 2. Fix
a mapping M and an ontology O. In the first place, the algorithm transforms O
into an instance IO over the relational schema {triple}, which satisfies that for
every (a, b, c) ∈ O: (1) if b ∈ {subClass, subProp, dom, range, type}, then
triple(a, b, c) ∈ IO; (2) if b = equivClass, then triple(a, subClass, c) ∈ IO
and triple(c, subClass, a) ∈ IO; (3) if b = equivProp, then triple(a, subProp,
c) ∈ IO and triple(c, subProp, a) ∈ IO; and (4) if b = inverse, then triple(a,
inverse, c) ∈ IO and triple(c, inverse, a) ∈ IO . Obviously, IO can be computed
in time O(‖O‖).

In the second place, the algorithm transforms as followsM into an instance IM over
a relational schema consisting of binary predicates Fclass Fpred, Ch, Rs and Ro. First, for
every class RDB2RDF-rule inM of the form (1), a fresh natural numberm is assigned
as an identifier of formula α(s, x̄), and then fact Fclass(m, c) is included in IM (thus,
Fclass is used to store the class RDB2RDF-rules in M). Second, for every predicate
RDB2RDF-rule in M of the form (2), a fresh natural number n is assigned as an iden-
tifier of formula β(s, o, x̄), and then fact Fpred(n, c) is included in IM (thus, Fpred is
used to store the predicate RDB2RDF-rules in M). Moreover, in this case fresh natu-
ral numbers k1, k2 and k3 are assigned as identifiers of formulae β(o, s, x̄), β(s, y, x̄)
and β(y, s, x̄) (where y is a fresh variable), respectively, and then the facts Ch(n, k1),
Ch(k1, n), Rs(n, k2) and Ro(n, k3) are included in IM (thus, these predicates are used
to store some syntactic modifications of formulae that are needed in the inference rules
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in Table 1). Finally, in this case fresh natural numbers �1 are �2 are assigned as iden-
tifiers of formulae β(o, z, x̄) and β(z, o, x̄) (where z is a fresh variable), respectively,
and then the facts Rs(k1, �1) and Ro(k1, �2) are included in IM. It is easy to see that IM
can be computed in time O(‖M‖).

With all the previous terminology, the problem of computing SAT(M,O) can be
reduced to the problem of computing the minimal model of a Datalog programΠM,O,
which consists of the facts in (IO ∪ IM) together with the following set Δ of rules
representing the inference rules in Table 1:

triple(X, subClass, Y ), Fclass(U,X)→ Fclass(U, Y )

triple(X, subProp, Y ), Fpred(U,X)→ Fpred(U, Y )

triple(X, dom, Y ), Fpred(U,X), Rs(U, V )→ Fclass(V, Y )

triple(X, range, Y ), Fpred(U,X), Ro(U, V )→ Fclass(V, Y )

triple(X, inverse, Y ), Fpred(U,X), Ch(U, V )→ Fpred(V, Y )

triple(X, type, symProp), Fpred(U,X), Ch(U, V )→ Fpred(V,X),

where X , Y , U and V are variables. Notice that Δ is a fixed set of rules (it depends
neither on M nor on O), and also that Δ does not include rules for the keywords
equivClass and equivProp, as these are represented in IO by using the keywords
subClass and subProp, respectively.

In order to compute the minimal model of ΠM,O, we instantiate the variables in
the above rules to generate a ground Datalog programΠ ′

M,O having the same minimal
model as ΠM,O . The key observation here is that Π ′

M,O can be computed in time
O(‖M‖ · ‖O‖), which proves Theorem 2 as the minimal model of a ground Datalog
program can be computed in linear time [10] and the time needed to compute (IO∪IM)
is O(‖M‖ + ‖O‖). More precisely, Π ′

M,O is defined as (IO ∪ IM) ∪ Δ′, where Δ′

is generated from Δ as follows. For every fact triple(a, b, c) ∈ IO , we look for the
only rule in Δ where this fact can be applied, and we replace this rule by a new one
whereX is replaced by a and Y is replaced by c (or justX is replaced by a if b = type

and c = symProp). For example, if we consider a triple triple(a, subClass, c), then
we generate the rule triple(a, subClass, b), Fclass(U, a) → Fclass(U, b). Let Δ1 be
the result of this process. Given that the set of rules Δ is fixed, we have that Δ1 can
be computed in time O(‖O‖). Now for every rule ρ in Δ1, we do the following to
transform ρ into a ground rule. We first replace the variable U in ρ by a value n in
IM. If ρ also contains a variable V , then we notice that there exists at most one value
m in IM for which the antecedent of the rule could hold, as there exists at most one
value m such that Rs(n,m) holds, and likewise for predicates Ro and Ch. Thus, in this
case we replace variable V in ρ for such a value m to generate a ground Datalog rule,
and we conclude that the resulting set Δ′ of ground Datalog rules is computed in time
O(‖M‖ · ‖O‖) (given that the size ofΔ1 is O(‖O‖)). This concludes the sketch of the
proof of Theorem 2.

3.3 Dealing with Transitive Predicates

We show here how the approach presented in the previous section can be extended with
recursive predicates. This functionality is of particular interest as the current work on
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OBDA does not consider transitivity, mainly because the query language considered
in that work is SQL without recursion [8]. From now on, given a first-order formula
ϕ(x, y), we use TCϕ(x, y) to denote the transitive closure of ϕ(x, y). This formula can
be written in many different formalisms. For example, if ϕ(x, y) is a conjunction of
relational atoms, then TCϕ(x, y) can be written as follows in Datalog:

ϕ(x, y) → TCϕ(x, y), ϕ(x, z), TCϕ(z, y) → TCϕ(x, y).

In our system, TCϕ(x, y) is written as an SQL query with recursion. Then to deal with
an ontology O containing transitive predicates, the set of inference rules in Table 1 is
extended with the following inference rule:

(A, type, transProp) :
{βi(s, o, x̄i) ∧ p = A→ triple(s, p, o)}ki=1

TC[
∨k

i=1 ∃x̄iβi]
(s, o) ∧ p = A→ triple(s, p, o)

.

This rule tell us that given a transitive predicate A, we can take any number k of
RDB2RDF rules βi(s, o, x̄i) ∧ p = A→ triple(s, p, o) for this predicate, and we can
generate a new RDB2RDF rule for A by putting together the conditions βi(s, o, x̄i) in
a formula γ(s, o) =

∨
i ∃x̄iβi(s, o, x̄i), and then using the transitive closure TCγ(s, o)

of γ in an RDB2RDF rule TCγ(s, o) ∧ p = A → triple(s, p, o). In order for this
approach to work, notice that we need to extend the syntax of RDB2RDF rules (1) and
(2), so that formulae α and β in them can be arbitrary formulae in a more expressive
formalism such as (recursive) Datalog.

3.4 Implementing RDB2RDF Mappings as Views

We conclude this section by showing how RDB2RDF mappings are implemented in
our system. Inspired by our previous work on Ultrawrap [27], every RDB2RDF rule
is implemented as a triple-query, that is, as a SQL query which outputs triples. For
example, the RDB2RDF rules:

EMP(s, x1, CEO) ∧ p = type∧ o = Employee→ triple(s, p, o)

EMP(s, x1, SysAdmin) ∧ p = type∧ o = Employee→ triple(s, p, o)

give rise to the following triple-queries:

SELECT SID as S, “type” as P, “Employee” as O FROM EMP WHERE JOB = “CEO”

SELECT SID as S, “type” as P, “Employee” as O FROM EMP WHERE JOB = “SysAdmin”

In practice, the triple-queries may include additional projections in order to support
indexes, URI templates, datatypes and languages. However, for readability, we will
consider here this simple version of these queries (we refer the reader to [27] for spe-
cific details). Then to implement an RDB2RDF mapping, all the class (resp. predicate)
RDB2RDF-rules for the same class (resp. predicate) are grouped together to generate a
triple-view, that is, a SQL view comprised of the union of the triple-queries for this class
(resp. predicate). For instance, in our previous example the following is the triple-view
for the class Employee:

CREATE VIEW EmployeeView AS

SELECT SID as S, “type” as P, “Employee” as O FROM EMP WHERE JOB = “CEO” UNION ALL

SELECT SID as S, “type” as P, “Employee” as O FROM EMP WHERE JOB = “SysAdmin”
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4 Executing SPARQL Queries

In this section, we describe how SPARQL queries are executed and optimized over the
RDBMS through a cost model that determines which views should be materialized.

4.1 SPARQL Rewriting

The runtime phase executes SPARQL queries on the RDBMS. We reuse Ultrawrap’s ap-
proach of translating SPARQL queries to SQL queries in terms of the views defined for
every class and property, which are denoted as triple-views in our system (see Section
3.4). Thus, we make maximal use of existing query optimization tools in commercial
RDBMS, such as Oracle, to do the SPARQL query execution and rewriting [27].

Continuing with the example in Section 3.4, consider now a SPARQL query which
asks for all the Employees: SELECT ?x WHERE {?x type Employee}. It is clear that this
query needs to be rewritten to ask for the CEO and SysAdmin. The EmployeeView

triple-view in Section 3.4 implements the mappings to the Employee class which
consists of two triple-queries, one each for CEO and SysAdmin. Therefore, it is
sufficient to generate a SQL query in terms of the EmployeeView. Given that a
triple-view models a table with three columns, a SPARQL query is syntactically
translated to a SQL query in terms of the triple-view. The resulting SQL query is
SELECT t1.s AS x FROM EmployeeView t1.

A natural question at this point is whether every SPARQL query has an equiva-
lent SQL query in our context, where RDB2RDF mappings play a fundamental role.
In what follows we give a positive answer to this question, but before we introduce
some terminology. Due to the lack of space, we do not formally present the syntax and
semantics of SPARQL. Instead, we refer the reader to [23,20] for this definition, and
we just point out here that �P �G denotes the answer to a SPARQL query P over an
RDF graph G, which consists of a set of solution mappings, that is, a set of functions
that assign a value to each selected variable in P . For example, if P is the SPARQL
query SELECT ?x WHERE {?x type ?y}, andG is an RDF graph consisting of the triples
(1, type, Employee) and (2, type, Employee), then �P �G = {μ1, μ2}, where μ1 and
μ2 are functions with domain {?x} such that μ1(?x) = 1 and μ2(?x) = 2. Moreover,
given a SQL query Q (that may use recursion) over a relational schema R and an in-
stance I of R, we use notation �Q�I to represent the answer ofQ over I , which consists
of a set of tuples in this case. Finally, to compare the answer of a SQL query with the
answer of a SPARQL query, we make use of a function tr to transform a tuple into a
solution mapping (this function is defined in the obvious way, see [26]). Then given an
RDB2RDF mappingM over a relational schema R and a SPARQL query P , an SQL
query Q over R is said to be a SQL-rewriting of P underM if for every instance I of
R, it holds that �P ��M�I = tr(�Q�I). Moreover, P is said to be SQL-rewritable under
M if there exists a rewriting of P underM.

Theorem 3. Given an RDB2RDF mappingM, every SPARQL query is SQL-rewritable
underM.

The proof that the previous condition holds is by induction on the structure of
a SPARQL query P and, thus, it gives us a (naı̈ve) bottom-up algorithm for trans-
lating P into an equivalent SQL query Q (given the mapping M). More precisely,
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in the base case we are given a triple pattern t = {s p o}, where each one of
its component is either a URI or a literal or a variable. This triple pattern is first
translated into a SPARQL query Pt, where each position in t storing a URI or a
literal is replaced by a fresh variable, a filter condition is added to ensure that these
fresh variables are assigned the corresponding URIs or literals, and a SELECT
clause is added to ensure that the output variables of t and Pt are the same. For
example, if t = {?x type Employee}, then Pt is the following SPARQL query:
SELECT ?x WHERE {?x ?y ?z} FILTER (?y = type && ?z = Employee). Then a
SQL-rewriting of Pt underM is computed just by replacing a triple pattern of the form
{?s ?p ?o} by a union of all the triple-queries representing the RDB2RDF rules inM,
and also replacing the SPARQL filter condition in Pt by a filter condition in SQL.

In the inductive step, we assume that the theorem holds for two SPARQL queries
P1 and P2. The proof then continues by presenting rewritings for the SPARQL queries
constructed by combining P1 and P2 through the operators SELECT, AND (or ‘.’ oper-
ator), OPTIONAL, FILTER and UNION, which is done by using existing approaches
to translate SPARQL to SQL [2,9].

4.2 Cost Model for View Materialization

A common approach for query optimization is to use materialized views [13]. Given
that we are implementing RDB2RDF mappings as views, it is a natural to pursue this
option. There are three implementation alternatives: (1) Materialize all the views: This
approach gives the best query response time. However, it consumes the most space. (2)
Materialize nothing: In this approach, every query needs to go to the raw data. However,
no extra space is needed. (3) Materialize a subset of the views: Try to find a trade-off
between the best query response time and the amount of space required.

In this section, we present a cost model for these three alternatives. First we must
introduce some terminology. We consider ontologies consisting of hierarchy of classes
which form a tree with a unique root, where a root class of an ontology is a class that
has no superclasses. Then a leaf class of an ontology is a class that has no subclasses,
and the depth of a class is the number of subclass relationships from the class to the
root class (notice that there is a unique path from a class to the root class). Moreover,
the depth of an ontology is the maximum depth of all classes present in the ontology.

First, we consider the cost of answering a query Q is equal to the number of rows
present in the relation used to construct Q. For example, if a relation R has 100 rows,
then the cost of the query SELECT ∗ FROM R is 100. Second, assume we have a sin-
gle relation R and that mappings are from a query on the relation R with a selection
on an attribute A, to a class in the ontology. In Example 3, the relation R is EMP,
the attribute A is JOB and the mapping is to the class Executive. Finally, we con-
sider a query workload of queries asking for the instances of a class in the ontology,
i.e. SELECT ?x WHERE {?x type C}, which can be translated into the triple-view imple-
menting the mapping to the class C.

Our cost model is the following: If all the views implementing mappings are mate-
rialized, the query cost is n × NR × S(A,R) where n is the number of leaf classes
underneath the class that is being queried for,NR is the number of tuples of the relation
R in the mapping, and S(A,R) is the selectivity of the attribute A of the relation R in
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the mapping. The space cost is NR + (NR × d) where d is the depth of the ontology.
The reason for this cost is because the number of rows in a materialized view depends
on the selectivity of the attribute and the number of leaf classes. Additionally, the sum
of all the rows of each triple-view representing the mapping to classes in a particular
depth d of an ontology, is equivalent at most to the number of rows of the relation. If no
views are materialized, then the query cost is n × NR, assuming there are no indices.
The space cost is simply NR. The reason for this cost is because to answer a query, the
entire relation needs to be accessed n times because there are no indices6.

The question now is: How can we achieve the query cost of materializing all the
views while keeping space to a minimum? Our hypothesis is the following: If a RDBMS
rewrites queries in terms of materialized views, then by only materializing the views
representing mappings to the leaf classes, the query cost would be n×NR × S(A,R),
the same as if we materialized all the views, and the space cost would only be 2×NR.
The rationale is the following: A triple-view representing a mapping to a class, can be
rewritten into the union of triple-views representing the mapping to the child classes.
Subsequently, a triple-view representing the mapping to any class in the ontology can
be rewritten into a union of triple-views representing the mappings to leaf classes of
an ontology. Finally, given a set of triple-views representing mappings from a relation
to each leaf class of an ontology, the sum of all the rows in the set of triple-views is
equivalent to the number of rows in the relation.

Given the extensive research of answering queries using views [14] and the fact that
Oracle implements query rewriting on materialized views7, we strongly suspect that
our hypothesis will hold. The following evaluation section provides empirical results
supporting our hypothesis.

5 Experimental Evaluation

Benchmarks: The evaluation requires benchmarks consisting of a relational database
schema and data, ontologies, mappings from the database to ontologies and a query
workload. Thus, we created a synthetic benchmark, the Texas Benchmark, inspired by
the Wisconsin Benchmark [12] and extended the Berlin SPARQL Benchmark (BSBM)
Explore Use Case [6]. More precisely, the Texas Benchmark is composed of a single
relation with 1 million rows. The relation has a first attribute which serves as a primary
key, a set of additional filler attributes in order to take up space and then a set of six
different integer-valued attributes which are non-unique. The main purpose of these
attributes is to provide a systematic way to model a wide range of selectivity factors.
Each attribute is named after the range of values the attribute assumes: TWO, FIVE,
TEN, TWENTY, FIFTY and HUNDRED. For example, the attribute FIVE assumes a range
of values from 1 to 5. Thus, the selection FIVE = 1 will have a 20% selectivity. In
addition to the data, we created five different ontologies, consisting of a depth between
2-5. The branching factor is uniform and the number of leaves is 100 for each ontology.

6 In the evaluation, we also consider the case when indices are present.
7 http://docs.oracle.com/cd/B28359 01/server.111/
b28313/qrbasic.htm
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Fig. 1. Results of Texas Benchmark (sec)

The query workload consists of ask-
ing for an instance of a class at each
depth of the ontology. On the other hand,
the extension of BSBM replicates the
query workload of an e-commerce web-
site. Products have a type that is part of
a ProductType ontology. Every product
is mapped to one leaf class of the Pro-
ductType ontology. In our experiments,
we created a dataset consisting of 1 mil-
lion products with the benchmark driver,
hence the product table has 1 million
rows. The resulting ProductType ontol-
ogy has a depth of 4 and consists of
3949 classes from which 3072 are leaf-
level classes. The selectivity of the at-
tribute in the mappings to ProductTypes
is approximately 0.1%. In order to repli-
cate the results of the Texas Benchmark,
the query workload also consists of ask-
ing for an instance of a class at each
depth of the ontology. In order to eval-
uate queries with transitivity, we use the
child-parent relationship in the Product-
Type table which models the subclass re-
lationship. The query workload for the
transitivity part consists of asking for
Products of a particular ProductType in-
cluding the label and a numeric property
of the Products, therefore including joins. More details about the benchmarks can be
found at http://obda-benchmark.org

Measurements and Scenarios: The objective of our experiments is to observe the be-
havior of a commercial relational database, namely Oracle, and its capabilities of sup-
porting subclass and transitivity reasoning under our proposed approach. Therefore, the
evaluation compares execution time and queries plans of SPARQL queries. With the
Texas Benchmark, we compare w.r.t. two dimensions: depth of an ontology and selec-
tivity of the attribute that is being mapped. In BSBM, because we are using a fixed 1
million product dataset, the depth of the hierarchy and selectivity is also fixed. We ran
each query ten times and averaged the execution time, hence the experiments ran on a
warm cache. In the evaluation we considered six scenarios: (all-mat) all the views are
materialized; (union-leaves) only views representing mappings to the leaf classes are
materialized, implemented with UNION; (or-leaves) same as in the previous scenario
but with the views implemented with OR instead of UNION, (union-index) none of the
views, implemented with UNION, are materialized, instead an index on the respective
attributes have been added, (or-index) same as in the previous scenario but with the
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views implemented with OR; and (ontop) we compare against Ontop, a state of the art
OBDA system [25]. We only compare against Ontop because to the best of our knowl-
edge, this is the only OBDA system that supports RDB2RDF mappings and SPARQL.
The experiments were conducted on Oracle 11g R2 EE installed on a Sun Fire X4150
with a four core Intel Xeon X7460 2.66 GHz processor and 16 GB of RAM, running
Microsoft Windows Server 2008 R2 Standard on top of VMWare ESX 4.0.

Results: An initial assessment suggests the following four expected observations: (1)
The fastest execution time is all-mat; (2) our hypothesis should hold, meaning that
the execution time of union-leaves should be comparable, if not equal, to the execution
time of all-mat; (3) given that the Ontop system generates SQL queries with OR instead
of UNION [25], the execution time of ontop and or-index should be comparable if not
equal; (4) with transitivity, the fastest execution time is when the views are materialized.

Figure 1 shows the results of the Texas Benchmark in a form of a heat map, which
evaluates subclass reasoning. The darker colors corresponds to the fastest query execu-
tion time. The x-axis consists of the six scenarios. In the y-axis, D6 100 means Depth 6
on Selectivity of 100. The values are the average execution time of the query workload.
Notice that the expected observations (1), (2) and (3) hold. The fastest execution time
corresponds to all-mat. The execution time of union-leaves is comparable, if not equal,
to the execution time of all-mat, because Oracle was able to rewrite queries in terms
of the materialized views. The number of rows examined is equivalent to the number
of rows in the views where everything was materialized. This result provides evidence
supporting our hypothesis and validates our cost model. Finally the execution time of
ontop and or-index are comparable.

Fig. 2. Results of Subclass reasoning on BSBM

Figure 2 shows the results of the BSBM Benchmark for subclass reasoning. Our
expected observations also hold in this case. Note that we do not report results for
Ontop because the setup of the SPARQL endpoint timed-out after 2 hours.8 Given that
the selectivity is much lower compared to the selectivities in the Texas Benchmark, we
observe that for queries asking for instances of classes that are in depth 1 (child of the
root Class), the or-index outperforms union-leaves. We speculate that there is a slight

8 We have reported the issue to the Ontop developers.
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overhead when rewriting queries over a large amount of views. However, for the rest of
the queries, the overhead diminishes. We observe that the execution time of or-leaves
is the worst because the database is not able to rewrite the query into the materialized
views when the views are implemented with OR. Finally, throughout both benchmarks,
we observe that or-index is competitive w.r.t union-leaves.

Figure 3 shows the results of the transitivity experiments on the BSBM Benchmark.
Notice that the expected observations (4) holds. Given that Ontop does not support
transitivity, we cannot compare with them. Therefore we only compare between mate-
rialized and non-materialized views. The Simple query requests all the ancestors of the
given ProductType. The Join query requests all ancestors of the given ProductType and
its corresponding Products. Therefore there is a join between ProductType and Product.
The More Join query is similar to Join query, however it requests the name and a nu-
meric property of the products, hence there are more joins. It is clear that materializing
the view outperforms the non-materialized view for the following reasons: when the
view is materialized, the size of the view is known beforehand and the optimizer is able
to do a range scan with the index. However, when the view is not materialized, the size
is not known therefore the optimizer does a full scan of the table. Detailed results can
be found at http://ribs.csres.utexas.edu/ultrawrap.

Fig. 3. Results of Transitivity reasoning on BSBM

6 Concluding Remarks

We presented UltrawrapOBDA, which to the best of our knowledge, is the first OBDA
system supporting ontologies with transitivity by using SQL recursion. UltrawrapOBDA

is able to push processing into the RDBMS by implementing mappings using material-
ized views and taking advantage of existing query rewriting techniques.

Per related work, existing OBDA approaches only exploit the relational algebra ca-
pabilities of RDBMS. Our experimental results provide evidence that existing advanced
capabilities implemented in RDBMS, such as recursion and query rewriting using ma-
terialized views, can be utilized for OBDA. We are not saying that we should rely
exclusively on RDBMS technology to do the heavy lifting. RDBMS such as MySQL
lack these advanced optimizations. However, we strongly suggest that the OBDA com-
munity should exploit the advanced optimizations in existing RDBMS.
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Several open questions remain unanswered: What is the cost of maintaining views
when the underlying data is updated? What is the state of the art of other RDBMS’s
optimizers in order to support OBDA? How does this approach respond to complex
query workload? What is the trade-off between reasoning over relational databases with
mappings and using native RDF databases supporting reasoning? We believe that these
questions can be answered by developing systematic and real-world benchmark con-
sisting of relational database schemas, data, ontologies and mappings and evaluating
beyond just query rewriting. The Texas Benchmark and OBDA-Benchmark.org is a
first step in this process and we invite the community to contribute. As future work,
we plan to evaluate UltrawrapOBDAon other RDBMSs and compare against additional
OBDA systems and native RDF databases that support reasoning.
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Abstract. We present an extension of the ontology-based data access platform
Ontop that supports answering SPARQL queries under the OWL 2 QL direct
semantics entailment regime for data instances stored in relational databases.
On the theoretical side, we show how any input SPARQL query, OWL 2 QL
ontology and R2RML mappings can be rewritten to an equivalent SQL query
solely over the data. On the practical side, we present initial experimental re-
sults demonstrating that by applying the Ontop technologies—the tree-witness
query rewriting, T -mappings compiling R2RML mappings with ontology hier-
archies, and T -mapping optimisations using SQL expressivity and database in-
tegrity constraints—the system produces scalable SQL queries.

