
Optimizing Unbound-property Queries to RDF Views

of Relational Databases

Silvia Stefanova, Tore Risch

Uppsala University, Department of Informational Technology

Box 337, SE-751 05 Uppsala, Sweden

{Silvia.Stefanova, Tore.Risch}@it.uu.se

Abstract. SAQ (Semantic Archive and Query) is a system for querying and

long-term preservation of relational data in terms of RDF. In SAQ relational

data in a back-end DBMS is exposed as an RDF view, called the RD-view. SAQ

can process arbitrary SPARQL queries to the RD-view. In addition long-term

preservation as RDF of selected parts of a relational database is specified by

SPARQL queries to the RD-view. Such queries usually select sets of RDF

properties and thus in the query definition a property p is unknown. We call

such queries unbound-property queries. This class of queries is also present in

the SPARQL benchmarks. We optimize unbound-property queries by

introducing a query transformation algorithm called Group Common Terms,

GCT. It pulls out from a DNF normalized query those common terms that can

be translated to SQL predicates accessing the relational database. Our

experiments using the Berlin SPARQL benchmark show that GCT improves

substantially the query execution time to a back-end commercial relational

DBMS for both selective and unselective unbound-property queries. We

compared the performance of our approach with the performance of other

systems processing SPARQL queries over views of relational databases and

showed that GCT improves scalability compared to the approaches used by the

other systems.

Keywords: SPARQL queries, RDF views of relational databases, query

optimization, query rewrites, unbound property queries

1 Introduction

Semantic Web technology and, in particular, RDF and RDFS seem promising for both

search and long-term preservation of any kind of data including data currently stored

in relational databases. In order to investigate the use of RDF for both search and

archival of existing relational databases we have developed the SAQ (Semantic

Archive and Query) system. In SAQ relational data in a back-end DBMS is exposed

as RDF by a view, called the RD-view, represented in a Datalog dialect. The RD-view

is automatically generated by accessing the database schema. SAQ can process

arbitrary SPARQL queries to the RD-view. Long-term preservation as RDF of the

contents of selected parts of a relational database is specified by SPARQL queries to

the RD-view.

SSWS 2011

43

mailto:%7D@it.

In the RD-view tables are represented as RDFS classes and attributes as RDF

properties. Each data value in the relational database is viewed as a triple (s, p, v),

where the subject s is a URI identifying a row in a relational table, p is an RDF

property representing the column (i.e. attribute) where a value is stored, and v is the

data value of the attribute for the row. In SAQ a SPARQL query to the RD-view is

transformed into an execution plan containing SQL calls to the back-end relational

DBMS followed by post-processing.

Queries to archive database contents typically select sets of attributes of tables to

archive. This corresponds to selecting sets of RDF properties in the RD-view to be

archived, for example all properties of the class representing the table offer.

Therefore, in such SPARQL queries a property p in some triple pattern is not known.

We call such queries unbound-property queries. Moreover, unbound-property queries

are also present in SPARQL benchmarks. For example, in the SP2Bench benchmark

[18] queries Q9 and Q10 are unbound-property queries, and in the Berlin SPARQL

benchmark [2] Query 9 and Query 11 are unbound-property queries, while Query 9 is

a DESCRIBE query that can be expressed as an unbound-property query. Since p is

unknown in unbound-property queries, the translation from SPARQL to SQL is not

trivial and can ”easily result in large unions” of sub-queries [7] and therefore “using

of variables in the predicate position is discouraged” [8].

In this paper we present a novel approach for optimizing unbound-property queries

by implementing a predicate rewrite rule called group common terms (GCT). GCT is

shown to substantially improve SPARQL query execution time. It partially

denormalizes disjunctive normal form (DNF) predicates to form query fragments

doing select-project-joins over the back-end relational tables. The reason for the

performance improvement is that GCT generates execution plans that access data in

row-order, which is substantially more efficient to process than without GCT, where

data is accessed column-wise. In the performance section it will be shown that our

approach improves query performance compared to a naïve approach without using

GCT. Furthermore, we show that SAQ with GCT executes unbound-property queries

substantially faster than other systems able to process SPARQL queries to views of

relational databases [4][8]. By investigating the SQL queries emitted by the other

systems, we show that they do not employ query transformations similar to GCT.

The rest of this paper is organized as follows. First, in Section two unbound-

property queries are defined and exemplified. In Section three the architecture of the

SAQ system is presented, the RD-view is defined, and the steps of the query

processing in SAQ are explained. In Section four the GCT algorithm is presented.

Section five analyzes the performance of SAQ for unbound-property queries and

compares it with related systems. Section six describes related work and finally

Section seven summarizes.

2 Unbound-property Queries

A bound-property triple pattern is a SPARQL triple pattern (s, P, v) where the

property P is a URI representing an RDF property, e.g. (?s1

SSWS 2011

44

saq:product#review/person ?s.). For SPARQL queries to an RD-view the property

must match a URI representing a relational column, otherwise the result is empty.

