An FCA Framework for Knowledge Discovery in SPARQL Query Answers

Melisachew Wudage Chekol Amedeo Napoli

LORIA (INRIA, CNRS, and Université de Lorraine), France

October 21 - 25, 2013

ISWC Sydney, Australia

Introduction

- SPARQ
 - a W3C recommended query language for RDF graphs.
- query answers can be provided in different formats: TEXT, JSON, HTML, XML, RDF, CSV ...
- o Formal Concept Analysis (FCA)
- used for knowledge discovery within data represented by means of objects and their attributes.
- concept lattices can reveal hidden relations within data and can be used for organizing, classifying, and even mining data.

Formal Concept Analysis (FCA)

FCA can be used for:

- o classification and organization of data, knowledge discovery,
- ontology completion, supporting bottom-up construction of ontologies,
- o role assertion analysis,
- o computing subsumption hierarchy of least common subsumers,
- o exploring finite models,
- o discovering formal concepts in the Semantic Web data,
- providing an entry point to a dataset using questions in a way that can be navigated.

FCA - Formal Context

A formal context is (G, M, I) where:

- \circ G set of objects
- M set of attributes
- \circ $I \subseteq G \times M$

FCA - Formal Concept

Given $A\subseteq G$ and $B\subseteq M$ of a formal context (G,M,I)

with a derivation operator ()',

$$A' = \{ m \in M \mid \forall g \in A, (g, m) \in I \}$$

$$B' = \{ g \in G \mid \forall m \in B, (g, m) \in I \}$$

• the pair (A, B) is a formal concept if

$$A' = B$$
 and $B' = A$.

 a set of concepts ordered with the set inclusion relation form a concept lattice.

FCA - Concept Lattice

Objective

- ▶ organization and classification of SPARQL answers using FCA.
- ▶ visualization of SPARQL answers using concept lattices.

Method

Method

Example

Conclusion

- we provided an organization SPARQL query answers based on a concept lattice, that can be navigated for mining or retrieving specific patterns in query results w.r.t. user constraints
- this work shows some of the benefits that FCA provides to the semantic web.

Future Directions

► Experimentation: comparison of answer format generations (logarithmic scale).

► To investigate how well this approach scales, given the size of SPARQL query answers over large datasets.

References

Franz Baader and Felix Distel.

A finite basis for the set of el-implications holding in a finite model.

Mathieu d'Aquin and Enrico Motta.

Extracting relevant questions to an RDF dataset using formal concept analysis.

capture, pages 121-128. ACM, 2011.

Markus Kirchberg, Erwin Leonardi, Yu Shyang Tan, Sebastian Link, Ryan KL Ko, and Bu Sung Lee.

Formal concept discovery in semantic web data.

Barıs Sertkaya.

A survey on how description logic ontologies benefit from FCA.