1 Introduction

Ontology-based data access and management (OBDA) is a popular paradigm of organ-
ising access to various types of data sources that has been developed since the mid
2000s [11,17,24]. In a nutshell, OBDA separates the user from the data sources (rela-
tional databases, triple stores, etc.) by means of an ontology which provides the user
with a convenient query vocabulary, hides the structure of the data sources, and can en-
rich incomplete data with background knowledge. About a dozen OBDA systems have
been implemented in both academia and industry; e.g., [27,30,24,4,23,15,12,8,20,22].
Most of them support conjunctive queries and the OWL 2 QL profile of OWL 2 as the
ontology language (or its generalisations to existential datalog rules). Thus, the OBDA
platform Ontop [29] was designed to query data instances stored in relational databases,
with the vocabularies of the data and OWL 2 QL ontologies linked by means of global-
as-view (GAV) mappings. Given a conjunctive query in the vocabulary of such an on-
tology, Ontop rewrites it to an SQL query in the vocabulary of the data, optimises the
rewriting and delegates its evaluation to the database system.

One of the main aims behind the newly designed query language SPARQL 1.1—a
W3C recommendation since 2013—has been to support various entailment regimes,
which can be regarded as variants of OBDA. Thus, the OWL 2 direct semantics en-
tailment regime allows SPARQL queries over OWL 2 DL ontologies and RDF graphs
(which can be thought of as 3-column database tables). SPARQL queries are in many
aspects more expressive than conjunctive queries as they offer more complex query
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constructs and can retrieve not only domain elements but also class and property names
using second-order variables. (Note, however, that SPARQL 1.1 does not cover all con-
junctive queries.) OWL 2 DL is also vastly superior to OWL 2 QL, but this makes query
answering under the OWL 2 direct semantics entailment regime intractable (CONP-
hard for data complexity). For example, the query evaluation algorithm of [19] calls an
OWL 2 DL reasoner for each possible assignment to the variables in a given query, and
therefore cannot cope with large data instances.

In this paper, we investigate answering SPARQL queries under a less expressive
entailment regime, which corresponds to OWL 2 QL, assuming that data is stored in
relational databases. It is to be noted that the W3C specification1 of SPARQL 1.1 defines
entailment regimes for the profiles of OWL 2 by restricting the general definition to the
profile constructs that can be used in the queries. However, in the case of OWL 2 QL,
this generic approach leads to a sub-optimal, almost trivial query language, which is
essentially subsumed by the OWL 2 RL entailment regime.

The first aim of this paper is to give an optimal definition of the OWL 2 QL direct
semantics entailment regime and prove that—similarly to OBDA with OWL 2 QL and
conjunctive queries—answering SPARQL queries under this regime is reducible to an-
swering queries under simple entailment. More precisely, in Theorem 4 we construct a
rewriting ·† of any given SPARQL query and ontology under the OWL 2 QL entailment
regime to a SPARQL query that can be evaluated on any dataset directly.

In a typical Ontop scenario, data is stored in a relational database whose schema is
linked to the vocabulary of the given OWL 2 QL ontology via a GAV mapping in the
language R2RML. The mapping allows one to transform the relational data instance
into an RDF representation, called the virtual RDF graph (which is not materialised in
our scenario). The rewriting ·† constructs a SPARQL query over this virtual graph.

Our second aim is to show how such a SPARQL query can be translated to an equiva-
lent SQL query over a relational representation of the virtual RDF graph as a 3-column
table (translation τ in Theorem 7). The third aim is to show that the resulting SQL
query can be unfolded, using a given R2RML mapping M, to an SQL query over the
original database (trM in Theorem 12), which is evaluated by the database system.

SPARQL query
& ontology SPARQL query

virtual RDF graph
entailment

regime

simple entailment

SQL query

triple-database
evaluation

SQL query

database
evaluation

† τ trM

mapping M≈
Unfortunately, each of these three transformations may involve an exponential blowup.
We tackle this problem in Ontop using the following optimisation techniques. (i) The
mapping is compiled with the ontology into a T -mapping [29] and optimised by database
dependencies (e.g., primary, candidate and foreign keys) and SQL disjunctions. (ii) The
SPARQL-to-SQL translation is optimised using null join elimination (Theorem 8). (iii)
The unfolding is optimised by eliminating joins with mismatching R2RML IRI tem-
plates, de-IRIing the join conditions (Section 3.3) and using database dependencies.

Our contributions (Theorems 4, 7, 8 and 12 and optimisations in Section 3.3) make
Ontop the first system to support the W3C recommendations OWL 2 QL, R2RML,
SPARQL and the OWL 2 QL direct semantics entailment regime; its architecture is

1 http://www.w3.org/TR/sparql11-entailment
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outlined in Section 4. We evaluate the performance of Ontop using the LUBM Bench-
mark [16] extended with queries containing class and property variables, and com-
pare it with two other systems that support the OWL 2 entailment regime by calling
OWL DL reasoners (Section 5). Our experiments show that Ontop outperforms the
reasoner-based systems for most of the queries over small datasets; over larger datasets
the difference becomes dramatic, with Ontop demonstrating a solid performance even
on 69 million triples in LUBM500. Finally, we note that, although Ontop was designed
to work with existing relational databases, it is also applicable in the context of RDF
triple stores, in which case approaches such as the one from [3] can be used to generate
suitable relational schemas. Omitted proofs and evaluation details can be found in the
full version at http://www.dcs.bbk.ac.uk/˜michael/ISWC-14-v2.pdf.

2 SPARQL Queries under OWL 2 QL Entailment Regime

SPARQL is a W3C standard language designed to query RDF graphs. Its vocabulary
contains four pairwise disjoint and countably infinite sets of symbols: I for IRIs, B for
blank nodes, L for RDF literals, and V for variables. The elements of C = I ∪ B ∪ L
are called RDF terms. A triple pattern is an element of (C∪V)× (I∪V)× (C∪V). A
basic graph pattern (BGP) is a finite set of triple patterns. Finally, a graph pattern, P ,
is an expression defined by the grammar

P ::= BGP | FILTER(P, F ) | BIND(P, v, c) | UNION(P1, P2) |
JOIN(P1, P2) | OPT(P1, P2, F ),

where F , a filter, is a formula constructed from atoms of the form bound(v), (v = c),
(v = v′), for v, v′ ∈ V, c ∈ C, and possibly other built-in predicates using the logical
connectives ∧ and ¬. The set of variables in P is denoted by var(P ).

A SPARQL query is a graph pattern P with a solution modifier, which specifies the
answer variables—the variables in P whose values we are interested in—and the form
of the output (we ignore other solution modifiers for simplicity). The values to variables
are given by solution mappings, which are partial maps s : V → C with (possibly
empty) domain dom(s). In this paper, we use the set-based (rather than bag-based, as
in the specification) semantics for SPARQL. For sets S1 and S2 of solution mappings,
a filter F , a variable v ∈ V and a term c ∈ C, let

– FILTER(S, F ) = {s ∈ S | F s = "};
– BIND(S, v, c) = {s⊕ {v �→ c} | s ∈ S} (provided that v /∈ dom(s), for s ∈ S);
– UNION(S1, S2) = {s | s ∈ S1 or s ∈ S2};
– JOIN(S1, S2) = {s1 ⊕ s2 | s1 ∈ S1 and s2 ∈ S2 are compatible};
– OPT(S1, S2, F ) = FILTER(JOIN(S1, S2), F ) ∪ {s1 ∈ S1 | for all s2 ∈ S2,

either s1, s2 are incompatible or F s1⊕s2 �= "}.

Here, s1 and s2 are compatible if s1(v) = s2(v), for any v ∈ dom(s1) ∩ dom(s2), in
which case s1 ⊕ s2 is a solution mapping with s1 ⊕ s2 : v �→ s1(v), for v ∈ dom(s1),
s1⊕s2 : v �→ s2(v), for v ∈ dom(s2), and domain dom(s1)∪dom(s2). The truth-value
F s ∈ {",⊥, ε} of a filter F under a solution mapping s is defined inductively:
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– (bound(v))s is " if v ∈ dom(s) and ⊥ otherwise;
– (v = c)s = ε if v /∈ dom(s); otherwise, (v = c)s is the classical truth-value of the

predicate s(v) = c; similarly, (v = v′)s = ε if either v or v′ /∈ dom(s); otherwise,
(v = v′)s is the classical truth-value of the predicate s(v) = s(v′);

– (¬F )s =
{
ε, if F s = ε,
¬F s, otherwise,

and (F1 ∧F2)
s =

⎧⎨
⎩
⊥, if F s

1 = ⊥ or F s
2 = ⊥,

", if F s
1 = F s

2 = ",
ε, otherwise.

Finally, given an RDF graphG, the answer to a graph pattern P overG is the set �P �G
of solution mappings defined by induction using the operations above and starting from
the following base case: for a basic graph pattern B,

�B�G = {s : var(B)→ C | s(B) ⊆ G}, (1)

where s(B) is the set of triples resulting from substituting each variable u inB by s(u).
This semantics is known as simple entailment.

Remark 1. The condition ‘F s1⊕s2 is not true’ in the definition of OPT is different from
‘F s1⊕s2 has an effective Boolean value of false’ given by the W3C specification:2 the
effective Boolean value can be undefined (type error) if a variable in F is not bound by
s1 ⊕ s2. As we shall see in Section 3.1, our reading corresponds to LEFT JOIN in SQL.
(Note also that the informal explanation of OPT in the W3C specification is inconsistent
with the definition of DIFF; see the full version for details.)

Under the OWL 2 QL direct semantics entailment regime, one can query an RDF
graph G that consist of two parts: an extensional sub-graphA representing the data as
OWL 2 QL class and property assertions, and the intensional sub-graph T representing
the background knowledge as OWL 2 QL class and property axioms. We write (T ,A)
in place of G to emphasise the partitioning. To illustrate, we give a simple example.

Example 2. Consider the following two axioms from the LUBM ontology (T ,A) (see
Section 5), which are given here in the functional-style syntax (FSS):

SubClassOf(ub:UGStudent, ub:Student), SubClassOf(ub:GradStudent, ub:Student).

Under the entailment regime, we can write a query that retrieves all named subclasses
of students in (T ,A) and all instances of each of these subclasses (cf. q′9 in Section 5):

SELECT ?x ?C WHERE { ?C rdfs:subClassOf ub:Student. ?x rdf:type ?C. }.

Here ?C ranges over the class names (IRIs) in (T ,A) and ?x over the IRIs of individ-
uals. If, for example, A consists of the two assertions on the left-hand side, then the
answer to the query over (T ,A) is on the right-hand side:

A
ClassAssertion(ub:UGStudent, ub:jim)
ClassAssertion(ub:Student, ub:bob)

?x ?C
ub:jim ub:UGStudent
ub:jim ub:Student
ub:bob ub:Student

2 http://www.w3.org/TR/sparql11-query/#sparqlAlgebra
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To formally define SPARQL queries that can be used under the OWL 2 QL direct
semantics entailment regime, we assume that the set I of IRIs is partitioned into disjoint
and countably infinite sets of class names IC , object property names IR and individual
names II . Similarly, the variables V are also assumed to be a disjoint union of countably
infinite sets VC , VR, VI . Now, we define an OWL 2 QL BGP as a finite set of triple
patterns representing OWL 2 QL axiom and assertion templates in the FSS such as:3

SubClassOf(SubC, SuperC), DisjointClasses(SubC1, . . . , SubCn),

ObjectPropertyDomain(OP, SuperC), ObjectPropertyRange(OP, SuperC),
SubObjectPropertyOf(OP,OP), DisjointObjectProperties(OP1, . . . ,OPn),

ClassAssertion(SuperC, I), ObjectPropertyAssertion(OP, I, I),

where I ∈ II ∪ VI and OP, SubC and SuperC are defined by the following grammar
with C ∈ IC ∪ VC and R ∈ IR ∪ VR:

OP ::= R | ObjectInverseOf(R),

SubC ::= C | ObjectSomeValuesFrom(OP, owl:Thing),

SuperC ::= C | ObjectIntersectionOf(SuperC1, . . . , SuperCn) |
ObjectSomeValuesFrom(OP, SuperC).

OWL 2 QL graph patterns are constructed from OWL 2 QL BGPs using the SPARQL
operators. Finally, an OWL 2 QL query is a pair (P, V ), where P is an OWL 2 QL graph
pattern and V ⊆ var(P ). To define the answer to such a query (P, V ) over an RDF
graph (T ,A), we fix a finite vocabulary IT ,A ⊆ I that includes all names (IRIs) in T
and A as well as the required finite part of the OWL 2 RDF-based vocabulary (e.g.,
owl:Thing but not the infinite number of the rdf: n). To ensure finiteness of the answers
and proper typing of variables, in the following definition we only consider solution
mappings s : var(P )→ IT ,A such that s−1(Iα) ⊆ Vα, for α ∈ {C,R, I}. For each
BGP B, we define the answer �B�T ,A to B over (T ,A) by taking

�B�T ,A = {s : var(B)→ IT ,A | (T ,A) |= s(B)},

where |= is the entailment relation given by the OWL 2 direct semantics. Starting from
the �B�T ,A and applying the SPARQL operators in P , we compute the set �P �T ,A of
solution mappings. The answer to (P, V ) over (T ,A) is the restriction �P �T ,A|V of
the solution mappings in �P �T ,A to the variables in V .

Example 3. Suppose T contains

SubClassOf(:A,ObjectSomeValuesFrom(:P, owl:Thing)),

SubObjectPropertyOf(:P, :R), SubObjectPropertyOf(:P,ObjectInverseOf(:S)).

Consider the following OWL 2 QL BGP B:

ClassAssertion(ObjectSomeValuesFrom(:R,ObjectSomeValuesFrom(:S,
ObjectSomeValuesFrom(:T, owl:Thing))), ?x).

3 The official specification of legal queries under the OWL 2 QL entailment regime only allows
ClassAssertion(C, I) rather than ClassAssertion(SuperC, I), which makes the OWL 2 QL en-
tailment regime trivial and essentially subsumed by the OWL 2 RL entailment regime.
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Assuming that A = {ClassAssertion(:A, :a),ObjectPropertyAssertion(:T, :a, :b)}, it is
not hard to see that �B�T ,A = {?x �→ :a}. Indeed, by the first assertion of A and the
first two axioms of T , any model of (T ,A) contains a domain element w (not neces-
sarily among the individuals in A) such that ObjectPropertyAssertion(:R, :a, w) holds.
In addition, the third axiom of T implies ObjectPropertyAssertion(:S, w, :a), which to-
gether with the second assertion of A mean that {?x �→ :a} is an answer.

The following theorem shows that answering OWL 2 QL queries under the direct
semantics entailment regime can be reduced to answering OWL 2 QL queries under
simple entailment, which are evaluated only on the extensional part of the RDF graph:

Theorem 4. Given any intensional graph T and OWL 2 QL query (P, V ), one can con-
struct an OWL 2 QL query (P †, V ) such that, for any extensional graphA (in some fixed
finite vocabulary), �P �T ,A|V = �P †�A|V .

Proof sketch. By the definition of the entailment regime, it suffices to construct B†, for
any BGP B; the rewriting P † is obtained then by replacing each BGP B in P with
B†. First, we instantiate the class and property variables in B by all possible class and
property names in the given vocabulary and add the respective BIND operations. In each
of the resulting BGPs, we remove the class and property axioms if they are entailed by
T ; otherwise we replace the BGP with an empty one. The obtained BGPs are (SPARQL
representations of) conjunctive queries (with non-distinguished variables in complex
concepts SuperC of the assertions ClassAssertion(SuperC, I)). The second step is to
rewrite these conjunctive queries together with T into unions of conjunctive queries
(BGPs) that can be evaluated over any extensional graphA [5,21]. (We emphasise that
the SPARQL algebra operations, including difference and OPT, are applied to BGPs
and do not interact with the two steps of our rewriting.) ❑

We illustrate the proof of Theorem 4 using the queries from Examples 2 and 3.

Example 5. The class variable ?C in the query from Example 2 can be instantiated,
using BIND, by all possible values from IC ∩ IT ,A, which gives the rewriting

SELECT ?x ?C WHERE {
{ ?x rdf:type ub:Student. BIND(ub:Student as ?C) } UNION

{ ?x rdf:type ub:GradStudent. BIND(ub:GradStudent as ?C) } UNION

{ ?x rdf:type ub:UGStudent. BIND(ub:UGStudent as ?C) } }.

The query from Example 3 is equivalent to a (tree-shaped) conjunctive query with three
non-distinguished and one answer variable, which can be rewritten to

SELECT ?x WHERE { { ?x :R ?y. ?y :S ?z. ?z :T ?u. } UNION

{ ?x rdf:type :A. ?x :T ?u. } }.

3 Translating SPARQL under Simple Entailment to SQL

A number of translations of SPARQL queries (under simple entailment) to SQL queries
have already been suggested in the literature; see, e.g., [9,13,7,32,27]. However, none
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of them is suitable for our aims because they do not take into account the three-valued
logic used in the OPTIONAL and BOUND constructs of the current SPARQL 1.1 (the se-
mantics of OPTIONAL was not compositional in SPARQL 1.0). Note also that SPARQL
has been translated to Datalog [25,2,26].

We begin by recapping the basics of relational algebra and SQL (see e.g., [1]). Let
U be a finite (possibly empty) set of attributes. A tuple over U is a map t : U → Δ,
whereΔ is the underlying domain, which always contains a distinguished element null.
A (|U |-ary) relation over U is a finite set of tuples over U (again, we use the set-based
rather than bag-based semantics). A filter F overU is a formula constructed from atoms
isNull(U ′), (u = c) and (u = u′), where U ′ ⊆ U , u, u′ ∈ U and c ∈ Δ, using the
connectives ∧ and ¬. Let F be a filter with variables U and let t be a tuple over U . The
truth-value F t ∈ {",⊥, ε} of F over t is defined inductively:

– (isNull(U ′))t is " if t(u) is null, for all u ∈ U ′, and ⊥ otherwise;
– (u = c)t = ε if t(u) is null; otherwise, (u = c)t is the classical truth-value of

the predicate t(u) = c; similarly, (u = u′)t = ε if either t(u) or t(u′) is null;
otherwise, (u = u′)t is the classical truth-value of the predicate t(u) = t(u′);

– (¬F )t =
{
ε, if F t = ε,

¬F t, otherwise,
and (F1 ∧ F2)

t =

⎧⎨
⎩
⊥, if F t

1 = ⊥ or F t
2 = ⊥,

", if F t
1 = F t

2 = ",
ε, otherwise.

(Note that ¬ and ∧ are interpreted in the same three-valued logic as in SPARQL.) We
use standard relational algebra operations such as union, difference, projection, selec-
tion, renaming and natural (inner) join. Let Ri be a relation over Ui, i = 1, 2.

– If U1 = U2 then the standard R1 ∪R2 and R1 \R2 are relations over U1.
– If U ⊆ U1 then πUR1 = R1|U is a relation over U .
– If F is a filter over U1 then σFR1 = {t ∈ R1 | F t = "} is a relation over U1.
– If v /∈ U1 and u ∈ U1 then ρv/uR1 =

{
tv/u | t ∈ R1

}
, where tv/u : v �→ t(u) and

tv/u : u
′ �→ t(u′), for u′ ∈ U1 \ {u}, is a relation over (U1 \ {u}) ∪ {v}.

– R1 � R2 = {t1 ⊕ t2 | t1 ∈ R1 and t2 ∈ R2 are compatible} is a relation over
U1∪U2. Here, t1 and t2 are compatible if t1(u) = t2(u) �= null, for all u ∈ U1∩U2,
in which case a tuple t1⊕ t2 over U1 ∪U2 is defined by taking t1⊕ t2 : u �→ t1(u),
for u ∈ U1, and t1 ⊕ t2 : u �→ t2(u), for u ∈ U2 (note that if u is null in either of
the tuples then they are incompatible).

To bridge the gap between partial functions (solution mappings) in SPARQL and total
mappings (on attributes) in SQL, we require one more operation (expressible in SQL):

– If U ∩ U1 = ∅ then the padding μUR1 is R1 � nullU , where nullU is the relation
consisting of a single tuple t over U with t : u �→ null, for all u ∈ U .

By an SQL query, Q, we understand any expression constructed from relation symbols
(each over a fixed set of attributes) and filters using the relational algebra operations
given above (and complying with all restrictions on the structure). Suppose Q is an
SQL query and D a data instance which, for any relation symbol in the schema under
consideration, gives a concrete relation over the corresponding set of attributes. The
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answer to Q over D is a relation ‖Q‖D defined inductively in the obvious way starting
from the base case: for a relation symbolQ, ‖Q‖D is the corresponding relation in D.

We now define a translation, τ , which, given a graph pattern P , returns an SQL query
τ (P ) with the same answers as P . More formally, for a set of variables V , let extV be
a function transforming any solution mapping s with dom(s) ⊆ V to a tuple over V by
padding it with nulls:

extV (s) = {v �→ s(v) | v ∈ dom(s)} ∪ {v �→ null | v ∈ V \ dom(s)}.

The relational answer to P over G is ‖P‖G = {extvar(P )(s) | s ∈ �P �G}. The SQL
query τ (P ) will be such that, for any RDF graph G, the relational answer to P overG
coincides with the answer to τ (P ) over triple(G), the database instance storing G as a
ternary relation triple with the attributes subj, pred, obj. First, we define the translation
of a SPARQL filter F by taking τ (F ) to be the SQL filter obtained by replacing each
bound(v) with ¬isNull(v) (other built-in predicates can be handled similarly).

Proposition 6. Let F be a SPARQL filter and let V be the set of variables in F . Then
F s = (τ (F ))extV (s), for any solution mapping s with dom(s) ⊆ V .

The definition of τ proceeds by induction on the construction of P . Note that we can
always assume that graph patterns under simple entailment do not contain blank nodes
because they can be replaced by fresh variables. It follows that a BGP {tp1, . . . , tpn} is
equivalent to JOIN({tp1}, JOIN({tp2}, . . . )). So, for the basis of induction we set

τ ({〈s, p, o〉}) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π∅σ(subj=s)∧(pred=p)∧(obj=o) triple, if s, p, o ∈ I ∪ L,

πsρs/subj σ(pred=p)∧(obj=o) triple, if s ∈ V and p, o ∈ I ∪ L,
πs,oρs/subj ρo/obj σpred=p triple, if s, o ∈ V, s �= o, p ∈ I ∪ L,

πsρs/subj σ(pred=p)∧(subj=obj) triple, if s, o ∈ V, s = o, p ∈ I ∪ L,
. . .

(the remaining cases are similar). Now, if P1 and P2 are graph patterns and F1 and F
are filters containing only variables in var(P1) and var(P1)∪var(P2), respectively, then
we set Ui = var(Pi), i = 1, 2, and

τ (FILTER(P1, F1)) = στ (F1)τ (P1),

τ (BIND(P1, v, c)) = τ (P1) � {v �→ c},
τ (UNION(P1, P2)) = μU2\U1

τ (P1) ∪ μU1\U2
τ (P2),

τ (JOIN(P1, P2)) =
⋃

V1,V2⊆U1∩U2

V1∩V2=∅

μV1∪V2

[
(πU1\V1

σisNull(V1)τ (P1))�(πU2\V2
σisNull(V2)τ (P2))

]
,

τ (OPT(P1, P2, F )) = στ (F )(τ (JOIN(P1, P2))) ∪
μU2\U1

(
τ (P1) \ πU1στ (F )(τ (JOIN(P1, P2)))

)
.

It is readily seen that any τ (P ) is a valid SQL query and defines a relation over var(P ).

Theorem 7. For any RDF graphG and any graph pattern P , ‖P‖G = ‖τ (P )‖triple(G).
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Proof. The proof is by induction on the structure of P . Here we only consider the
induction step for P = JOIN(P1, P2). Let Ui = var(Pi), i = 1, 2, and U = U1 ∩ U2.