An unbound-property triple pattern is a triple pattern (s, u, v) where u is a variable,

e.g. (?s ?p ?v) or (%offerXYZ% ?property ?hasValue).

A bound-property query is a SPARQL query having only bound-property triple

patterns. An unbound-property query is a SPARQL query having one or several

unbound-property triple patterns. Finally, a simple unbound-property query is an

unbound-property query with a single unbound-property pattern.

Fig. 1 shows a small relational database product having three tables offer, person,

and review. The tables are parts of the relational database generated by the Berlin

SPARQL benchmark data generator [1]. In the example, they are populated with two

offers, two persons, and a review made by each of them. In the scalability

experiments later, we use the full Berlin benchmark relational database with the tables

product, offer, person, producer, productfeature, productfeatureproduct, producttype,

producttypeproduct, review, and vendor.

The columns onr, nr, and rnr are the primary keys in the tables, while the column

person in table review references the column nr in table person as foreign key.

Table offer

onr price deliveryDays

5 854.18 3

7 440.9 5

Table review Table person

rnr person reviewDate nr name country publisher

 10 1 2007-09-16 1 Caryn KR 9

166 8 2006-05-12 8 Linda-Nada AT 3

Fig. 1. product database

The following queries are examples of SPARQL queries to the RD-view for

preservation and search of the product database. They represent different kinds of

unbound-property queries with varying selectivity.

Query Q1

(1)

SELECT ?s ?p ?v

FROM <product>

WHERE {?s rdf:type %offerType%.

 ?s ?p ?v }

Query Q2

(2)

SELECT ?property ?hasValue ?isvalueOf

FROM <product>

WHERE {

 {%offerXYZ% ?property ?hasValue }

 UNION

 {?isValueOf ?property %offerXYZ%} }

SSWS 2011

45

In the queries <product> denotes the URI for the RD-view of the database

product.

Q1, Q3, and Q4 are simple unbound-property queries, while Q2 is a union of

simple unbound-property queries.

Query Q1 converts the entire table offer to RDF triples. %offerType% is the URI

associated with table offer. Q1 is a very unselective unbound-property query.

Q2 is a highly selective query that retrieves all information about an offer

%offerXYZ%, i.e. a single row from the table offer. Q2 is called „Query 11‟ in the

Berlin SPARQL Benchmark [1][2]. Q2 searches for both the properties and the

inverse properties of an explicitly given offer.

Q3 retrieves all the properties of a person for a given name %nameXYZ%. Like Q2

query Q3 is highly selective, it selects one row from the table person. The difference

from Q2 is that the subject of the unbound-property is not explicitly specified, so the

row in the relational database cannot be identified by the URI as in Q2.

Query Q4 retrieves all properties of the 10% of all reviewers coming from country

„JP‟. Unlike Q3 the name of a described person is not explicitly specified, but are

retrieved by joining the tables person and review. It is an unbound-property query

with a join. Q4 is more selective than Q1 but much less selective than Q2 and Q3

since it retrieves more rows when the database grows.

It is shown in section five that the performance of the unbound-property queries

Q1…Q4 is substantially improved by applying the proposed GCT rule. Queries like

Q2 defined with a „UNION‟ clause are handled as a union of several non-disjunctive

queries, where GCT is applied on each sub-query in the union. The unusual case of

unbound-property queries with several unbound-property patterns in a conjunction are

also handled by SAQ, but are outside the scope of this paper. The processing of

bound-property queries to an RD-view is also outside the scope and was described in

[15][16].

3 SAQ

The architecture of the SAQ system is presented in Fig. 2. The source DB is the

underlying relational database, which can be queried and preserved by SAQ. The RD-

view generator generates the RD-view over the source DB from the database schema

Query Q3

(3)
SELECT ?s ?p ?v

FROM <product>

WHERE{ ?s saq:product#person/name %nameXYZ%.

 ?s ?p ?v }

Query Q4

SELECT ?s ?p ?v

FROM <product>

WHERE { ?s1 saq:product#review/person ?s .

 ?s saq:product#person/country 'JP’.

 ?s ?p ?v }

(4)

SSWS 2011

46

by using the RD-view definitions. The query processor executes arbitrary SPARQL

queries to the RD-view by accessing the source DB through the JDBC wrapper.

When the source DB or part of it is to be preserved as RDF a SPARQL query

extracting the desired content is sent to the query processor. The query result is

transformed by the archiver into RDF triples and stored in a repository of archive

files as N-Triples [14]. The archiver stores two N-triple files – one with the

transformed query result, called the data archive and another one with schema

information, called the schema archive. For instance, when all instances of class

%offerType% representing the content of the relational table offer are unloaded as

RDF, Q1 is executed by the query processor in SAQ.

Later on, when a preserved database is to be restored, the reloader reads the

archive files from the repository and makes it live again by reloading it into a

destination DB. It first reads the schema archive to generate the relational database

schema and then loads the data by reading the data archive.

