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Abstract. SAQ (Semantic Archive and Query) is a system for querying and 

long-term preservation of relational data in terms of RDF. In SAQ relational 

data in a back-end DBMS is exposed as an RDF view, called the RD-view. SAQ 

can process arbitrary SPARQL queries to the RD-view. In addition long-term 

preservation as RDF of selected parts of a relational database is specified by 

SPARQL queries to the RD-view. Such queries usually select sets of RDF 

properties and thus in the query definition a property p is unknown. We call 

such queries unbound-property queries. This class of queries is also present in 

the SPARQL benchmarks. We optimize unbound-property queries by 

introducing a query transformation algorithm called Group Common Terms, 

GCT. It pulls out from a DNF normalized query those common terms that can 

be translated to SQL predicates accessing the relational database. Our 

experiments using the Berlin SPARQL benchmark show that GCT improves 

substantially the query execution time to a back-end commercial relational 

DBMS for both selective and unselective unbound-property queries. We 

compared the performance of our approach with the performance of other 

systems processing SPARQL queries over views of relational databases and 

showed that GCT improves scalability compared to the approaches used by the 

other systems.  

Keywords: SPARQL queries, RDF views of relational databases, query 

optimization, query rewrites, unbound property queries 

1   Introduction 

Semantic Web technology and, in particular, RDF and RDFS seem promising for both 

search and long-term preservation of any kind of data including data currently stored 

in relational databases. In order to investigate the use of RDF for both search and 

archival of existing relational databases we have developed the SAQ (Semantic 

Archive and Query) system. In SAQ relational data in a back-end DBMS is exposed 

as RDF by a view, called the RD-view, represented in a Datalog dialect. The RD-view 

is automatically generated by accessing the database schema. SAQ can process 

arbitrary SPARQL queries to the RD-view. Long-term preservation as RDF of the 

contents of selected parts of a relational database is specified by SPARQL queries to 

the RD-view. 
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In the RD-view tables are represented as RDFS classes and attributes as RDF 

properties. Each data value in the relational database is viewed as a triple (s, p, v), 

where the subject s is a URI identifying a row in a relational table, p is an RDF 

property representing the column (i.e. attribute) where a value is stored, and v is the 

data value of the attribute for the row. In SAQ a SPARQL query to the RD-view is 

transformed into an execution plan containing SQL calls to the back-end relational 

DBMS followed by post-processing.   

Queries to archive database contents typically select sets of attributes of tables to 

archive. This corresponds to selecting sets of RDF properties in the RD-view to be 

archived, for example all properties of the class representing the table offer. 

Therefore, in such SPARQL queries a property p in some triple pattern is not known. 

We call such queries unbound-property queries. Moreover, unbound-property queries 

are also present in SPARQL benchmarks. For example, in the SP2Bench benchmark 

[18] queries Q9 and Q10 are unbound-property queries, and in the Berlin SPARQL 

benchmark [2] Query 9 and Query 11 are unbound-property queries, while Query 9 is 

a DESCRIBE query that can be expressed as an unbound-property query. Since p is 

unknown in unbound-property queries, the translation from SPARQL to SQL is not 

trivial and can ”easily result in large unions” of sub-queries [7] and therefore “using 

of variables in the predicate position is discouraged” [8]. 

In this paper we present a novel approach for optimizing unbound-property queries 

by implementing a predicate rewrite rule called group common terms (GCT). GCT is 

shown to substantially improve SPARQL query execution time. It partially 

denormalizes disjunctive normal form (DNF) predicates to form query fragments 

doing select-project-joins over the back-end relational tables. The reason for the 

performance improvement is that GCT generates execution plans that access data in 

row-order, which is substantially more efficient to process than without GCT, where 

data is accessed column-wise. In the performance section it will be shown that our 

approach improves query performance compared to a naïve approach without using 

GCT. Furthermore, we show that SAQ with GCT executes unbound-property queries 

substantially faster than other systems able to process SPARQL queries to views of 

relational databases [4][8]. By investigating the SQL queries emitted by the other 

systems, we show that they do not employ query transformations similar to GCT. 

