
Supporting Constructive and Exploratory
Modes of Modeling in Multi-Level Ontologies

Colin Atkinson, Bastian Kennel, and Björn Goß

University Mannheim
A5,6, D-68131 Mannheim

{atkinson,bastian.kennel,bgoss}@informatik.uni-mannheim.de

http://swt.informatik.uni-mannheim.de

Abstract. In the long term, fully exploiting the potential synergies be-
tween ontology engineering and software engineering approaches to mod-
eling is contingent on a complete understanding of their similarities and
differences and the development of a unified modeling framework that
can support both paradigms in a seamless way. In this paper we con-
tribute to the former by characterizing the fundamental modes of mod-
eling that the different approaches have evolved to support and we con-
tribute to the latter by outlining how a promising unification paradigm
can be enhanced to support them. This is the potency-based multi-level
modeling paradigm which allows all ingredients of a comprehensive on-
tology (e.g. instances, classes and metaclasses) to be treated in a uni-
form way, and allows ontologies to include as many classification levels
as needed to best represent the domain in hand. The paper explains how
the basic notion of potency can be enhanced to support “exploratory”
and “unbounded” modes of modeling alongside the “constructive” and
“bounded” modes of modeling which underpin the software engineering
approach to modeling for which it was originally developed.

Keywords: Multi-level modeling, metamodeling, modeling modes, con-
structive modeling, exploratory modeling, ontology engineering, potency

1 Introduction

As the potential synergy between ontology-based reasoning services (a la OWL)
and software-engineering oriented specification capabilities (a la UML) becomes
increasingly apparent, a growing number of researchers have started to explore
ways of bringing the two schools of modeling together. In the short to medium
term, “bridging” technologies that support mappings between the two paradigms
offer the most practical way of leveraging these two forms of modeling together.
Prime examples of such technologies include the Ontology Definition Metamodel
standardized by the OMG [4] and the TwoUse interoperation tool [10] developed
in the MOST project [6]. Nevertheless, in the long term, the cleanest solution is
to develop a single unified modeling paradigm which incorporates the capabilities
of existing modeling technologies as special cases.



2 C. Atkinson, B. Kennel, B. Goß

Accommodating the different assumptions and interpretations underlying
software engineering oriented modeling and ontology (i.e. semantic web) ori-
ented modeling within a single unified framework presents several fundamental
challenges, however. Some of these have been identified and widely discussed in
the literature. Examples include different underlying logics to define the mean-
ing of classes and taxonomies (e.g. description logic, basic set theory), different
interpretation of missing information (e.g. closed-world versus open world as-
sumptions) and different architectures used to organize model information (e.g.
traditional four level OMG architecture), two level OWL architecture) [2, 14, 15].

Other differences, in contrast, have received relatively little attention and
have yet to be fully elaborated. These relate to the fundamental modes by which
models are developed and used in the software and ontology engineering commu-
nities and the criteria under which models are considered valid. One important
difference relates to whether models are developed and used in a “constructive”
or “exploratory” way. In constructive (i.e. software engineering oriented) mod-
eling the role of class diagrams is to serve as templates from which populations
of instances can be generated at a future point in time, while in exploratory
(i.e. semantic web oriented) modeling the role of class models (i.e. ontologies)
is to capture classification information wrapped up in an already existing pop-
ulation of instances. This is related to the distinction between “prescriptive”
and “descriptive” models [18, 19], but focusses on the conditions under which
model content can be considered complete or valid rather than on the purpose
for which they are being deployed. Both prescriptive and descriptive models are
often developed in exploratory mode and applied in constructive mode. Another
important difference relates to whether the ways in which model content can be
extended are “bounded” or “unbounded”. Bounded models can only be extended
across a predefined number of classification levels, while unbounded models can
be extended over an unlimited number of classification levels.

In this paper we fully characterize these different modes of modeling and
present a strategy for accommodating them seamlessly within a unified frame-
work. This framework is based on the multi-level modeling paradigm that is
emerging as the favored foundation for a unified modeling framework because it
allows all ingredients of an ontology (e.g. instances, classes and metaclasses) to
be treated uniformly as first class citizens, and allows an ontology to include as
many classification levels as needed to best represent the domain in hand [13,
15]. The paper makes three concrete contributions – (1) it elaborates and fully
characterize the different modeling modes, (2) it introduces and consolidates new
terminology to discuss the properties of models in the context of these modes
and (3) it enhances the notion of potency, the key features that support arbi-
trary numbers of classification levels, to support the unification of these modes
within a single, integrated modeling framework.