If t ∈ ‖JOIN(P1, P2)‖G then there is a solution mapping s ∈ �JOIN(P1, P2)�G with
extU1∪U2(s) = t, and so there are si ∈ �Pi�G such that s1 and s2 are compatible
and s1 ⊕ s2 = s. Since, extUi(si) ∈ ‖Pi‖G, by IH, extUi(si) ∈ ‖τ (Pi)‖triple(G). Let
V = dom(s1) ∩ dom(s2) and Vi = U \ dom(si). Then V1, V2 and V are disjoint and
partitionU . By definition, extUi(si) : v �→ null, for each v ∈ Vi, and therefore extUi(si)
is in ‖σisNull(Vi)τ (Pi)‖triple(G). Let ti = extUi\Vi

(si) andQi = πUi\Vi
(σisNull(Vi)τ (Pi)).

We have ti ∈ ‖Qi‖triple(G), and since s1 and s2 are compatible and V are the common
non-null attributes of t1 and t2, we obtain t1 ⊕ t2 ∈ ‖Q1 � Q2‖triple(G). As t extends
t1 ⊕ t2 to V1 ∪ V2 by nulls, we have t ∈ ‖τ (JOIN(P1, P2))‖triple(G).

If t ∈ ‖τ (JOIN(P1, P2))‖triple(G) then there are disjoint V1, V2 ⊆ U and compatible
tuples t1 and t2 such that ti ∈ ‖πUi\Vi

(σisNull(Vi)τ (Pi))‖triple(G) and t extends t1⊕ t2 to
V1∪V2 by nulls. Let si = {v �→ t(v) | v ∈ Ui and t(v) is not null}. Then s1 and s2 are
compatible and extUi(si) ∈ ‖τ (Pi)‖triple(G). By IH, extUi(si) ∈ ‖Pi‖G and si ∈ �Pi�G.
So, s1 ⊕ s2 ∈ �JOIN(P1, P2)�G and extU1∪U2(s1 ⊕ s2) = t ∈ ‖JOIN(P1, P2)‖G. ❑

3.1 Optimising SPARQL JOIN and OPT

By definition, τ (JOIN(P1, P2)) is a union of exponentially many natural joins (�).
Observe, however, that for any BGP B = {tp1, . . . , tpn}, none of the attributes in the
τ (tpi) can be null. So, we can drastically simplify the definition of τ (B) by taking

τ ({tp1, . . . , tpn}) = τ (tp1) � · · · � τ (tpn).

Moreover, this observation can be generalised. First, we identify the variables in graph
patterns that are not necessarily bound in solution mappings:

ν(B) = ∅, B is a BGP,

ν(FILTER(P1, F )) = ν(P1) \ {v | bound(v) is a conjunct of F},
ν(BIND(P1, v, c)) = ν(P1),

ν(UNION(P1, P2)) = (var(P1) \ var(P2)) ∪ (var(P2) \ var(P1)) ∪ ν(P1) ∪ ν(P2),

ν(JOIN(P1, P2)) = ν(P1) ∪ ν(P2),

ν(OPT(P1, P2, F )) = ν(P1) ∪ var(P2).

Thus, if a variable v in P does not belong to ν(P ), then v ∈ dom(s), for any solution
mapping s ∈ �P �G and RDF graph G (but not the other way round). Now, we observe
that the union in the definition of τ (JOIN(P1, P2)) can be taken over those subsets of
var(P1) ∩ var(P2) that only contain variables from ν(P1) ∪ ν(P2). This gives us:

Theorem 8. If var(P1) ∩ var(P2) ∩ (ν(P1) ∪ ν(P2)) = ∅ then we can define

τ (JOIN(P1, P2)) = τ (P1) � τ (P2), τ (OPT(P1, P2, F )) = τ (P1) τ(F )τ (P2),

where R1 FR2 = σF (R1 � R2)∪μU2\U1
(R1\πU1(σF (R1 � R2))), forRi over Ui.

(Note that the relational operation F corresponds to LEFT JOIN in SQL with the
condition F placed in its ON clause.)
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Example 9. Consider the following BGP B taken from the official SPARQL specifica-
tion (‘find the names of people who do not know anyone’):

FILTER(OPT({ ?x foaf:givenName ?n }, { ?x foaf:knows ?w }, "),¬bound(?w)).

By Theorem 8, τ (B) is defined as σisNull(w)(πx,nQ1 πx,wQ2), where Q1 and Q2

are σpred=foaf:givenNameρx/subjρn/obj triple and σpred=foaf:knowsρx/subjρw/obj triple, respec-
tively (we note in passing that the projection on x is equivalent to πxQ1 \ πxQ2).

3.2 R2RML Mappings

The SQL translation of a SPARQL query constructed above has to be evaluated over
the ternary relation triple(G) representing the virtual RDF graphG. Our aim now is to
transform it to an SQL query over the actual database, which is related toG by means of
an R2RML mapping [10]. A variant of such a transformation has been suggested in [27].
Here we develop the idea first presented in [28]. We begin with a simple example.

Example 10. The following R2RML mapping (in the Turtle syntax) populates an object
property ub:UGDegreeFrom from a relational table students, whose attributes id and
degreeuniid identify graduate students and their universities:

:m1 a rr:TripleMap;
rr:logicalTable [ rr:sqlQuery ”SELECT * FROM students WHERE stype=1” ];
rr:subjectMap [ rr:template ”/GradStudent{id}” ] ;
rr:predicateObjectMap [ rr:predicate ub:UGDegreeFrom ;

rr:objectMap [ rr:template ”/Uni{degreeuniid}” ] ]

More specifically, for each tuple in the query, an R2RML processor generates an RDF
triple with the predicate ub:UGDegreeFrom and the subject and object constructed from
attributes id and degreeuniid, respectively, using IRI templates.

Our aim now is as follows: given an R2RML mapping M, we are going to define
an SQL query trM(triple) that constructs the relational representation triple(GD,M) of
the virtual RDF graphGD,M obtained byM from any given data instanceD. Without
loss of generality and to simplify presentation, we assume that each triple map has

– one logical table (rr:sqlQuery),
– one subject map (rr:subjectMap), which does not have resource typing (rr:class),
– and one predicate-object map with one rr:predicateMap and one rr:objectMap.

This normal form can be achieved by introducing predicate-object maps with rdf:type
and splitting any triple map into a number of triple maps with the same logical ta-
ble and subject. We also assume that triple maps contain no referencing object maps
(rr:parentTriplesMap, etc.) since they can be eliminated using joint SQL queries [10].
Finally, we assume that the term maps (i.e., subject, predicate and object maps) contain
no constant shortcuts and are of the form [rr:column v], [rr:constant c] or [rr:template s].

Given a triple map m with a logical table (SQL query) R, we construct a selec-
tion σ¬isNull(v1) · · ·σ¬isNull(vk)R, where v1, . . . , vk are the referenced columns of m
(attributes of R in the term maps in m)—this is done to exclude tuples that contain
null [10]. To construct trm, the selection filter is prefixed with projection πsubj,pred,obj
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and, for each of the three term maps, either with renaming (e.g., with ρobj/v if the object
map is of the form [rr:column v]) or with value creation (if the term map is of the form
[rr:constant c] or [rr:template s]; in the latter case, we use the built-in string concatena-
tion function ). For instance, the mapping :m1 from Example 10 is converted to the
SQL query

SELECT (’/GradStudent’ id) AS subj, ’ub:UGDegreeFrom’ AS pred,
(’/Uni’ degreeuniid) AS obj FROM students

WHERE (id IS NOT NULL) AND (degreeuniid IS NOT NULL) AND (stype=1).

Given an R2RML mappingM, we set trM(triple) =
⋃

m∈M trm.

Proposition 11. For any R2RML mappingM and data instanceD, t ∈ ‖trM(triple)‖D
if and only if t ∈ triple(GD,M).

Finally, given a graph pattern P and an R2RML mappingM, we define trM(τ (P ))
to be the result of replacing every occurrence of the relation triple in the query τ (P ),
constructed in Section 3, with trM(triple). By Theorem 7 and Proposition 11, we ob-
tain:

Theorem 12. For any graph pattern P , R2RML mapping M and data instance D,
‖P‖GD,M = ‖trM(τ (P ))‖D.

3.3 Optimising SQL Translation

The straightforward application of trM to τ (P ) can result in a very complex SQL
query. We now show that such queries can be optimised by the following techniques:

– choosing matching trm from trM(triple), for each occurrence of triple in τ (P );
– using the distributivity of � over ∪ and removing sub-queries with incompatible

IRI templates and de-IRIing join conditions;
– functional dependencies (e.g., primary keys) for self-join elimination [6,18,29,30].

To illustrate, suppose we are given a mappingM containing :m1 from Example 10 and
the following triple maps (which are a simplified version of those in Section 5):

:m2 a rr:TripleMap;
rr:logicalTable [ rr:sqlQuery ”SELECT * FROM students WHERE stype=0” ];
rr:subjectMap [ rr:template ”/UGStudent{id}”; rr:class ub:Student ].

:m3 a rr:TripleMap;
rr:logicalTable [ rr:sqlQuery ”SELECT * FROM students WHERE stype=1” ];
rr:subjectMap [ rr:template ”/GradStudent{id}”; rr:class ub:Student ].

which generate undergraduate and graduate students (both are instances of ub:Student,
but their IRIs are constructed using different templates [16]). Consider the following
query (a fragment of qobg

2 from Section 5):

SELECT ?x ?y WHERE { ?x rdf:type ub:Student. ?x ub:UGDegreeFrom ?y }.

The translation τ of its BGP (after the SPARQL JOIN optimisation of Section 3.1) is

(πxρx/subjσ(pred=rdf:type)∧(obj=ub:Student) triple) �
(πx,yρx/subjρy/objσpred=ub:UGDegreeFrom triple)
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First, since triple always occurs in the scope of some selection operation σF , we can
choose only those elements in

⋃
m∈M trm that have matching values of pred and/or

obj. In our example, the first occurrence of triple is replaced by tr :m2 ∪ tr :m3, and the
second one by tr :m1. This results in the natural join of the following union, denoted A:

(SELECT DISTINCT ’/UGStudent’ id AS x FROM students
WHERE (id IS NOT NULL) AND (stype=0))

UNION (SELECT DISTINCT ’/GradStudent’ id AS x FROM students
WHERE (id IS NOT NULL) AND (stype=1))

and of the following query, denoted B:

SELECT DISTINCT ’/GradStudent’ id AS x, ’/Uni’ degreeuniid AS y FROM students
WHERE (id IS NOT NULL) AND (degreeuniid IS NOT NULL) AND (stype=1)

Second, observe that the IRI template in B is compatible only with the second compo-
nent of A. Moreover, since the two compatible templates coincide, we can de-IRI the
join, namely, replace the join over the constructed strings (A.x = B.x) by the join over
the numerical attributes (A.id = B.id), which results in a more efficient query:

SELECT DISTINCT A.x, B.y FROM
(SELECT id, ’/GradStudent’ id AS x FROM students
WHERE (id IS NOT NULL) AND (stype=1)) A

JOIN
(SELECT id, ’/GradStudent’ id AS x, ’/Uni’ degreeuniid AS y FROM students
WHERE(id IS NOT NULL)AND(degreeuniid IS NOT NULL)AND(stype=1))B

ON A.id = B.id

Finally, by using self-join elimination and the fact that id and stype are the composite
primary key in students, we obtain the query (without DISTINCT as x is unique)

SELECT ’/GradStudent’ id AS x, ’/Uni’ degreeuniid AS y FROM students
WHERE (degreeuniid IS NOT NULL) AND (stype=1)

4 Putting It All Together

The techniques introduced above suggest the following architecture to support answer-
ing SPARQL queries under the OWL 2 QL entailment regime with data instances stored
in a database. Suppose we are given an ontology with an intensional part T and an ex-
tensional part stored in a database,D, over a schemaΣ. Suppose also that the languages
ofΣ and T are connected by an R2RML mappingM. The process of answering a given
OWL 2 QL query (P, V ) involves two stages, off-line and on-line.

OFFLINE ONLINE

OWL 2 QL
reasoner

ontology T
(intensional part)

T -mapping
optimiser

R2RML
mapping M

DB integrity constraints Σ

classified ontology

T -mapping M′

OWL 2 QL
query (P, V )

OWL 2 QL query (P †, V )
over H-complete RDF graph

under simple entailment

entailment regime
rewriter

SQL query

SPARQL to SQL
translator

The off-line stage takes T ,M and Σ and proceeds via the following steps:
➊ An OWL 2 QL reasoner is used to obtain a complete class / property hierarchy in T .
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➋ The composition MT of M with the class and property hierarchy in T is taken as
an initial T -mapping. Recall [29] that a mappingM′ is a T -mapping overΣ if, for any
data instanceD satisfyingΣ, the virtual (not materialised) RDF graphGD,M′ obtained
by applyingM′ toD contains all class and property assertionsαwith (T , GD,M′) |= α.
As a result,GD,M′ is complete with respect to the class and property hierarchy in T (or
H-complete), which allows us to avoid reasoning about class and property inclusions (in
particular, inferences that involve property domains and ranges) at the query rewriting
step ➍ and drastically simplify rewritings (see [29] for details).
➌ The initial T -mapping MT is then optimised by (i) eliminating redundant triple
maps detected by query containment with inclusion dependencies in Σ, (ii) eliminating
redundant joins in logical tables using the functional dependencies inΣ, and (iii) merg-
ing sets of triple maps by means of interval expressions or disjunctions in logical tables
(see [29] for details). LetM′ be the resulting T -mapping overΣ.

The on-line stage takes an OWL 2 QL query (P, V ) as an input and proceeds as follows:

➍ The graph pattern P and T are rewritten to the OWL 2 QL graph pattern P † over the
H-complete virtual RDF graph GD,M′ under simple entailment by applying the clas-
sified ontology of step ➊ to instantiate class and property variables and then using a
query rewriting algorithm (e.g., the tree-witness rewriter of [29]); see Theorem 4.
➎ The graph pattern P † is transformed to the SQL query τ (P †) over the 3-column
representation triple of the RDF graph (Theorem 7). Next, the query τ (P †) is unfolded
into the SQL query trM′(τ (P †)) over the original database D (Theorem 12). The un-
folded query is optimised using the techniques similar to the ones employed in step ➌.
➏ The optimised query is executed by the database.

As follows from Theorems 4, 7 and 12, the resulting query gives us all correct answers
to the original OWL 2 QL query (P, V ) over T andD with the R2RML mappingM.

5 Evaluation

The architecture described above has been implemented in the open-source OBDA sys-
tem Ontop4. We evaluated its performance using the OWL 2 QL version of the Lehigh
University Benchmark LUBM [16]. The ontology contains 43 classes, 32 object and
data properties and 243 axioms. The benchmark also includes a data generator and a
set of 14 queries q1–q14. We added 7 queries with second-order variables ranging over
class and property names: q′4, q

′′
4 , q

′
9, q

′′
9 derived from q4 and q9, and qobg

2 , qobg
4 , qobg

10 taken
from [19]. The LUBM data generator produces an OWL file with class and property as-
sertions. To store the assertions in a database, we created a database schema with 11
relations and an R2RML mapping with 89 predicate-object maps. For instance, the in-
formation about undergraduate and graduate students (id, name, etc.) from Example 10
is collected in the relation students, where the attribute stype distinguishes between the
types of students (stype is known as a discriminant column in databases); more details
including primary and foreign keys and indexes are provided in the full version.

We experimented with the data instances LUBMn, n = 1, 9, 20, 50, 100, 200, 500
(where n specifies the number of universities; LUBM1 and LUBM9 were used in [19]).

4 http://ontop.inf.unibz.it



Answering SPARQL Queries over Databases under OWL 2 QL Entailment Regime 565

Table 1. Start up time, data loading time (in s) and query execution time (in ms): O is Ontop,
OBH and OBP are OWL-BGP with Hermit and Pellet, respectively, and P is standalone Pellet

Q LUBM1 LUBM9 LUBM100 LUBM200 LUBM500

O OBH OBP P O OBH P O P O O

q1 2 8 29 1 3 97 1 3 1 3 2
q2 2 25 11 137 19 3 2 531 256 16 30 593 36 88
q3 1 6 86 9 2 78 158 2 2 087 63 12
q4 13 7 19 14 15 44 164 27 2 093 24 22
q5 16 12 4 451 10 22 98 158 32 2 182 28 23
q6 455 27 32 21 5 076 411 317 58 968 10 781 123 578 434 349
q7 5 21 34 005 10 6 429 157 8 2 171 8 9
q8 726 195 95 875 80 760 917 192 796 2 131 820 855
q9 60 972 168 978 78 668 189 126 857 7 466 12 125 15 227 44 598
q10 2 6 126 9 3 97 158 2 2 134 3 2
q11 4 5 58 10 6 43 160 11 2 093 18 44
q12 3 4 19 15 4 70 236 3 2 114 5 5
q13 6 4 67 8 7 40 157 14 2 657 38 58
q14 91 20 24 15 1 168 329 287 13 524 4 457 29 512 92 376
q′4 93 58 190 46 99 98 767 92 4 422 95 107
q′′4 108 21 35 63 122 72 719 115 9 179 108 127
q′9 257 716 91 855 174 4 686 40 575 1 385 54 092 19 945 115 110 295 228
q′′9 557 951 65 916 102 6 093 178 401 1 214 67 123 19 705 151 376 356 176
qobg
2 150 30 57 141 29 9 992 520 348 39 477 5 411 79 351 206 061

qobg
4 6 7 241 25 31 40 273 7 3 969 7 494

qobg
10 641 760 31 269 253 6 998 149 191 2 258 163 308 17 929 174 362 459 669

start up 3.1s 13.6s 7.7s 3.6s 3.1s 80m33s 18s 3.1s 3m23s 3.1s 3.1s
data load 10s n/a n/a n/a 15s n/a n/a 1m56s n/a 3m35s 10m17s

Here we only show the results for n = 1, 9, 100, 200, 500 containing 103k, 1.2M, 14M,
28M and 69M triples, respectively; the complete table can be found in the full version.
All the materials required for the experiments are available online5. We compared On-
top with two other systems, OWL-BGP r123 [19] and Pellet 2.3.1 [31] (Stardog and
OWLIM are incomplete for the OWL 2 QL entailment regime). OWL-BGP requires an
OWL 2 reasoner as a backend; as in [19], we employed HermiT 1.3.8 [14] and Pel-
let 2.3.1. The hardware was an HP Proliant Linux server with 144 cores @3.47GHz,
106GB of RAM and a 1TB 15k RPM HD. Each system used a single core and was
given 20 GB of Java 7 heap memory. Ontop used MySQL 5.6 database engine.

The evaluation results are given in Table 1. OWL-BGP and Pellet used significantly
more time to start up (last but one row) because they do not rely on query rewriting and
require costly pre-computations. OWL-BGP failed to start on LUBM9 with Pellet and
on LUBM20 with HermiT; Pellet ran out of memory after 10hrs loading LUBM200. For
Ontop, the start up is the off-line stage described in Section 4; it does not include the
time of loading the data into MySQL, which is specified in the last row of Table 1 (note
that the data is loaded only once, not every time Ontop starts; moreover, this could be
improved with CSV loading and delayed indexing rather than SQL dumps we used).

On queries q1–q14, Ontop generally outperforms OWL-BGP and Pellet. Due to the
optimisations, the SQL queries generated by Ontop are very simple, and MySQL is
able to execute them efficiently. This is also the case for large datasets, where Ontop is
able to maintain almost constant times for many of the queries. Notable exceptions are
q6, q8 and q14 that return a very large number (hundreds of thousands) of results (low
selectivity). A closer inspection reveals that execution time is mostly spent on fetching
the results from disk. On the queries with second-order variables, the picture is mixed.

5 https://github.com/ontop/iswc2014-benchmark
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While indeed these queries are not the strongest point of Ontop at the moment, we see
that in general the performance is good. Although Pellet outperforms Ontop on small
datasets, only Ontop is able to provide answers for very large datasets. For second-
order queries with high selectivity (e.g., q′4 and q′′4 ) and large datasets, the performance
of Ontop is very good while the other systems fail to return answers.

6 Conclusions

In this paper, we gave both a theoretical background and a practical implementation
of a procedure for answering SPARQL 1.1 queries under the OWL 2 QL direct seman-
tics entailment regime in the scenario where data instances are stored in a relational
database whose schema is connected to the language of the given OWL 2 QL ontology
via an R2RML mapping. Our main contributions can be summarised as follows:

– We defined an entailment regime for SPARQL 1.1 corresponding to the OWL 2 QL
profile of OWL 2 (which was specifically designed for ontology-based data access).

– We proved that answering SPARQL queries under this regime is reducible to an-
swering SPARQL queries under simple entailment (where no reasoning is involved).

– We showed how to transform such SPARQL queries to equivalent SQL queries over
an RDF representation of the data, and then unfold them, using R2RML mappings,
into SQL queries over the original relational data.

– We developed optimisation techniques to substantially reduce the size and improve
the quality of the resulting SQL queries.

– We implemented these rewriting and optimisation techniques in the OBDA system
Ontop. Our initial experiments showed that Ontop generally outperforms reasoner-
based systems, especially on large data instances.

Some aspects of SPARQL 1.1 (such as RDF types, property paths, aggregates) were not
discussed here and are left for future work.

Acknowledgements. Our work was supported by EU project Optique. We thank S. Ko-
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Abstract. In this paper we study query answering and rewriting in ontology-
based data access. Specifically, we present an algorithm for computing a perfect
rewriting of unions of conjunctive queries posed over ontologies expressed in
the description logic ELHIO, which covers the OWL 2 QL and OWL 2 EL
profiles. The novelty of our algorithm is the use of a set of ABox dependencies,
which are compiled into a so-called EBox, to limit the expansion of the rewriting.
So far, EBoxes have only been used in query rewriting in the case of DL-Lite,
which is less expressive than ELHIO. We have extensively evaluated our new
query rewriting technique, and in this paper we discuss the tradeoff between the
reduction of the size of the rewriting and the computational cost of our approach.

Keywords: Ontology-Based Data Access, Query Rewriting, Reasoning, EBox.

1 Introduction

In Ontology Based Data Access (OBDA) [1], ontologies are used to superimpose a
conceptual layer as a view to an underlying data source, which is usually a relational
database. The conceptual layer consists of a TBox, i.e. a set of axioms expressed in a
Description Logic (DL). This layer abstracts away from how that information is main-
tained in the data layer and may provide inference capabilities. The conceptual layer
and the data source layer are connected through mappings that specify the semantic
relationship between the database schema terms and the terms in the TBox.

Query rewriting is currently the most important reasoning technique for OBDA.
It consists in transforming a query posed in ontological terms into another query ex-
pressed over the underlying database schema. The rewritten query allows for obtaining
the certain answers to the original query, i.e. results explicitly stated for the query in
the database and those that are entailed by the TBox. To do so, the rewritten query
“encodes” the intensional knowledge expressed by the TBox and the mappings [1].

Recently, some approaches [2,3,4] have proposed the use of ABox dependencies,
or extensional constraints, to optimise query rewriting in OBDA. An extensional con-
straint is an axiom (in the TBox language) that the data are known to satisfy. As such,
it can be viewed as an integrity constraint for the OBDA system. Such constraints can

P. Mika et al. (Eds.) ISWC 2014, Part I, LNCS 8796, pp. 568–583, 2014.
c© Springer International Publishing Switzerland 2014
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be automatically derived from OBDA specifications, in particular, they can be deduced
from the mappings and from the integrity constraints in the source database [4]. Fol-
lowing [3], we call EBox a set of extensional constraints. For ontologies expressed in
the logic DL-LiteA, EBoxes can be used to optimise reasoning and query rewriting in
OBDA [2,3]. In fact, since extensional constraints express forms of completeness of the
data, they can be used during query rewriting in a complementary way with respect to
the usual TBox axioms, allowing for significant simplifications of the rewritten query.

In this paper we explore the application of an EBox to the rewriting process per-
formed by kyrie [5], which deals with the expressive DL ELHIO by performing reso-
lution in several stages with some optimisations.

The contributions of the paper are the following:

1. Extension of the kyrie algorithm. We define a new query rewriting algorithm for
ELHIO. The algorithm is based on kyrie, and takes into account, besides the
TBox, the presence of an ELHIO EBox. This extension is inspired by Prexto [3], a
query rewriting algorithm for DL-LiteR: however, such an extension is technically
challenging, due to the expressiveness of ELHIO.

2. Extension of a query rewriting benchmark. We extend an existing benchmark for
the evaluation of query rewriting in OBDA [6], considering EBoxes in addition to
TBoxes, so as to experimentally evaluate the use of EBoxes in ELHIO ontologies.

