
Editing R2RML Mappings Made Easy

 Kunal Sengupta1,2, Peter Haase1, Michael Schmidt1, and Pascal Hitzler2
1 fluid Operation AG, Walldorf, Germany

2 Wright State University, Dayton OH, USA.

Overview
The new W3C standard R2RML defines a language for expressing mappings from relational databases to RDF, allowing applications built on top of
the W3C Semantic Technology stack to seamlessly integrate relational data. A major obstacle in using R2RML, though, is the creation and
maintenance of mappings. In this demo, we present a novel R2RML mapping editor which provides a user interface to create and edit mappings
interactively even for non-experts.

Resulting TriplesMap:
rr:logicalTable

 [rr:sqlQuery

 """SELECT id, gid, length FROM musicbrainz.recording

 WHERE musicbrainz.recording.length IS NOT NULL"""]

rr:subjectMap

 [rr:class mo:recording ;

 rr:template "http://musicbrainz.org/artist/{gid}#_"]

 rr:predicateObjectMap

 [rr:objectMap

 [rr:column "length" ;

 rr:datatype <http://www.w3.org/2001/XMLSchema#float>] ;

 rr:predicate mo:duration] ;

That is already too
complex!

Our Solution: A New R2RML Mapping Editor
Features:
 A solution to create, edit, manage R2RML mapping rules easily.
 Easy to use user interface to create mappings.
 Import/Export mappings from the editor directly.
 Preview generated triples at various steps of mapping creation.
 Mappings can be created without learning the R2RML vocabulary.
 Integrated with the Information Workbench platform.

Steps of the R2RML mapping rule management using the editor
 Datasource, Base URI Selection: In the first step the user can select

from all the available datasources or configure a new one. The user
also has the option to configure the base URI for template
generation.

 R2RML Rules: At this step all the rules are displayed. The editor
provides many options to browse the existing rules. E.g. filter the
rules by table names.

 Logical Table Selection: During this step the user chooses a logical
table. The editor provides the option of choosing a table or typing a
SQL query. For tables all the metadata and data values can be
looked up by the user.

 Subject Map Creation: By the click of a button, the user can carry
over columns that should be used to generate the subject URI
template. Additionally, classes (i.e., types) can be added to the
subject by using the auto-complete field rdf:type, which displays all
the classes that are present in the system.

 Predicate-Object Maps Creation: At this step the user can select
the predicate and objects for the triples to be generated. All types
of predicates are supported by the editor, e.g. constants, URI
templates. All object types are also supported namely: constants,
literals from column values, templates, reference to other
mappings.

 Textual Representation: Finally, an intuitive textual representation
of the mapping rule is displayed. At this point the user could go back to
any previous step to modify the mapping or otherwise save the
mapping.

Export/Import
mapping rules
To/From files.

List of existing
mapping rules.

Choose from different
modes: Default/

Ontology Statistics/
Tables Statistics.

Action buttons to
get the overview of

the tables before
selecting one.

R2RML

Relational
Database

R2RML
Mappings

R2RML
Processor

Triplestore

Publishing
SPARQL

Endpoint

• Task: Integrate data
from relational DBMS
with Linked Data

• Approach: Map
from relational
schema to
semantic
vocabulary with
R2RML

• Publishing: Two alternatives
1. Translate SPARQL into

SQL on the fly
2. Batch transform data into

RDF, index and provide
SPARQL access in a triple
store

Use Case Example

Music
Ontology MusicBrainz DB

R2RML

https://wiki.musicbrainz.org/Next_Generation_Schema http://musicontology.com

Table Recording(gid, length) Ontology concept
mo:recording

R2RML

Filter mappings by Table
Name, Class Name or

Property Name.