Reconciling Constructive and Exploratory Modeling 3

2 Fundamental Modes of Modeling

As Figure 1 illustrates, there are two fundamental concerns that characterize
the way models are developed and the assumptions under which they are used
– the order or “direction” in which elements in the classification hierarchy are
created and the “scope” of models in terms of their intended completeness and
extensibility. These concerns are orthogonal and both give rise to a dichotomy
of choices.

? ?

? ?

?

Scope

D
ir
e
ct
io
n

Ex
p
lo
ra
to
ry

C
on
st
ru
ct
iv
e

Bounded Unbounded

Fig. 1. Modeling Modes

2.1 Constructive versus Exploratory Modeling

The dominant dichotomy is the direction dichotomy which distinguishes between
constructive modeling and exploratory modeling according to the general direc-
tion in which the elements in the classification levels are populated and the
criteria under which a completed model may be considered valid.

Constructive Modeling The goal of constructive modeling is to create a com-
plete, definitive description of all the types in a system (i.e. to create “type mod-
els” in the sense of Kühne [9]) so that instances can be generated from them at
runtime. Since the instances are usually generated in a different runtime envi-
ronment from that used to represent the types they are normally not regarded as
being part of the model per se. For example, type models are frequently used to
describe the objects that can populate a database or exist in the runtime system
of a software application.

The idea behind constructive modeling is illustrated in the top left hand
part of Figure 1 which shows two classification levels separated by a vertical
line. Those on the left hand side of the line are types while those on the right
hand side are instances. The solid and dashed boundaries of the elements are
intended to show the chronological direction (order) in which the elements are



4 C. Atkinson, B. Kennel, B. Goß

created, with the solid elements being created before the dashed ones. Thus, this
picture shows a type model from which a population of instances is subsequently
created by instantiation.

An important convention in constructive modeling is that a type model is
considered consistent and valid without any of the instances described by the
model actually being present in the modeling framework. In other words, in
constructive modeling the solid-lined elements at the type level in the upper left
hand corner of Figure 1 can be considered complete and valid before any of the
dashed instances at the instance level actually exist. Because all “instances” are
created mechanically at runtime from types, another fundamental characteristic
of constructive modeling is that every instance has a special relationship to one
individual type. In constructive modeling a concrete class is a class that can be
instantiated while an abstract one is a class that cannot be instantiated.

Since it evolved in the software engineering community, the UML is usually
used in a constructive modeling mode and most of its features and terminology
are optimized for this purpose. However, the UML can be, and often is, used
in an exploratory way, for example during the analysis phase of a development
project, although its semantics are not optimized for this mode of modeling.

Exploratory Modeling One aim of exploratory modeling is to develop types
that characterize the objects populating a domain of interest. As illustrated in
the bottom left hand corner of Figure 1, in contrast with constructive modeling
where the types come before the instances, in exploratory modeling the types are
usually identified from, and therefore after, the instances they classify. Moreover,
a body of model content (i.e. an ontology) is only considered complete and valid
when the instances classified by types are also present.

This distinction is not only reflected in the features of languages and tools
used to create models, it is also reflected in the “mood” of natural language
used to refer to the population of types and instances. Whereas in construc-
tive modeling most of the terminology used to define language semantics and
model properties is in the subjunctive form, in exploratory modeling it is in the
assertive form. The derivation of types from instances is often performed by hu-
man ontology developers, but ontology engineering tools also typically provide
“reasoning” services that can identify types and subtypes automatically.

The direction of population and causality in exploratory modeling means that
the notion of mechanical instantiation is no longer relevant. Instead, instanceOf
relationships need to be established based on the intention of types, applying
the usual principle that an object is an instance of a type if it possesses all of the
properties that the type defines for its instances. This means that instances no
longer have a single, special type from which they were created. They are usually
instances of multiple types, in different ways, depending on their properties.
This also has an impact on the way subtyping and abstract/concrete classes
are viewed. Because exploratory modeling focuses on describing typing concepts
that exist in a domain, it is possible for two types to have the same intentions
and extensions. In other words, two types can be equal in the terminology of



Reconciling Constructive and Exploratory Modeling 5

OWL. Also, since there is no notion of mechanical instantiation, the difference
between abstract and concrete classes has to be defined in terms of the extent
to which the instances of a type satisfy its intention.