3. Implementation and experimental evaluation. We perform an experimental analysis
of the new query rewriting algorithm. Our results show the effectiveness of using
EBoxes in the optimisation of query rewriting, and highlight some interesting prop-
erties of the similarity between TBox and EBox.

This paper is structured as follows. In Section 2 we briefly recall the DL ELHIO and
extensional constraints and the state of the art is briefly summarized. In Section 3 we
present the kyrie2 query rewriting algorithm for ELHIO. The operations performed by
the algorithm are formalised as a set of propositions in Section 4. Finally, Section 5 and
Section 6 contain, respectively, the evaluation of our proposal and some conclusions
drawn from it1.

2 Preliminaries

We briefly recall Horn clauses, ELHIO, OBDA systems and extensional constraints.

Horn Clauses. Following [7,5], our technique makes use of a representation of DL
axioms as Horn clauses. A Horn clause (or Horn rule) is an expression of the form
β0 ← β1, . . . , βn, with n ≥ 0 and where each term appearing in each of the atoms
β0, β1, . . . , βn may be a constant c from an alphabet of constant symbols, a variable x
from an alphabet of variable symbols, or a unary Skolem function f(x) (where f is from
an alphabet of function symbols) whose argument is a variable. Clauses are safe, i.e.,
all variables occurring in β0 (which is called the clause head) also occur in β1, . . . , βn
(which is called the clause body). The arity of the clause is the number of arguments of

1 Due to space constraints, proofs of theorems are available at
http://j.mp/kyrieproofebox
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its head atom. A clause is Boolean if it has no variables in its head. We say that an atom
βa subsumes another atom βb (βa *s βb) if there is some unification of its variables
μ such that μβa = βb. A Horn clause subsumes another Horn clause if after some
variable renaming both of their heads are equal and there is some unification such that
all the atoms in the body of the subsuming clause unify with some atom in the body of
the subsumed clause, i.e. ∀γa, γb.(head(γa) = head(γb) ∧ ∃μ.∀βi ∈ body(γa).∃βj ∈
body(γb).μβi = βj)→ γa *s γb.

Let R be the Horn clause β0 ← β1, . . . , βn and let x be the variables occurring in
R. We define FO(R) as the first-order sentence ∀x(β0 ∨ ¬β1 ∨ . . .∨ ¬βn). Moreover,
given a set of Horn clauses Σ, we define FO(Σ) as

⋃
R∈Σ FO(R).

OBDA Systems. An OBDA system [1] allows for accessing a set of data sources D
using an ontology composed of TBox and ABox O = 〈T ,A〉 as a view for the data in
D. To do this, a set of mappingsM is normally used to map the information in D to the
elements in the TBox T [8].

In ELHIO, concept (C) and role (R) expressions are formed according to the fol-
lowing syntax (whereA denotes a concept name, P denotes a role name, and a denotes
an individual name):

C ::= A | C1 � C2 | ∃R.C | {a}
R ::= P | P−

An ELHIO axiom is an expression of the form C1  C2, C  ⊥,R1  R2 orR  ⊥
where C1, C2 are concept expressions and R1, R2 are role expressions (as usual, ⊥
denotes the empty concept). An ELHIO TBox T is a set of ELHIO axioms.

An OBDA system is a pair O = 〈T ,A〉, where T is an ELHIO TBox, and A is an
ABox, i.e., a set of ground atoms, representing the pair 〈M,A〉.

Notably, each ELHIO axiom corresponds to a set of Horn clauses [7,5]. We can thus
define the semantics of OBDA systems by using the clause translation of an ELHIO
TBox into a set of clauses. More precisely, given an ELHIO axiom ψ, we denote by
τc(ψ) the set of clauses corresponding to ψ, and given a TBox T , we denote by τc(T )
the set of clauses corresponding to T . Then, the set of models of an OBDA system
〈T ,A〉 is the set of models of the first-order theory FO(τc(T )) ∪ A.

We refer the reader to [5] for more details on the translation of ELHIO axioms into
Horn clauses. From now on, we assume that the OBDA system 〈T ,A〉 is consistent,
i.e., has at least one model. The extension of our results to possibly inconsistent OBDA
systems is trivial.

The OBDA system allows for accessing the data by posing queries and returning the
certain answers to these queries. As usual in OBDA, we consider unions of conjunctive
queries. A conjunctive query (CQ) is a function-free Horn clause. As usual, we assume
that the head predicate q of the CQ does not occur in 〈T ,A〉. For ease of exposition,
we assume that constants may not occur in the head of a CQ. A union of conjunctive
queries (UCQ) is a finite, non-empty set of CQs having the same head predicate q and
the same arity.

The set of certain answers for a UCQ q posed to a system 〈T ,A〉, denoted byΦq
〈T ,A〉,

is the set of tuples of constants t1, . . . , tn such that the atom q(t1, . . . , tn) holds in all
models of FO(Σ ∪ q) ∪ A, where Σ = τc(T ).
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Query Rewriting in OBDA. The main approaches to query answering in OBDA
are based on query rewriting techniques whose goal is to compute so-called perfect
rewritings. A perfect rewriting for a UCQ q and a TBox T is a query q′ such that, for
every ABox A, Φq

〈T ,A〉 = Φq′
〈∅,A〉 (i.e., the TBox is “encoded” by the rewritten query).

In OBDA, special attention has been paid in these systems to ontology languages
that are first-order (FO) rewritable [9,10], i.e. such that UCQs always admit a perfect
rewriting expressed in first-order logic. ELHIO falls out of this expressiveness, since
recursive Datalog is sometimes needed to express perfect rewritings of UCQs, i.e., it is
Datalog-rewritable.

Related Systems. Several systems have been implemented to perform query rewrit-
ing, these systems and their main characteristics including the expressiveness for the
aforementionedΣ are summarised in Table 1. A more detailed description of these sys-
tems and the logics they handle can be found in [6]. The interest in this kind of systems
is shown by commercial applications like Stardog2, which can perform query answering
with several reasoning levels (RDFS, QL, RL, EL and DL).

Table 1. Main systems for OBDA query rewriting in the state of the art

System Input Output Year Reference
Quonto DL-LiteR UCQ 2007 Calvanese et al. [9]
REQUIEM ELHIO¬ Datalog or UCQ 2009 Pérez-Urbina et al. [7]
Presto DL-LiteR Datalog 2010 Rosati and Almatelli [11]
Rapid DL-LiteR

3 Datalog or UCQ 2011 Chortaras et al. [12]
Nyaya Datalog± UCQ 2011 Gottlob et al. [10]
Venetis’ DL-LiteR UCQ 2013 Venetis et al. [13]
Prexto DL-LiteRand EBox Datalog or UCQ 2012 Rosati [3]
Clipper Horn-SHIQ Datalog 2012 Eiter et al. [14]
kyrie ELHIO¬ Datalog or UCQ 2013 Mora and Corcho [5]

EBoxes and Query Rewriting. Description logic (DL) ontologies are usually de-
composed into ABox (assertional box) and TBox (terminological box). The former in-
cludes the assertions or facts, corresponding to the individuals, constants or values (i.e.
the extension) of some predicates. The latter is a set of DL axioms that describe the
concepts and predicates in the ontology and how they are related. These DL axioms can
be converted to rules or implications (or data dependencies) in first order logic (more
expressive) and to some extent in Datalog (adding Skolem functions when needed).

Extensional constraints, also known as ABox dependencies, are assertions that re-
strict the syntactic form of allowed or admissible ABoxes in an OBDA system. These
assertions have the form of the usual TBox axioms and are interpreted as integrity con-
straints over the ABox, i.e. under a closed-world assumption instead of the usual open-
world assumption of DLs. For example, for an ABoxA that satisfies some EBox E and
expressions C1, C2 in A; if E � C1  C2 then {x1 | C1(x1) ∈ A} ⊆ {x2 | C2(x2) ∈
A}. A set of such assertions is called an extensional constraint box (EBox) [4].

2 http://docs.stardog.com/owl2/
3 Close to OWL2 QL, B1 � ∃R.B2 axioms are supported.
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As shown in [3], extensional constraints can be used to simplify the perfect rewriting
of a query, because such constraints may imply that some parts of the query are actually
redundant. We can see this more easily with an example. For example we may have the
following TBox:
UndergradStudent  Student MasterStudent  GradStudent

PhDStudent  GradStudent IndustryMasterStudent  MasterStudent
GradStudent  Student ResearchMasterStudent  MasterStudent

BachelorStudent  UndergradStudent

And the following EBox:

IndustryMasterStudent  GradStudent Student  ⊥
ResearchMasterStudent  GradStudent BachelorStudent  ⊥

PhDStudent  GradStudent MasterStudent  ⊥

And we may want to retrieve a list of all the students.
We can consider an ABox that satisfies the previous EBox, for example an ABox

with the following individuals:

• UndergradStudent: Al
• GradStudent: Ben, Don, Ed
• ResearchMasterStudent: Ben

• IndustryMasterStudent: Cal
• PhdStudent: Don

Querying for the most general concept (Student) would yield no results. Query-
ing for the most specific concepts (BachelorStudent, ResearchMasterStudent,
IndustryMasterStudent and PhdStudent) requires four queries and yields an in-
complete answer, missing Ed and Al in the example. Finally querying for all concepts
would provide all answers, but that implies eight queries (one for each concept) and
retrieving some duplicates. In this case the duplicates are Ben and Don. Duplicated an-
swers have no impact on the correctness of the answer set, but they are a big burden in
the efficiency of the process when considering more complex queries and ontologies.
In particular, in the example we only need three queries (as opposed to eight) to retrieve
all answers, querying respectively for instances ofUndergradStudent,GradStudent
and IndustryMasterStudent, since the EBox states that the ABox extension of ev-
ery other concept is either empty or contained inGradStudent. There are therefore six
queries that are only a waste of computational resources in the query answering.

A naı̈ve algorithm could generate the perfect rewriting and then reduce it by check-
ing for subsumption with the EBox. However, such a naı̈ve algorithm could have a
prohibitive cost for large rewritings and would only be applicable over non-recursive
rewritings. In the following sections we will show that it is possible to face more com-
plex scenarios and handle them better than with such a naı̈ve algorithm.

This example illustrates that the combination of ABoxes that are already (partially)
complete and a complete query rewriting on the TBox causes redundancy in the
results, which is a burden for efficiency. Hence, the characterization of ABox com-
pleteness as a set of dependencies can serve to optimise TBoxes, and create ABox
repositories that appear to be complete [2]. Additional optimisations can be done with
the Datalog query before unfolding it into a UCQ, and finally with the UCQ, reduc-
ing redundancy at every step. For instance, in our example we have in the EBox that
PhDStudent  GradStudent just like in the TBox. Therefore, we do not need to



Extensional Query Rewriting in ELHIO 573

consider this axiom in the TBox when retrieving students: the ABox is complete in that
sense and no GradStudent needs to be obtained from PhDStudent.

Using the EBox, the perfect rewriting can be reduced along with the inference re-
quired for its generation. We can redefine the perfect rewriting in the presence of
EBoxes as follows [3]: a perfect rewriting for a UCQ q and a TBox T under an EBox
E is a query q′ such that, for every ABox A that satisfies E , Φq

〈T ,A〉 = Φq′

〈∅,A〉.

3 Using Extensional Constraints in Query Rewriting

In this section we present the kyrie2 algorithm, providing an overview of the previous
kyrie algorithm and detailing the use of extensional constraints. Extensional constraints
can be used both in the preprocessing stage, performed before queries are posed to the
system, and in the main algorithm for the rewriting of queries when they are available.
We conclude this section with the algorithm that prunes a Datalog program (or a UCQ
as a specific case of Datalog program) using the available extensional constraints.

Overview of the Technique. kyrie2 extends the earlier kyrie algorithm [5] to handle
EBoxes. The original kyrie algorithm obtains a set of clauses Σ from the TBox T and
a query q and performs resolution on this set of clauses.

The usual operations performed in these algorithms are equal to those in kyrie. Here
we briefly describe them, a more detailed description can be found in [5]:

• Saturate performs a saturation of a set of clauses using a selection function to guide
the atoms that should be unified in the resolution. The selection function may be:
◦ sfRQR is the selection function used in REQUIEM, it avoids the unification of

unary predicates with no function symbols to produce a Datalog program.
◦ sfAux selects auxiliary predicates to perform the inferences in which these pred-

icates may participate and remove them if possible.
◦ sfSel(p) selects the predicate p.
◦ sfNoRec(P) selects all predicates except those that included in the set of predi-

cates P (used to avoid infinite resolution on recursive predicates).
Additionally, the saturation algorithm has a parameter (p, s or u):
◦ p preserves the clauses that have been used in the resolution, contrarily other

modes do not preserve these clauses, e.g. clauses with functional symbols are
removed to obtain a Datalog program.

◦ s separates the clauses that are obtained anew from the old ones, returning only
those that are new, e.g. when saturating the query with the clauses derived from
the TBox all produced clauses will be query clauses.

◦ u for unfolding, this method does not skip the cleaning stage and does not
separate the results.

• Condensate is used to condensate clauses, i.e. remove redundant atoms.
• RemoveSubsumed removes clauses that are subsumed in a set of clauses.

There are three main stages in which resolution is performed:

• Preprocessing is performed once for the ELHIO TBox (T ), before any query is
posed to the system. In this stage some inferences are materialised to save time later
and the set of clauses Σ is generated according to the TBox.
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• Saturation is performed when the query arrives: the query is added to Σ, then
functional symbols are removed from Σ, reducing Σ to a Datalog program (i.e.,
a function-free set of Horn clauses).

• Unfolding is performed partially or completely, depending on the respective pres-
ence or absence of recursive predicates in the Datalog rewriting.

In kyrie2, we add a further operation in each of these stages, highlighted in the cor-
responding algorithms. In this paper, we focus of this new and additional operation,
referring the reader to [5] for details on the other aspects of the algorithm. The new
operation makes use of the EBox to infer extensional subsumption between atoms and
between clauses. Atom subsumption in a conjunction of atoms means that the values
for one are a subset of the values for another (the most general atom is eliminated from
the conjunction). Clause subsumption in a disjunction of clauses means that the values
provided by a clause for a predicate are a subset of the values provided by some other
clause (the most specific clause is eliminated from the disjunction). In other words, the
new operation detects extensional redundancy in the set of clauses, thus allowing for
reducing the size of the initial set of clauses, the subsequent Datalog program, and the
final UCQ. Since, for technical reasons, the EBox is represented in two different ways
in the algorithm (both as a set of standard DL axioms and as a set of clauses), this
operation is defined and executed on both representations.

Before introducing the algorithms, we give two preliminary and analogous defini-
tions of graphs relative to an ELHIO TBox and to a set of Horn clauses, respectively.

Definition 1. We define dlgraph(T ), the axiom graph for an ELHIO TBox T , as the
directed graph (V,W ) such that: (i) for each axiom ψ ∈ T , ψ ∈ V ; and (ii) for each
pair (ψa, ψb) such that ψa, ψb ∈ T if there is a predicate p such that p ∈ RHS(ψb)
and p ∈ LHS(ψa) then (ψa, ψb) ∈ W . Where LHS and RHS are respectively the left
and the right hand sides of the axiom.

Definition 2. We define cgraph(Σ), the clause graph for a set of clauses Σ, as the
directed graph (V,W ) such that: (i) for each clause γ ∈ Σ then γ ∈ V ; and (ii) for
each pair (γa, γb) such that γa, γb ∈ Σ and ∃p.p ∈ body(γb) ∧ p ∈ head(γa) then
(γa, γb) ∈W .

Both graph notions are equivalent for our purposes, the syntactical differences are
due to the stages in the algorithm where each of these notions will be used.

Our algorithms will use both the DL and the clause representation of TBoxes and
EBoxes (obtained from the DL syntax through the function τc). Therefore, from now on
we will use the terms TBox, EBox and OBDA system for both kinds of representations,
and will use the symbolsΣ, E and Γ to denote, respectively, a TBox, an EBox, and an
OBDA system in the Horn clause representation.

Preprocessing. Algorithm 1 constitutes a preprocessing stage on the TBox and the
EBox before any query is available. The algorithm removes, through the function
delEBoxSCC, the strongly connected components (SCCs) of the TBox graph that are
implied by the EBox and do not receive incoming connections, i.e. for all axioms ψb

in the SCC there is no ψa in the TBox such that (ψa, ψb) is in the set of edges of
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Algorithm 1. kyrie2 preprocess algorithm
Input: ELHIO TBox T , ELHIO EBox E
Output: TBox Σ, EBox E, minimal sets of recursive predicates RΣ and RE

1 T ′ = delEBoxSCC(T , E)
2 Σ = τc(T

′)
3 E = saturate(p, sfNonRec(RE), τc(E), ∅)
4 〈RΣ , RE〉 = reducedRecursiveSets(Σ,E)
5 Σ = saturate(p, sfRQR,Σ, ∅)
6 Σ = saturate(s, sfAux,Σ, ∅)
7 Σ = removeSubsumed(condensate(Σ))
8 return 〈Σ,E,RΣ , RE〉

Algorithm 2. Remove extensionally implied strongly connected compo-
nents (SCCs) of axioms: delEBoxSCC

Input: ELHIO TBox T , ELHIO EBox E
Output: ELHIO TBox T without extensionally implied SCCs

1 repeat
2 forall the (C : component) ∈ SCCs(dlgraph(T )) do
3 if incomingConnections(C) = 0 ∧ ∀ψ ∈ C.E |= ψ then
4 T = T \C
5 until Fixpoint
6 return T

dlgraph(T ). We formalise in Section 4 (Proposition 1) the principles on which we
remove this type of SCCs.

Then, through the function saturate [5], Algorithm 1 computes a deductive clo-
sure of the EBox, except for recursive predicates: a reduced set of recursive predicates
is excluded from the inference to make the saturation process finite. This reduced set
is computed by Algorithm 4, where count(p, Λ) = card({λ ∈ Λ | p ∈ λ}) and
LoopsIn(Γ ) finds the loops of clauses in the given set of clauses that produce infi-
nite property paths. Excluding some predicates from the inference limits the effect of
the EBox in the reduction of the rewritten queries and the possible unfolding of these
queries. This limited effect of the EBox means some redundant answers can be pro-
duced, which has obviously no effect on the correctness of the answers.

General Algorithm. The result of the preprocessing stage is then used by the general
kyrie2 algorithm (Algorithm 3). This algorithm preserves the same stages and optimi-
sations of kyrie to obtain the Datalog program and the unfolding. The main difference
with kyrie is the call to the function useEBox (Algorithm 5).

Pruning the Rewriting with the EBox. The useEBox function, defined by Algo-
rithm 5, uses the EBox to reduce a Datalog program. This can be done by removing
clauses or by replacing some of the clauses with other shorter ones. This algorithm
performs a set of stages iteratively to reduce the Datalog program considered, until a
fixpoint is reached. These stages are:

• Predicates with no extension (p  ⊥ in the EBox) are removed, if possible, af-
ter saturating the inferences where they participate. A reduced set of recursive
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Algorithm 3. General kyrie2 algorithm
Input: TBox Σ, EBox E, recursive predicates in Σ (RΣ), recursive predicates in E

(RE), UCQ q, working mode mode ∈ {Datalog, UCQ}
Output: Rewritten query qΣ
1 q = removeSubsumed(condensate(q))
2 Σr = reachable(Σ, q)
3 Σq = saturate(s, sfRQR, q,Σr)

4 Σq = useEBox(Σq, E,RΣ , RE)
5 if mode = Datalog then return Σq Σq = {qi ∈ Σq | head(qi) �= head(q)}
6 Σq = {qi ∈ Σq | head(qi) = head(q)}
7 Σq = saturate(u, sfNonRec(RΣ), Σq, Σq)

8 Σq = useEBox(Σq, E,RΣ , RE)
9 return Σq

Algorithm 4. Find reduced sets of recursive predicates:
reducedRecursiveSet

Input: Datalog program Σq , EBox E
Output: Recursive predicates in Σq (RΣq ), recursive predicates in E (RE)

1 ΛΣq = loopsIn(Σq)
2 ΛE = loopsIn(E)
3 RΣq = ∅
4 RE = ∅
5 while ΛΣq �= ∅ ∧ ΛE �= ∅ do
6 if ΛΣq ∩ ΛE �= ∅ then
7 p = pi ∈ ΛΣq ∩ ΛE/count(pi, ΛΣq ) + count(pi, ΛE) =

max(count(pj, ΛΣq ) + count(pj , ΛE))∀pj ∈ ΛΣq ∩ ΛE

8 RΣq = RΣq ∪ {p}
9 RE = RE ∪ {p}

10 ΛΣq = ΛΣq\{λ ∈ ΛΣq | p ∈ λ}
11 ΛE = ΛE\{λ ∈ ΛE | p ∈ λ}
12 else
13 if ΛΣq �= ∅ then
14 p = pi ∈ ΛΣq/count(pi, ΛΣq ) = max(count(pj, ΛΣq ))∀pj ∈

ΛΣq

15 RΣq = RΣq ∪ {p}
16 ΛΣq = ΛΣq\{λ ∈ ΛΣq | p ∈ λ}
17 if ΛE �= ∅ then
18 p = pi ∈ ΛE/count(pi, ΛE) = max(count(pj, ΛE))∀pj ∈ ΛE

19 RE = RE ∪ {p}
20 ΛE = ΛE\{λ ∈ ΛE | p ∈ λ}
21 return 〈RΣq , RE〉

predicates (selected according to Algorithm 4) needs to be kept. We formalise the
conditions for removal in Proposition 4.

• Clauses whose answers are subsumed by other clauses are removed. The subsump-
tion of the answers according to the algorithm is formalised in Proposition 5 and
therefore they are redundant, as Proposition 6 states.
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Algorithm 5. Prune Datalog programΣq: useEBox
Input: EBox E, TBox Σq , recursive predicates in E (RE), recursive predicates

in Σq (RΣq )
Output: Pruned TBox program Σq

1 repeat
2 Pe = {pi | pi ∈ predicates(Σq) ∧ (pi � ⊥) ∈ E ∧ pi /∈ RΣq}
3 Σq = saturate(u,sfSel(Pe), Σq , ∅)
4 Ee = {γi ∈ E | ∀p ∈ γi.∀γj ∈ Σq.p �∈ head(γj)}
5 EΣq = ∅
6 forall the clauses γ1 ∈ Σq ∪EΣq do
7 forall the clauses γ2 ∈ Ee do
8 Γ = resolve(γ1, γ2,sfNoRec(RE))
9 forall the γi ∈ Γ, γi �= γ1 do

10 forall the γj ∈ Σq do
11 if subsumes(γi, γj) then
12 Σq = Σq\{γj}
13 if ¬subsumes(γj, γi) then
14 Σq = Σq ∪ {γi}
15 EΣq = EΣq ∪ Γ

16 forall the C ∈ stronglyConnectedComponents(cgraph(Σq)) do
17 if (incomingConnections(C) = 0 ∧ ∀γ ∈ C.γ ∈ Ee then
18 Σq = Σq\C
19 Σq = reachable(Σq)

20 until Fixpoint
21 return Σq

• Clauses where an atom subsumes another atom are condensed. We use resolution to
find the condensed version of the clause, which subsumes the original clause. Due
to propositions 2 and 7 we know that we can keep any of both clauses. We keep
the condensed version, the subsuming clause, since this clause will more likely
subsume some other clauses.

• SCCs that are implied by the EBox and receive no connections are removed. This
is done again according to Proposition 3.

4 Formalisation

In this section we provide a formalisation for the operations of our algorithms. In par-
ticular, we formalise the optimisations of the original kyrie algorithm presented in Sec-
tion 3. For an easier explanation we introduce two definitions: the contributions of a
clause (ϕΓ (γ)) and the values for a predicate (υΓ (p)). We recall we denote γa sub-
sumes γb with γa *s γb.

Definition 3. ϕΓ (γ) Contributions of a clause γ in a OBDA system Γ = 〈Σ,A〉. Let
p be the predicate in the head of γ, we define the contributions of γ on Γ as the set
ϕΓ (γ) = {t1, . . . , tn | ∃μ.(Γ |= μ body(γ)) ∧ (μ head(γ) = p(t1, . . . , tn))} where
μ is a substitution of the variables in γ with the constants t1, . . . , tn. Please note that



578 J. Mora, R. Rosati, and O. Corcho

Γ |= μ body(γ) means that Σ ∪ A |= μ body(γ), i.e. the values for the contribution
may be implied by other clauses in Σ.