The rest of this paper is organized as follows. First, in Section two unbound-

property queries are defined and exemplified. In Section three the architecture of the 

SAQ system is presented, the RD-view is defined, and the steps of the query 

processing in SAQ are explained. In Section four the GCT algorithm is presented. 

Section five analyzes the performance of SAQ for unbound-property queries and 

compares it with related systems. Section six describes related work and finally 

Section seven summarizes.  

 

2   Unbound-property Queries  

A bound-property triple pattern is a SPARQL triple pattern (s, P, v) where the 

property P is a URI representing an RDF property, e.g. (?s1 
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saq:product#review/person ?s.). For SPARQL queries to an RD-view the property 

must match a URI representing a relational column, otherwise the result is empty. 

An unbound-property triple pattern is a triple pattern (s, u, v) where u is a variable, 

e.g. (?s ?p ?v) or (%offerXYZ% ?property ?hasValue). 

A bound-property query is a SPARQL query having only bound-property triple 

patterns. An unbound-property query is a SPARQL query having one or several 

unbound-property triple patterns. Finally, a simple unbound-property query is an 

unbound-property query with a single unbound-property pattern. 

Fig. 1 shows a small relational database product having three tables offer, person, 

and review. The tables are parts of the relational database generated by the Berlin 

SPARQL benchmark data generator [1]. In the example, they are populated with two 

offers, two persons, and a review made by each of them. In the scalability 

experiments later, we use the full Berlin benchmark relational database with the tables 

product, offer, person, producer, productfeature, productfeatureproduct, producttype, 

producttypeproduct, review, and vendor.  

The columns onr, nr, and rnr are the primary keys in the tables, while the column 

person in table review references the column nr in table person as foreign key. 

Table offer 

onr price  deliveryDays 

5 854.18 3 

7 440.9 5 

Table review       Table person     

rnr person reviewDate  nr name country publisher 

 10 1 2007-09-16  1 Caryn KR 9 

166 8 2006-05-12  8 Linda-Nada AT 3 

Fig. 1. product database   

The following queries are examples of SPARQL queries to the RD-view for 

preservation and search of the product database. They represent different kinds of 

unbound-property queries with varying selectivity.  

Query Q1 

 
 

 

(1) 

SELECT ?s ?p ?v  

FROM <product> 

WHERE {?s rdf:type %offerType%. 

       ?s ?p        ?v        } 

Query Q2  

 

 

(2) 

SELECT ?property ?hasValue ?isvalueOf 

FROM <product> 

WHERE { 

        {%offerXYZ% ?property ?hasValue } 

        UNION 

        {?isValueOf ?property %offerXYZ%} } 
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In the queries <product> denotes the URI for the RD-view of the database 

product.  

Q1, Q3, and Q4 are simple unbound-property queries, while Q2 is a union of 

simple unbound-property queries. 

Query Q1 converts the entire table offer to RDF triples. %offerType% is the URI 

associated with table offer. Q1 is a very unselective unbound-property query.  

Q2 is a highly selective query that retrieves all information about an offer 

%offerXYZ%, i.e. a single row from the table offer. Q2 is called „Query 11‟ in the 

Berlin SPARQL Benchmark [1][2]. Q2 searches for both the properties and the 

inverse properties of an explicitly given offer.  

Q3 retrieves all the properties of a person for a given name %nameXYZ%. Like Q2 

query Q3 is highly selective, it selects one row from the table person. The difference 

from Q2 is that the subject of the unbound-property is not explicitly specified, so the 

row in the relational database cannot be identified by the URI as in Q2.  

Query Q4 retrieves all properties of the 10% of all reviewers coming from country 

„JP‟.  Unlike Q3 the name of a described person is not explicitly specified, but are 

retrieved by joining the tables person and review. It is an unbound-property query 

with a join. Q4 is more selective than Q1 but much less selective than Q2 and Q3 

since it retrieves more rows when the database grows. 