2.2 Bounded versus Unbounded Modeling

The difference beteween bounded and unbounded modeling revolves around
whether a model is developed under the assumption that the number of classifi-
cation levels is fixed (at the time the model is developed) or not fixed. Of course,
it is always possible to change a model, once completed, and add more classifi-
cation levels if desired. For example, a finished, bounded model with two levels
can always be turned into a new, bounded model with three levels. However,
this is not what is intended here. The key difference is that unbounded models
can be extended over an arbitrary number of classification levels without any of
the existing model elements being changed, whereas bounded models cannot.

Bounded Modeling Bounded modeling takes place in the context of a fixed
number of classification levels. This is illustrated in the two left hand diagrams of
Figure 1. This is the main mode of modeling performed today, both in construc-
tive and exploratory modeling and includes UML models in software engineering,
ER models in data base design and OWL models (a.k.a. ontologies) in knowledge
engineering. Moreover, most modeling projects are usually only concerned with
two levels – a type level and an instance level. Since the advent of the UML, the
use of more classification levels has become common in the context of language
definition. The UML infrastructure has always nominally been based on four
classification levels, while tools that focus on the flexible definition of domain
specific languages usually work with three levels.

Unbounded Modeling Unbounded modeling takes place in the context of
an unfixed or uncertain number of classification levels. In other words, an un-
bounded model is a completed model that explicitly indicates that the number of
levels is unfixed or uncertain. This is indicated by the question marks appearing
within the diagrams on the right hand side of Figure 1. The presence of the ques-
tion marks is meant to symbolize the fact that one or more of the model levels
have model elements that are explicitly indefinite about the number of classi-
fication levels in the subject of interest. In the case of constructive unbounded
modeling (top right), this indefiniteness arises in terms of future instantiation of
the types in a completed model. In other words, it exists when the model content
is intended to represent a framework where future extension (by population of
additional model classification level(s)) is anticipated but the exact number of
levels is left undetermined. This kind of indeterminacy is common in libraries
and frameworks, but the uncertainty is usually associated with specialization
levels rather than instantiation. Standard programming languages such as Java,
and language metamodels such as UML, possess a predefined set of types which
are intended to be specialized over an indeterminate number of specialization



6 C. Atkinson, B. Kennel, B. Goß

levels. The notion of unbounded modeling is based on the same idea but with
the indeterminacy also associated with the number of classification levels.

An important consequence of unbounded modeling is that the numbering of
classification levels can no longer be fixed a priori. If the goal is to define model
content to serve as an extensible framework, the predefined levels have to be
numbered in such a way that any new levels can be added in a systematic way.
A numbering scheme that fulfils this requirement is introduced at the end of
Chapter 4.2.

3 Potency-based Multi-Level Modeling

Various flavors of multi-level modeling have been developed in recent years [11–
13]. One of the most widely known is based on the notions of clabjects and
potency to represent multiple classification levels [8, 4]. In recent years, a growing
number of researchers have recognized this paradigm’s potential to unify the
ontology-engineering and software engineering approaches to modeling [1, 2, 15].

Fig. 2. Orthographic Classification Architecture

The key idea in this form of multi-level modeling is to recognize and separate
two distinct forms of classification – one (linguistic classification) capturing the
linguistic type of model elements, the other (ontological classification) capturing
the ontological type. Since this leads to two orthogonal hierarchies of classifica-
tion levels, each conforming to the tenets of strict metamodeling, the resulting
architecture is sometimes referred to as the orthogonal classification architec-
ture (OCA). This is depicted schematically in Figure 2, where the vertically
arranged levels, L0, L1 and L2 represent the linguistic levels, and the horizon-
tally arranged levels (within L1) represent the ontological levels. The bottom
level, L2, represents the real world as in the UML model hierarchy. Clabjects
are the basic modeling elements used to populate multi-level models in the OCA.
They are able to do so in a level-agnostic way because in general, they represent
classes and objects at the same time. All the main model elements in Figure 2,
in all three ontological levels, are clabjects, and the element in the middle level,
Video, has both a type and an instance facet since it is an instance of VideoType



Reconciling Constructive and Exploratory Modeling 7

on the left hand side and a type for 2001aSpaceOdyssey on the right hand side.
Clabjects can also have attributes (previously called fields [8]) and participate
in connections.