Definition 4. υΓ (p) Values for a predicate p on Γ . For a given OBDA system 〈Σ,A〉 =
Γ , we define as the values for a predicate p ∈ Γ the set υΓ (p) = {t1, . . . , tn | Γ |=
p(t1, . . . , tn)}.

Moreover, the values for a predicate p on Γ , υΓ (p) are divided into the extensional
values (υeΓ (p)) and the intensional values (υiΓ (p)), so that υΓ (p) = υeΓ (p) ∪ υiΓ (p)
where υeΓ (p) = {t1, . . . , tn | A |= p(t1, . . . , tn)} and υiΓ (p) = {t1, . . . , tn | ∃γ, μ.γ ∈
Γ ∧ μ head(γ) = p(t1, . . . , tn) ∧ t1, . . . , tn ∈ ϕΓ (γ)} where μ is the most general
unifier (MGU) applied to head(γ), from the variables in γ to the constants in t1, . . . , tn.

Informally, the intensional values for a predicate p are the contributions of the clauses
where p is in the head, while the contributions of a clause are a projection and selection
of the values for the predicates in its body.

For instance, consider the example in Section 2 and more specifically two of the
clauses that can be extracted from its axioms:
γ1: GradStudent(x) :- MasterStudent(x) and
γ2: GradStudent(x) :- PhDStudent(x)

We keep the ABox as in the example in Section 2. In this example, the extensional
values for GradStudent on our system Γ (υeΓ (GradStudent)) are Ben, Don and Ed.
The intensional values for GradStudent on our system Γ (υiΓ (GradStudent)) are
Ben, Cal and Ed. The values for the predicate p are therefore the union of both sets:
Ben, Cal, Don and Ed. The contributions from clause γ1 (ϕΓ (γ1)) are Ben and Cal.
The contributions from clause γ2 (ϕΓ (γ2)) are just Don.

Proposition 1. Let A be an ABox, Σ and Σ′ be two sets of Datalog clauses such that
Σ′ = Σ ∪ {γr} with pr as the predicate in the head of γr. For the two corresponding
OBDA systems Γ ≡ 〈Σ,A〉 and Γ ′ ≡ 〈Σ′,A〉 if ϕΓ ′(γr) ⊆ υΓ (pr) then υΓ (p) =
υΓ ′(p) for every predicate p in Σ.

Proposition 2. Let Γ = 〈Σ,A〉 be a OBDA system and let γa, γb be two clauses in Σ
such that γa *s γb. Then, ϕΓ (γb) ⊆ ϕΓ (γa). For Γ ′ = Γ \{γb} holds that Φq

Γ = Φq
Γ ′ .

We also know that clauses γr in the previous context such that ϕΓ∪{γr}(γr) ⊆
υΓ\{γr}(pr) can be added or removed safely from the OBDA system Γ

Proposition 3. Let Γ = 〈Σ,A〉 be an OBDA system, let E be an EBox satisfied by A
and cgraph(Σ) = {VΣ ,WΣ}. Let C be a set of clauses in Σ such that cgraph(C) is a
SCC in cgraph(Σ) that receives no connections from other SCCs (∀(γa, γb) ∈ W.γb ∈
cgraph(C)→ γa ∈ cgraph(C)), and ∀γ ∈ V.E |= γ. Then, Φq

〈Σ,A〉 = Φq
〈Σ\C,A〉.

The removal of SCCs for dlgraph(T ) is analogous to the previously described re-
moval of SCCs for cgraph(Σ).

Proposition 4. Let Γ = 〈Σ,A〉 be an OBDA system where Σ is a set of Datalog
clauses, let q be a query, let Γq = q ∪ Γ be a Datalog program and let P be a set of
non-recursive predicates in Γq that have no extensional values, i.e. ∀p ∈ P.υeΓq

(p) = ∅
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and no p ∈ P is the query predicate. Let Γb be the set of clauses in Γq such that
∀γ ∈ Γq.∃p ∈ P.p ∈ body(γ) and let Γh be the set of clauses in Γq such that ∀γ ∈
Γq.∃p ∈ P.p ∈ head(γ). Let Γr be the set of clauses that do not contain p and are
generated through resolution from Γb and Γh with a selection function that selects the
predicates p ∈ P . Let Γs be the set of clauses {γ ∈ Γq ∪ Γr | γ /∈ Γh ∪ Γb}. Then,
Φq
Γ = Φq

Γq∪Γr
= Φq

Γs
.

Proposition 5. Let Γ = 〈Σ,A〉 be an OBDA system, let E be an EBox such that A
satisfies E and let Ee the part of the EBox E that contains only predicates with no
intensional definition in Σ. For every pair γ, γr such that γ ∈ Σ and Ee ∪ γ + γr then
ϕΓ (γr) ⊆ ϕΓ (γ).

Proposition 6. Let Γ = 〈Σ,A〉, E and Ee be defined as in Proposition 5. Then, for
every pair γ, γr such that γ ∈ Σ and Ee ∪ γ + γr, and for every query q, Φq

Γ = Φq
Γ ′ ,

where Γ ′ = Γ\{γr}.

Proposition 7. Let Γ = 〈Σ,A〉, E and Ee be defined as in Proposition 5. Then, for
every triple γ, γr, γs such that (γ, γs ∈ Σ)∧ (Ee ∪ γ + γr)∧ (γr *s γs), and for every
query q, Φq

Γ = Φq
Γ ′ , where Γ ′ = ({γr} ∪ Γ )\{γs}.

5 Evaluation

Having formalised the proposal, we have performed an empirical evaluation to check
our query rewriting optimisations. There is no benchmark in the state of the art to test
query rewriting with EBoxes, therefore we have decided to use some of the most widely
used ontologies for the evaluation of query rewriting systems [6], in particular we used:
Several real world ontologies used in independent projects like Adolena (A), Vicodi
(V) and StockExchange (S). Benchmark ontologies, like a DL-LiteR version of LUBM
(U). Artificial ontologies to test the impact of property paths, path1 and path5 (P1, P5).
Previous ontologies with auxiliary predicates for DL-Lite compliance [9] (UX, P5X).
Additionally, we consider the extension of previous ontologies with axioms in ELHIO
and beyond DL-Lite (UXE, P5XE).

We have have expanded previous assets with a set of synthetically-generated EBoxes,
using a randomized and parametrised algorithm, with parameters:

size: the size of the EBox relative to the size of the TBox: zero is an empty EBox, and
one is an EBox with as many axioms as the TBox.

cover: how much of the TBox is covered by the EBox: zero means that all the axioms
in the EBox will be randomly generated, one means that all the axioms in the EBox
will come from the TBox.

reverse: how many of the axioms obtained from the TBox (cover) are reversed in the
EBox (the reverse of A  B being B  A) wrt the original form in the TBox:
zero means that no axioms are reversed, one means that all axioms are reversed.
The reversed axioms belong to the cover, i.e. if the cover is zero this number has no
effect.



580 J. Mora, R. Rosati, and O. Corcho

Table 2. Results for ontology V (original size 222 clauses) with EBoxes I, II, III and IV

Query independent

qu
er

y

Datalog Datalog UCQ UCQ
information time(ms) size time(ms) size

EBox I II III IV I II III IV I II III IV I II III IV I II III IV
PT 109 2047 24266 2859 1 0 0 157 235 15 13 14 9 0 0 516 672 15 13 14 9
PS 222 195 171 111 2 16 16 157 234 10 10 10 10 16 16 500 656 10 10 10 10
size 0.0 0.2 0.8 0.8 3 0 0 125 235 35 30 28 15 31 15 485 813 72 57 54 15
cover 0.0 0.8 0.2 0.8 4 0 16 219 188 41 38 22 16 63 94 735 719 185 170 3 42
rev 0.0 0.0 0.0 0.0 5 16 16 172 250 8 5 7 1 32 31 609 719 30 9 15 1
PT: preprocess time (ms) 6 0 15 234 188 18 14 14 11 0 15 578 641 18 14 14 11
PS: preprocessed size 7 0 0 125 172 27 23 23 20 94 125 1359 1359 180 140 140 110

All these parameters can be any real number between zero and one, except for size,
which can be greater than one (e.g. a size of two means the EBox is twice the size
of the TBox). Of course, the latter parameters are only significant when previous ones
are greater than zero. If the cover is less than one then axioms up to one are generated
by selecting randomly the LHS or RHS of other rules, adding an axiom A1  A2 for
each pair A1, A2 found this way. For the Ai that are classes, nothing else is done. If
some of them is a property P then the axiom ∃P is added and with a probability of 1/2
some other LHS or RHS A3 of some other rule is selected. If A3 is selected then ∃P is
expanded into ∃P.A3. This is repeated recursively until (1) a class is selected or (2) a
property is selected and not expanded (expansion probability: 1/2).

The “size” is the main parameter. It is meant to help to evaluate the impact of the
EBox on the results. The “cover” specifies how much of the EBox is related to the TBox
and how much is random. It is meant to help to evaluate how the relation between EBox
and TBox impacts on the results. The “reverse” specifies how many of the EBox axioms
that are obtained from the TBox remain unaltered and how many are reversed. If the
axiom is unaltered then the subconcepts are redundant, otherwise the superconcept is
redundant. This parameter helps to evaluate the impact of redundancy in these cases.
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Fig. 1. Average rewriting times relating size and cover. All queries and ontologies considered.
“Reverse” is zero in all cases.
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We have run the tests with a set of EBoxes, selecting the values 0.0, 0.2, 0.4, 0.6,
0.8 and 1.0 for each of the parameters described above. When the size is zero all the
other parameters are zero, and when cover is zero reverse is zero as well. This involves
a total of 1 + 5 ∗ (1 + 5 ∗ 6) = 156 EBoxes, for each ontology, used for all queries.
Due to space limitations, we present a small excerpt of the results for a single ontology
in Table 2: the full results for all the ontologies and the EBoxes can be found online4.

The results have been obtained on cold runs, by restarting the application after every
query (passed in the application invocation parameters). The consistency of the results
regardless of how the system is run has been ensured by measuring the query rewriting
time and discarding operations done before and after it. The hardware used in the eval-
uation is a Intel R©CoreTM2 6300 @1.86GHz with 2GB of RAM, Windows R© XP and
JavaTMversion 1.6.0 33, with default settings for the Java Virtual Machine.
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Fig. 2. Average rewriting sizes relating size and cover. All queries and ontologies considered.
“Reverse” is zero in all cases.

With the evaluation results we can observe that:

• In the computation of Datalog rewritings, using the EBox allows for obtaining equal
or smaller Datalog programs for all queries, with negligible effects on the query
rewriting time.

• For UCQ rewritings, our results show that, in general, the number of clauses is re-
duced as the EBox increases in size and similarity (”cover”) with the TBox. This
reduction in the number of clauses usually implies a reduction in the time required
for the query rewriting process, as we can see in Figure 1. This figure shows the av-
erage time to produce a UCQ or a Datalog rewriting and how EBoxes with different
sizes and TBox coverage influence this time. More precisely:
◦ We can notice that EBoxes with both a high value for cover and size tend to

reduce the query rewriting time when compared with other EBoxes or no EBox.

4 http://purl.org/net/jmora/extensionalqueryrewriting
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◦ When the EBox involves more random axioms (e.g. EBox III in Table 2 with
0.8 for ”size” and 0.2 for ”cover”) the results are less predictable. More specif-
ically, we can see that for UCQ size the EBox III behaves better than EBox
IV in query 4 and it behaves worse than EBox II in query 5. This variation de-
pends on the query, the EBox may contain axioms that imply the subsumption
of atoms in the query. If these axioms are in the TBox, their presence in the
EBox has no impact in the results (EBox IV). However, if these axioms are not
in the TBox, this can lead to further clause condensation, with the elimination
of subsumed clauses and the ones generated from these. This elimination of
clauses means a potentially strong reduction in the size of the results and the
time required to produce them.

• Even in the cases where the query rewriting times are higher, we can see an im-
portant reduction in the number of clauses generated, in the Datalog and UCQ
rewritings, as Figure 2 shows. This reduction in the number of clauses implies a
reduction in the redundancy of the queries that are generated. This simplifies the
computation required for answering the query by the other layers of the OBDA
system.

6 Conclusions and Future Work

We can conclude from the evaluation that the impact of EBoxes is clearly noticeable
and generally positive. This is especially relevant when the EBox is similar to the TBox
in size and contents, which may imply a reduction in query rewriting time. An EBox
that is randomly generated can have a strong positive impact in query rewriting time if it
implies subsumption between the atoms in the query. Even for EBoxes that increase the
query rewriting time, the reduction of redundancy in the generated queries and answers
should produce an improvement in the execution of these queries.

Among the possibilities for future work we consider the extension to Datalog± [15].
The Datalog± family of languages provides interesting opportunities to explore the
expressiveness that can be achieved while dealing with recursion [16].

Another line to explore in the future is considering only the part of the EBox that is
similar to the TBox, which is guaranteed to have a positive impact. For example, the
axioms or clauses in the EBox that are not related with the TBox could be discarded
during the preprocessing. By doing this, the results would be more predictable and the
impact of a large EBox not related with a TBox would be the same as for a small EBox
that is very related to the TBox.

We also consider exploring whether it is possible to extend the input and output
query language to SPARQL. The expressiveness of SPARQL 1.1 allows for a limited
recursion, e.g., property paths. The possibility of using subqueries is also interesting to
limit the combinatorial explosion implied by the unfolding.

Finally, we plan to experiment our technique on some real-world use cases [17],
which would provide information about the relation between the TBox and the corre-
sponding ABox and EBox. This would allow further optimisations that would address
specific characteristics of the EBoxes that are more usual in the use cases. With popu-
lated ABoxes, obtaining the answers to the queries would allow a better quantification
and evaluation of the impact in the whole query answering process.
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Abstract. SPARQL 1.1 supports the use of ontologies to enrich query results
with logical entailments, and OWL 2 provides a dedicated fragment OWL QL
for this purpose. Typical implementations use the OWL QL schema to rewrite a
conjunctive query into an equivalent set of queries, to be answered against the
non-schema part of the data. With the adoption of the recent SPARQL 1.1 stan-
dard, however, RDF databases are capable of answering much more expressive
queries directly, and we ask how this can be exploited in query rewriting. We find
that SPARQL 1.1 is powerful enough to “implement” a full-fledged OWL QL rea-
soner in a single query. Using additional SPARQL 1.1 features, we develop a new
method of schema-agnostic query rewriting, where arbitrary conjunctive queries
over OWL QL are rewritten into equivalent SPARQL 1.1 queries in a way that is
fully independent of the actual schema. This allows us to query RDF data under
OWL QL entailment without extracting or preprocessing OWL axioms.

1 Introduction

SPARQL 1.1, the recent revision of the W3C SPARQL standard, introduces significant
extensions to the capabilities of the popular RDF query language [10]. Even at the very
core of the query language, we can find many notable new features, including property
paths, value creation (BIND), inline data (VALUES), negation, and extended filtering
capabilities. In addition, SPARQL 1.1 now supports query answering over OWL on-
tologies, taking full advantage of ontological information in the data [8].

Query answering in the presence of ontologies is known as ontology-based data
access (OBDA), and has long been an important topic in applied and foundational re-
search. Even before SPARQL provided support for this feature, several projects have
used ontologies to integrate disparate data sources or to provide views over legacy
databases, e.g. [5,15,16,6,11]. The W3C OWL 2 Web Ontology Language includes the
OWL QL language profile, which was specifically designed for this application [12].
With the arrival of SPARQL 1.1, every aspect of OBDA is thus supported by tailor-
made W3C technologies.

In practice, however, SPARQL and OWL QL are rarely integrated. Most works on
OBDA address the problem of answering conjunctive queries (CQs), which correspond
to SELECT-PROJECT-JOIN queries in SQL, and (to some degree) to Basic Graph Pat-
terns in SPARQL. The most common approach for OBDA is query rewriting, where a
given CQ is rewritten into a (set of) CQs that fully incorporate the schema information
of the ontology. The answers to the rewritten queries (obtained without considering the

P. Mika et al. (Eds.) ISWC 2014, Part I, LNCS 8796, pp. 584–600, 2014.
c© Springer International Publishing Switzerland 2014
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ontology) are guaranteed to agree with the answers of the original queries (over the
ontology). This approach separates the ontology (used for query rewriting) from the
rest of the data (used for query answering), and it is typical that the latter is stored in
a relational database. Correspondingly, the rewritten queries are often transformed into
SQL for query answering. SPARQL and RDF do not play a role in this.

In this paper, we thus take a fresh look on the problem of OBDA query rewriting
with SPARQL 1.1 as our target query language. The additional expressive power of
SPARQL 1.1 allows us to introduce a new paradigm of schema-agnostic query rewrit-
ing, where the ontological schema is not needed for rewriting queries. Rather, the on-
tology is stored together with the data in a single RDF database. This is how many
ontologies are managed today, and it corresponds to the W3C view on OWL and RDF,
which does not distinguish schema and data components. The fact that today’s OBDA
approaches separate both parts testifies to their focus on relational databases. Our work,
somewhat ironically, widens the scope of OWL QL to RDF-based applications, which
have hitherto focused on OWL RL as their ontology language of choice.

Another practical advantage of schema-agnostic query rewriting is that it supports
frequent updates of both data and schema. The rewriting system does not need any in-
formation on the content of the database under query, while the SPARQL processor that
executes the query does not need any support for OWL. This is particularly interesting if
a database can only be accessed through a restricted SPARQL query interface that does
not support reasoning. For example, we have used our approach to check the consis-
tency of DBpedia under OWL semantics, using only the public Live DBpedia SPARQL
endpoint1 (it is inconsistent: every library is inferred to belong to the mutually disjoint
classes “Place” and “Agent”).

Our main contributions are as follows:

– We express the standard reasoning tasks for OWL QL, including consistency check-
ing, classification, and instance retrieval, in single, fixed SPARQL 1.1 queries that
are independent of the ontology. For this, we use SPARQL 1.1 property paths,
which support a simple form of recursion that is powerful enough for OWL QL
reasoning.

– We show how to rewrite arbitrary SPARQL Basic Graph Patterns (BGPs) into sin-
gle SPARQL 1.1 queries of polynomial size. This task is simplified by the fact that
SPARQL does not support “non-distinguished” variables as used in general CQs.

– We present a schema-agnostic rewriting of general CQs in SPARQL 1.1, again into
single queries of polynomial size. This rewriting is more involved, and we use two
additional features: inline data (VALUES) and (in)equality checks in filters.

– We show the limits of schema-agnostic rewriting in SPARQL 1.1 by proving that
many other OWL features cannot be supported in this way. This includes even the
most basic features OWL EL and OWL RL, and mild extensions of OWL QL.

Worst-case reasoning complexity remains the same in all cases, yet our approach is
much more practical in the case of standard reasoning and BGP rewriting. For general
CQs, the rewritten queries are usually too complex for today’s RDF databases to handle.
Nevertheless, we think that our “SPARQL 1.1 implementation” of OWL QL query an-
swering is a valuable contribution, since it reduces the problem of supporting OWL QL

1 http://live.dbpedia.org/sparql
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in an RDF database to the task of optimizing a single (type of) query. Since OWL QL
subsumes RDFS, one can also apply our insights to implement query answering under
RDFS ontologies, which again leads to much simpler queries.

In Section 2, we start by giving a compact introduction to the parts of SPARQL 1.1
that we require. Thereafter, in Section 3, we introduce OWL QL and relate its semantics
to a chase procedure. In Section 4, we develop queries for implementing basic QL
reasoning in SPARQL 1.1, and in Section 5, we extend this into a schema-agnostic
query rewriting procedure for conjunctive queries. Finally, we investigate the limits of
schema-agnostic query rewriting, and present several negative results in Section 6. We
close with a short discussion and outlook in Section 7. Omitted proofs can be found in
the accompanying technical report [3].

2 Preliminaries: RDF and SPARQL 1.1

We consider RDF documents based on the set IRI of IRIs and BN of blank node iden-
tifiers; we do not consider literals, since they would complicate our exposition with-
out adding technical insights (they can mostly be treated like named individuals in
OWL QL). We use Turtle syntax for denoting RDF throughout this paper.

In addition to IRIs and blank nodes, SPARQL 1.1 queries use variables as con-
stituents, which are indicated by a preceding question mark. For compatibility with the
entailment regimes, we will consider SPARQL 1.1 under the set semantics, i.e., multi-
plicities of solutions will be ignored, as indicated by the DISTINCT keyword. Next, we
introduce syntax and semantics of the SPARQL 1.1 fragment employed in this paper.

Path expressions are defined inductively as follows: (i) Every IRI is a property path.
(ii) For p and q property paths, the following expressions are property paths as well:
(ˆp) for inverse, (p / q) for sequence, (p | q) for alternative, (p∗) for Kleene star. As
usual, parentheses can be omitted if there is no danger of confusion. Triple expressions
are of the form s p o where s and o are IRIs, blank nodes, or variables, whereas p is
an IRI, a variable, or a path expression. Basic graph patterns are defined as finite se-
quences of triple expressions separated by a period. Values blocks for inline data have
the shape VALUES (?x1 . . .?xn){(v1,1 . . . v1,n) . . . (vk,1 . . . vk,n)} for natural numbers n and
k with vi, j ∈ IRI ∪ BN. Filter expressions are of the form FILTER(boolexp) where
boolexp is an algebraic expression encoding the application of filter functions to vari-
ables resulting in a Boolean value (for more details see [10]). Graph patterns are defined
inductively: (i) any basic graph pattern is a graph pattern (ii) if gp1 and gp2 are graph
patterns then {gp1} UNION {gp2} is a graph pattern (iii) any sequence of graph patterns,
values blocks and filter expressions is again a graph pattern. A SELECT-DISTINCT
query is a SPARQL 1.1 query of the shape SELECT DISTINCT varlist WHERE {gp},
where gp is a graph pattern and varlist is a list of variables occurring in gp.

We now define the sematics of SPARQL 1.1 queries, without taking reasoning into
account; this is known as simple entailment (as opposed to OWL DL entailment,
where the OWL axioms are evaluated under OWL Direct Semantics [8]). We de-
fine the evaluation of path expressions w.r.t. G as a binary relation over IRI ∪ BN
in an inductive way: evalG(p) = {(u1, u2) | u1 p u2 ∈ G)} for p ∈ IRI, inverse
evalG(ˆp) = {(u2, u1) | (u1, u2) ∈ evalG(p)}, sequence evalG(p / q) = {(u1, u3) |
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(u1, u2) ∈ evalG(p), (u2, u3) ∈ evalG(q)}, alternative evalG(p | q) = evalG(p) ∪ evalG(q),
Kleene star evalG(p∗) =

⋃
n≥0 evalG(pn) where evalG(p0) = {(u, u) | u ∈ IRI ∪

BN occurs in G} and evalG(pn+1) = evalG(pn) ◦ evalG(p). The evaluation evalG(bgp)
of a basic graph pattern bgp w.r.t. some RDF graph G is the set of all partial map-
pings μ from variables in bgp to IRIs or blank nodes of G, such that there exists some
mapping σ from all blank nodes in bgp to terms of G for which μ(σ(bgp)) ∈ G.
Moreover, evalG(VALUES (?x1 . . .?xn){(v1,1 . . . v1,n) . . . (vk,1 . . . vk,n)}) = {{?x1 	→v1,1, . . . ,
?xn 	→v1,n}, . . . {?x1 	→vk,1, . . . , ?xn 	→vk,n}} and evalG({gp1} UNION {gp2}) = evalG(gp1) ∪
evalG(gp2). For graph patterns gp that are sequences of graph patterns, values blocks
and filter expressions FILTER(boolexp1), . . . , FILTER(boolexp�) we let evalG(gp) = {μ |
μ ∈ J ∧ μ(boolexp1) = true ∧ . . . ∧ μ(boolexp�) = true} where J is the join over all
evalG(block) where block ranges over all graph patterns and values blocks of the se-
quence. We say a graph pattern gp has a match into a graph G if evalG(gp) � ∅. Finally,
the set of answers of a SELECT-DISTINCT query SELECT DISTINCT varlist WHERE
{gp} is the set obtained by restricting every partial function μ ∈ evalG(gp) to the vari-
ables contained in varlist.

