

Finite Models in RDF(S), with datatypes

Peter F. Patel-Schneider¹ Pat Hayes² ¹Nuance Communications

²IHMC

RDF(S) Models

- \triangleright Models and interpretations are the foundation of RDF(S) [1, 2].
- An interpretation is a way that the world might be, containing a universe of entities (including individuals, classes, etc.) and relationships between them.
- Interpretations map IRIs, blank nodes, and literals (names) to elements of the universe (entities).
- ► A model of an RDF graph is an interpretation that makes the statements in the graph true.
- \triangleright The meaning of RDF(S), including entailment, is defined in terms of interpretations and models.
- Examining the properties of models and interpretations uncovers the properties of RDF(S).

How Big must RDF(S) Universes be?

- ► It appears that infinite universes are needed!
- ► There are an infinite number of container membership properties that all belong to rdfs:ContainerMemebershipProperty.
- ► All IRIs are interpreted. (New for 2013.)
- There are an infinite number of decimals (including integers).
- ► There are lots of floats.
- ► Looks like RDF(S) universes are infinite, even without data values.
- Are infinite universes really needed?

How Small can RDF(S) Universes be?

- ► If there are no datatypes, is it possible to consider only small (or finite) RDF(S) universes, without changing the meaning of RDFS?
- ► Ter Horst [3] showed how to ignore unused container membership properties in reasoning.
 - ▶ In model-theoretic terms, all unused container membership properties can be interpreted as a single entity.
 - $\triangleright I(rdf:_n = I(rdf:_n+1) = I(rdf:_n+2)$
 - ▶ Even though container membership properties are non-trivial, they all look the same.
- In the same way, unused IRIs and blank nodes can be interpreted as a single entity.
 - \triangleright I(ex:unused) = I(ex:notused) = I(ex:wasntused)
 - ▶ Unused IRIs and blank nodes are all trivial (i.e., they all have no properties except belonging to rdfs:Resource).
- Removes two supports for the need for infinite universes.
 - ▶ Also shows up an issue with container membership properties.
- Constrast with OWL, where simple ontologies can require infinite universes.

How Small can RDF(S) Universes be, with datatypes?

- ► Is it possible to consider only small (or finite) RDF(S) universes, without changing the meaning of RDFS?
- ► Techniques similar to those above can be used to show that unused recognized literals can also be ignored.
 - ▶ Technically, they still make the universe infinite because they are distinct, but unused data values can't have any extra properties associated with them.
 - Can define pre-interpretations, where literals not appearing in an RDF graph are not interpreted.
 - Pre-interpretations don't change the meaning of RDF(S).
 - ▶ Removes the other support for the need for infinite universes.
 - Shows how weak RDF(S) datatypes are.

Theorem

To reason in RDF(S) it suffices to consider (pre-)interpretations whose universe is the same size as the number of names in an RDF graph (plus the unused important RDF(S) vocabulary, plus one).

Sub-Linear Universes with Disjointness or Disjunction

- Do universes smaller than the number of names in an RDF graph suffice?
- Just ask whether all the names are different from each other.
- Consider the RDF graph

$$S_i S_1 S_i$$
. for $1 \le i \le n$.

- In an interpretation with less than *n* domain elements some particular different two of the S_i and S_i have the same denotation.
- So in any interpretation with less than n domain elements S_i S_j . for different i, j.
- So the disjunction of all these triples is true in all such interpretations, but this is not a valid entailment.
- Thus interpretations with at least n elements must be considered.

Sub-Linear Universes with Blank Nodes

- Do universes smaller than the number of names in an RDF graph suffice?
- Consider the RDF graph

$$S_i S_1 S_j$$
. for $1 \le i \ne j \le n$.

- In any model with less than *n* domain elements, some particular different two of the S_i and S_j have the same denotation.
- \triangleright This entity is then related to the denotation of each of the S_i by S_1 .
- So the RDF graph

$$_{-}$$
:x S_1 S_j . for $1 <= j <= n$

is true in each of these models, but this graph is not entailed.

- \triangleright Thus interpretations with at least n elements must be considered.

Sub-Linear Universes without Blank Nodes

- Do universes smaller than the number of names in an RDF graph suffice, if blank nodes are not permitted in entailments?
- \triangleright Consider an interpretation I containing two domain elements e_1 and e_2 that are neither properties nor classes nor data values (call these domain elements ordinary).
 - \triangleright Form I' from I by simply replacing e_1 and e_2 with a single domain element e_1 throughout.
 - \triangleright For N₁ and N₂ IRIs whose denotations in I are neither e_1 nor e_2 , I' supports any triple of the form $N_1 P N_2$. if and only if I supports the triple.
- \triangleright For any particular B_1 and B_2 this process can be repeated until only three ordinary domain elements remain, producing an interpretation that doesn't add any entailments for triples between B_1 and B_2 .

Theorem

To reason in RDF(S) without blank nodes it suffices to consider interpretations with only three ordinary entities (plus entities for classes, properties, and literals).

Conclusions

- RDF is very weak:
 - Can't require existence of unmentioned resources.
- RDF without blank nodes is extremely weak:
 - ▶ Can't require existence of more than three ordinary resources.
- Adding something like owl:differentFrom would strengthen RDF.

- [1] Patrick Hayes. RDF semantics. W3C Recommendation, http://www.w3.org/TR/rdf-mt/, 2004.
- [2] Patrick Hayes and Peter F. Patel-Schneider. RDF 1.1 semantics. W3C Working Draft, http://www.w3.org/TR/rdf11-mt/, July 2013.
- [3] Herman J. ter Horst. Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary. Journal of Web Semantics, 3(2-3):79–115, 2005.

- ▶ Lots of shortcuts have been taken in this presentation.
- ► No shortcut invalidates the results; no shortcut is misleading.