
A Visual Tool for Supporting Developers in
Ontology-based Application Integration

Tobias Wieschnowsky1 and Heiko Paulheim2

1 SAP Research
tobias.wieschnowsky@sap.com

2 Technische Universität Darmstadt
Knowledge Engineering Group
paulheim@ke.tu-darmstadt.de

Abstract. Ontologies are increasingly used for a larger variety of tasks
in software engineering. However, it turns out that many existing tools
are directed rather at ontology experts than at software engineering ex-
perts, which often reduces their acceptance and hinders are larger break-
through of semantic technologies in software engineering. Tools that
speak the language of software engineers may help overcoming that gap.
In this paper, we introduce an ontology and rule editor specifically tai-
lored at the task of application integration, and demonstrate its usability
for software engineers with a comparative user study.

1 Introduction

Ontologies are used in software engineering for various purposes, e.g., in integra-
tion tasks, for capturing requirements, for building abstraction layers between
systems, for improving model based development, or for enabling better devel-
opment tools, such as component repositories with semantic annotations [1].
While those approaches solve different problems, they most often demand that
the developer learns to handle ontologies and understands the underlying logic
foundations.

Experience has shown that the promises semantic technologies makes for soft-
ware engineering are not always kept, and often, the reason is that software engi-
neers lack the appropriate understanding for ontologies. While some concepts of
ontology engineering, such as the definition of classes and sub classes, are rather
intuitive for software engineers, working with more sophisticated concepts such
as logic axioms or rules is not as trivial. Furthermore, existing ontology editors
and tools most often demand a deeper insight into the underlying formalisms,
and thus, lack good usability [2].

Therefore, in order to get semantic technologies accepted by software en-
gineers, good tools are an essential requirement, which hide most of the logic
complexity “under the hood”, yet are versatile enough for the task at hand, and
speak the developers’ language. In this paper, we focus on the particular aspect
of creating logic rules employed in an ontology-based application integration
framework. We discuss a prototype for creating such rules, and compare it to
other state-of-the-art tools in a comparative user study.



2 Application Integration on the User Interface Level

Ontologies have been successfully used in application integration during the
past 20 years. The best-known approaches are ontology-based integration on
the database level, where an ontology-based abstraction layer is placed on top
of different, heterogeneous databases, and on the business logic level, e.g., by
employing semantic web services.

In contrast to those well-researched approaches, ontology-based application
integration on the user interface level is a comparatively new research direc-
tion. In [3], we have discussed a framework for employing ontologies and rules
for integrating applications on the user interface level, i.e., facilitating cross-
application interactions between existing applications, while, at the same time,
reusing existing user interfaces. When using the framework, a developer pro-
viding an application to be integrated has to write an ontology describing the
application, as well as a set of rules defining the possible interactions with other
applications.

We have built a prototype implementation of that framework, using Java
and OntoBroker 1, and F-Logic for describing both application ontologies and
integration rules. The prototype of the framework was used in the large scale
research project SoKNOS for developing a functional prototype for the domain
of emergency management [4].

Each development team providing an application was asked to also develop
the respective ontology and interaction rules. However, said task was not trivial
for developers, even with a sophisticated tool such as OntoStudio. Especially the
interaction rules in F-Logic proved difficult to create. Furthermore, it was hard
for the developers to understand given rules, thus, the problem was not solved
with providing a few example rules. In addition, the maintenance of existing
rules was difficult due to that lack of understanding. These insights lead to the
requirement of providing tool support to developers.

3 Prototype

Existing tools for developing ontologies and rules are typically general-purpose
tools, which provide many capabilities, at the price of being very complex. Fur-
thermore, they typically speak the language of formal logics, rather than the
language of software engineering and/or the domain for which the software is
developed.

The basic design rationales for developing a tool for supporting developers
were therefore to reduce complexity at the cost of functionality, and to make the
tool speak the developers’ language. Thus, we have developed a tool which can
be used to create only the specific types of ontologies and rules that were needed
in the context of the integration framework.