3 OWL QL: RDF Syntax and Rule-Based Semantics

OWL QL is one of the OWL 2 profiles, which restrict the OWL 2 DL ontology lan-
guage to ensure that reasoning is tractable [12]. To ensure compatibility with SPARQL,
we work only with the RDF representation of OWL QL here [13]. Like OWL 2 DL,
OWL QL requires “standard use” of RDFS and OWL vocabulary, i.e., special vocabu-
lary that is used to encode ontology axioms in RDF is strictly distinct from the ontol-
ogy’s vocabulary, and can only occur in specific triple patterns. Only a few special IRIs,
such as owl:Thing, can also be used like ontology vocabulary in axioms.

OWL classes, properties, and individuals are represented by RDF elements, where
complex class and property expressions are represented by blank nodes. Whether an
expression is represented by an IRI or a blank node does not have an impact on onto-
logical entailment, so we ignore this distinction in most cases. OWL 2 DL allows us to
use a single IRI to represent an individual, a class, and a property in the same ontology;
owing to the restrictions of standard use, it is always clear which meaning applies in a
particular case. Hence we will also work with one single set of IRIs.

Next, we define the constrains that an RDF graph has to satisfy to represent an
OWL QL ontology. To this end, consider a fixed RDF graph G. A property expres-
sion in G is an IRI or a blank node _:b that occurs in a pattern {_:b owl:inverseOf P}
with P ∈ IRI. We use PRP for the set of all property elements in a given RDF graph.
OWL QL further distinguishes two types of class expressions with different syntactic
constraints. The set SBC of subclasses in G consists of all IRIs and all blank nodes _:b
that occur in a pattern {_:b owl:onProperty P; owl:someValuesFrom owl:Thing}, where
P ∈ PRP. The set SPC of superclasses in G is defined recursively as follows. An ele-
ment x is in SPC if it is in IRI, or if it is in BN and G contains one of the following
patterns:

– {x owl:onProperty PRP; owl:someValuesFrom y} where y ∈ SPC;
– {x owl:intersectionOf (y1, . . . , yn)} where y1, . . . , yn ∈ SPC;
– {x owl:complementOf y} where y ∈ SBC.
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G is an OWL QL ontology may use the following triple patterns to encode axioms:

– {IRI PRP IRI}
– {IRI rdf:type SPC}
– {SBC rdfs:subClassOf SPC}
– {SBC owl:equivalentClass SBC}
– {SBC owl:disjointWith SBC}
– {PRP rdfs:range SPC}

– {PRP rdfs:domain SPC}
– {PRP rdfs:subPropertyOf PRP}
– {PRP owl:equivalentProperty PRP}
– {PRP owl:inverseOf PRP}
– {PRP owl:propertyDisjointWith PRP}
– {IRI owl:differentFrom IRI}

– {BN rdf:type owl:AllDisjointClasses; owl:members (SBC, . . . , SBC)}
– {BN rdf:type owl:AllDisjointProperties; owl:members (PRP, . . . ,PRP)}
– {BN rdf:type owl:AllDifferent; owl:members (IRI, . . . , IRI)}

G is an OWL QL ontology if every triple in G is part of a unique axiom or a unique com-
plex class or property definition used in such axioms. For simplicity, we ignore triples
used in annotations or ontology headers. Moreover, we do not consider the OWL QL
property characteristics symmetry, asymmetry, and global reflexivity. Asymmetry and
reflexivity are not a problem, but their explicit treatment would inflate our presentation
considerably. Symmetry, in contrast, cannot be supported with SPARQL 1.1, as we will
show in Section 6. This is no major limitation of our approach, since symmetry can be
expressed using inverses. This shows that rewritability of an ontology language does
not depend on ontological expressiveness alone.

The semantics of OWL QL is inherited from OWL DL, but it can also be described
by defining a universal model, i.e., a structure that realizes precisely the entailments of
an ontology. Such a “least model” exactly captures the semantics of an ontology. To
define a universal model for OWL QL, we define a set of RDF-based inference rules,
similar to the rules given for OWL RL in the standard [12]. In contrast to OWL RL,
however, the application of rules can introduce new elements to an RDF graph, and the
universal model that is obtained in the limit is not finite in general. Indeed, our goal
is not to give a practical reasoning algorithm, but to define the semantics of OWL QL
in a way that is useful for analyzing the correctness of the rewriting algorithms we
introduce.

The main rules for reasoning in OWL QL are defined in Table 1. A rule is appli-
cable if the premise on the left matches the current RDF graph and the conclusion on
the right does not match the current graph; in this case, the conclusion is added to the
graph. In case of rule (2), this requires us to create a fresh blank node. In all other cases,
we only add new triples among existing elements. Rules like (3) are actually schemas
for an infinite number of rules for lists of any length n and any index i ∈ {1, . . . , n}.
Rules (15)–(16) cover owl:Thing and owl:topObjectProperty, which lead to conclusions
that are true for “all” individuals. To ensure standard use, we cannot simply assert
x rdf:type owl:Thing for every IRI x, and we restrict instead to IRIs that are used as in-
dividuals in the ontology. We define individual(x) to be the SPARQL pattern {x rdf:type
owl:NamedIndividual} UNION {x rdf:type ?C . ?C rdf:type owl:Class} UNION {x ?P
?Y . ?P rdf:type owl:ObjectProperty} UNION {?Y ?P x . ?P rdf:type owl:ObjectProperty}.
Note that this also covers any newly introduced individuals.
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Table 1. RDF inference rules for OWL QL

→ [] rdf:type owl:Thing (1)

?X rdf:type [owl:onProperty ?P; owl:someValuesFrom ?C]→ ?X ?P [rdf:type ?C] (2)

?X rdf:type [owl:intersectionOf (?C1, . . . , ?Ci, . . . , ?Cn)]→ ?X rdf:type ?Ci (3)

?X rdf:type ?C . ?C rdfs:subClassOf ?D→ ?X rdf:type ?D (4)

?X rdf:type ?C . ?C owl:equivalentClass ?D→ ?X rdf:type ?D (5)

?X rdf:type ?C . ?D owl:equivalentClass ?C→ ?X rdf:type ?D (6)

?X ?P ?Y .

?C owl:onProperty ?P; owl:someValuesFrom owl:Thing→ ?X rdf:type ?C (7)

?X ?P ?Y . ?P rdfs:domain ?C→ ?X rdf:type ?C (8)

?X ?P ?Y . ?P rdfs:range ?C→ ?Y rdf:type ?C (9)

?X ?P ?Y . ?P owl:inverseOf ?Q→ ?Y ?Q ?X (10)

?X ?P ?Y . ?Q owl:inverseOf ?P→ ?Y ?Q ?X (11)

?X ?P ?Y . ?P rdfs:subPropertyOf ?Q→ ?X ?Q ?Y (12)

?X ?P ?Y . ?P owl:equivalentProperty ?Q→ ?X ?Q ?Y (13)

?X ?P ?Y . ?Q owl:equivalentProperty ?P→ ?X ?Q ?Y (14)

individual(?X)→ ?X rdf:type owl:Thing (15)

?X rdf:type owl:Thing . ?Y rdf:type owl:Thing→ ?X owl:topObjectProperty ?Y (16)

Definition 1. The chase G′ of an OWL QL ontology G is a possibly infinite RDF graph
obtained from G by fair application of the rules of Tables 1, meaning that every rule
that is applicable has eventually been applied.

Finally, some features of OWL QL can only make the ontology inconsistent, but
not introduce any other kinds of positive entailments. According patterns are shown
in Table 2. If any of these match, the ontology is inconsistent, every OWL axiom is a
logical consequence, and there is no universal model.

Theorem 1. Consider an OWL QL ontology G with chase G′, and a basic graph pattern
P. A variable mapping μ is a solution for P over G under the OWL DL entailment regime
if and only if either (1) μ is a solution for P over G′ under simple entailment, or (2) one
of the patterns of Table 2 matches G′.

4 QL Reasoning with SPARQL Property Expressions

Next, we define SPARQL 1.1 queries to solve standard reasoning tasks of OWL QL. We
start with simple cases and then consider increasingly complex reasoning problems.

We first focus on the property hierarchy. An axiom of the form p rdfs:subPropertyOf
q is entailed by an ontology G if, for newly introduced individuals a and b, G ∪ {a p b}
entails {a q b}. By Theorem 1, the rules of Section 3 represent all possibilities for
deriving this information. In this particular case, we can see that only rules (10)–
(14) in Table 1 can derive a triple of the form a q b, where q is a regular prop-
erty. The case q =owl:topObjectProperty is easy to handle, since p rdfs:subPropertyOf
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Table 2. RDF inference patterns for inconsistency in OWL QL

?X owl:bottomObjectProperty ?Y (17)

?X rdf:type owl:Nothing (18)

?X rdf:type ?C . ?X rdf:type [owl:complementOf ?C] (19)

?X rdf:type ?C . ?X rdf:type ?D . ?C owl:disjointWith ?D (20)

?X rdf:type ?Ci . ?X rdf:type ?C j.

_:b rdf:type owl:AllDisjointClasses; owl:members (?C1, . . . , ?Ci, . . . , ?C j, . . . , ?Cn) (21)

?X ?P ?Y . ?X ?Q ?Y . ?P owl:propertyDisjointWith ?Q (22)

?X ?Pi ?Y . ?X ?P j ?Y.

_:b rdf:type owl:AllDisjointProperties; owl:members (?P1, . . . , ?Pi, . . . , ?P j, . . . , ?Pn) (23)

?X owl:differentFrom ?X (24)

_:b rdf:type owl:AllDifferent; owl:members (?I1, . . . , ?X, . . . , ?X, . . . , ?In) (25)

owl:topObjectProperty is always true (which is also shown by rules (15) and (16)). In
addition, it might be that G ∪ {a p b} is inconsistent, implied by rules of Table 2; we
will ignore this case for now, since it requires more powerful reasoning.

Definition 2. We introduce sPO, invOf, and eqP as abbreviations for
rdfs:subPropertyOf, owl:inverseOf, and owl:equivalentProperty, respectively, and define
the following composite property path expressions SpoEqp � (sPO | eqP | ˆeqP),
Inv � (invOf | ˆinvOf), subPropertyOf � (SpoEqp | (Inv / SpoEqp∗ / Inv))∗, as well as
subInvPropertyOf � SpoEqp∗ / Inv / subPropertyOf. Moreover, for an arbitrary term
x, let univProperty[x] be the pattern {owl:topObjectProperty (SpoEqp | Inv)∗ x}.

The pattern subPropertyOf does not check for property subsumption that is caused
by the inconsistency rules in Table 2, but it can be used to check for subsumptions
related to owl:topObjectProperty. The corresponding correctness result is as follows:

Proposition 1. Consider an OWL QL ontology G with properties p, q ∈ PRP such that
G ∪ {_:a p _:b} is consistent. Then G entails p rdfs:subPropertyOf q iff the pattern
{p subPropertyOf q} UNION univProperty[q] matches G.

We will extend this to cover the inconsistent case in Theorem 2 below. First, however,
we look at entailments of class subsumptions. In this case, the main rules are (2)–(9).
However, several of these rules also depend on property triples derived by rules (10)–
(14), and we apply our results on property subsumption to take this into account.

Definition 3. Let eqC and sCO abbreviate owl:equivalentClass and rdfs:subClassOf,
respectively. We define property path expressions

– intListMember � (owl:intersectionOf / rdf:rest∗ / rdf:first),
– someProp � (owl:onProperty / subPropertyOf / (ˆowl:onProperty | rdfs:domain)),
– somePropInv � (owl:onProperty / subInvPropertyOf / rdfs:range),
– subClassOf � (sCO | eqC | ˆeqC | intListMember | someProp | somePropInv)∗.
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Table 3. Pattern emptyClass[x] for detecting empty classes

x (sCO | eqC | ˆeqC | intListMember | owl:someValuesFrom |
(owl:onProperty / (Inv | SpoEqp)∗ / (ˆowl:onProperty | rdfs:domain | rdfs:range))∗ ?C . {
{?C subClassOf owl:Nothing} UNION
{?C subClassOf ?D1 {{?C subClassOf ?D2} UNION univClass[?D2]} {
{?D1 disjointClasses ?D2} UNION
{?V rdf:type owl:AllDisjointClasses . twoMembers[?V, ?D1, ?D2]}

}} UNION
{?C (owl:onProperty / (Inv | SpoEqp)∗) ?P . {
{?P subPropertyOf owl:bottomObjectProperty} UNION
{?P subPropertyOf ?Q1 {{?P subPropertyOf ?Q2} UNION univProperty[?Q2]} {
{?Q1 (owl:propertyDisjointWith | ˆowl:propertyDisjointWith) ?Q2} UNION
{?V rdf:type owl:AllDisjointProperties . twoMembers[?V, ?Q1, ?Q2]}

}
}}

}

Moreover, we let univClass[x] denote the pattern {owl:Thing subClassOf x} UNION
{owl:topObjectProperty ((SpoEqp | Inv)∗ / (ˆowl:onProperty | rdfs:domain | rdfs:range)/
subClassOf) x}

Proposition 2. Consider an OWL QL ontology G with classes c ∈ SPC and d ∈ SBC
such that G ∪ {_:a rdf:type c} is consistent. Then G entails c rdfs:subClassOf d iff the
pattern {c subClassOf d} UNION univClass[d] matches G.

It remains to identify classes that are incoherent, i.e., for which c rdfs:subClassOf
owl:Nothing is entailed. To do this, we need to consider the patterns of Table 2.

Definition 4. For arbitrary terms x, y, and z, let twoMembers[x, y, z] be the pattern
{x (owl:members / rdf:rest∗) ?W . ?W rdf:first y . ?W (rdf:rest+ / rdf:first) z}, and let
disjointClasses be the property path expression (owl:disjointWith | ˆowl:disjointWith |
owl:complementOf | ˆowl:complementOf). The query pattern emptyClass[x] is defined
as in Table 3, and the query pattern emptyProperty[x] is defined as in Table 4.

We can now completely express OWL QL schema reasoning in SPARQL 1.1:

Theorem 2. An OWL QL ontology G is inconsistent iff it has a match for the pattern

{?X rdf:type ?C . emptyClass[?C]} UNION {?X ?P ?Y . emptyProperty[?P]} UNION

{?X owl:differentFrom ?X} UNION

{?V rdf:type owl:AllDifferent . twoMembers[?V, ?X, ?X]}. (26)

G entails c rdfs:subClassOf d for c ∈ SPC and d ∈ SBC iff G is either inconsistent or
has a match for the pattern

{c subClassOf d} UNION univClass[d] UNION emptyClass[c]. (27)
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Table 4. Pattern emptyProperty[x] for detecting empty properties

x (Inv | SpoEqp | (ˆowl:onProperty /
(sCO | eqC | ˆeqC | intListMember | owl:someValuesFrom)∗ / owl:onProperty))∗ ?P . {
{?P subPropertyOf owl:bottomObjectProperty} UNION
{?P subPropertyOf ?Q1 {{?P subPropertyOf ?Q2} UNION univProperty[?Q2]} {
{?Q1 (owl:propertyDisjointWith | ˆowl:propertyDisjointWith) ?Q2} UNION
{?V rdf:type owl:AllDisjointProperties . twoMembers[?V, ?Q1, ?Q2]}

}} UNION
{?P ((ˆowl:onProperty | rdfs:domain | rdfs:range) / subClassOf) ?C . {
{?C subClassOf owl:Nothing} UNION
{?C subClassOf ?D1 {{?C subClassOf ?D2} UNION univClass[?D2]} {
{?D1 disjointClasses ?D2} UNION
{?V rdf:type owl:AllDisjointClasses . twoMembers[?V, ?D1, ?D2]}

}
}}

}

G entails x rdf:type c iff G is either inconsistent or has a match for the pattern

{{x (rdf:type / subClassOf) c} UNION

{x ?P ?Y . ?P (subPropertyOf / (ˆowl:onProperty | rdfs:domain) / subClassOf) c} UNION

{?Y ?P x . ?P (subPropertyOf / rdfs:range / subClassOf) c}
} UNION univClass[c] (28)

G entails p rdfs:subPropertyOf q for p, q ∈ PRP iff G is either inconsistent or has a
match for the pattern

{p subPropertyOf q} UNION univProperty[q] UNION emptyProperty[p]. (29)

G entails x p y iff G is either inconsistent or has a match for the pattern

{x ?R y . ?R subPropertyOf p} UNION {y ?R x . ?R subInvPropertyOf p}
UNION univProperty[p]. (30)

5 OWL QL Query Rewriting with SPARQL 1.1

We now turn towards query answering over OWL QL ontologies using SPARQL 1.1.
Research in OWL QL query answering typically considers the problem of answering
conjunctive queries (CQs), which are conjunctions of OWL property and class asser-
tions that use variables only in the place of individuals, not in the place of properties or
classes. Conjunction can easily be represented by a Basic Graph Pattern in SPARQL,
yet CQs are not a subset of SPARQL, since they also support existential quantifica-
tion of variables. Normal query variables are called distinguished while existentially
quantified variables are called non-distinguished. Distinguished variables can only bind
to elements of the ontology, whereas for non-distinguished variables it suffices if the
ontology implies that some binding must exist.
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Example 1. Consider an OWL ontology with the assertion :peter rdf:type :Person
and the axiom :Person rdfs:subClassOf [owl:onProperty :father; owl:someValuesFrom
:Person]. This implies that :peter has some :father but the ontology may not contain
any element of which we know that it plays this role. In this case, the SPARQL pattern
{?X :father ?Y} would not have a match with ?X = :peter under OWL DL entailment.
In contrast, if the variable ?Y were non-distinguished, the query would match with
?X = :peter (and ?Y would not receive any binding).

SPARQL can only express CQs where all variables are distinguished. To define this
fragment of SPARQL, recall that the OWL DL entailment regime of SPARQL 1.1
requires every variable to be declared for a certain type (individual, object property,
datatype property, or class) [8]. This requirement is the analogue of “standard use” on
the level of query patterns, and it allows us to focus on instance retrieval here. We thus
call a Basic Graph Pattern P CQ-pattern if: (1) P does not contain any OWL, RDF, or
RDFS URIs other than rdf:type in property positions, (2) all variables in P are declared
as required by the OWL DL entailment regime, (3) property variables occur only in
predicate positions, and (4) class variables occur only in object positions of triples with
predicate rdf:type. Rewriting CQ-patterns is an easy application of Theorem 2:

Definition 5. For a triple pattern e rdf:type c, the rewriting �x rdf:type c� is the graph
pattern (28) as in Theorem 2; for a triple pattern x p y, the rewriting �x p y� is the
graph pattern (30). The rewriting �P� of a CQ-pattern P is obtained by replacing every
triple pattern s p o in P by {�s p o�}.
Theorem 3. If G is the RDF graph of a consistent OWL QL ontology, then the matches
of a CQ-pattern P on G under OWL DL entailment are exactly the matches of �P� on
G under simple entailment.

5.1 Rewriting General Conjunctive Queries

We now explain the additional aspects that we need to take into account for comput-
ing answers to CQs with non-distinguished variables, and give an intuitive overview of
our rewriting approach. A general challenge that we have to address is that classical
query rewriting for OWL QL may lead to exponentially many queries, owing to the fact
that many non-deterministic choices have to be made to find a query match. Some of
these choices depend on the ontology, e.g., on the depth of the class hierarchy, and are
naturally represented in (small) SPARQL 1.1 queries in our approach. Other choices,
however, depend on the query, e.g., the decision which variables should be identified
(query factorization). It is not immediately clear how to represent these choices in a
polynomial query, even when using path expressions. Our solution depends on the cre-
ative use of the VALUES feature of SPARQL 1.1.

As explained before, non-distinguished variables can be matched to inferred individ-
uals that are not named in the ontology. The chase introduced in Section 3 still captures
this more general notion of query answering. The only rule to infer new individuals is
(2), which introduces fresh bnodes that we call anonymous individuals. The elements
of the original ontology (bnode or not) are named individuals. It is well known that a
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QL ontology G entails a CQ q if and only if there is a match from q to the (possibly infi-
nite) chase of G such that all distinguished variables are mapped to named individuals.
Non-distinguished variables can be mapped to either named or anonymous individuals.

To represent the match of a query variable x in the rewritten query, we introduce a
SPARQL variable ?Mx. For named individuals, ?Mx can bind to the individual in the
RDF graph. However, if x is non-distinguished, then it could match to anonymous in-
dividuals, which are not represented by any individual in RDF. In this case, we bind
?Mx to the bnode _:b representing the OWL property restriction _:b owl:onProperty ?P;
owl:someValuesFrom ?C that was used in rule (2) to generate the anonymous individ-
ual. Indeed, all class and property assertions that are derived for the anonymous indi-
vidual can be deduced from ?P and ?C only, so this binding allows us to check query
conditions.

However, the bnode _:b does not determine the identity of the anonymous individ-
ual, since infinitely many anonymous individuals can be generated from the same OWL
property restriction. Example 1 illustrates this: every person has another person as is
its father, ad infinitum. Nevertheless, the query :peter :father ?Z . ?Z :father ?Z should
not have a match, even if ?Z is non-distinguished. Disregarding universal property as-
sertions that follow from rule (16), anonymous individuals can only be related to their
parent individual (represented by ?X in rule (2)) or to their children (which have the
anonymous element as their parent). Therefore, to check if a triple pattern ?X p ?Y can
match, we may need to know if ?X is the parent of ?Y. We capture this with auxiliary
variables ?Pxy which we bind to one of two possible values (interpreted as true and
false).

We thus introduce variables ?Pxy for every pair of CQ variables x and y where y is
non-distinguished. This completely specifies the parenthood of the matches. Together
with the generating OWL restriction represented by ?Mx, this gives us enough infor-
mation to verify property assertions. To find all matches of a CQ, one has to allow for
the possibility that several query variables represent the same element of the chase. To
capture this, we introduce variables ?Exy that tell us if the values of x and y are equal;
again we use two possible values to represent true and false. Additional conditions in
our query will ensure that there are no cycles in the parenthood relation, and that equal
values are indeed equal. Many of these can be encoded in propositional logic, as ex-
plained next.

5.2 Expressing Propositional Logic in SPARQL 1.1

Our intuitive explanation above uses “Boolean” variables like ?Pxy and ?Exy, which can
have one of two values. Moreover, the bindings of these variables should obey further
constraints. For example, if x is the parent of y and y is identified with z, then x is the
parent of z. This corresponds to a propositional logic implication ?Pxz∧ ?Eyz→ ?Pxz.

We express this using the VALUES feature of SPARQL 1.1, which allows us to as-
sign a fixed set of bindings to a list of variables. For example, the pattern VALUES
(?Pxy){(<http://example.org/true>)(<http://example.org/false>)} has exactly two solu-
tions, binding ?Pxy to one of the given URIs. The URIs used here are irrelevant, and
it does not even matter if they occur in the data; we thus use the abbreviations T and
F to denote two distinct URIs that we use to represent Boolean values. Propositional
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logic formulae can now be represented by encoding their truth table using VALUES. For
example, the implication ?Pxz ∧ ?Eyz→ ?Pxz can be expressed as:

VALUES (?Pxy ?Eyz ?Pxz){(F F F)(T F F)(F T F)(F F T)(T F T)(F T T)(T T T)}. (31)

We denote this pattern as �?Pxz ∧ ?Eyz → ?Pxz�, and similarly for any other proposi-
tional logic formula over SPARQL variables. The solutions to (31) are exactly the truth
assignments under which the implication holds. In particular, every solution requires
each of the three variables to be bound to T or F (and thus to never be undefined).

5.3 A Schema-Agnostic Rewriting for Conjunctive Queries

We now specify the complete rewriting of CQs in SPARQL 1.1, which consists of
rewritings for the individual triple patterns and several additional patterns to ensure that
the bindings of all (auxiliary) variables are as intended. Consider a CQ q with variables
Var(q), partitioned into the set Vard(q) of distinguished variables and Varn(q) of non-
distinguished variables. Our encoding uses the following sets of SPARQL variables:

– for every x ∈ Var(q), a variable ?Mx (encoding the “match for x”).