3.1 Potency

Since clabjects are essentially level and type agnostic, some way is needed to
represent the “typeness” of a clabject - that is, the degree to which it is capable
of having instances. To achieve this Atkinson and Kühne introduced the notion
of potency to indicate how many levels a clabject can have instances over [8]).
This original notion of potency is based on the following concepts -

1. potency is a non-negative integer associated with clabjects and attributes,
2. a clabject, i, instantiated from another clabject, t, has a potency one less

than t,
3. the potency of an attribute of a clabject must be no greater than that of the

clabject,
4. every attribute of a clabject, i, instantiated from a clabject t, must have a

corresponding attribute in t, with a potency one higher,
5. a clabject, i, instantiated from another clabject, t, must have an attribute

corresponding to every attribute of t, except those that have potency 0.

“Corresponding” here means an attribute with the same name and datatype.
Since potency values are defined as non-negative integers, it follows that a clab-
ject of potency 0 cannot be instantiated (i.e. represents an object in classic
UML terms) and a clabject of potency 1 represents a regular class in classic
UML terms. By allowing clabjects to have potencies of 2 and higher, new kinds
of classification behavior (spanning more than immediately adjacent levels) can
be supported. This has been referred to as deep instantiation. This interpreta-
tion of potency also lends itself to a simple definition of abstract and concrete
classes. Since abstract classes cannot be instantiated they have a potency of 0,
while concrete classes which can be instantiated have a potency greater than 0.
The basic problem with this original definition of potency is that it is inherently
constructive and bounded. In other words it is inherently based on the princi-
ples that underpin the constructive and bounded modes of modeling. In fact,
the very name “potency” conveys a constructive (type to instance) mentality.
The fundamental definition of potency has always relied on the constructive no-
tion of instantiation (instances created from types) and is not compatible with
exploratory and unbounded modeling. In the following sections we therefore pro-
pose enhancements to the notion of potency to support all the modes of modeling
identified above.

4 Constructive Multi-Level Modeling

To avoid ambiguity in the remainder of this paper we refer to a given ontological
level as a model and the total collection of models, across all the ontological lev-
els in the L1 level, as an ontology. This conforms to the prevailing notions of type



8 C. Atkinson, B. Kennel, B. Goß

and token models of Kühne [9] and the practice of considering instances as well
as types when developing ontologies. The original definition of potency in the
previous section is based on the notion that the extension of a type is character-
ized exclusively by attributes. However, in general this is an over simplification.
If clabjects are allowed to have methods and enter into relationships with other
clabjects these also have a bearing on the intention of a type. A full treatment
of classification in the context of clabjects therefore needs to take these charac-
teristics into account. However, these details are unimportant for understanding
the modes of modeling discussed in this paper and the differences between them.
Without loss of generality, therefore, in the remainder of the paper we assume
that the only properties possessed by clabjects are attributes.

4.1 Bounded Constructive Modeling

The definition provided in the previous section does not really need to be changed
to support constructive multi-level modeling it already contains the required in-
gredients. However, in order to define a unified framework and better capture
bounded constructive modeling’s place within it, it is helpful to introduce new
terminology to distinguish the different interpretations of classification relation-
ships employed in each mode. As described previously, classification in construc-
tive modeling is used to drive the automated generation of instances in a running
system. Since every clabject therefore has one-and-only-one type from which it
is created, we refer to this type as the blueprint of the clabject. Going fur-
ther, if one clabject, b, is a blueprint of another clabject, o, we say that o is an
offspring of b.

Fig. 3. Bounded Constructive Modeling

Figure 3 shows an example of a bounded, multi-level ontology that has been
created in constructive mode. This is represented in the LML (Level-agnostic
Modeling Language) that we have optimized to visualize multi-level ontologies
[16]. The only aspect of this diagram that is not valid LML syntax is the rep-
resentation of clabjects with dashed boundaries on the right hand side of the
model. This notation is used here to convey the idea that the instances were
instantiated from, and thus created after, the types in the middle. As always
some exceptions are required at the extreme end of the model hierarchy and the
clabjects in the left most model do not have blueprints. In terms of these new
definitions we can interpret the potency of a clabject as defining the maximum
potential depth of its deep offspring tree – that is the tree formed by taking all
its offsprings, and all of its offspings’ offsprings, and so on, recursively.



