D-SPARQ: Distributed, Scalable and Efficient RDF Query Engine

Raghava Mutharaju®, Sherif Sakr?, Alessandra Sala?, and Pascal Hitzler?
'Kno.e.sis Center, Wright State University, Dayton, OH, USA.
2University of Dammam, Saudi Arabia and University of New South Wales, Australia.

3Alcatel-Lucent Bell Labs, Dublin, Ireland.

Why? What?
* There is an exponential increase in the amount of RDF
data available.
* Even simple SPARQL queries involve multiple triple Data Partitioner
patterns.
e e S caon || || Qo
y handle join patterns at a Partitioner P Coordinator
scale.
How?
» Many SPARQL queries have triple patterns joined on either
subject or object. These triple patterns form a star [2].
» We take advantage of this by grouping triples with the
same subject into one document (equivalent to row in
RDBMS) in MongoDB.
« This ensures that we retrieve subject based star patterns in MongoDB MongoDB MongoDB
one read call.
» Compound indexes are created on subject-predicate and
predicate-object pairs. Query Query Query
* Using these compound indexes, MongoDB can also Analyzer and Analyzer and Analyzer and
answer queries on any prefix of the index. Processor Processor Processor
» The given SPARQL query is analyzed to identify the
following patterns.
» Triple patterns which are independent.
» Star patterns, i.e., patterns with the same subject.
» Pipeline patterns, i.e., patterns which depend on the « Architecture of D-SPARQ is shown in the picture above.
result of other patterns (subject of one is the object of « A graph is constructed from RDF data.
another pattern). * Graph partitioner is used to spread the data across the cluster.
« Identifying these patterns enable us to run different parts of » MapReduce job helps in importing data into MongoDB.
the query in parallel. « Triples on the partition boundary are replicated [1].
* Another optimization is to use selectivity of triple patterns * We chose MongoDB, a document store, because a variety of compound
within a star pattern to reorder their execution. indexes can be built, has good read/write performance and supports complex
querying.

References

[1] Huang, J., Abadi, D, J., Ren, K.: Scalable
SPARQL Querying of Large RDF Graphs.
PVLDB 4(11), 1123-1134 (2011).

[2] Kim, H., Ravindra, P., Anyanwu, K.: From
SPARQL to MapReduce: The Journey Using a
Nested TripleGroup Algebra. PVLDB 4(12),
1426-1429 (2011).

[3] Neumann, T., Weikum, G.: The RDF-3X
engine for scalable management of RDF data.
VLDB J. 19(1), 91-113 (2010).

[4] Schmidt, M., Hornung, T., Lausen, G.,
Pinkel, C.: SP2 Bench: A SPARQL
Performance Benchmark. In: ICDE. 222-233

(2009).

Preliminary Results

Query2 Query3 Query4
#Triples
RDF-3X D-SPARQ RDF-3X D-SPARQ RDF-3X D-SPARQ
77 217 192.5 80 69.43 Out Of 319.87
million Memory
163 1537 398 434 166 Out Of 671
million Memory

- RDF data is generated using SP2Bench [4]. Cluster consists of 3 nodes with 16GB RAM
each. All the runtimes given are in seconds.

* The given triples are the average number of triples loaded into RDF-3X and MongoDB of
each node in the cluster.

* So, the total number of triples in the first case is around 230 million and second case is
around 490 million.

» We compared our system with RDF-3X [3], which runs on each node of the cluster.

« The three queries are from SP2Bench. We did not consider queries involving OPTIONAL,
FILTER, ORDER.

» These SPARQL features are not supported by our system. Here we focus on efficient join
operations.

* The query runtimes of D-SPARQ are significantly better than that of RDF-3X especially for
large number of triples.

» We observed that as the number of triples increases, performance of RDF-3X decreases.