In addition, we use the following propositional SPARQL variables:

– for every x ∈ Var(q), a variable ?Nx (“x is a named individual”).
– for every pair x, y ∈ Var(q), a variable ?Exy (“x is equal to y”);
– for every pair x ∈ Var(q) and y ∈ Varn(q), a variable ?Pxy (“x is the parent of y”);
– for every pair x, y ∈ Varn(q), a variable ?Axy (“x is an ancestor of y”);

The variables ?Axy are used to encode the transitive closure over the parent relations
on non-distinguished variables; this is necessary to preclude cyclic ancestries. We use
PropConstraints(q) to denote the SPARQL encoding of all of the following implica-
tions (for every possible combination of the above variables, if no other condition is
given):

for x ∈ Vard(q): T→ ?Nx

?Exy→ ?Eyx ?Exy ∧ ?Nx→ ?Ny ?Pxy→ ?Axy

?Exy ∧ ?Eyz→ ?Exz ?Exy ∧ ?Pxz→ ?Pyz ?Axy ∧ ?Ayz→ ?Axz

?Pxz ∧ ?Pyz→ ?Exy ?Exy ∧ ?Pzx→ ?Pzy ?Axx→ F

The previous conditions do not ensure yet that the bindings for ?Mx and ?My are the
same whenever ?Exy is true. This cannot be encoded using VALUES. Instead, we define
EqualityFilter(q) to be the condition of the following filter conditions:

FILTER(?Exy = F || ?Mx = ?My) x, y ∈ Var(q)

We can now define the rewriting of the actual query conditions. For readability, we
use �?V := u� to abbreviate VALUES (?V){(u)}. The triple pattern x rdf:type c is rewrit-
ten into the following pattern, denoted Rewrite(x rdf:type c):
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{�?Nx := T� . �?Mx rdf:type c�}
UNION {univClass[c]}
UNION {�?Nx := F� . ?E subClassOf c

{{?Mx owl:someValuesFrom ?E} UNION

{?Mx (owl:onProperty / subPropertyOf / rdfs:range) ?E} UNION

{?Mx (owl:onProperty / subInvPropertyOf / (ˆowl:onProperty | rdfs:domain)) ?E}}

A triple pattern x p y is rewritten into the following pattern, denoted Rewrite(x p y):

{�?Nx := T� . �?Ny := T� . �?Mx p ?My�}
UNION {univProperty[p]}
UNION {�?Ny := F� . �?Pxy := T� . ?My (owl:onProperty / subPropertyOf) p

{Rewrite(x rdf:type ?My)}
UNION {�?Nx := F� . �?Pyx := T� . ?Mx (owl:onProperty / subInvPropertyOf) p

{Rewrite(y rdf:type ?Mx)}

Note that the parenthood relationship ?Pyx is only relevant for checking certain triple
patterns. In each of these cases, we verify that the parent element is really capable of
creating the required child. This ensures that all assumed parenthoods that are rele-
vant to prove the query are really derived. In addition, we still need to check that all
anonymous elements are really derived (from some original ancestor element in the
ontology).

Example 2. Consider an OWL ontology with the assertion :peter rdf:type :Person
and the axiom :Person rdfs:subClassOf [owl:onProperty :mother; owl:someValuesFrom
:Woman]. Then the query {?X rdf:type :Woman}with ?X non-distinguished has a match.
However, if we remove the triple :peter rdf:type :Person, then the query does not have a
match. In contrast, our pattern Rewrite(x rdf:type :Mother) could match in either case.

To fix this, we introduce, for every non-distinguished variable x, an additional pat-
tern MatchExists(x) that verifies that an element of the assumed type is actually de-
rived. This pattern also ensures that named individuals are always bound to individuals.
Anonymous individuals may be inferred from our assumption that the domain is not
empty, or they must be derived from a named individual, which we represent by a bn-
ode:

{�?Nx := T� . individual(?Mx)}
UNION {�?Nx := F� . �?Mx := owl:Thing�}
UNION {�?Nx := F� . �_:b rdf:type ?E� . ?E (rdfs:subClassOf | intListMember |

(owl:onProperty / (Inv | SpoEqp)∗ / (ˆowl:onProperty | rdfs:domain | rdfs:range)) |
ˆowl:equivalentClass | owl:equivalentClass | owl:someValuesFrom)∗ ?Mx}

We do not need to check that this derivation agrees with the guessed parenthood rela-
tions, since the check is only relevant for the elements that do not have a parent repre-
sented by a query variable.
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Definition 6. The rewriting Rewrite(q) a CQ q with distinguished variables x1, . . . , xn

is the following SPARQL 1.1 query:

SELECT DISTINCT ?Mx1, . . . , ?Mxn WHERE {
PropConstraints(q)
Rewrite(x rdf:type c) for each condition x rdf:type c in q
Rewrite(x p y) for each condition x p y in q
MatchExists(x) for each variable x in q
EqualityFilter(q)

}
Theorem 4. The answers of a conjunctive query q over an OWL QL ontology G are
exactly the answers of the SPARQL 1.1 query Rewrite(q) over G under simple entail-
ment.

6 Limits of Schema-Agnostic Query Rewriting

We have seen that schema-agnostic query rewriting works for (almost) all of OWL QL,
so it is natural to ask how far this approach can be extended. In this section, we outline
the natural limits of SPARQL 1.1 as a query rewriting language, point out extensions to
overcome these limits.

In Section 3, we excluded owl:SymmetricProperty from our considerations. In-
deed, schema-agnostic SPARQL 1.1 queries cannot support this feature. This might
be surprising, given that one can write p rdf:type owl:SymmetricProperty as
p rdfs:subPropertyOf [owl:inverseOf p]. To see why this problem occurs, consider the
following ontology:

:c rdfs:subClassOf [rdf:type owl:Restriction; owl:onProperty :p; owl:someValuesFrom owl:Thing] .

[] rdf:type owl:Restriction; owl:onProperty [owl:inverseOf :p]; owl:someValuesFrom owl:Thing;

rdfs:subClassOf :d .

:p rdf:type owl:SymmetricProperty .

This ontology states: every :c has an outgoing :p property; everything with an incoming
:p property is a :d; and :p is symmetric. Clearly, this implies that :c is a subclass of :d.
We call this ontology G(:c, :p, :d). Now assume that we have a chain of such ontologies
Gn � G(:c1, :p1, :c2), . . . ,G(:cn, :pn, :d). Clearly, Gn implies that :c1 rdfs:subClassOf
:d, but there is no SPARQL 1.1 graph pattern with property paths that recognizes this
triple structure in an ontology. The intuitive explanation is that Gn contains a property
path of length 4n that matches the following expression:

(rdfs:subClassOf / owl:onProperty / ˆowl:onProperty / rdfs:subClassOf)∗

A SPARQL query that matches Gn for any n needs to use such a path expression; no
other feature in SPARQL 1.1 can navigate arbitrary distances. However, it is impossible
to verify that each :pi on this path is of type owl:SymmetricProperty. For the formal
proof, we analyze general properties of the graphs that a SPARQL 1.1 query matches
[3]. The essence of our argument is that property paths, being linear, cannot reliably
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detect an arbitrary number of individuals with more than two neighbors, as found in
Gn.

While this limitation is hardly more than a syntactic inconvenience, one might ask if
there are query languages that can deal with this type of encoding. Indeed, one possible
approach is nSPARQL, which has been proposed as an extension of SPARQL 1.0 with
a form of path expressions that can test for the presence of certain side branches in
property paths [14]. Similar test expressions have been considered in OBDA recently
[2]. These query languages can handle the RDF encoding of symmetric properties.

Besides such “syntactic” limitations, schema-agnostic query rewriting is also re-
stricted by complexity theoretic arguments. Simply put, the reasoning task solved in
this way can not be harder (computationally speaking) than the data complexity of the
underlying query language. The data complexity of the subset of SPARQL used in this
paper is NLogSpace: SPARQL 1.1 patters are a variant of positive regular path queries
[7], which have NLogSpace data complexity (by translation to linear Datalog [9]); in-
line data (VALUES) does not affect data complexity; and final filtering with equality
checks can clearly be implemented in logarithmic space. Since P is widely assumed to
be strictly harder than NLogSpace (though no proof has been given yet), we can exclude
many lightweight ontology languages:

Theorem 5. If P is strictly harder than NLogSpace, then reasoning for the following
ontology languages cannot be expressed in SPARQL 1.1 using property paths, UNION,
VALUES and (in)equality filters:

– any subset of OWL with owl:intersectionOf in subclass positions, especially OWL EL
and OWL RL;

– any subset of OWL with unrestricted owl:someValuesFrom in subclasses and super-
classes (not limited to owl:Thing);

– the extension of OWL QL with regular property chain axioms.

These complexity-theoretic limitations can only be overcome by using a more com-
plex query language. Many query languages with P-complete data complexity can be
found in the Datalog family of languages, which are supported by RDF databases like
OWLIM and Oracle 11g that include rule engines.

7 Conclusions and Outlook

To the best of our knowledge, our work is the first to present a query rewriting approach
for ontology-based data access in OWL QL that is completely independent of the on-
tology. The underlying paradigm of schema-agnostic query rewriting appears to be a
promising approach that can be applied in many other settings. Indeed, two previous
works, nSPARQL [14] and PSPARQL [1], independently proposed query-based mech-
anisms for reasoning in RDFS. While these works have not considered SPARQL 1.1,
OWL QL, or arbitrary conjunctive queries, they still share important underlying ideas.
We think that a common name is very useful to denote this approach to query rewriting.

In this paper, we have focused on laying the foundations for this new reasoning pro-
cedure. An important next step is to study its practical implementation and optimiza-
tion. Considering the size of some of the queries we obtain, one would expect them to be
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challenging for RDF stores. We have started to implement our approach in a prototype
system [3], and initial experiments confirm this expectation. Encouragingly, however,
executing rewritten queries seems to be feasible, even in the raw, unoptimized form they
have in this paper. Future work will be concerned with developing further optimizations
that can be used in practical evaluations.

Indeed, while the queries we obtain might be challenging for current RDF stores,
large parts of the queries are fixed and can be optimized for. Our work thus reduces the
problem of adding OWL QL reasoning support to RDF stores to a query optimization
problem. This can also guide future work in stores, such as OWLIM, which implement
reasoning with inference rules: rather than trying to materialize (part of) an infinite
OWL QL chase [4], they could materialize (sub)query results to obtain a sound and
complete procedure. This provides completely new perspectives on the use of OWL QL
in areas that have hitherto been reserved to OWL RL and RDFS.

Finally, our work also points into several interesting directions for foundational
research, as mentioned in Section 6. Promising approaches include development of
schema-agnostic rewriting procedures for languages like OWL EL that cannot be cap-
tured by SPARQL 1.1, and the development of query languages that suit this task [17].

Acknowledgements. This work has been funded by the Vienna Science and Technol-
ogy Fund (WWTF, project ICT12-015), and by the DFG in project DIAMOND (Emmy
Noether grant KR 4381/1-1).
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Abstract. We present a description and analysis of the data access challenge in
the Siemens Energy. We advocate for Ontology Based Data Access (OBDA) as a
suitable Semantic Web driven technology to address the challenge. We derive re-
quirements for applying OBDA in Siemens, review existing OBDA systems and
discuss their limitations with respect to the Siemens requirements. We then intro-
duce the Optique platform as a suitable OBDA solution for Siemens. Finally, we
describe our preliminary installation and evaluation of the platform in Siemens.

1 Introduction

The growth of available information in enterprises requires new efficient methods for
data access by domain experts whose ability to analyse data is at the core of making
business decisions. Current centralised approaches, where an IT expert translates the
requirements of domain experts into Extract-Transform-Load (ETL) processes to inte-
grate the data and to apply predefined analytical reporting tools, are too heavy-weight
and inflexible [1]. In order to support interactive data exploration, domain experts there-
fore want to access and analyse available data sources directly, without IT experts being
involved.

This direct data access is particularly important for Siemens Energy1 that runs several
service centres for power plants. The main task of a service centre is remote monitoring
and diagnostics of many thousands appliances, such as gas and steam turbines, gener-
ators, and compressors installed in plants. Monitoring and diagnostics are performed
by service engineers and are typically conducted in four steps: (i) engineers receive a
notification about a potential or detected issue with an appliance, (ii) they gather data
relevant to the case, (iii) analyse the data, and finally (iv) report about ways to address
the issue to the appliance owner. Currently, Step (ii) of the process is the bottleneck con-
suming up to 80% of the overall time needed by the engineer to accomplish the task.
The main reason for this time consumption is the indirect data access, i.e., in many
cases the engineers have to access data via IT experts. Involvement of IT experts in the
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process slows it down dramatically due to reasons including the overload of IT experts
and miscommunication between them and the engineers.

Enabling direct data access for engineers in Siemens is a challenging task primarily
due to the Big Data dimensions as well as the conceptual mismatch between the lan-
guage and structures that the engineers use to describe the data, and the way the data is
actually described and structured in databases. Regarding the Big Data dimensions, the
data accessible from Siemens service centres naturally reflects the variety, volume, and
velocity dimensions of Big Data: it is stored in several thousands databases where many
have different schemata, its size is in the order of hundreds of terabytes, and it currently
grows with the average rate of 30 GB per day. Regarding the conceptual mismatch, it
occurs because industrial schemata are often integrated from autonomously evolving
databases that have been adapted over years to the purposes of the applications they
underlay, and not to the purpose of being intuitive for domain experts. Only IT experts
fully understand this evolving structure of databases and thus currently only they can
write queries over these databases in order to extract information relevant for engineers.

Ontology Based Data Access (OBDA) [2] has been recently proposed as a means
to enhance end-user direct data access. The key idea behind OBDA is to use ontolo-
gies, i.e., semantically rich conceptual domain models, to mediate between users and
data. Ontologies describe the domain of interest on a higher level of abstraction and in
terms that are clear for domain experts. Ontologies have become a common and suc-
cessful mechanism to describe application domains in, e.g., biology, medicine, and the
(Semantic) Web [3]. This success is partially due to a number of available formal lan-
guages for describing ontologies, including the Web Ontology Language (OWL) stan-
dardised by W3C. In OBDA users formulate their information needs as queries using
terms defined in the ontology, and ontological queries are then translated into SQL or
some other database query languages and executed over the data automatically, without
an IT expert’s intervention. To this end a set of mappings is maintained that describes
the relationship between the ontological vocabulary and the schema of the data.

The goal of this paper is to argue that OBDA has a good potential in improving direct
access by engineers to the data at Siemens Energy. To this end, in Section 2 we analyse
reactive and predictive diagnostics at Siemens and derive five Siemens direct data access
requirements. In Section 3 we introduce OBDA, show that it conceptually satisfies the
Siemens requirements, and argue that existing OBDA systems are not mature enough to
fulfill the requirements. In Section 4 we give a brief overview of the Optique platform, a
novel OBDA platform developed within the Optique project [4, 5, 6], and focus on our
advances in the development of the platform for Siemens. More precisely, we present
a diagnostic dashboard that integrates tools for query formulation together with tools
for visualisation of query answers, and our advances in processing timestamped static
and streaming data. In Section 5 we present our preliminary deployment of the Optique
platform over Siemens data and a preliminary user evaluation. In Section 6 we conclude
and discuss the lessons we learned as well as future work.

2 Siemens Monitoring and Diagnostic Service

Siemens produces a variety of rotating appliances, including gas and steam turbines,
generators, and compressors. These appliances are complex machines and typically
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Fig. 1. High-level view on the turbine service process

used in different critical processes including power generation where each hour of
downtime may cost thousands of euros. Thus, these appliances should be under a con-
stant monitoring that requires an in-depth knowledge about their components and setup.
Siemens provides such monitoring via service centres and operates over fifty such cen-
tres worldwide, where each centre is responsible for several thousands appliances. Typ-
ical monitoring tasks of a service centre include (i) reactive and preventive diagnostics
of turbines which is about offline data analysis applied after a malfunction or an abnor-
mal behaviour such as vibration, temperature or pressure increase, unexpected events,
or even unexpected shutdowns, of a unit is detected; (ii) predictive analysis of turbine
conditions which is about real-time data analyses of data streams received from ap-
pliances. We now discuss these monitoring tasks in detail and present requirements to
enhance these tasks.

2.1 Reactive and Preventive Diagnostics

Reactive diagnostics is usually applied after a malfunction of a unit has occurred, e.g.,
a turbine abnormal shutdown. Complementarily, the preventive diagnostic task is per-
formed before a malfunction of a unit, when its abnormal behaviour is detected, e.g.,
high vibration or temperature increase. Both diagnostic tasks are triggered either when
a customer sends a service ticket claiming assistance or an automated diagnostic system
creates such a ticket. Figure 1 depicts a general process triggered when a service ticket
arrives. We now discuss each step of the process in detail.

Arrival of a service ticket. A service ticket typically contains information on when a
problem occurred and its frequency. In some cases the ticket isolates the location of the
problem in the appliance and its cause, but often it has no or few details.

Example 1. An example of a reactive monitoring request from a customer is:

Figure out why the turbine failed to start during the last five hours, with the
goal of checking that there will be no fault of the turbine.

A typical preventive monitoring request could be

Will there be a failure of the turbine after the observed temperature increase?

Data acquisition. Service engineers gather relevant data by querying databases that
are updated every hour and on demand and contain sensor and event data. In order to
support data gathering, Siemens equips service centres with more than 4,000 predefined
queries and query patterns of different complexity. Engineers use the queries by setting
parameters such as time periods, names of events or sensors, sensor types, etc.
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Example 2. Based on the service ticket of Example 1, the engineer formulates the fol-
lowing information need and has to find appropriate queries to cover it:

Return the most frequent start failure and warning messages of the gas tur-
bine T01 during the last week. Moreover, find analogous cases of failures for
turbines of the same type as T01 in the last three months.

Query results visualisation. Sensor data is visualised with the use of standard diagrams,
and event messages are presented as a list, i.e., as an Excel spreadsheet, with timestamps
and additional attributes.

Data preprocessing. The queried data is preprocessed using generic procedures such as
sensor check (i.e., whether sensor data quality is appropriate), threshold and trend anal-
ysis. Independent from the concrete ticket, these preprocessing steps are done manually,
e.g., over the visualised Excel spreadsheets, or using specialised analytic tools.

Data analysis. The engineer uses sophisticated diagnostic models and tools for complex
analysis, e.g., Principal Component Analysis or other statistical methods, to detect and
isolate the given problem based on the preprocessed data. Typically, analysis tasks are
executed individually for each ticket. The gathering and analysis steps are often carried
out iteratively, i.e., the results from one iteration are used to pose additional queries.

Report preparation. This process terminates when an explanation for the problem in
the service ticket is established. In this case the engineer provides the customer with a
report aggregating the result of the analysis and describing possible further actions.

2.2 Predictive Analysis

In predictive analysis, in contrast to the diagnostic process described above, appliances
are continuously monitored, i.e., without prior service tickets, using online processing
of the incoming sensor data. The other process steps of predictive analysis are similar
to the ones described in the previous section, but have to be applied online to streaming
data with minimal user intervention. The purpose here is to analyse the current condi-
tion of an appliance by combining operating information, system data, specifications
of concrete product lines, and temporal phases of operating regimes. This information
allows to predict whether some parts of an appliance should be repaired soon, assess
risks related to the use of this parts, and adjust maintenance intervals for each part
by automatically integrating this information into service scheduling, thus, minimizing
maintenance cost.

Example 3. For predictive analysis of turbines, the diagnostic engineer may want to be
automatically notified when a turbine shows repetitive start failures combined with in-
creased vibration values during its operating time. This can be formulated as follows:

Notify me if a turbine that had more than three start failures in the last two
weeks additionally shows abnormal vibration values in operative phases.
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2.3 Siemens Requirements

The main bottleneck for diagnostics is the data gathering part, which takes up to 80% of
the overall diagnostic time. The main reason is that finding the right data for analytics
is very hard due to limitations of predefined queries, complexity of data, complexity
of query formulation, and limitation to explicitly stated information. We now derive
concrete requirements that a system for supporting diagnostic process should fulfill.

R1: Integrated Data Access. Siemens data over which the queries are formulated
naturally reflects the variety, volume, and velocity dimensions of Big Data. The data
is stored in so-called data centres, each responsible for several thousand of appliances
such as turbines, where a typical turbine has about 2,000 sensors constantly produc-
ing measurements. This data can be roughly grouped into three categories: (i) sensor
and event data from appliances, (ii) analytical data obtained as results of monitoring
tasks conducted by service centres for the last several years, and (iii) miscellaneous
data, typically stored in XML, contains technical description of appliances, types of
configurations for appliances, indicates in which databases information from sensors is
stored, history of whether forecasts, etc. All in all the data is stored in several thousand
databases having a large of different schemata. The size of the data in the order of hun-
dreds of terabytes, e.g., there is about 15 GB of data associated to a single turbine, and
it currently grows with the average rate of 30 GB per day. At the moment there is no
unified access point to the Siemens data and it is required.

R2: Flexible Definition of Queries. Existing predefined queries in the Siemens query
catalogue, about 4,000 queries, are often not sufficient to cover information needs as
they are often either too general, thus yielding an overload of irrelevant information,
or too specific, thus not providing enough relevant data. For gathering relevant data,
service engineers often have to use several queries and combine their results. When
this is not sufficient, existing queries have to be modified or new queries should be
created. To this end the engineer contacts an IT expert and this leads to a complex and
time-consuming interaction that takes up to weeks. The reason why it takes so long is
miscommunication, high workload of IT personnel, complexity of query formulation,
and long query execution times. In average up to 35 queries require modification every
month, and up to 10% of queries are changed throughout a year. Moreover, several
new queries are developed monthly. Therefore, flexible modification and definition of
queries is one of the strong requirements for the improvement of the diagnostic process.

R3: Utilising Implicit Information. In databases it is typically assumed that only
explicit data matters, i.e., the data which is stored in the system. From a formal per-
spective, they adopt the so-called closed-world semantics, meaning that exactly the in-
formation stated is true, and anything not stated is false. While this perspective may
be valid in the context of controlled systems, completeness of data is hardly ever the
case in practical industry applications such as the ones in Siemens. Here, the fact that
we do not have a measurement tuple for a certain time point does not mean there is no
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measurement. This could be reflected by the so-called open-world semantics, that al-
lows to derive implicit information from the data stated explicitly, typically using some
forms of background knowledge. This implicit information logically follows from what
is stated explicitly, and its use can greatly increase the practical benefit of a diagnostic
system.

R4: Stream Data Processing. Predictive analysis requires the use of both static in-
formation from the past and streaming information on the current status of appliances.
Access to data from the past allows to detect, for instance, seasonal patterns. Continu-
ous monitoring of the streaming data provides prognoses for key performance indicators
and countermeasures before a system shutdown occurs. Currently, service engineers do
not have a direct access to streaming data. However, engineers often need to access
event and sensor data from several appliances, and as of now it requires downloading
streaming data for each related turbine. One of the requirements for the predictive anal-
ysis is the possibility to integrate sensor and event streaming data from several turbines
and diagnostic centres and provide the use of continuous queries on data streams.

Summing up on the requirements above, Siemens needs a solution that naturally inte-
grates the existing databases, allows for flexible query definition, exploits both explicit
and implicit data, and allows for processing (multiple) data streams. The last technical
requirement for a desired solution naturally arises from practical considerations:

R5: System Deployment and Maintenance Support. The cost of the deployment
and maintenance of the proposed solution should not exceed the benefits from the use
of the system. In particular, the solution should support semi-automatic deployment
over Siemens databases.

In the next section we present an approach that addresses these requirements.

3 Ontology Based Data Access

Ontology Based Data Access (OBDA) is a prominent approach for end-user oriented
access to databases. OBDA relies on Semantic Web technologies and it has been heavily
studied by the Semantic Web community [2, 7].
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The main idea behind OBDA is to provide a user with access to the data via an
ontology that is specific to the user’s domain. The ontology can be written in some on-
tology language, e.g., in the Web Ontology Language OWL 2 standardised by W3C.
This ontology hides from the user technical details about the database schemata while
it exhibits to the user a domain specific vocabulary of classes and properties i.e., unary
and binary predicates, that the user is familiar with. This vocabulary is related to the
database schemata via mappings, which are declarative specifications, similar to view
definitions in databases. There are several mapping languages available, e.g., R2RML
standardised by W3C. Figure 2 presents a general conceptual diagram illustrating
OBDA: its main components and the workflow of query answering in OBDA systems.