It is shown in section five that the performance of the unbound-property queries 

Q1…Q4 is substantially improved by applying the proposed GCT rule. Queries like 

Q2 defined with a „UNION‟ clause are handled as a union of several non-disjunctive 

queries, where GCT is applied on each sub-query in the union. The unusual case of 

unbound-property queries with several unbound-property patterns in a conjunction are 

also handled by SAQ, but are outside the scope of this paper. The processing of 

bound-property queries to an RD-view is also outside the scope and was described in 

[15][16]. 

 

3 SAQ 

The architecture of the SAQ system is presented in Fig. 2. The source DB is the 

underlying relational database, which can be queried and preserved by SAQ. The RD-

view generator generates the RD-view over the source DB from the database schema 

Query Q3  

 

(3) 
SELECT ?s ?p ?v  

FROM <product>  

WHERE{ ?s  saq:product#person/name %nameXYZ%. 

       ?s  ?p                      ?v       } 

 
Query Q4 

 

SELECT ?s ?p ?v 

FROM <product>  

WHERE { ?s1 saq:product#review/person  ?s  . 

        ?s  saq:product#person/country 'JP’. 

        ?s  ?p                          ?v } 

 

 

 

(4) 
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by using the RD-view definitions. The query processor executes arbitrary SPARQL 

queries to the RD-view by accessing the source DB through the JDBC wrapper.  

When the source DB or part of it is to be preserved as RDF a SPARQL query 

extracting the desired content is sent to the query processor. The query result is 

transformed by the archiver into RDF triples and stored in a repository of archive 

files as N-Triples [14]. The archiver stores two N-triple files – one with the 

transformed query result, called the data archive and another one with schema 

information, called the schema archive. For instance, when all instances of class 

%offerType% representing the content of the relational table offer are unloaded as 

RDF, Q1 is executed by the query processor in SAQ.  

Later on, when a preserved database is to be restored, the reloader reads the 

archive files from the repository and makes it live again by reloading it into a 

destination DB. It first reads the schema archive to generate the relational database 

schema and then loads the data by reading the data archive.  

3.1 RD-view Definition 

In the RD-view each relational table is represented as an RDFS class, while each 

column is represented as an RDF property, as prescribed in [22]. For example, the 

table person is represented by the RDFS class URI saq:product#person. The URIs 

saq:product#person/name and saq:product#person/country are the RDF properties 

associated with the columns name and country of table person.  

SAQ contains four meta-tables cMap, pMap, fkMap, and rmmMap providing 

mappings between RDF resources and the relational schema. The class mapping 

table, cMap(T, ClassID), maps 1-1 each relational table named T to the corresponding 

RDFS class ClassID. Here T is primary key and ClassID is secondary key. The 

property mapping table, pMap(T, Aj, PropID), maps each column (attribute) named Aj 

in table T into an RDF property PropID. The composite primary key is T + Aj, and 

PropID is secondary key. The foreign key mapping table, fkMap(T, Ai, T’, ResID) 

maps a foreign key attribute Ai in a table T referencing table T’ into an RDF resource 

ResID. The composite primary key of fkMap is T + Ai + T’, and ResID is secondary 

key. Finally, the many-to-many relationship mapping table, rmmMap(T, Am, An, T’, 

T’’, RmmID) maps the attribute pair (Am, An) of the composite primary key in T, 

Fig. 2. SAQ Architecture 
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where Am and An are foreign key attributes referencing tables  T’ and T’’ into an RDF 

resource RmmID.  

 SAQ populates the meta-tables by accessing the catalogue of the relational 

database to construct identities of ClassID, PropID, ResID, and RmmID. Furthermore, 

the user can update the mapping tables to override default mappings in order to match 

some ontology or to limit data access. 

In the following Datalog definitions we use capital letters to denote constants and 

small letters to denote variables. 