The tool prototype is realized as an Eclipse plugin, since Eclipse is a well-
known software engineering tool. Fig. 1 provides an overview of the architecture

1 http://www.ontoprise.de/en/products/ontobroker/



UI Rule ToolApplication
Ontology UI

Graphiti
Diagram
& EMF

Ontology Object Model

OntoBroker

F-Logic
File

Diagram 
File

User Interfaces

Application Logic

Filestorage

Fig. 1. Overview of the architecture of the UI Integration Tool.

of the prototype. On the top level it consists of two user interfaces that each
consist of a number of eclipse views and editors. The first user interface is the
application ontology editing user interface and the second is the integration
rule user interface. The later is the main focus of this paper and is also called
the UI Rule Tool. The main editor of the UI Rule Tool is a Graphitti/EMF
based visual rule editor, where developers can construct their integration rules
without any knowledge of F-Logic. Underneath the integration rule user interface
lies the Graphiti/EMF model which is supported by a Java representation of
the ontologies, called the Ontology Object Model. All application ontology user
interfaces are based directly on the Ontology Object Model.

Any information in the Ontology Object Model is stored as F-Logic files
through OntoBroker’s Java API. Any existing integration rules are also saved
in Graphiti’s own Diagram format which includes additional information, like
position of the parts in the diagram. This dual storage of the rule itself as well
as the layout information allows for the exact reconstruction of the visual layout
when a rule is reloaded, a feature which is not provided by editors that only
store the logic rule itself.

Figure 2 shows an example integration rule in the UI Rule Tool. The user
interface consists of several utility views, like for example the ontology viewer
(on the left) and the main editor (in the middle). The main editor window in
turn, contains the drawing area and the tool palette.

The two basic components of the visual integration rules are instances (dis-
played as boxes) and relations (displayed as the arrows connecting the boxes).
This visual representation is very simple and should be intuitive. In addition
there are more components like attributes (boxes on instances) and logic parts
like OR and NOT.

The most visually dominant feature of the UI Rule Tool is the clear visible
split into cause and effect. This reflects the two parts of a logic rule, body and
head, but has been renamed to make it clearer which role the two parts of the rule
play within the framework. The first part of the rule describes the conditions to



Fig. 2. An example rule in the UI Rule Tool.

the event that occurs within the framework and causes the reasoner to examine
the rule (the cause). The second part describes what changes in the application
that owns the rule if the cause part is found to be true (the effect). Thinking
of the two parts of the rule in these terms should help developers to better
understand how the rule works within the framework.

Another feature that attempts to incorporate the framework into the rule
editing process are the instance roles, which are derived from reoccurring pat-
terns of rules used in the integration framework. This pattern can also be seen
in the example rule diagram in figure 2: The rule is “triggered” by an in-
stance of type Action (or one of its subtypes), which may involve one or more
ApplicationObjects representing objects from the domain, and which may be
performed with a Component. The effect side of a rule typically consists of an
Interaction supported by the Component and triggered by the Action, which
in turn causes the performing of an Action. All those instances are especially
marked in the tool with specific symbols, thus providing a domain-specific visu-
alization of the rule. Furthermore, the palette contains a set of tools for creating
that basic pattern or typical subpatterns of rules used in the framework.

4 Evaluation

In order to evaluate the rule editing interface, a user study was conducted, which
compared it against those of three other ontology and/or rule editing tools. The
goal of the user study was to determine if the UI Rule Tool is better suited for
the creation of integration rule within the framework for UI integration.