3.1 RD-view Definition

In the RD-view each relational table is represented as an RDFS class, while each

column is represented as an RDF property, as prescribed in [22]. For example, the

table person is represented by the RDFS class URI saq:product#person. The URIs

saq:product#person/name and saq:product#person/country are the RDF properties

associated with the columns name and country of table person.

SAQ contains four meta-tables cMap, pMap, fkMap, and rmmMap providing

mappings between RDF resources and the relational schema. The class mapping

table, cMap(T, ClassID), maps 1-1 each relational table named T to the corresponding

RDFS class ClassID. Here T is primary key and ClassID is secondary key. The

property mapping table, pMap(T, Aj, PropID), maps each column (attribute) named Aj

in table T into an RDF property PropID. The composite primary key is T + Aj, and

PropID is secondary key. The foreign key mapping table, fkMap(T, Ai, T’, ResID)

maps a foreign key attribute Ai in a table T referencing table T’ into an RDF resource

ResID. The composite primary key of fkMap is T + Ai + T’, and ResID is secondary

key. Finally, the many-to-many relationship mapping table, rmmMap(T, Am, An, T’,

T’’, RmmID) maps the attribute pair (Am, An) of the composite primary key in T,

Fig. 2. SAQ Architecture

SSWS 2011

47

where Am and An are foreign key attributes referencing tables T’ and T’’ into an RDF

resource RmmID.

 SAQ populates the meta-tables by accessing the catalogue of the relational

database to construct identities of ClassID, PropID, ResID, and RmmID. Furthermore,

the user can update the mapping tables to override default mappings in order to match

some ontology or to limit data access.

In the following Datalog definitions we use capital letters to denote constants and

small letters to denote variables.

The RD-view, defined in Datalog is a union of the following sub-views: the

relational column views CT,A, the foreign key views, FKT,A, the many-to many

relationship views, MMT, and the row class views, RCT. For instance, the RD-view for

the product database, RD-viewproduct is a union of:

 the relational column views for attributes price and deliveryDays of table offer

 the relational column views for attributes name, country, and publisher of table

person

 the relational column view for attribute reviewDate of table review

 the foreign key view for attribute person of table review

 the row class views for tables offer, person, and review

The RD-view for the product database is

RD-view (s,p,v) :-

C (s,p,v)

C (s,p,v)

C (s,p,v)

C (s,p,v)

C (s,p,v)

C (s,p,v)

FK (s,p,v)

RC (s,p,v)

RC (s,p,v)

RC (s,p,v)

OR

OR

OR

OR

OR

OR

OR

OR

OR

(5)

In general, an RD-view in SAQ has the following structure:

RD-view(s,p,v) :-

OR (OR (C (s,p,v))) OR

 T A

OR (OR (FK (s,p,v))) OR

 T A

OR (MM (s,p,v)) OR

 T

OR (RC (s,p,v))

 T

(6)

where OR (P) denotes a disjunction over all P for each possible value of B.
 B

In general, a relational column view CT,A (7a) is defined for each attribute

(column) A that is neither primary key nor a foreign key attribute of each table T.

SSWS 2011

48

C (s,p,v) :-

R (a ,..,a ,..,a)

cMap(T,cid)

pMap(T,A ,p)

rowid(cid,(a ,..,a),s)

v= a

AND

AND

AND

AND

C (s,p,v):

R (rnr,person,reviewDate)

cMap(‘review’,cid)

pMap(‘review,’reviewDate’,p)

rowid(cid,(rnr),s)

v = reviewDate

AND

AND

AND

AND

(7)

a) b)

In (7a) RT is the source predicate representing the relational database table T, and

Aj is the name of the attribute A in T. (a1, …,aj, …, ar) is a tuple representing a row in

T. The primary key of T is represented by the tuple (a1,…,ak). The variable cid is

bound to the RDFS class associated with table T. The rowid predicate maps row

identifiers to relational rows. It creates a unique URI s representing a row identifier in

T by concatenating the class associated with a table and the primary key of a row. The

predicate rowid is implemented in SAQ as a multidirectional foreign predicate [12],

which implements both i) the construction of a new row identifier as described above

and ii) its inverse to access the primary key based on a known row identifier. The URI

p represents a relational attribute as an RDF property. The attribute variable aj (and

its alias v) holds the value of attribute Aj in a row.

Example (7b) shows the relational column view Creview,reviewDate that represents

attribute reviewDate in table review. Rreview is the source predicate of table review and

cid is bound to its associated class.

A foreign key view FKT,A for non-composite foreign key A in table T has the

structure in (8a). FKT,A is defined in terms of the class URI cid associated with T, the

class URI cid’ associated with the table T’ owning the foreign key, and the name of

the foreign-key attribute, Ai. For example, (8b) shows the foreign key view

FKreview,person. SAQ supports composite key foreign key views as well, which is not

elaborated here.