The user formulates queries over ontologies in terms of the classes and properties.
The standard query language for ontologies is SPARQL 1.1 standardised by W3C. An
ontological query Q1 is evaluated over databases in three steps. First, Q1 is expanded
with relevant information from the ontology in order to retrieve both explicit and im-
plicit answers from the databases. This is accomplished by query rewriting, which takes
the query Q1 and the ontology, and produces the query Q2. Note that Q2 is logically
equivalent toQ1 with respect to the ontology while it “absorbs” a fragment of the ontol-
ogy necessary for retrieving all answers relevant to Q1. We refer the reader to, e.g., [8],
for details on query rewriting techniques. OBDA systems typically do rewriting of so-
called conjunctive queries with ontologies that fall in the OWL 2 QL profile of OWL 2.
This profile is specifically tailored for data access and allows for efficient query pro-
cessing [8]. As the second step, the queryQ2 is translated using mappings into a query
Q3 over the database schemata, e.g., into SQL when the data is relational. This step
is referred to as unfolding. Finally, Q3 is executed over the data by a DBMS and the
answers are returned to the user.

We now illustrate OBDA on the following example which is based on the ontology
and mappings that we developed for the Siemens use case. Note that, for the sake of
clarity, the example is based on simplified versions of these ontology and mappings.

Example 4. The ontology in Figure 3 says that turbines can be either gas or diesel.
A gas turbine may have the following parts: (i) a control system that in turn has a
control unit of types ART or ART2, (ii) inner turbine, (iii) lube-oil system that may
have several sensors for measuring pressure, and (iv) gearbox. Moreover, a gas turbine
can be located in a place such as a desert, or a frost, etc. For the sake of simplicity, we
assume that diesel turbines are modelled in the same way as the gas ones.

The query in Figure 3 asks: “Return the pressure measured by sensors of lube oil
systems in turbines.” This is an ontological query which corresponds to Q1 in Figure 2.
This query can be written in SPARQL as follows:

SELECT ?Measurement
WHERE {?X rdf:type siemens:Turbine. ?X siemens:hasPart ?Y.

?Y rdf:type siemens:LubeOilSystem.
?Y siemens:hasSensor ?Z. ?Z rdf:type siemens:Sensor.
?Z siemens:hasPressure ?Measurement.}

Query rewriting techniques applied to this query and the turbine ontology produce two
more queries that have the same structure, as Q1, but the first query has Gas Turbine
and the second one has Diesel Turbine in the place of Turbine. The query Q2 is the
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union ofQ1 with these two queries. In terms of SPARQL, Q2 can be obtained fromQ1

by substituting the first triple of its WHERE clause with the following expression:

{ ?X rdf:type siemens:Turbine } UNION
{ ?X rdf:type siemens:GasTurbine } UNION
{ ?X rdf:type siemens:DieselTurbine }

There are two mappings in Figure 3. The left one says how to “populate” the property
hasPressure: one has to project tuples of the table Measurement, where the value of the
attribute Type is “pressure”. The projection on the attribute SensorID gives the subject
and on the attribute Value1 gives the object of hasPressure. The right mapping says how
to “populate” the class LubeOilSystem: one has to project tuples of the table System
where the Purpose is “Lubricant Delivery” on the SystemID attribute. These mappings
can be used to unfold the SPARQL query Q2 into an SQL query Q3. We do not give
Q3 here due to space limit since this would require to introduce six more mappings.

3.1 How OBDA Can Help in Improving Data Access in Siemens

In Section 2.3, we presented five Siemens data access requirements. We will discuss
now how OBDA naturally addresses all of them and thus we believe that OBDA has a
potential in improving data access in Siemens.

OBDA naturally addresses Requirement R1 on integrated data access since one on-
tology can mediate the user and several databases with different formats via mappings.
Regarding Requirement R2 on flexible definition of queries, since ontologies describe
the domain of end users, formulation of queries over ontologies is conceptually much
easier than over databases. Thus, by relying on intuitive query formulation tools, users
can combine existing queries and write new queries without any knowledge of the
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schemata of multiple databases residing behind the ontology. Regarding Requirement
R3 on utilising implicit information, OBDA naturally does so via logical reasoning dur-
ing the query rewriting process. Regarding Requirement R4 on stream data processing,
OBDA is powerful enough in addressing this, e.g., by employing temporal ontologies,
mappings, and queries involving temporal operators. Regarding Requirement R5 on
system installation support, there is a body of work on semi-automatic ontology and
mapping discovery as well as bootstrapping techniques that allow to extract ontologies
and mappings from relational schemata.

Thus, what we need for Siemens is an OBDA system that (i) supports distributed
data processing, (ii) provides a flexible intuitive query formulation and visualisation
support, (iii) relies on logical reasoning to obtain both explicit and implicit answers,
(iv) accommodates temporal and data steams, and (v) allows to bootstrap, edit, and
reuse ontologies and mappings. As we see next, no such OBDA system exists.

3.2 Existing OBDA Systems and Their Limitations

We now show that, despite the recent advances in OBDA systems, they are currently
not mature enough to be applied off-the-shelf in Siemens and both theoretical and prac-
tical developments are required. There are several academic and industrial systems
for OBDA or that are very similar to OBDA in spirit. Mastro [9], morph-RDB [10],
and Ontop [11] support ontology reasoning and thus address Requirement R3, while
D2RQ [12], OntoQF [13], Virtuoso2, Spyder3, and Ultrawrap [14] do not support rea-
soning and thus fail Requirement R3. Moreover, all these systems fail Requirement R2:
Ultrawrap, Ontop, Mastro, and morph-RDB lack user-oriented query formulation inter-
faces and query visualisation; they provide SPARQL end-points and predefined queries;
OntoQF considers ontology queries as OWL statements and has no visual query formu-
lation support. To the best of our knowledge, there are no OBDA systems that support
streaming queries of Requirement R4 and address distributed query processing of Re-
quirement R1. Ontop and Mastro support a limited form of data federation, which is not
sufficient to allow for data integration of R1. Ontop provides a restricted deployment
support in the form of bootstrapping, while OntoQF, Mastro, and morph-RDB lack it.
Ultrawrap extended with QODI system [15] allows for so-called query-driven ontology
alignment that can allow to import existing ontologies and thus facilitate installation of
OBDA systems. Virtuoso, Spyder, and D2RQ provide a limited installation support via
direct mapping bootstrappers and simple user interfaces for navigating the data graph.
However, no advanced mapping management of Requirement R5 is supported.

In the following section we will overview the Optique platform [4, 5], that addresses
the limitations of existing systems discussed above, and is adopted for Siemens.

4 Enhancing OBDA Technology for Siemens

The Optique platform is an end-to-end OBDA solution, i.e., it supports the whole
OBDA cycle from deployment to query answer visualisation. Optique platform inte-
grates a number of existing systems and provides several new components. It was tested

2 http://virtuoso.openlinksw.com/
3 http://www.revelytix.com/content/spyder
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with various use cases, including Norwegian Petroleum Directorate Fact Pages [16], and
demonstrated in [17].4 We now give an overview of the platform. Details on the archi-
tecture and the individual components of the platform cab be found in [17, 5] and by
following the references given below.

4.1 Optique Platform

The system is currently under development and it allows to: (a) create and edit map-
pings, (b) create, edit, and import ontologies, (c) integrate several relational databases
and data streams, (d) formulate and visualise one time and continuous queries, and
(e) browse query results. Thus, the Optique platform satisfies all the Siemens system
Requirements R1-R5. Note that the current version provides only a limited support of
distributed query processing and a limited treatment of temporal and streaming data.

We now discuss the workflow of the system. For the system deployment, one can
bootstrap ontologies and mappings from the underlying relational data sources, in-
corporate external ontologies into the system, and edit ontologies and mappings [18].
This heavily relies on logical reasoning, for which we use the HermiT ontology rea-
soner [19]. After the system is deployed, the underlying data sources can be queried
via our query formulation tools. They allow to compose queries by navigation over the
system’s ontology, by writing natural language queries, and rely on ontology reasoning
(with HermiT). The formulated queries are internally translated into SPARQL queries
and sent to the query transformation engine for processing: rewriting against the on-
tology and further unfolding into SQL queries with the mappings [20]. For rewriting
and unfolding, we rely on the Ontop query transformation engine [11]. SQL queries are
executed over the data sources underlying the system by the DBMSs of the sources. For
distributed query planning [21] and processing of temporal queries [22], we rely on the
ADP system [23], which is a system for large scale elastic data processing on the cloud,
which, in particular, is needed to cope with the huge data sets provided by Siemens.
Both Ontop and ADP are integral components of the Optique platform. Resulting query
answers are visualised using templates and widgets such as tables, timelines, maps,
charts, etc., depending on the data modalities. The Optique platform implementation is
based on the Information Workbench (IWB) [24], a generic and extensible platform for
semantic data management which provides a rich infrastructure for platform.

We now consider two aspects of the platform specific for Siemens in detail: its di-
agnostics dashboard for query formulation and answer visualisation, and temporal and
streaming processing part.

4.2 Diagnostics Dashboard

In order to address diverse needs of end users in query formulation and answer visu-
alisation we developed a flexible wiki-based Diagnostic Dashboard that can be easily
customised by end users themselves. In Figure 4 we illustrate the engineer’s work cycle
with the platform through the dashboard. Engineers can define and refine queries via

4 Optique demo video: www.youtube.com/user/optiqueproject/playlists
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Fig. 4. Components of Diagnostic Dashboard

several query formulation tools, that include (i) Visual Query System (VQS), (ii) Natu-
ral Language Query (NLQ) interface, and (iii) SPARQL query editor. In the upper part
of Figure 5 we present screenshots of our VQS, SPARQL editor embedded in it, as well
as our NLQ interface. VQS depicts the domain of interest and queries using a graph
based representation paradigm, so end users can directly manipulate visual objects and
construct queries. VQL combines query-by-navigation and faceted search techniques
over an underlying ontology graph (see [25, 26] for more details). NLQ allows users to
specify a query by means of a controlled natural language. Sentences written by engi-
neers are parsed and mapped to concepts, properties, and individuals of the underlying
ontology, taking into account ontological axioms. Then, based on additional rules, the
the result of the mapping is translated into a SPARQL query (see [27] for more details).

Result visualisation widgets allow to visualise query answers, inspect query results,
do incremental query refinement, and export of relevant result fragments to external
diagnostic tools. Moreover, the widgets allow to perform monitoring of incoming data
streams and query answers for continuos queries over these streams. In the lower part of
Figure 5 we present four examples of our visualisation widgets. Depending on the type
of data (e.g., time series data, appliance structure), a suitable visualisation paradigm
has to be selected (e.g., pivot table, trend diagram, histogram). The diagnostic dash-
board can also choose the representation paradigm for query answers automatically by
analysing the corresponding SPARQL query.

4.3 Temporalised and Streamified OBDA

Recent efforts on temporalised [28, 29] and streamified [30, 31, 32] OBDA systems
provide first steps towards handling temporal and streaming data in industrial appli-
cations. However, none of these approaches satisfies the requirements of the Siemens
use case: either there is no implemented engine or it is still not fully developed (see
the benchmark tests in [33]). Besides, in all cases some aspects of query processing in
temporalised and streamified OBDA are not addressed, e.g., unfolding with mappings,
ontology reasoning.
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Fig. 5. Query formulation and data visualisation interfaces provided by the software demonstrator

Streaming and Temporal ontology Access with a Reasoning-based Query Language
(STARQL) [34, 35] offers a query framework allowing to deal with streams of time-
stamped RDF triples on the background of mappings and an ontology. The development
of STARQL was inspired by the Siemens use case requirements. The STARQL query
language framework and the prototype streaming engine enjoy the following features:

Expressivity. STARQL allows to express typical mathematical, statistical, and event
pattern features needed in real-time monitoring scenarios. In spite of its expressivity,
answering STARQL queries is still efficient since they can be transformed into rela-
tional stream queries.

Neat Semantics. STARQL comes with a formal syntax and semantics. The latter one
uses certain answer semantics [7] and on top of it, first-order logic semantics as in model
checking, thereby combining open and closed-world reasoning. A snapshot semantics
for window operators [36] is extended with a sequencing semantics that can handle
integrity constraints such as functionality assertions.

Orthogonality. Both inputs and outputs of STARQL queries are timestamped RDF
triples. Therefore, triples, coming from the result of one query, can be used as input
when constructing another query.
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Scope Locality. While producing a SPARQL query, one can select an ontology and
streams over which the query will be evaluated. This feature can be important in differ-
ent cases, e.g., in the case of failure testing, where one is interested in querying only the
streams stemming from sensors which are (or are not) suspected to be broken.

Library Functions. Often-used query patterns can be stored in the special library and
re-used during query construction.

Now we illustrate the STARQL framework by example.

Example 5. Consider the preventive monitoring request from Example 1. To fulfill it,
the following sub-task should be performed: “Detect a monotonic increase from the
temperature sensor”. We now see how this detection can be done within the STARQL
framework.

First, assume that the data stream S Msmt is being received from the sensor; its
sub-stream that contains data received during the first five seconds is as follows:

{{s0 :val 90}<0s>, {s0 :val 93}<1s>, {s0 :val 94}<2s>,
{s0 :val 92}<3s>, {s0 :val 93}<4s> , {s0 :val 95}<5s>}. (1)

This data is in the form of timestamped RDF triples. For example, the first triple
{s0 :val 90}<0s> says that at the time point “0s” the sensor s0 sent the value 90.

Consider the following STARQL query fulfilling the task:

CREATE STREAM S_out_1 AS
SELECT {s0 rdf:type RMInc}<NOW>
FROM S_Msmt [NOW-2s, NOW] -> 1s
SEQUENCE BY StdSeq AS SEQ
HAVING FORALL i < j IN SEQ, ?x, ?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j> THEN ?x <= ?y

Intuitively, the structure of the query is as follows:

– The HAVING clause specifies that the sensor’s value should monotonically in-
crease.

– The FROM clause tells that the query performs its check every second, considering
only the data from the stream S Msmt in the last two seconds.

– The SEQUENCE BY clause groups the output triples using some standard method
StdSeq.

– The CREATE clause declares the query’s output stream S out 1.
– The SELECT clause determines the format of the timestamped RDF triples in

the output stream. For instance, the output stream corresponding to the input data
stream from Equation (1) is

{{s0 rdf:type RMInc}<0s>, {s0 rdf:type RMInc}<1s>,
{s0 rdf:type RMInc}<2s>, {s0 rdf:type RMInc}<5s>},

where RMInc stands for Resent Monotonic Increase, so the timestamped RDF
triple {s0 rdf:type RMInc}<2s> designates that the sensor s0 has been ex-
periencing a monotonic increase for the last two seconds, from 0s to 2s.
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Under the OBDA approach, data is stored in databases, and not in RDF format.
Hence, the STARQL engine operates on a virtual stream induced by mappings from
the stream S Msmt. In Optique, we are going to use a stream extended version of ADP
[23].

5 Demonstrating Capabilities of Extended OBDA at Siemens

In order to demonstrate the potential of OBDA in enhancing data access in Siemens we
did a preliminary deployment of the Optique OBDA platform over Siemens data and
conducted a preliminary user study. We now give details of our experience.

5.1 Demonstration System

We customised the Optique platform for Siemens and extended it with several compo-
nents. The demonstration runs on a server with four 8-core Intel64 processors, 512 GB
RAM, and 7 TB of internal and 24 TB of external storage.

Data for the demonstration. We installed the platform over databases with 3 TB of
historical sensor and event data about 200 gas and steam turbines (15 GB per turbine)
gathered between 2002 and 2011. We also developed a data stream generator that sim-
ulates the original sensor measurements and events streaming from these turbines.

Demonstration ontology. Although there are ontologies describing machinery with sen-
sors, e.g., the Semantic Sensor Network (SSN) ontology [37], we could not use them:
for our use case, they are too generic and overloaded with irrelevant terms, moreover,
they miss required terms. Therefore, we constructed our ontologies being guided by
the best practices of the SSN ontology. Our ontologies characterize Siemens database
schemata of sensor and event data and abstract away from representations varying
across data sources. Moreover, our ontologies are manually enriched with the domain
information encoded in multiple semiformal and informal models available at Siemens.
We developed three ontologies: (i) the turbine, (ii) sensor, and (iii) diagnostic ontology.

The turbine ontology describes the internal structure of a turbine, i.e., it lists all its
parts, functional units, and their hierarchy. For example, it models that every Turbine
must have a ControlSystem and a Generator, and that LiquidFuelPump
is a part of a LubOilSystem. The ontology contains 60 classes and 15 object and
data properties. There are three central classes in this ontology: (i) Turbine class for
modeling product families of appliances, (ii) Component for modeling a hierarchy of
subclasses defining the types of components that turbines are constructed of, using rela-
tions such as hasPart and hasDirectPart, (iii) FunctionalUnit for defining
functional interrelation of components, i.e., important blocks of an appliance, such as
GasPath, FuelSystem and others, as well as components belonging to these func-
tional units.

The sensor ontology lists and categorizes types of sensors and measuring devices
mounted in a turbine as well as their deployment, measurements properties, such as
accuracy and precision, and other related information. For example, it models that
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each sensor is mounted at some turbine’s component or functional unit, or that a sen-
sor of a specific type does only produce observations of a given type. The ontology
contains 40 classes and 20 properties. The main class Sensor covers all types of
measuring devices, e.g., GasDetector, TemperatureSensor. Further branch-
ing on classes gives more detailed characteristics information on them, e.g., temper-
ature sensors could measure: BurnerTipTemperature, InletTemperature,
CompressorExitTemperature, etc.

The diagnostics ontology formalizes relationships between measurements and events
generated in by turbine’s sensors and control units as well as typical symptoms of faults
in turbines. For example, it models that each diagnosis has to be assigned to a turbine
or its component, and must be supported by some symptoms. The ontology contains
30 classes and 10 properties. The core classes are Observation and Diagnosis
connected with a relation indicatesAt for listing symptoms for each diagnosis.

Each of the three ontologies can be used independently and we also developed an
ontology that integrates the three. The turbine and sensor ontologies are expressed in
OWL 2 QL, a tractable profile of the OWL 2 ontology language and therefore can be
used straightforwardly in our OBDA setting. The diagnostics ontology must be repre-
sented in a richer ontology language: OWL 2 DL. An example of a diagnostic axiom
that cannot be expressed in OWL 2 QL is: “If Turbine has Failure F1, then there
must be a Symptom S1 in Turbine Component C1”. To support answering diag-
nostic queries using OBDA, we provided an approximation of the ontology into OWL
2 QL.

5.2 Preliminary Evaluation at Siemens

We used a two-fold approach to assess the system capabilities at Siemens: (i) a query
catalog constructed based on the functionality requirements, (ii) a user workshop con-
ducted with service engineers to get a feedback from the end users.

Query catalogue. Based on interviews of service engineers and their needs on data ac-
quisitions, we constructed a query catalogue with 27 query patterns from reactive and
preventive diagnostics of turbines. This catalogue served as a basis for the development
of the temporal query language STARQL (see Section 4.3). There are two types of
query patterns: (i) on events and measurements, and (ii) on diagnostics that requires the
usage of semantic knowledge. Query patterns of Type (i) allow to aggregate available
sensor values and/or events, generate statistics and visualise results as bar charts and
graphical models. An example of such query is “Return the TOP 10 errors and warn-
ings for turbines of product family X”. Moreover, some of the query patterns require the
usage of temporal operators, e.g., “List sensor values and events within a specific time
interval, before an event X occurred”. Patterns of Type (ii) reveal interdependency and
correlations between (a) the occurrence of events, (b) sensor measurements, and (c) oc-
currence of events and presence of specific sensor values. An example of a diagnostics
query is “Which events frequently occur before the specific point in time?”.

We analysed the coverage of the query catalog by the STARQL query language.
Though within the development of the STARQL query language the focus was on
handling streaming data, it also supports purely temporal reasoning on historical
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data—which is needed for reactive diagnostics. This can be achieved by considering
the time window as a static time filter for the relevant time interval (thereby setting the
slide to 0) and then to express the needed patterns in the HAVING clause. With this
approach, currently, approximately 70% of the query patterns in the catalog can be ex-
pressed within STARQL, although some of the queries have to rely on calls to external
functions from the ADP system, which provides statistical and mathematical functions.

User workshop. We demonstrated the customised Optique platform at the Siemens
service centre in Lincoln, UK, and conducted a preliminary evaluation of the system
with IT experts and service engineers. The goal of the evaluation was to obtain an initial
feedback from the end users which reinforced and guided our further development of
the platform. In particular, the end users were asked to assess the system with respect
to the requirements of Section 2. We now summarize the feedback.

The users gave a positive feedback on how the proposed solution addressed Require-
ment R1 on the integrated data access: information from different source is integrated
and can be accessed through one ontology and visualised in the diagnostics dashboard.
The users provided also a very positive feedback to the query formulation components
of Requirement R2 and highlighted that these facilities may greatly simplify and accel-
erate the process of query construction. In particular, by using the VQS and the NLQ
interface the users were able to specify even complex queries from the query catalogue
in a very intuitive way, which currently requires extensive SQL know-how as well as
in-depth knowledge about the database schemata. Additionally, component suggestions
on refinements and/or generalisations of the terms used in the query, additional terms
and constraints helped the users in understanding the querying capabilities of the plat-
form and in constructing queries, which was highly valued by the users. Likewise, we
received good comments on the possibility to derive implicit information using the log-
ical reasoning—thereby satisfying Requirement R3. The streaming support defined in
Requirement R4 which is addressed by introducing STARQL query framework was
highly welcomed as an important feature for realizing predictive maintenance in future.
The ontology and mapping deployment and management support of Requirement R5
was evaluated by the users as crucial to keep the diagnostic knowledge up-to-date.

6 Conclusion and Future Work

In this paper we presented OBDA, a promising paradigm to provide a direct end-user
access to data, and how OBDA could enhance this access in Siemens. We derived five
requirements that an OBDA solution should fulfill in order to be deployed in Siemens
and showed that, while the previous research and system development established the
theoretical basis and demonstrated viability of OBDA, a number of limitations have to
be solved before industrial deployment of such systems. We then presented an OBDA
solution developed within the Optique project that satisfies the five Siemens require-
ments. We focused on two aspects of the platform specific for Siemens: (i) visualisation
dashboard and (ii) the support of temporal and streaming queries. We also presented
preliminary evaluation of the solution at Siemens where we got a positive feedback.
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During the evaluation we determined several items to address on our ongoing work
on the platform. One of the core questions is the ontology development: The diagnos-
tics ontology is expressed in OWL 2 DL which is not natively supported by the system.
Therefore, ontology approximation techniques are strongly required in order to exten-
sively use the knowledge provided by the domain. Also, current ontologies were con-
structed manually based on formal as well as informal models of the domain. However,
bootstrapping information from database schemata, previously executed queries, and
already existing formal models and ontology has to be used to reduce manual efforts.
Additionally, a possibility to import existing ontologies is strongly needed to support
integration of existing ontologies with the ones manually developed.

Another direction of system improvement is the diagnostics dashboard. During the
evaluation at Siemens the users pointed out two functionalities that were missing in
the demonstrated system: (i) reports that incorporate marketing or business intelligence
queries, e.g., “Return all gas turbine of a particular product line sold after 2006”, and
(ii) query interface feature with provenance of query answers and suggestions on pos-
sible query repairs. E.g., if a query returns an empty answer, then the users would like
to know why the answer set is empty and how the query can be reformulated to obtain
answers. Furthermore, to reach 100% coverage of query catalogue we plan to extend
functionality of STARQL. We also work on improving the support of temporal and
streaming queries.

Integrating the platform into the Siemens IT environment is another important chal-
lenge we have to address during future work. The solution has to be adapted in order to
be used with the existing Siemens systems for monitoring and analytics. Also, scaling
up the solution for the usage in Siemens monitoring environment leads to the integration
of multiple streams and databases. Thus, there is a need for distributed query processing
and there is an active work within the Optique project in this direction.
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Keskisärkkä, Robin II-529
Khamkham, Khalid II-486
Kharlamov, Evgeny I-601
Klinov, Pavel II-196
Kompatsiaris, Ioannis II-260
Kontchakov, Roman I-552
Kontopoulos, Efstratios II-260
Kostylev, Egor V. II-374
Krompaß, Denis II-114
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