4.1 Overview

The user study was comprised of a total of 16 participants, who were undergradu-
ate students, PhD candidates, and researchers from SAP Research in Darmstadt



or the TU Darmstadt. Each participants was given the same 4 example rules,
taken from the SoKNOS prototype of the UI Integration Framework. For each
participant, each tool was randomly assigned to one of the four example rules.
Overall, each tool was assigned to each rule an equal number of times. After
completing all tasks for a tool/rule combination, the participants were asked to
fill out a User Experience Questionnaire that captured their attitude towards the
tool they had just worked with. After all 16 participants completed the study,
the results were evaluated by three criteria: Time needed to complete the tasks,
number of errors made, and the responses to he questionnaires.

4.2 Setup

All participants of the user study were volunteers from SAP Research and the TU
Darmstadt and had a strong background in computer science. At the beginning
of the study they were asked to self-asses their knowledge on ontologies and logic
rules, as well as the three tools competing with the UI Rule tool. Depending on
their response to the questions about their ontology and logic rule knowledge,
the users were classified as either an expert, or a non-expert. This classification
was later used for in-depth analysis of the results, but had no influence on the
study design. Non of the participants indicated enough experience with any of
the tools to warrant a separation into expert and non-expert groups.

The four tools compared in the user study were: the our prototype of the UI
Rule Tool, OntoStudio 2, Protégé 3, and Strelka 4.

For each rule, participants had to complete a set of three tasks, two of them
multiple choice and one modification task. The multiple choice questions were
concerned with understanding the given rules: the first question asked users to
identify the element in the rule that triggered the rule from the perspective of
the framework, and the second question asked the users to identify the element
in the rule that was the result of the rule and would lead to the framework
modifying the application the rule belongs too. For both multiple choice tasks,
error rate and completion time were recorded. The third task for each tool was
a rather open task, where the user was asked to modify the rule and explore
the capabilities of the tool. Participants were also allowed to ask questions to
the interviewer when performing the third task. Error rate and completion time
were not recorded for this task as it’s focus was more to allow the user to work
with the tools in order to increase the significance of the questionnaire results.

After completing all tasks assigned to a tool, the participants were asked to
fill out a User Experience Questionnaire for the corresponding tool. The User
Experience Questionnaire [5] (UEQ) asks participants to judge their experience
with a tool based on 26 adjective pairs. Each pair contains two polar opposites
like for example, fast and slow. Users then marked which of the two adjectives
more closely described their interaction with the program. The 26 attribute

2 http://www.ontoprise.de/en/products/ontostudio/
3 http://protege.stanford.edu/
4 http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=Strelka



Fig. 3. Errors per Task and Tool

pairs are used to calculate six user experience factors: attractiveness, perspicuity,
dependability, efficiency, novelty and stimulation.

As part of the evaluation of the results, the statistical significance of the
recorded differences between the tools was computed. For time and UEQ re-
sults, the two sample t test (or short t test) was used to compute the statistical
significance, with a threshold of 95% before a result was considered significant.
For the differences in errors, the chi-square test (or chi-test) was applied to com-
pute the significance, again using 95% as the threshold. These test were used to
ensure that the results of the user study were not just due to random variations
in the rather small data set of the 16 participants.

4.3 Results

Overall significantly more errors were made in all tools than expected, consider-
ing that all rules shared a common pattern and the correct responses were very
similar for each rules tasks. Figure 3 shows a summary of errors made by task.
The overall lowest number of errors were made in Protégé which was a surprising
result, considering it is the only rule editor in the study that is text based. only
the comparison between the errors made in Protégé (least amount of errors) and
OntoStudio (most errors), was statistically significant (chi-test with threshold of
95%).

Figure 4 provides an overview of the average time recorded for the completion
of each multiple choice task during the study. The two visual rule editing tools,
UI Rule Tool and OntoStudio, are on average faster than the other two tools.
The differences in the recorded times were significant in three cases. Participants
solved the tasks significantly faster with the UI Rule Tool than with Protégé or
with Strelka.

The final recorded metric of the user study were the participants responses to
the UEQ for the individual tools. The UEQ yielded the most significant results
of the three metrics. Figure 5 shows the computed results for all tools in the six
attributes and the overall score.