Reconciling Constructive and Exploratory Modeling 9

4.2 Unbounded Constructive Modeling

If it were ever deemed necessary to add a fourth model level to the bounded
ontology in Figure 3 it would be necessary to change the potency values of many
of the existing clabjects, leading to new versions of the type models in the two left
hand levels. However, a common goal in constructive software engineering is to
create reusable frameworks containing models that can be extended in arbitrary
ways without requiring them to be changed. The extension is usually achieved
by specialization, for example in the definition of Java class libraries or in the
addition of new abstract syntax elements to language definitions. Extension by
specialization is inherently unlimited and does not require changes to existing
model elements because they do not carry any predetermined constraints on
the depth of the specialization hierarchy. However, with the bounded form of
potency described previously, it is not possible to add more ontological level
to an ontology without changing the potencies of the existing model elements,
defeating the goal of defining predefined frameworks of model content which can
subsequently be extended as necessary in future projects.

Fig. 4. Unbounded Constructive Modeling

To address this problem we extend the potency concept defined previously
to include the notion of unlimited or * potencies. These have the same basic
meaning as * multiplicity constraints in UML. Instead of leaving the number
of instances of an association open, however, * multiplicities leave the number
of ontological levels open. The use of * multiplicities is illustrated in Figure 4
above. The stars can be thought of as the concrete incarnation of the question
marks in the schematic representation of the modeling approaches in Figure 1.
Figure 4 is quite similar to Figure 3, but obviously has four ontological levels.
This is possible because the potencies of ProductType and Book are * rather
than 2 and 1 respectively. Of course, it would be possible to create a well formed
model by changing the potencies of ProductType and Book to 3 and 2, but this
would give rise to another bounded model which could not be extended in the
future. By making the potencies of these clabjects * an unlimited number of
levels can be added without change. In Figure 4, the two left hand levels can be
interpreted as defining an extensible framework. This framework can support the
right hand model of Figure 3 as well as the two right hand models of Figure 4.
To accommodate unbounded multi-level modeling using * potencies, the overall
definition of potency needs to be enhanced as follows -



10 C. Atkinson, B. Kennel, B. Goß

1. Potency is a non-negative Integer or a * associated with clabjects and at-
tributes,

2. An offspring of a clabject with numeric potency must also have a numeric
potency with a value that is one lower,

3. An offspring of a clabject with * potency may also have * potency or any
numeric potency,

4. the potency of an attribute of a clabject must be no greater than that of the
clabject,

5. a clabject, i, instantiated from another clabject, t, must have an attribute
corresponding to every attribute of t, except those that have potency 0. If
the attribute of t has * potency the corresponding attribute of i can have *
potency or any numeric potency. If the attribute of t has a (non-zero) numeric
potency, the corresponding attribute of i must have a numeric potency that
is one lower.

Extending the potency mechanism in this way with the notion of * potencies has
the desired effect of allowing predefined models to be extended in unpredicted
ways, but it also raises a dilemma related to the numbering of the ontological
levels. Since they all implicitly assumed a bounded mode of multi-level model-
ing, existing modeling infrastructures such as that of the UML and the original
OCA chose a fixed numbering scheme in which the most general levels have the
highest numbers and the least abstract levels instantiated from them have the
lowest numbers, with the bottom level having the number 0. However, this is
obviously not extensible across an arbitrary number of levels, unless one accepts
levels having negative numbers which is somewhat counter intuitive. To support
unlimited extension of generic models across an unlimited number of levels it is
therefore necessary to adopt a number scheme in which the less abstract (instan-
tiated) levels have a higher number. In terms of Figure 4, this would mean that
the left hand model would have level number 0, the model to the right, instan-
tiated from it, would have level number 1 and so on. In this way, the number of
levels could grow in an unlimited way. This reverses the numbering convention
popularized by the UML infrastructure.

