
D-SPARQ: Distributed, Scalable and Efficient RDF Query Engine

Raghava Mutharaju1, Sherif Sakr2, Alessandra Sala3, and Pascal Hitzler1
1Kno.e.sis Center, Wright State University, Dayton, OH, USA.

2University of Dammam, Saudi Arabia and University of New South Wales, Australia.
3Alcatel-Lucent Bell Labs, Dublin, Ireland.

Why?
•  There is an exponential increase in the amount of RDF
data available.
•  Even simple SPARQL queries involve multiple triple
patterns.
•  Joins of multiple triple patterns across large data is slow.
•  Aim of this work is to efficiently handle join patterns at a
scale.

What?

•  Architecture of D-SPARQ is shown in the picture above.
•  A graph is constructed from RDF data.
•  Graph partitioner is used to spread the data across the cluster.
•  MapReduce job helps in importing data into MongoDB.
•  Triples on the partition boundary are replicated [1].
•  We chose MongoDB, a document store, because a variety of compound
indexes can be built, has good read/write performance and supports complex
querying.

How?
•  Many SPARQL queries have triple patterns joined on either
subject or object. These triple patterns form a star [2].
•  We take advantage of this by grouping triples with the
same subject into one document (equivalent to row in
RDBMS) in MongoDB.
•  This ensures that we retrieve subject based star patterns in
one read call.
•  Compound indexes are created on subject-predicate and
predicate-object pairs.
•  Using these compound indexes, MongoDB can also
answer queries on any prefix of the index.
•  The given SPARQL query is analyzed to identify the
following patterns.

  Triple patterns which are independent.
  Star patterns, i.e., patterns with the same subject.
  Pipeline patterns, i.e., patterns which depend on the
result of other patterns (subject of one is the object of
another pattern).

•  Identifying these patterns enable us to run different parts of
the query in parallel.
•  Another optimization is to use selectivity of triple patterns
within a star pattern to reorder their execution.

Preliminary Results

•  RDF data is generated using SP2 Bench [4]. Cluster consists of 3 nodes with 16GB RAM
each. All the runtimes given are in seconds.
•  The given triples are the average number of triples loaded into RDF-3X and MongoDB of
each node in the cluster.
•  So, the total number of triples in the first case is around 230 million and second case is
around 490 million.
•  We compared our system with RDF-3X [3], which runs on each node of the cluster.
•  The three queries are from SP2 Bench. We did not consider queries involving OPTIONAL,
FILTER, ORDER.
•  These SPARQL features are not supported by our system. Here we focus on efficient join
operations.
•  The query runtimes of D-SPARQ are significantly better than that of RDF-3X especially for
large number of triples.
•  We observed that as the number of triples increases, performance of RDF-3X decreases.

#Triples
Query2 Query3 Query4

RDF-3X D-SPARQ RDF-3X D-SPARQ RDF-3X D-SPARQ

77
million

217 192.5 80 69.43 Out Of
Memory

319.87

163
million

1537 398 434 166 Out Of
Memory

671

References

[1] Huang, J., Abadi, D, J., Ren, K.: Scalable
SPARQL Querying of Large RDF Graphs.
PVLDB 4(11), 1123-1134 (2011).

[2] Kim, H., Ravindra, P., Anyanwu, K.: From
SPARQL to MapReduce: The Journey Using a
Nested TripleGroup Algebra. PVLDB 4(12),
1426-1429 (2011).

[3] Neumann, T., Weikum, G.: The RDF-3X
engine for scalable management of RDF data.
VLDB J. 19(1), 91-113 (2010).

[4] Schmidt, M., Hornung, T., Lausen, G.,
Pinkel, C.: SP2 Bench: A SPARQL
Performance Benchmark. In: ICDE. 222-233
(2009).