The RD-view, defined in Datalog is a union of the following sub-views: the 

relational column views CT,A, the foreign key views, FKT,A, the many-to many 

relationship views, MMT, and the row class views, RCT. For instance, the RD-view for 

the product database, RD-viewproduct is a union of: 

 the relational column views for attributes price and deliveryDays of table offer 

 the relational column views for attributes name, country, and publisher of table 

person 

 the relational column view for attribute reviewDate of table review 

 the foreign key view for attribute person of table review 

 the row class views for tables offer, person, and review 

The RD-view for the product database is  

 
RD-view (s,p,v) :- 

C (s,p,v)       

C (s,p,v)   

C (s,p,v)       

C (s,p,v)     

C (s,p,v)    

C (s,p,v)    

FK (s,p,v)     

RC (s,p,v)         

RC (s,p,v)        

RC (s,p,v) 

 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

(5) 

 

In general, an RD-view in SAQ has the following structure: 

 
RD-view(s,p,v) :- 

OR (OR (C  (s,p,v)))  OR 

 T     A                      

OR (OR (FK (s,p,v)))  OR 

 T     A                        

OR (MM (s,p,v))        OR 

 T                      

OR (RC (s,p,v)) 

 T 

(6) 

where OR (P) denotes a disjunction over all P for each possible value of B. 
            B  

In general, a relational column view CT,A  (7a) is defined for each attribute 

(column) A that is neither primary key nor a foreign key attribute of each table T. 
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C  (s,p,v) :-  

R (a ,..,a ,..,a )  

cMap(T,cid)           

pMap(T,A ,p)          

rowid(cid,(a ,..,a ),s) 

v= a                   

 

AND                          

AND 

AND 

AND 

C (s,p,v): 

R (rnr,person,reviewDate) 

cMap(‘review’,cid)          

pMap(‘review,’reviewDate’,p) 

rowid(cid,(rnr),s)        

v = reviewDate               

 

AND 

AND 

AND 

AND 

(7) 

a) b) 

In (7a) RT is the source predicate representing the relational database table T, and 

Aj is the name of the attribute A in T. (a1, …,aj, …, ar) is a tuple representing a row in 

T. The primary key of T is represented by the tuple (a1,…,ak). The variable cid is 

bound to the RDFS class associated with table T. The rowid predicate maps row 

identifiers to relational rows. It creates a unique URI s representing a row identifier in 

T by concatenating the class associated with a table and the primary key of a row. The 

predicate rowid is implemented in SAQ as a multidirectional foreign predicate [12], 

which implements both i) the construction of a new row identifier as described above 

and ii) its inverse to access the primary key based on a known row identifier. The URI 

p represents a relational attribute as an RDF property. The attribute variable aj (and 

its alias v) holds the value of attribute Aj in a row. 

Example (7b) shows the relational column view Creview,reviewDate that represents 

attribute reviewDate in table review. Rreview is the source predicate of table review and 

cid is bound to its associated class.  

A foreign key view FKT,A for non-composite foreign key A in table T has the 

structure in (8a). FKT,A is defined in terms of the class URI cid associated with T, the 

class URI cid’ associated with the table T’ owning the foreign key, and the name of 

the foreign-key attribute, Ai. For example, (8b) shows the foreign key view 

FKreview,person. SAQ supports composite key foreign key views as well, which is not 

elaborated here.  

 
FK (s,p,v) :-  

R (a ,..,a ,..,a )      

cMap(T,cid)            

rowid(cid,(a ,..,a ),s)  

fkMap(T,A
i
,T’,p)         

 

cMap(T’,cid’)           

rowid(cid’,(a ),v)     

 

AND 

AND 

AND 

AND 

 

AND 

 

FK (s,p,v) :-  

R (rnr,person,reviewDate)  

cMap(‘review’,cid)    

rowid(cid,(rnr),s) 

fkMap(‘review’,’person’, 

               ’person',p) 

cMap(‘person’,cid’)  

rowid(cid’,(nr),v)     

 

 AND 

 AND 

 AND 

 AND 

  

 AND 

 

(8) 

a) b) 

 

A many-to-many relationship view MMT,A,B defined a many-to-many relationship 

between two other tables T’ and T’’ represented by a connection table T of foreign 

keys (A, B) [22].  This is not further elaborated here.  