5 Exploratory Multi-Level Modeling

The notion of mechanically instantiating types to generate instances is not rele-
vant in exploratory modeling. Instead, a more discovery-oriented notion of classi-
fication (instanceOf) is required based on the properties that a clabject requires
to be considered an instance (i.e the extension of a type). The basic require-
ment that an instance of a type needs to posses all the properties defined in
the extension of that type remains unchanged. However, this notion alone is not
sufficient to define useful semantics for potency in an exploratory context. It is
also necessary to distinguish between two forms of instanceOf relationship one
in which an instance has exactly the properties needed to be an instance of the
type, and no more, and one in which an instance has more properties than those
needed to be an instance of a type. To this end we introduce two distinct forms



Reconciling Constructive and Exploratory Modeling 11

of classification (instanceOf) relationship - if a clabject has exactly the required
properties needed to be an instanceOf a type but no more, we refer to it as an
isonymic instance of that type, whereas if a clabject has more properties than
those defined in the extension of a type, we refer to it as a hyponymic instance
of that type. The set of instances of a type is thus partitioned into two subsets
the set of isonymic instances and the set of hyponymic instances (i.e. isonyms
and hyponyms for short).

5.1 Bounded Exploratory Modeling

These specialized forms of instanceOf relationship allow exploratory multi-level
modeling to be supported in a simple and powerful way. Basically, instead of
defining the semantics of potency in terms of the instantiatability of clabjects,
in exploratory modeling it is characterized in terms of the depth of the isonymic
instance tree emanating from a clabject.

Fig. 5. Bounded Exploratory Modeling

The detailed definition of potency for bounded exploratory modeling is as
follows -

1. potency is a non-negative integer associated with clabjects and attributes,
2. an isonymic instance of a clabject must have a potency one lower than the

clabject,
3. the potency of an attribute of a clabject must be no greater than that of the

clabject,
4. every attribute of a clabject, i, that is an isonymic instance of a clabject t,

must have a corresponding attribute in t, with a potency one higher,
5. a clabject, i, that is an instance of a clabject, t, must have an attribute

corresponding to every attribute of t, except those that have potency 0.

In contrast with the definitions in section 4.1, these definitions are driven
by the isonymic instanceOf relationship rather than the instantiation relation-
ship. The main consequence of this difference is that in exploratory modeling
a clabject can have more than one isonymic type (which by definition are then
equal types in the sense of OWL). Also, as an abstract type is defined as a type



12 C. Atkinson, B. Kennel, B. Goß

that has no isonymic instances (but possibly many hyponymic instances), while
a concrete class is a type that has at least one isonymic instance. Because po-
tency is defined in terms of isonymic instances, and as before always goes down
by one across classification levels, it follows that it is a measure of the depth of
the isonymic instance tree of a clabject. These concepts are illustrated in Figure
5 which actually contains the same clabjects as Figure 3. The difference is the
direction in which the clabjects are interpreted as having been discovered and
the ways in which the classification relationships are interpreted. In Figure 5 the
clabjects in the two left hand models are dashed, indicating that they were de-
rived from their instances in the model on the right hand side. Furthermore, the
instanceOf relationships in the ontology are classified as being either isonymic
or hyponymic. Notice that the extension of a clabject (i.e. the properties that
the clabject requires of its instances) is defined by its attributes of potency 1 or
higher. The potency zero attributes of a clabject have no effect on the instanceOf
relationships it can participate in as a type.

5.2 Unbounded Exploratory Modeling

By analogy with unbounded constructive modeling in section 4, unbounded ex-
ploratory modeling extends the bounded form with the notion of * potency.
However, whereas all the other three modes of modeling have a clear and well
established role in information modeling and are all used in practical IT projects,
the role of unbounded, exploratory modeling is less clear. We have included it in
the scheme for symmetry and completeness, and because it fits within a rounded
and clean extension of potency. The value of this mode of modeling is yet to be
explored. As indicated in Figure 6, the main difference to unbounded construc-
tive modeling is that the ontology is not populated in a specific direction (or
order).

