PigSPARQL
- A SPARQL Query Processing Baseline for Big Data -

UNI
FREIBURG

Alexander Schatzle # « Martin Przyjaciel-Zablocki # « Thomas Hornung « Georg Lausen

2. PigSPARQL 3. Architecture and Design

* RDF datasets grow continously in size e SPARQL 1.0 engine on MapReduce for Query Processor
> scalability of query processing? adhoc query processing of large RDF graphs RDF Processor / R

e Uses Pig (Latin), a data analysis platform on SPARQL Query
top of MapReduce, as intermediate layer

between SPARQL and MapReduce
Syntax Tree

e Focus on rather costly queries involving
Algebra Compiler

o

, ~
/

N\
\

RDF Graph

2007 2009 2011 many joins that cannot be executed in Direct RDF Optional RDF
real-time at web-scale > offline processing Processing Preprocessing Algebra Tree
e Single-place RDF stores limited in scale e Available for download * Triple Parser Algebra Optimizer
o Reus.e e>-<|st|ng mfrastrtfctures :cmd frameworks Pig Loader Algebra Tree
fonj distributed proc.essmg of Big Data Advantages of using Pig: Pig Latin Translator
e Wide spread adoption of Hadoop MapReduce e Compatibility to future changes of | S
: : . : . Pig Latin Program | Pig Latin Program
makes it an interesting candidate for Hadoop as they are covered by Pig |

distributed SPARQL processing e Pig’s processing framework is
continuously optimized and

@ enhanced with new features
A —/alo a

T T T T T T T T e e e e e e  —————————

(1/3) SPARQL Query (2/3) Algebra Tree (3/3) Pig Latin Program

e knows = LOAD 'rdf/knows' USING rdfLoader () AS (s,0);
LeftJoin _ ' ' ]
SELECT * acfe - LOAD 'rdf/age USEN§8J.fdeoader() AS (s,0);
Obtimizations t = FILTER age BY o >= ;
WHERE { P tl = FOREACH tl GENERATE s AS person, o AS age;
?person knows Peter t2 = FILTER knows BY o == 'Peter';
>person age 2age LeftJoin t2 = FOREACH t2 GENERATE s AS person;
) ) 51 = JOIN tl BY person, t2 BY person;
OPTIONAL ({ = 71 = FOREACH jl1 GENERATE tl::person AS person,
cperson mbox 7?mb tl::age AS age;
} . . m mbox = LOAD 'rdf/mbox' USING rdf() AS (s,0);
B > >= 18 t£3 = FOREACH mbox GENERATE s AS person,o AS mb;
FILTER (?age >= 18) ————— — 191 = JOIN j1 BY person LEFT OUTER, t3 BY person;
- el S Jjl::age AS age, t3::mb AS mb;
STORE 1j1 INTO 'output' USING resultWriter();
SPARQL Query Optimizations Algebra Translation Pig Latin Program
e Support for all SPARQL 1.0 operators, e SPARQL Algebra: e Each SPARQL algebra operator is translated e Pig as intermediate abstraction layer between
not only BGPs (1) Early filter execution into a sequence of Pig Latin expressions SPARQL and MapReduce
e Special cases like OPTIONAL with (2) Reordering by selectivity e BGPs are evaluated directly on the data using e Can be executed on any Hadoop cluster
unsafe FILTER supported e Translation: our loader UDF for RDF out-of-the box
e SPARQL 1.1 operators in development (3) Early projection e A BGP of n Triple Patterns needs n-1 JOINs in e Automatically translated into a sequence of
(4) Multi joins general (if multi joins are not applicable) MapReduce jobs
e Data model (optional): e OPTIONAL corresponds to a left outer join
(5) Vertical partitioning

4. Experiments

PigSPARQL Optimizations Switching version of Pig Comparison with other approaches Experimental results
Z 60,000 - e Linear scaling of query execution time with
g 40,000 z 0 = 220 respect to datasize
g 2000 2 S g 400 £ 1o e Optimizations reduce 1/0O and query time
100 400 800 1200 1600 = 2,000 3 128 e PigSPARQL runs without any tricky
##triples (in million) o0 20 configurations > evaluation done in one day

3,000 100 400 800 1200 1600 500 1000 1500 2000 2500 3000

2 2,000 g 3 4triples (in million) Zuniversities e Competitive performance for offline queries
£ 1,000 = IS 2 o Qoo - - —— —
= N — ; — . N~ —o— PigSPARQL (Pig 0.5.0) —=— Merge Join (n-way) —e— Merge Join (2-way) ] . .
I(-%DFS Bytes RMI_HDFS' Byte \hTtn R((:Sm( Byte +PigSPARQL (Pig 0'11'0) = MAPSIN (n—way) © MAPSIN (Q-W‘dy) Plg as IntermEdlate Iayer:
o e e ) —8— PigSPARQL (n-way) -2 - PigSPARQL (2-way) . e .
PaPwCE—— -+ - HadoopRDF (1) Significant performance improvements
—a— Sp2Bench Q2 optimized by Pig version update without changing
—= Sp”Bench Q2 optimized + vertical partitioned e Pig0.5.0 > Pig0.11.0 e Competitive performance while scaling a single line of code
e No code changes in PigSPARQL smoothly with increasing dataset size (2) Reliable and stable since Pig is widely-used
e Multi joins and vertical partitioning e Query execution times improved e Vertical partitioning done in less than and maintained by Yahoo! Research
reduces overall query execution by up to one order of magnitude 14 min, other systems need up to several
time by nearly 90% e Speedup increases with datasize hours for preprocessing (1.6 billion triples)

5. Related Research & Download

e PigSPARQL: Mapping SPARQL to Pig Latin Conclusion
SWIM 2011, in conjunction with SIGMOD 2011. Athens (Greece) e PigSPARQL, an implemented translation from SPARQL to Pig Latin
e Cascading Map-Side Joins over HBase for Scalable Join Processing e Pig translates Pig Latin into MapReduce jobs and executes them in parallel on Hadoop
SSWS+HPCSW 2012, in conjunction with ISWC 2012. Boston (USA) e |t's an easy to use and competitive baseline for the comparison of MapReduce based SPARQL processing
e Map-Side Merge Joins for Scalable SPARQL BGP Processing e With the support of SPARQL 1.0, it already exceeds functionalities of most existing research prototypes
IEEE CloudCom 2013, Bristol (UK)
e Large-Scale RDF Processing with MapReduce Future Work -
Book Chapter in: Data Processing Techniques in the Era of Big Data, 2014 e Support for SPARQL 1.1 operators “ i he Pover
e Integration of investigated join techniques Bl
* http://dbis.informatik.uni-freiburg.de/PigSPARQL g

Institute of Computer Science, University of Freiburg, Germany # The work of this author was partially funded by

{schaetzle, zablocki, hornungt, lausen} Deutsche Forschungsgemeinschaft,
@informatik.uni-freiburg.de grant LA 598/7-1.