Finally, a row class view RCT (9a) represents the RDF classes of the row identifiers 

in a relational table T. For example, (9b) shows the row class view for table review, 

RCreview. 
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Fig. 3. Query processing 

           in SAQ 

 

RD-view expander 

DNF - normalizer 

GCT transformer 

SQL generator 

RDBMS 

Post-processor 

SPARQL parser 

SPARQL 

query 

RC (s,p,v) :- 

R (a ,...,a )    

cMap(T,cid)  

rowid(cid,(a ,..,a ),s)   

p = rdf:type              

v = cid 

 

AND 

AND 

AND 

AND 

 

RC (s,p,v) :- 

R (rnr,person,reviewDate) 

cMap(‘review’,cid)         

rowid(cid,(rnr),s)         

p = rdf:type                  

v = cid 

 

AND 

AND 

AND 

AND 

 

(9) 

a) b) 

    

3.2 Query Processing 

The main steps of the query processing in SAQ are illustrated by Fig. 3. The SPARQL 

parser transforms the SPARQL query into a Datalog expression where each SPARQL 

triple pattern becomes a reference to the RD-view. The RD-view expander recursively 

expands each RD-view reference in the query into a disjunctive expanded RD-view. It 

thereby looks up the mapping tables cMap, pMap, fkMap, and rmmMap to replace the 

variables in the expanded RD-view with corresponding URIs. Then it simplifies the 

query by unifying terms [9]. Each bound-property 

triple pattern is thereby simplified into a single 

conjunction [15] since the property URI determines 

the accessed table‟s attribute. However, each 

unbound-property triple pattern will remain a 

disjunction. The DNF-normalizer transforms the 

simplified query to a disjunctive normal form (DNF) 

predicate. The GCT transformer applies the GCT 

rewrite rule to transform the DNF predicate into a 

more efficient representation. It groups those 

common terms in different disjuncts of the DNF 

predicate that can be translated to SQL. The SQL 

generator generates calls to SQL for each grouped 

query fragment. The post-processor transforms the 

result from the SQL queries sent to the relational 

DBMS, e.g. it constructs URI objects and forms 

SPARQL result tuples. All processing in the system 

is streamed so that no large intermediate collections 

are generated. 

4 The GCT Rule 

The GCT rule is applied on a DNF predicate. It extracts from the disjuncts common 

terms that can be translated to SQL queries, i.e. source predicates RT and SQL 

comparisons predicates. After GCT the DNF predicate becomes a disjunction of 

conjunctions between grouped terms and disjunctions of the remaining terms with the 

grouped terms removed. The remaining terms cannot be expressed in SQL and must 

be post-processed. For example, (10) shows the view expanded, simplified, and DNF 
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normalized unbound-property query Q4 where the tables cMap, pMap, and fkMap 

have been looked up by the RDF-view expander to obtain for each table T its 

associated RDFS class CT, and the RDF properties PT,Aj=saq:product#T/Aj  

representing the attributes Aj in T. 
Q4(s,p,v) :-   

(R (nr,v,’JP’,publisher)  

 R (rnr,nr,reviewDate)           

 rowid(C ,(nr),s)        

 rowid(C ,(rnr),s1)        

 p = saq:product#person/name)             

(R (nr,name,’JP’,publisher)   

 R (rnr,nr,reviewDate) 

 rowid(C ,(nr),s)     

 rowid(C ,(rnr),s1)  

 p = saq:product#person/country) 

 v = ‘JP’ )                                

(R (nr,name,’JP’,v)               

 R (rnr,nr,reviewDate) 

 rowid(C ,(nr),s)        

 rowid(C ,(rnr),s1)  

 p = saq:product#person/publisher)         

(R (nr,name,’JP’,publisher)        

 R (rnr,nr,reviewDate)        

 rowid(C ,(nr),s)        

 rowid(C ,(rnr),s1)  

 p = rdf:type 

 v = C  )  

 

AND 

AND 

AND 

AND 

     OR 

AND 

AND 

AND 

AND 

     OR 

 