Fig. 6. Unbounded Exploratory Modeling

The detailed definition of potency for unbounded exploratory modeling is
adapted from that for constructive modeling by the same principle of using the
isonymic instanceOf relationship rather than instantiation -



Reconciling Constructive and Exploratory Modeling 13

1. potency is a non-negative integer or a * associated with clabjects and at-
tributes,

2. an isonymic instance of a clabject with numeric potency must have a numeric
potency with a value that is one lower,

3. an isonymic instance of a clabject with * potency may also have * potency
or any numeric potency,

4. the potency of an attribute of a clabject must be no greater than that of the
clabject,

5. every attribute of a clabject, i, that is an isonymic instance of a clabject
t, must have a corresponding attribute in t, with a potency one higher. If
the attribute of i has * potency the corresponding attribute of t can have *
potency or any numeric potency.

6. a clabject, i, that is an isonymic instance of a clabject, t, must have an
attribute corresponding to every attribute of t, except those with potency 0.

The interpretation of the * potency is different. Whereas in constructive mod-
eling, * potency reflects a capacity to spawn offspring in an unbounded number
of derived levels, in exploratory modeling it reflects a measure of uncertainty in
how many levels there actually are in the subject of interest. This is related to
the idea of open world interpretations of ontologies in knowledge engineering.
However, the difference between open world and closed world interpretations of
models revolves around how a modeling systems responds to queries in the ab-
sence of explicit information, while the uncertainty in exploratory, unbounded
modeling revolves around the depth of isonym trees in multi-level ontologies.

6 Multi-Mode Modeling

At first sight the different interpretations and definitions of potency presented
in the previous two sections might seem incompatible. With the enhancements
suggested in this paper they can be integrated within a single framework, in
which constructive modeling is essentially a special case of exploratory modeling.
For example, the blueprint/offspring notion in the constructive view of potency is
a special case of the isonymic/hyponymic instance dichotomy since by definition
an offspring is an isonym. Having the basis for a framework in which all four
modeling modes can be applied to the same content does not necessarily make it
a good idea. It begs the question: why would a unified framework supporting all
four modes of modeling be of value? We believe there are many scenarios where
such capabilities are of value, but for space reasons describe only two of them
below.

In most full spectrum software and database engineering projects the early
phase of development starts out with an analysis or requirements elicitation
phase where the basic properties of the problem to be solved and the systems
requirements need to be understood. In other words, most projects start out in
an exploratory mode where the goal is to learn and characterize the types in the
domain of interest rather than define instantiatable types. But later on, once the



14 C. Atkinson, B. Kennel, B. Goß

project moves into the design phase, the goal is to move into a constructive mode
and actually define the types that will be instantiated in the final database or
software system. In software engineering this distinction is often characterized in
terms of the difference between the domain model and the design class diagrams
[17]. Thus, there is an inherent and natural need to switch between exploratory
and constructive modes of development in most software and database engineer-
ing projects. Ideally, engineers would like to be able to populate an ontology in
an exploratory way near the beginning of a project and then at some point move
to a constructive approach.

Another important trend in the knowledge engineering and model-driven
development communities is to explore how model content can be used at run-
time, with associated reasoning and checking facilities, to drive the execution of
software systems. This research goes under the name of “models@runtime” or
“ontology-driven systems”, and the resulting applications are often referred to as
“intelligent” because they are able to exhibit behavior that is not hard-wired into
them. Once again, this not only requires the ability to switch between construc-
tive and exploratory modes of modeling (since the run-time ontology probably
needs to be manipulated under the mechanisms for exploratory modeling) it also
requires unbounded exploratory modeling since the direction and extent of an
ontologys growth is unknown a priori.

7 Conclusion

In this paper we have identified four fundamentally distinct modes of modeling,
based on the interaction of two orthogonal dichotomies that reflect the scope
of models and the direction in which they are populated. We also presented
examples of scenarios in which these modes are needed and where the ability
to switch seamlessly between them would greatly increase the efficiency of soft-
ware and data engineering projects. We then presented a generalization of the
potency-based approach to multi-level modeling that equips it with the abil-
ity to accommodate the different modes within a single, unified, multi-mode
modeling framework. This unified framework opens up the possibility of a truly
fundamental unification of the ontology engineering and software/database en-
gineering approaches to modeling in which the advantages of one community’s
technology can be exploited by the other and vice versa. In particular, the ex-
ploratory definition of potency based on the distinction between isonymic and
hyponymic instanceOf relationships provides the basis for reasoning services of
the kind available with OWL DL. The described approach therefore for the first
time makes potency-based multi-level modeling useful to the knowledge engineer-
ing community as well as to the software and data engineering communities. We
are currently working on an EMF-based prototype of the infrastructure which
should make the approach usable within the rich set of facilities provide by the
Eclipse modeling tools. We are also working on identifying stronger uses case for
the unbounded exploratory mode of modeling and on understanding how these
modes relate to the open and closed querying techniques applied to models.