FK (s,p,v) :-

R (a ,..,a ,..,a)

cMap(T,cid)

rowid(cid,(a ,..,a),s)

fkMap(T,A
i
,T’,p)

cMap(T’,cid’)

rowid(cid’,(a),v)

AND

AND

AND

AND

AND

FK (s,p,v) :-

R (rnr,person,reviewDate)

cMap(‘review’,cid)

rowid(cid,(rnr),s)

fkMap(‘review’,’person’,

 ’person',p)

cMap(‘person’,cid’)

rowid(cid’,(nr),v)

 AND

 AND

 AND

 AND

 AND

(8)

a) b)

A many-to-many relationship view MMT,A,B defined a many-to-many relationship

between two other tables T’ and T’’ represented by a connection table T of foreign

keys (A, B) [22]. This is not further elaborated here.

Finally, a row class view RCT (9a) represents the RDF classes of the row identifiers

in a relational table T. For example, (9b) shows the row class view for table review,

RCreview.

SSWS 2011

49

Fig. 3. Query processing

 in SAQ

RD-view expander

DNF - normalizer

GCT transformer

SQL generator

RDBMS

Post-processor

SPARQL parser

SPARQL

query

RC (s,p,v) :-

R (a ,...,a)

cMap(T,cid)

rowid(cid,(a ,..,a),s)

p = rdf:type

v = cid

AND

AND

AND

AND

RC (s,p,v) :-

R (rnr,person,reviewDate)

cMap(‘review’,cid)

rowid(cid,(rnr),s)

p = rdf:type

v = cid

AND

AND

AND

AND

(9)

a) b)

3.2 Query Processing

The main steps of the query processing in SAQ are illustrated by Fig. 3. The SPARQL

parser transforms the SPARQL query into a Datalog expression where each SPARQL

triple pattern becomes a reference to the RD-view. The RD-view expander recursively

expands each RD-view reference in the query into a disjunctive expanded RD-view. It

thereby looks up the mapping tables cMap, pMap, fkMap, and rmmMap to replace the

variables in the expanded RD-view with corresponding URIs. Then it simplifies the

query by unifying terms [9]. Each bound-property

triple pattern is thereby simplified into a single

conjunction [15] since the property URI determines

the accessed table‟s attribute. However, each

unbound-property triple pattern will remain a

disjunction. The DNF-normalizer transforms the

simplified query to a disjunctive normal form (DNF)

predicate. The GCT transformer applies the GCT

rewrite rule to transform the DNF predicate into a

more efficient representation. It groups those

common terms in different disjuncts of the DNF

predicate that can be translated to SQL. The SQL

generator generates calls to SQL for each grouped

query fragment. The post-processor transforms the

result from the SQL queries sent to the relational

DBMS, e.g. it constructs URI objects and forms

SPARQL result tuples. All processing in the system

is streamed so that no large intermediate collections

are generated.

4 The GCT Rule

The GCT rule is applied on a DNF predicate. It extracts from the disjuncts common

terms that can be translated to SQL queries, i.e. source predicates RT and SQL

comparisons predicates. After GCT the DNF predicate becomes a disjunction of

conjunctions between grouped terms and disjunctions of the remaining terms with the

grouped terms removed. The remaining terms cannot be expressed in SQL and must

be post-processed. For example, (10) shows the view expanded, simplified, and DNF

SSWS 2011

50

normalized unbound-property query Q4 where the tables cMap, pMap, and fkMap

have been looked up by the RDF-view expander to obtain for each table T its

associated RDFS class CT, and the RDF properties PT,Aj=saq:product#T/Aj

representing the attributes Aj in T.
Q4(s,p,v) :-

(R (nr,v,’JP’,publisher)

 R (rnr,nr,reviewDate)

 rowid(C ,(nr),s)

 rowid(C ,(rnr),s1)

 p = saq:product#person/name)

(R (nr,name,’JP’,publisher)

 R (rnr,nr,reviewDate)

 rowid(C ,(nr),s)

 rowid(C ,(rnr),s1)

 p = saq:product#person/country)

 v = ‘JP’)

(R (nr,name,’JP’,v)

 R (rnr,nr,reviewDate)

 rowid(C ,(nr),s)

 rowid(C ,(rnr),s1)

 p = saq:product#person/publisher)

(R (nr,name,’JP’,publisher)

 R (rnr,nr,reviewDate)

 rowid(C ,(nr),s)

 rowid(C ,(rnr),s1)

 p = rdf:type

 v = C)

AND

AND

AND

AND

 OR

AND

AND

AND

AND

 OR

AND

AND

AND

AND

 OR

AND

AND

AND

AND

AND

(10)

We notice that bold marked terms, representing source predicates, can be pulled

out and later translated to a single SQL join query. In the example GCT will produce

the predicate:
Q4(s, p, v) :-

(R (nr,name,‘JP’,publisher)

 R (rnr,nr,reviewDate))

 (rowid(C ,(nr),s)

 rowid(C ,(rnr),s1)

 p = saq:product#person/name

 v = name)

 (rowid(C ,(nr),s)

 rowid(C ,(rnr),s1)

 p = saq:product#person/country

 v = ’JP’)

 (rowid(C ,(nr),s)

 rowid(C ,(rnr),s1)

 p = saq:product#person/publisher

 v = publisher)

 (rowid(C ,(nr),s)

 rowid(C ,(rnr),s1)

 p = rdf:type

 v = C)

AND

AND

AND

AND

AND

 OR

AND

AND

AND

 OR

AND

AND

AND

 OR

AND

AND

AND

(11)

SSWS 2011

51

In (11) the bold marked accesses to the source predicates are broken out from the

disjunction and referenced only once, while in (10) the source predicates are

referenced in each disjunct.