AND 

AND 

AND 

AND 

     OR 

AND 

AND 

AND 

AND 

AND 

 

(10) 

We notice that bold marked terms, representing source predicates, can be pulled 

out and later translated to a single SQL join query. In the example GCT will produce 

the predicate: 
Q4(s, p, v) :-  

(R (nr,name,‘JP’,publisher)  

 R (rnr,nr,reviewDate)) 

  (rowid(C ,(nr),s)       

   rowid(C ,(rnr),s1)            

   p = saq:product#person/name     

   v = name)                                

  (rowid(C ,(nr),s) 

   rowid(C ,(rnr),s1)            

   p = saq:product#person/country 

   v = ’JP’)                 

  (rowid(C ,(nr),s) 

   rowid(C ,(rnr),s1)            

   p = saq:product#person/publisher 

   v = publisher)                            

  (rowid(C ,(nr),s)      

   rowid(C ,(rnr),s1)             

   p = rdf:type 

   v = C )   

 

AND 

AND 

AND 

AND 

AND 

     OR  

AND 

AND 

AND 

     OR 

AND 

AND 

AND 

     OR 

AND 

AND 

AND 

(11) 
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In (11) the bold marked accesses to the source predicates are broken out from the 

disjunction and referenced only once, while in (10) the source predicates are 

referenced in each disjunct.  

Without GCT the SQL generator will construct several SQL queries, one for each 

conjunction that can be translated to SQL. For example, in (10) the four bold marked 

conjunctions would produce these four SQL queries:  

 
1) SELECT name from person p, review r WHERE p.country=’JP’ 

AND p.nr=r.person 

2) SELECT country from person p, review r WHERE 

p.country=’JP’ AND p.nr=r.person 

3) SELECT publisher from person p, review r WHERE 

p.country=’JP’ AND p.nr=r.person 

4) SELECT nr from person p, review r WHERE p.country=’JP’ 
AND p.nr=r.person 

(12) 

 

The four queries would be sent to the relational DBMS and their result tuples 

postprocessed in sequence. Binding of s, p and v has to be performed by the not bold 

marked post-processing predicates in (10) after the rows are retrieved since object 

construction and result variable bindings cannot be expressed in SQL. 

With GCT applied in (11) a single SQL query is produced from the grouped terms: 

 
SELECT nr, name, country, publisher from person   p, 

review r WHERE p.country=’JP’ AND p.nr=r.person (13) 

 

In (11) the values from the relational tables are retrieved in row-order, while in 

(10) they are retrieved column-by-column. Therefore the execution plan generated 

from (11) is more efficient than the execution plan from (10). 

In general, the steps of the GCT algorithm applied on a DNF predicate are the 

following: 

(i) In a pre-step, normalize the variable names of the DNF predicate so that the same 

variable names are used in each disjunct. 

(ii) Allocate a hash table that for each predicate group maintains mappings to the 

disjuncts from which its predicates have been extracted. 

(iii) For each disjunct, extract the source predicates and SQL comparison predicates 

to form a conjunctive predicate group to extract. Use the entire extracted conjunction 

as key in the hash table.  

 (v) After the entire DNF predicate is scanned, go through the hash table and form for 

each extracted conjunction c a conjunction between c and the remaining terms in the 

disjuncts where c occurs. Finally, form a disjunction of all constructed conjunctions. 

In the example this transforms (10) into (11). 

The pseudo code of the GCT algorithm is the following: 

 
Function GCT(P, gf) -> GP 

Input:P:  a DNF predicate with normalized variable names 

      gf: a function that extracts a conjunction of specific  

          terms, e.g. R , SQL comparisons from a conjunction 

Output:GP: P grouped on the common terms  

1. Allocate a hash table Ht for the common terms in disjuncts  

2. GP:=null 

3. for each disjunct D in P do 
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4.   if D is an atom then GP:= orify(GP,D)  

5.   else if D is not a conjunction then GP:=orify(D,GP) 

6.   else if D has only one term then GP:=orify(D,GP) 

7.   else CT:=gf(D)   /*CT is a list of common terms)*/ 

8.        if CT=null then GP:=orify(D,GP) 

9.        else put in Ht(key=CT):=  

               orify((D with CT removed), 

               (existing value for CT in Ht )) 

10. for each (CT’ and valueCT’) in Ht do 

11.   GP:=orify(andify(CT’, valueCT’),GP) 

14. return GP 

 

The function orify(x,y) forms a disjunction between predicates x and y, and 

andify(x,y) forms a conjunction.  