Reconciling Constructive and Exploratory Modeling 15

References

1. Saeki, M. and Kaiya, H.: On Relationships among Models, Meta Models and On-
tologies. In: Proceedings of DSM’06@OOPSLA2006 - 6th OOPSLA Workshop on
Domain-Specific Modeling, Portland, Oregon USA (2006)

2. Atkinson, C., Gutheil, M., and Kiko, K.: On the Relationship of Ontologies and Mod-
els. 2nd International Workshop on Meta-modeling and Ontologies (WoMM2006),
Karlsruhe (2006)

3. Weishan Z.; Hansen, K.M.; Fernandes, J.: Towards OpenWorld Software Architec-
tures with Semantic Architectural Styles, Components and Connectors. In : ICECCS
’09 Proceedings of the 2009 14th IEEE International Conference on Engineering of
Complex Computer Systems, vol ., pp.40-49. IEEE Press, New York (2009)

4. Object Management Group, Inc.: Ontology Definition Metamodel. (2009)
5. Dong, J.S., Lee, C. H., Lee, H. B., Li, Y. F., Wang, H.: A combined approach to

checking web ontologies. In: Proceedings of the 13th international conference on
World Wide Web, New York, NY, USA (2004)

6. MOST Project - Marrying Ontology and Software Technology, http://www.most-
project.eu

7. World Wide Web Consortium (W3C), http://www.w3.org/TR/rdf-schema/
8. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Foundation.

In: IEEE Software, 20(5), 3641 (2003)
9. Kühne, T.: Matters of (Meta-)Modeling. In: Journal on Software and Systems Mod-

eling, Volume 5, Number 4, 369385 (2006)
10. Parreiras, F., Fernando, Staab, S., Winter, A.: TwoUse: Integrating UML Mod-

els and OWL Ontologies. Institut für Informatik, Universität Koblenz-Landau. Nr.
16/2007. Arbeitsberichte aus dem Fachbereich Informatik (2007)

11. Neumayr, B., Grün, K., Schrefl, M.: Multi-level domain modeling with m-objects
and m-relationships. In: Proceedings of the Sixth Asia-Pacific Conference on Con-
ceptual Modeling, Wellington, New Zealand (2009)

12. de Lara, J., Guerra, E.: Deep meta-modeling with METADEPTH. In: Vittek, J.
(ed) TOOLS’10 Proceedings of the 48th international conference on Objects, mod-
els, components, patterns. LNCS, pp. 1-20. Springer, Heidelberg (2010)

13. Atkinson, C, Gutheil, M, Kennel, B.: A Flexible Infrastructure for Multi-Level
Language Engineering. In: IEEE Transactions on Software Engineering, vol. 35, no.
6, pp. 742-755 (2009)

14. Staab, S., Walter, T., Gröner, G.,Parreiras, F.. Model driven engineering with
ontology technologies. In: Reasoning Web. Semantic Technologies for Software En-
gineering, volume 6325 of LNCS. Springer (2010)

15. Jekjantuk, N., Gröner, G., Pan, J. Z., Zhao, Y.. Modelling and validating multilevel
models with owl fa. In: Proceedings of the 6th International Workshop on Semantic
Web Enabled Software Engineering (2010)

16. Atkinson, C., Kennel, B., Goß, B.: The Level-agnostic Modeling Language. In:
Proceedings of the SLE 2010. LNCS, vol. 6563, Springer, Heidelberg (2010)

17. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process. Prentice Hall PTR Upper Saddle
River, NJ, USA (2001)

18. Seidewitz, E.: What models mean. In: IEEE Software 20(5), 26-32 (2003)
19. Assmann, U., Zschaler, S., & Wagner, G. (2006). Ontologies, Meta-models, and the

Model-Driven Paradigm. Ontologies for Software Engineering and Software Tech-
nology, 249-273