Without GCT the SQL generator will construct several SQL queries, one for each

conjunction that can be translated to SQL. For example, in (10) the four bold marked

conjunctions would produce these four SQL queries:

1) SELECT name from person p, review r WHERE p.country=’JP’

AND p.nr=r.person

2) SELECT country from person p, review r WHERE

p.country=’JP’ AND p.nr=r.person

3) SELECT publisher from person p, review r WHERE

p.country=’JP’ AND p.nr=r.person

4) SELECT nr from person p, review r WHERE p.country=’JP’
AND p.nr=r.person

(12)

The four queries would be sent to the relational DBMS and their result tuples

postprocessed in sequence. Binding of s, p and v has to be performed by the not bold

marked post-processing predicates in (10) after the rows are retrieved since object

construction and result variable bindings cannot be expressed in SQL.

With GCT applied in (11) a single SQL query is produced from the grouped terms:

SELECT nr, name, country, publisher from person p,

review r WHERE p.country=’JP’ AND p.nr=r.person (13)

In (11) the values from the relational tables are retrieved in row-order, while in

(10) they are retrieved column-by-column. Therefore the execution plan generated

from (11) is more efficient than the execution plan from (10).

In general, the steps of the GCT algorithm applied on a DNF predicate are the

following:

(i) In a pre-step, normalize the variable names of the DNF predicate so that the same

variable names are used in each disjunct.

(ii) Allocate a hash table that for each predicate group maintains mappings to the

disjuncts from which its predicates have been extracted.

(iii) For each disjunct, extract the source predicates and SQL comparison predicates

to form a conjunctive predicate group to extract. Use the entire extracted conjunction

as key in the hash table.

 (v) After the entire DNF predicate is scanned, go through the hash table and form for

each extracted conjunction c a conjunction between c and the remaining terms in the

disjuncts where c occurs. Finally, form a disjunction of all constructed conjunctions.

In the example this transforms (10) into (11).

The pseudo code of the GCT algorithm is the following:

Function GCT(P, gf) -> GP

Input:P: a DNF predicate with normalized variable names

 gf: a function that extracts a conjunction of specific

 terms, e.g. R , SQL comparisons from a conjunction

Output:GP: P grouped on the common terms

1. Allocate a hash table Ht for the common terms in disjuncts

2. GP:=null

3. for each disjunct D in P do

SSWS 2011

52

4. if D is an atom then GP:= orify(GP,D)

5. else if D is not a conjunction then GP:=orify(D,GP)

6. else if D has only one term then GP:=orify(D,GP)

7. else CT:=gf(D) /*CT is a list of common terms)*/

8. if CT=null then GP:=orify(D,GP)

9. else put in Ht(key=CT):=

 orify((D with CT removed),

 (existing value for CT in Ht))

10. for each (CT’ and valueCT’) in Ht do

11. GP:=orify(andify(CT’, valueCT’),GP)

14. return GP

The function orify(x,y) forms a disjunction between predicates x and y, and

andify(x,y) forms a conjunction.

We notice that the processing is done in one pass and is therefore O(N) where N is

the number of disjuncts in the DNF predicate.

5 Performance

The measurements were made on a PC Intel(R) Core(TM), 2Quad CPU Q9400 with

2.67 GHz and 8 GB RAM running 64-bits Windows 7 Professional. The impact of

GCT was evaluated for the unbound-property queries Q1, Q2, Q3, and Q4. We

compare the performance of SAQ with Virtuoso RDF Views [8] and D2RQ [4], all

systems accessing the same back-end MS SQL Server database. The experiment

configuration was the following:

1. MS SQL server 2008 was configured with the default settings for the min and max

server memory.

2. The SQL data was generated by the Berlin benchmark data generator [1][2] and

loaded into the relational database.

3. Non-clustered, non-unique indexes were put on the columns country and name in

the person table to speed up queries Q3 and Q4.

4. For Virtuoso RDF Views, the RDF view to the underlying relational database was

generated on the Virtuoso server (ver. 06.02.3128, Windows-64) by using the

Virtuoso Conductor tool. The SPARQL queries to the RDF view were run from a

Java program, implementing a Jena Provider [23], which allows users to query

Virtuoso RDF views from Java. The Java heap size was set to 1 GB.

