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Why? 
•  There is an exponential increase in the amount of RDF 
data available. 
•  Even simple SPARQL queries involve multiple triple 
patterns. 
•  Joins of multiple triple patterns across large data is slow. 
•  Aim of this work is to efficiently handle join patterns at a 
scale. 

What? 

•  Architecture of D-SPARQ is shown in the picture above.  
•  A graph is constructed from RDF data. 
•  Graph partitioner is used to spread the data across the cluster. 
•  MapReduce job helps in importing data into MongoDB. 
•  Triples on the partition boundary are replicated [1]. 
•  We chose MongoDB, a document store, because a variety of compound 
indexes can be built, has good read/write performance and supports complex 
querying.  

How? 
•  Many SPARQL queries have triple patterns joined on either 
subject or object. These triple patterns form a star [2]. 
•  We take advantage of this by grouping triples with the 
same subject into one document (equivalent to row in 
RDBMS) in MongoDB. 
•  This ensures that we retrieve subject based star patterns in 
one read call. 
•  Compound indexes are created on subject-predicate and 
predicate-object pairs.  
•  Using these compound indexes, MongoDB can also 
answer queries on any prefix of the index. 
•  The given SPARQL query is analyzed to identify the 
following patterns. 

  Triple patterns which are independent. 
  Star patterns, i.e., patterns with the same subject. 
  Pipeline patterns, i.e., patterns which depend on the 
result of other patterns (subject of one is the object of 
another pattern).  

•  Identifying these patterns enable us to run different parts of 
the query in parallel. 
•  Another optimization is to use selectivity of triple patterns 
within a star pattern to reorder their execution. 

Preliminary Results 

•  RDF data is generated using SP2 Bench [4]. Cluster consists of 3 nodes with 16GB RAM 
each. All the runtimes given are in seconds. 
•  The given triples are the average number of triples loaded into RDF-3X and MongoDB of 
each node in the cluster. 
•  So, the total number of triples in the first case is around 230 million and second case is 
around 490 million. 
•  We compared our system with RDF-3X [3], which runs on each node of the cluster.  
•  The three queries are from SP2 Bench. We did not consider queries involving OPTIONAL, 
FILTER, ORDER. 
•  These SPARQL features are not supported by our system. Here we focus on efficient join 
operations. 
•  The query runtimes of D-SPARQ are significantly better than that of RDF-3X especially for 
large number of triples. 
•  We observed that as the number of triples increases, performance of RDF-3X decreases. 

#Triples 
Query2 Query3 Query4 

RDF-3X D-SPARQ RDF-3X D-SPARQ RDF-3X D-SPARQ 

77 
million 

217 192.5 80 69.43 Out Of 
Memory 

319.87 

163 
million 

1537 398 434 166 Out Of 
Memory 

671 
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