We notice that the processing is done in one pass and is therefore O(N) where N is 

the number of disjuncts in the DNF predicate. 

5 Performance 

The measurements were made on a PC Intel(R) Core(TM), 2Quad CPU Q9400 with 

2.67 GHz and 8 GB RAM running 64-bits Windows 7 Professional. The impact of 

GCT was evaluated for the unbound-property queries Q1, Q2, Q3, and Q4. We 

compare the performance of SAQ with Virtuoso RDF Views [8] and D2RQ [4], all 

systems accessing the same back-end MS SQL Server database. The experiment 

configuration was the following: 

1. MS SQL server 2008 was configured with the default settings for the min and max 

server memory. 

2. The SQL data was generated by the Berlin benchmark data generator [1][2] and 

loaded into the relational database.  

3. Non-clustered, non-unique indexes were put on the columns country and name in 

the person table to speed up queries Q3 and Q4.  

4. For Virtuoso RDF Views, the RDF view to the underlying relational database was 

generated on the Virtuoso server (ver. 06.02.3128, Windows-64) by using the 

Virtuoso Conductor tool. The SPARQL queries to the RDF view were run from a 

Java program, implementing a Jena Provider [23], which allows users to query 

Virtuoso RDF views from Java. The Java heap size was set to 1 GB. 

5. For D2RQ (v.07), the RDF view of the underlying RDBMS was generated by 

D2RQ‟s auto-generated mapping script [3]. In the generated script we inserted the 

option “d2rq:useAllOptimizations true” to guarantee that we use full optimization 

in D2RQ. The SPARQL queries were run from a Java program calling the D2RQ 

Engine through Jena2 [3]. The Java heap size was set to 1 GB. 

6. All measurements were made five times and the mean values plotted. The standard 

deviation was less than 10% in all measurements. 

7. The default mappings of the analyzed systems SAQ, Virtuoso RDF Views, and 

D2RQ all produce different results. For example, some redundant labels and 

inverse properties are produced by Virtuoso RDF Views and D2RQ. To make fair 

comparisons we configured the systems so that they all generated the same query 
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result. To investigate whether the performance is better with the default mappings 

we also measured Virtuoso RDF Views and D2RQ with their default mappings.  

The following notation is used in the performance diagrams: 
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Fig. 4. Execution times for Q1 up to 1.8 GB database 
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Fig. 6. Execution times for Q3 up to 1.8 GB database 
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Fig. 7. Execution times for Q4 up to 1.8 GB database 
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 Virtuoso: Virtuoso RDF Views configured with the SAQ mappings. 

 Virtuoso-dflt: Virtuoso RDF Views configured with the system default mappings. 

 D2RQ: D2RQ configured with the SAQ mappings. 

 D2RQ-dflt: D2RQ configured with the system default mappings 

 SAQ-naive: SAQ without GCT 

 SAQ-GCT: SAQ with GCT 

In all cases the time spent in executing the query by the relational database 

followed by post-processing is measured, thus not including the time for preparing the 

SPARQL query by the respective system. The cold execution measurements were 

made immediately after flushing the buffer pool, while the warm ones were made by 

re-executing the query immediately after a cold query was run. The cold execution 

times include reading data from disk and SQL query optimization in the DBMS 

server. Since the back-end DBMS has a statement cache a same SQL query executed 

twice will be optimized the first time it is received. Therefore, the warm executions 

do not include back-end DBMS query optimization time. 