5. For D2RQ (v.07), the RDF view of the underlying RDBMS was generated by

D2RQ‟s auto-generated mapping script [3]. In the generated script we inserted the

option “d2rq:useAllOptimizations true” to guarantee that we use full optimization

in D2RQ. The SPARQL queries were run from a Java program calling the D2RQ

Engine through Jena2 [3]. The Java heap size was set to 1 GB.

6. All measurements were made five times and the mean values plotted. The standard

deviation was less than 10% in all measurements.

7. The default mappings of the analyzed systems SAQ, Virtuoso RDF Views, and

D2RQ all produce different results. For example, some redundant labels and

inverse properties are produced by Virtuoso RDF Views and D2RQ. To make fair

comparisons we configured the systems so that they all generated the same query

SSWS 2011

53

result. To investigate whether the performance is better with the default mappings

we also measured Virtuoso RDF Views and D2RQ with their default mappings.

The following notation is used in the performance diagrams:

0

100

200

300

400

500

0 0.5 1 1.5 2

tim
e
,
s

DB size, GB

Q1-Cold
SAQ-naive

SAQ-GCT

D2RQ

D2RQ-dftl

0

100

200

300

400

500

0 0.5 1 1.5 2

ti
m

e
,
s

DB size, GB

Q1-Warm SAQ-naive

SAQ-GCT

D2RQ

D2RQ-dftl

 a) cold b) warm

Fig. 4. Execution times for Q1 up to 1.8 GB database

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2

ti
m

e
,
s

DB size, GB

Q2-Cold SAQ-naive SAQ-GCT

D2RQ D2RQ-dftl

Virtuoso Virtuoso-dftl

0

0.0025

0.005

0.0075

0.01

0 0.5 1 1.5 2

ti
m

e
. s

DB size, GB

Q2-Warm
SAQ-naive SAQ-GCT

D2RQ D2RQ-dftl

Virtuoso Virtuoso-dftl

 a) cold b) warm

Fig. 5. Execution times for Q2 up to 1.8 GB database

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2

ti
m

e
,
s

DB size, GB

Q3-Cold SAQ-naive

SAQ-GCT

D2RQ

D2RQ-dftl

Virtuoso

Virtuoso-dftl

0

0.005

0.01

0.015

0.02

0 0.5 1 1.5 2

ti
m

e
,
s

DB size, GB

Q3-Warm
SAQ-naive SAQ-GCT

D2RQ D2RQ-dftl

Virtuoso Virtuoso-dftl

 a) cold b) warm

Fig. 6. Execution times for Q3 up to 1.8 GB database

0

10

20

30

0 0.5 1 1.5 2

ti
m

e
,
s

DB size, GB

Q4-Cold

SAQ-naive SAQ-GCT

D2RQ D2RQ-dftl

Virtuoso Virtuoso-dftl

0

2

4

6

8

10

12

0 0.5 1 1.5 2

ti
m

e
,
s

DB size, GB

Q4-Warm

SAQ-naive

SAQ-GCT

D2RQ

D2RQ-dftl

Virtuoso

Virtuoso-dftl

 a) cold b) warm

Fig. 7. Execution times for Q4 up to 1.8 GB database

SSWS 2011

54

 Virtuoso: Virtuoso RDF Views configured with the SAQ mappings.

 Virtuoso-dflt: Virtuoso RDF Views configured with the system default mappings.

 D2RQ: D2RQ configured with the SAQ mappings.

 D2RQ-dflt: D2RQ configured with the system default mappings

 SAQ-naive: SAQ without GCT

 SAQ-GCT: SAQ with GCT

In all cases the time spent in executing the query by the relational database

followed by post-processing is measured, thus not including the time for preparing the

SPARQL query by the respective system. The cold execution measurements were

made immediately after flushing the buffer pool, while the warm ones were made by

re-executing the query immediately after a cold query was run. The cold execution

times include reading data from disk and SQL query optimization in the DBMS

server. Since the back-end DBMS has a statement cache a same SQL query executed

twice will be optimized the first time it is received. Therefore, the warm executions

do not include back-end DBMS query optimization time.

 Table 1 Speed-up of SAQ-GCT compared to other approaches

The results from the measurements are presented in Fig. 4-7. The figures show the

execution times for Q1, Q2, Q3, and Q4 while scaling the generated Berlin

benchmark dataset from 10M to 100M [1][2], which corresponds to scaling the

relational database from 312 MB to 1.8 GB. The number of RDF triples in the RD-

view varied from 3 949 935 to 38 771 340.

Table 1 summarizes the speed-up of the different approaches for Q1-Q4 compared

to SAQ-GCT. In particular, the SAQ-naive column shows the speed-up of GCT.