The UI Rule Tool achieved the highest score in every single attribute of the
UEQ. All score differences between the UEQ and the other tools were significant,



Fig. 4. Average time per task and tool for the multiple choice tasks.

Fig. 5. Overview of the UEQ scores for all four tools.

with the exception of the novelty score in comparison to OntoStudio and Strelka.
Especially the huge advantage in perspicuity was important for the tool, since
perspicuity directly relates to how understandable and readable the integration
rules are, which was one of the main goals of the tool. These overwhelmingly pos-
itive responses indicate that the participants of the user study clearly preferred
the UI Rule Tool over the others for the given tasks.

Finally the UEQ score for the two participant groups, ontology experts and
non-experts, were compared. Overall the UEQ scores were a lot closer for the
expert group between tools. Especially Protégé and Strelka received significantly
higher scores on average. A possible explanation for the large difference is that
the expert group is more likely to be familiar with the notation of Protégé and
Strelka.

5 Conclusion and Outlook

In this paper, we have introduced a tool which eases the creation and mainte-
nance of ontologies and rules in a given software engineering setting, i.e., ap-
plication integration on the user interface level. The key rationales were the
reduction of complexity by moving from a general-purpose ontology and rule



editor to a tool specifically tailored to one particular task, i.e., the integration
of applications.

We have compared our prototype tool to three state of the art tools in a user
study. That study showed that our approach was better suited to the task of
editing and understanding integration rules then the more generic competitors,
especially in terms of task completion time and perceived user experience.

Some improvements are possible in the future. Especially the number of errors
in all tools in the user study was higher then expected, suggesting that the rules
are still complicated to understand and their role within the framework is at
times unclear. Improvements that could be implemented include a split which
divides the cause part of the rule into the two applications that are involved
in the transaction. The first application is the one that triggers the event, the
second the one is modified in response to the event. Since the rule can only
modify the second one, the effect part of the rule should remain unsplit.

From the comments of the users, we have learned that the display of OR and
NOT parts of rules should be changed, since it was misleading in some cases.
Additionally due to the lower error rate in Protégé, a hybrid representation of
visual and textual rule editing could be considered.

In summary, our prototype has shown that for specific software engineering
tasks, it may be beneficial to step from general purpose ontology and rule editors
to particularly tailored tools. As adequate tool support is an essential require-
ment for increasing the software engineers’ acceptance of semantic technologies,
and the results of our user study have shown significant improvements in terms
of user experience, we are confident that this is a fruitful direction for future
research.

References

1. Happel, H.J., Seedorf, S.: Applications of Ontologies in Software Engineering. In:
Workshop on Semantic Web Enabled Software Engineering (SWESE) on the 5th
International Semantic Web Conference (ISWC 2006), Athens, Georgia, November
5-9, 2006. (2006)

2. Garćıa-Barriocanal, E., Sicilia, M.A., Sánchez-Alonso, S.: Usability evaluation of
ontology editors. Knowledge Organization 32(1) (2005) 1–9

3. Paulheim, H., Probst, F.: Application Integration on the User Interface Level: an
Ontology-Based Approach. Data & Knowledge Engineering Journal 69(11) (2010)
1103–1116

4. Döweling, S., Probst, F., Ziegert, T., Manske, K.: SoKNOS - An Interactive Visual
Emergency Management Framework. In Amicis, R.D., Stojanovic, R., Conti, G.,
eds.: GeoSpatial Visual Analytics. NATO Science for Peace and Security Series C:
Environmental Security, Springer (2009) 251–262

5. Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user ex-
perience questionnaire. In: Proceedings of the 4th Symposium of the Workgroup
Human-Computer Interaction and Usability Engineering of the Austrian Computer
Society on HCI and Usability for Education and Work. USAB ’08, Berlin, Heidel-
berg, Springer-Verlag (2008) 63–76


