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Abstract. Streaming algorithms are able to rapidly perform useful com-
putation with limited memory, if the data are streamed through them in
the proper order. They master complexity by adding more information,
i.e., the orderings.

Imagine the Web of Data in a new light: it is a sortable entity, where
orderings can be enforced easily and logically. Imagine streaming algo-
rithms that scale up to the Web of Data when we enforce orderings first,
and then reasoning relies on these orderings. Well, you have just imagined
to give birth to a new generation of faster and more scalable Semantic
Web technologies.

In 2009, a IEEE Intelligent System column [1] brought to the attention of
the Semantic Web community that we leave in a “streaming world!” and, thus,
it is worth investigating Stream Reasoning, i.e., reasoning upon rapidly changing
information. In the last three years, several independent groups have been inves-
tigating Stream Reasoning ([2,3,4,5,6,7] to cite, but a few, journal papers that
directly referenced the IEEE column) applied to sensor networks, healthcare,
financial fraud detection and social media analysis.

Those works share two ideas: a) reasoning “on the fly” on data streams while
they pass by, and b) exploiting the temporal order of the data stream to optimize
the computation (e.g., complex event detection [8]). Even if the application of
these two ideas to reasoning tasks is new, they are the basis for a well-known
class of algorithms: the streaming algorithms3.

This class of algorithms completely avoids random access to data. It
uses one pass (or a small number of passes) on the data and requires a workspace
that is smaller than the size of the data. It includes many algorithms able to
perform useful computations by splitting the problem in sort data first, then
compute results. Some of them show a space complexity upper bound polylog
in the size of the input (i.e., O(polylog(n)), where n is the size of the input).

3 In 1998, “Computing on Data Streams” [9] was the first publication formalizing the
streaming algorithms, but early works on this class of algorithms root back to the
late ’70s of the last century, when, for instance, in [10] the first query optimization
technique based on estimation of order statistics in the data was presented.



Moreover, even if the streaming algorithms are often not bound on the com-
putation time, the time required for the large majority of the used streaming
algorithms is small.

Take, for instance, the streaming algorithms that compute graph statistics,
matching in a graph, and random walks [11]: they cope with massive graphs
(larger than the current Web of Data) that can only be stored in high capac-
ity storage devices where random access is extremely slow (if compared to the
in-memory random access). Notably, to use streaming algorithms, data is not
required to be naturally ordered (e.g., by recency as in [1]), it has do be sortable
by some criteria required by the streaming algorithm that will read it.

Imagine the Web of Data as a sortable entity, where we can enforce
orderings easily and logically. Orderings can be omnipresent on the Web of
Data. Sometimes resources are directly, and explicitly, described by triples con-
taining sortable literals, providing information about the number of inhabi-
tants of cities, ratings of restaurants, longitude and latitude or dates of birth
etc. However, most data on the Web of Data also comes with a variety of im-
plicit ordering measures, as resources are not just ordered by size or age, but
also by meta-properties such as popularity4. But not only are resources
sortable, so are triples. There is plenty of literature on how to extend triple
with meta-data and annotations, and most of those ideas induce (at least par-
tial) orderings on triples: based on uncertainty, provenance, trust to name but a
few [12,13].

Here is the outrageous idea: if we enforce orderings on data a priori,
we can reason faster and we can scale reasoning to the Web of Data!

Don’t you trust us? Let us, for instance, consider the class of streaming
algorithm that compute the top-k join of two relations according to a user defined
scoring function [14]. If the scoring function can be split into two parts and the
two parts can be pushed under the join to sort the two relations, this class
of streaming algorithms assure to be able to extract the top-k joins reading
only a small fraction of the two sorted relations (for an attempt to apply these
techniques to SPARQL see [15]).

What if we came up with the notion of top-k closure of a an on-
tology w.r.t. a query and a scoring function (for an attempt see [16])?
What if we were able to find streaming algorithm that compute the top-k clo-
sure using variants of the top-k join algorithms? Even more, what if we found
an approach for computing the top-k closure incrementally for growing values
of k (i.e., any-k closure)? Let us be really outrageous, what if we conceived
an any-k ontological query answering technique with error probability ε, i.e. a
streaming algorithm for any-time approximate reasoning that com-
putes the right top-k answers to an ontological query with probability
at least 1−ε? What if we could guarantee that the error probability ε decreases

4 It is well-known that one of the prime criteria for ranking search results in Informa-
tion Retrieval is based on the trust-worthiness of results, which is calculated using
PageRank as a proxy, i.e. the number and importance of web-sites linking to the
search result.



with the number of pass on the data? What if the pass on the data could be
parallelized and distributed?

It is not difficult to pick-up open challenges that arose in this attempt to
study streaming algorithms for the Semantic Web:

– Notion of soundness and completeness for top-k (or any-k) reasoning,
– Knowledge representation techniques for modelling ordered resources or for

resources/triples annotated with sortable meta-data,
– Algorithms for enforcing orderings easily and logically,
– Streaming algorithms for reasoning on ontologies expressed in the various

OWL2 profiles,
– Streaming algorithms for top-k (or any-k) ontological query answering for

the OWL2 profiles (e.g., order-aware materialization for OWL2-RL or order-
aware query rewriting for OWL2-QL),

– Streaming algorithms for top-k (or any-k) SPARQL query processing, and
– Parallelization and distribution of the above algorithms.

Investigating streaming algorithms for the Semantic Web, we can give birth
to a new generation of faster and more scalable Semantic Web tech-
nologies. Notably, they can have an high impact: no matter how much memory
the computers of the future will have got, they will be able to reason on datasets
that cannot fit into it.

Let us close with a real example, whose data size goes much beyond the one
of the current Web of Data: Space Situational Awareness, i.e., the identification
of objects in space. For many different purposes it is important to know what
flies above, e.g. for environmental studies using lasers, but also for commercial
companies running satellites. There are many different types of objects flying
around space, and many ways of measuring whether there are objects in a par-
ticular segment of the sky (think of debris, satellites etc). The data is time and
space-bound, complex, massive, and comes from different sources. The applica-
tions require any-time approaches, and often almost immediate answers. We can
scale up reasoning to address this problem by enforce ordering on time (tempo-
ral proximity to the moment of the experiment), space (spatial proximity to the
place we want to fire the laser), quality of the measurements, size of the expects
objects, etc. and then applying streaming algorithms relying on this orders.

Space Situational Awareness is just started to being addressed; it calls for
new research driven, fundamental, approaches. Could the streaming algorithms
for the Semantic Web be the solution?
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