Q1

system SAQ-

GCT

SAQ-

naive

D2RQ D2RQ-dftl Virtuoso Virtuoso-

dftl

cold 1 1.65 2 ~ 2.2 >8 hours >8hours

warm 1 1.6 2 ~ 2.2 >8hours >8hours

SQL

queries

1 11 11 13 >1000 >1000

Q2

cold 1 1.3 - 1.5 3.5 - 4 3.5 - 4 11.4 - 12.4 11 - 12

warm 1 2.2 - 3.2 3 - 4.5 3 - 4.5 2.3 - 3.5 4 - 6

SQL

queries

1 10 4 4 11 18

Q3

cold 1 1.2 - 1.3 4.2 - 5 4 - 5.5 6.6 - 9 11 - 480

warm 1 2.5 - 3 8 - 9.7 13 - 14 5.3 - 5.7 15 - 380

SQL

queries

1 6 6 8 9 12

Q4

cold 1 1.2 - 1.3 1.2 - 1.5 1.2 - 2.8 28 - 800 100 - 3000

warm 1 1.3 1.6 - 2 2 30 - 2200 120 - 8000

SQL

queries

1 6 6 8 >1000 >1000

SSWS 2011

55

The performance of SAQ-GCT for simple unbound-property queries is better than

all compared implementations. Furthermore, GCT always improves performance

substantially (20-65%) for queries to cold databases, where the execution time is

dominated by disk accesses on the database server. For the queries Q2 and Q3, which

select a single row from the buffer pool in a warm database, the improvement is even

better (220-320%). The reason is that without GCT more SQL requests are sent to the

server and therefore the communication overhead dominates when the server time is

insignificant.

To analyze how the other systems process unbound-property queries we measured

their performance and investigated what SQL queries were sent to the relational

database. For D2RQ we used the profiling tool of MS SQL Server 2008 to obtain the

SQL queries sent to the DBMS. Normally D2RQ sends exactly the same SQL queries

as SAQ-naive so GCT is not used. For Q2 D2RQ makes a special optimization when

the subject of a triple pattern is a constant URI so fewer queries are sent.

Virtuoso RDF Views translates unbound-property queries to SQL using an

unknown algorithm [7][8]. The debug logging of Virtuoso was used to investigate

what SQL queries were sent to the relational database. For Q2 and Q3 Virtuoso also

sends exactly the same queries as SAQ-naive plus a number of additional queries.

For the non-selective queries Q1 and Q4 more than 1000 additional SQL queries were

sent and the processing did not scale for large databases.

6 Related Work

Virtuoso RDF Views [7][8] and D2RQ [3][4][5] are other systems that allow mapping

of relational tables and views into RDF to make them queryable by SPARQL. These

systems implement compilers that translate SPARQL directly to SQL. By contrast,

SAQ first generates Datalog queries to a declarative RD-view of the relational

database, and then transforms the SPARQL queries to SQL based on logical

transformations. We have shown that the particular query transformation GCT

significantly improves performance for unbound-property queries.

We did not find any publication of how D2RQ compiles unbound-property

SPARQL queries into SQL. The documentation for Virtuoso is very limited [7][8].

However, by using the profiling tool of the DBMS and the debug logging of Virtuoso

we were able to analyze what queries were actually sent to the DBMS, showing that

neither of those systems uses anything similar to GCT. SquirrelRDF also allows

SPARQL queries to relational tables, but does not support unbound-property

SPARQL queries [19] [20].

Work on optimizing disjunctive database queries in general is described in

[6][11][13]. The closest work to GCT is the combinatorial algorithm [13], which

merges disjuncts with common sub-expressions in general disjunctive logical

expression in order to avoid repeated evaluation of the same predicate on the same

tuple. By contrast, the purpose of GCT is to group in a DNF predicate query

fragments that can be translated to SQL, and therefore the simpler linear GCT

algorithm can be used.

SSWS 2011

56

The idea of bypass evaluation of disjunctive queries in [6][11] is based on

implementing specialized operators that produce two output streams: the true-stream

of the tuples that fulfill the operator‟s predicate and the false-stream of the tuples that

do not match. The main profit of the technique of bypass evaluation is in eliminating

duplicates by avoiding unnecessary join operators. The purpose of GCT is not

duplicate elimination, but to rewrite complex disjunctive queries for faster execution.

7 Conclusions

We have presented an approach to optimize simple unbound-property SPARQL

queries to RDF views over back-end relational databases in a system called SAQ for

querying and archiving relational databases as RDF. Simple unbound-property

queries retrieve dynamic sets of properties for given subjects, which is important for

archiving selected parts of a database with SPARQL. Such queries are optimized by

the presented GCT (Group Common Terms) query transformation rule, which groups

those common terms from a DNF predicate that can be translated to SQL.

By using data from the Berlin SPARQL benchmark, GCT was shown to improve

query execution time compared to naïve processing. Compared to not using GCT, it

reduces the number of SQL queries to execute and retrieves data in relational row

order rather than column order. The performance of SAQ was compared to other

systems that support SPARQL queries to views of existing relational databases. It was

shown experimentally that SAQ with GCT performs better than those systems, since

they do not use any similar transformation strategy.

Future work includes investigating the impact of GCT and other rewrite rules on

the performance of other kinds of queries, such as queries with multiple unbound-

property triple patterns and other kinds of archival queries.

References

1. Bizer, C. and Schultz, A.: The Berlin SPARQL Benchmark (BSBM) Specification – V3.0,

http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/spec/index.html (2010).

2. Bizer, C. and Schulz, A.: The Berlin SPARQL Benchmark, Journal of Semantic Web and

Information Systems, special issue on scalability and performance of semantic web

systems, Vol. 5, Issue 2, pp 1-24 (2009)

3. Bizer, C., Cyganiak R., Garbers, G., Maresch, O., and Becker C.: The D2RQ Platform v0.7

- Treating Non-RDF Relational Databases as Virtual RDF Graph. http://www4.wiwiss.fu-

berlin.de/bizer/d2rq/spec/ (2009)

4. Bizer, C. and Seaborne A.: D2RQ-Treating Non-RDF Databases as Virtual RDF Graphs,

Poster at 3rd International Semantic Web Conference (2004)

5. Bizer, C. and Cyganiak, R.: D2R Server-Publishing Relational Databases on the Semantic

Web, Poster at the 5th International Semantic Web Conference (2006)

6. Claussen, J., Kemper, A., Peithner, K., and Steinbrunn, M.: Optimization and Evaluation of

Disjunctive Queries, IEEE Transactions on Knowledge and Data Engineering, Vol. 12, No

12, March/April (2000)

SSWS 2011

57

7. Erling, O.: Declaring RDF views of SQL Data, W3C Workshop on RDF Access to

Relational Databases, 25-26 October, Cambridge, MA, USA (2007)

8. Erling, O and Mikhailov, I.: RDF Support in the Virtuoso DBMS, Springer, ISSN: 1860-

949X (Print) 1860-9503 (Online), in Studies in Computational Intelligence, Vol. 221(2009)

9. Fahl, G. and Risch, T.: Query Processing over Object Views of Relational Data, The VLDB

Journal , Vol. 6, No. 4, pp 261-281 (1997)

10. Garcia-Molina, H., Ullman, J. D. and Widom, J.: Database Systems, the complete book,

Prentice Hall (2002).

11. Kemper, A., Moerkotte, G., Pethner, K., and Steinbrunn, M.: Optimizing Disjunctive

Queries with Expensive Predicates, in Proc. ACM SIGMOD, Conf. Management of Data,

pp. 336-347 (1994)

12. Litwin, W. and Risch, T.: Main Memory Oriented Optimization of OO Queries Using

Typed Datalog with Foreign Predicates, IEEE Transactions on Knowledge and Data

Engineering, Vol. 4, No. 6 (1992)

13. Muralikrishna, M. and Witt, D. J De.: Optimization of Multiple-Relation Multiple-Disjunct

Queries, PODS '88 Proceedings of the seventh ACM SIGACT-SIGMOD-SIGART, pp.

263-275 (1988)

14. N-triples, W3C RDF Core WG Internal Working Draft,

http://www.w3.org/2001/sw/RDFCore/ntriples/

15. Petrini, J. and Risch, T.: Processing queries over RDF views of wrapped relational

databases, in Proceedings of the 1st International Workshop on Wrapper Techniques for

Legacy Systems, WRAP 2004, Delft, Holland (2004)

16. Petrini, J.: Querying RDF Schema Views of Relational Databases, PhD Thesis, Uppsala

University, Department of IT, ISSN 1104-2516,

http://www.it.uu.se/research/group/udbl/Theses/JohanPetriniPhD.pdf (2008)

17. Risch, T. and Josifovski, V.: Distributed Data Integration by Object-Oriented Mediator

Servers, Concurrency and Computation: Practice and Experience, J. 13(11), John Wiley &

Sons (2001)

18. Schmidt, M., Hornung, T., Lausen, G. and Pinkel, C.: SP2Bench: A SPARQL Performance

Benchmark, ICDE 2009, pp. 222-233 (2009)

19. Seaborne, A., Steer, D., and Williams, S.: SQL-RDF,

http://www.w3.org/2007/03/RdfRDB/papers/seaborne.html (2007)

20. SqirrelRDF, http://jena.sourceforge.net/SquirrelRDF/

21. Stuckenschmidt, H. and Harmelen, F.: Information Sharing on the Semantic Web, Springer,

ISBN 3-540-20594-2 (2005)

22. Sören, A., Feigenbaum, L., Miranker, D., Fogarolli, A., and Sequeda J.: Use Cases and

Requirements for Mapping Relational Databases to RDF, W3C Working Draft 8,

http://www.w3.org/TR/rdb2rdf-ucr/ (2010)

23. Virtuoso Jena Provider, OpenLink Virtuoso Universal Server: Documentation,

http://docs.openlinksw.com/virtuoso/rdfnativestorageproviders.html#Rdfnativestorageprovi

dersjena (2009)

SSWS 2011

58