 Table 1 Speed-up of SAQ-GCT compared to other approaches 

 

The results from the measurements are presented in Fig. 4-7. The figures show the 

execution times for Q1, Q2, Q3, and Q4 while scaling the generated Berlin 

benchmark dataset from 10M to 100M [1][2], which corresponds to scaling the 

relational database from 312 MB to 1.8 GB. The number of RDF triples in the RD-

view varied from 3 949 935 to 38 771 340. 

Table 1 summarizes the speed-up of the different approaches for Q1-Q4 compared 

to SAQ-GCT. In particular, the SAQ-naive column shows the speed-up of GCT.  

Q1  

system SAQ-

GCT 

SAQ-

naive 

D2RQ D2RQ-dftl Virtuoso Virtuoso-

dftl 

cold 1 1.65 2 ~ 2.2 >8 hours >8hours 

warm 1 1.6 2 ~ 2.2 >8hours >8hours 

SQL 

queries 

1 11 11 13 >1000 >1000 

Q2  

cold 1 1.3 - 1.5 3.5 - 4 3.5 - 4 11.4 - 12.4 11 - 12 

warm 1 2.2 - 3.2 3 - 4.5 3 - 4.5 2.3 - 3.5 4 - 6 

SQL 

queries 

1 10 4 4 11 18 

Q3 

cold 1 1.2 - 1.3 4.2 - 5 4 - 5.5 6.6 - 9 11 - 480 

warm 1 2.5 - 3 8 - 9.7 13 - 14 5.3 - 5.7 15 - 380 

SQL 

queries 

1 6 6 8 9 12 

Q4 

cold 1 1.2 - 1.3 1.2 - 1.5 1.2 - 2.8 28 - 800 100 - 3000 

warm 1 1.3 1.6 - 2 2 30 - 2200 120 - 8000 

SQL 

queries 

1 6 6 8 >1000 >1000 

SSWS 2011

55



The performance of SAQ-GCT for simple unbound-property queries is better than 

all compared implementations. Furthermore, GCT always improves performance 

substantially (20-65%) for queries to cold databases, where the execution time is 

dominated by disk accesses on the database server. For the queries Q2 and Q3, which 

select a single row from the buffer pool in a warm database, the improvement is even 

better (220-320%). The reason is that without GCT more SQL requests are sent to the 

server and therefore the communication overhead dominates when the server time is 

insignificant.  

To analyze how the other systems process unbound-property queries we measured 

their performance and investigated what SQL queries were sent to the relational 

database.  For D2RQ we used the profiling tool of MS SQL Server 2008 to obtain the 

SQL queries sent to the DBMS. Normally D2RQ sends exactly the same SQL queries 

as SAQ-naive so GCT is not used. For Q2 D2RQ makes a special optimization when 

the subject of a triple pattern is a constant URI so fewer queries are sent.  

Virtuoso RDF Views translates unbound-property queries to SQL using an 

unknown algorithm [7][8]. The debug logging of Virtuoso was used to investigate 

what SQL queries were sent to the relational database. For Q2 and Q3 Virtuoso also 

sends exactly the same queries as SAQ-naive plus a number of additional queries.  

For the non-selective queries Q1 and Q4 more than 1000 additional SQL queries were 

sent and the processing did not scale for large databases.  

6 Related Work 

Virtuoso RDF Views [7][8] and D2RQ [3][4][5] are other systems that allow mapping 

of relational tables and views into RDF to make them queryable by SPARQL. These 

systems implement compilers that translate SPARQL directly to SQL. By contrast, 

SAQ first generates Datalog queries to a declarative RD-view of the relational 

database, and then transforms the SPARQL queries to SQL based on logical 

transformations. We have shown that the particular query transformation GCT 

significantly improves performance for unbound-property queries.  

We did not find any publication of how D2RQ compiles unbound-property 

SPARQL queries into SQL. The documentation for Virtuoso is very limited [7][8]. 

However, by using the profiling tool of the DBMS and the debug logging of Virtuoso 

we were able to analyze what queries were actually sent to the DBMS, showing that 

neither of those systems uses anything similar to GCT. SquirrelRDF also allows 

SPARQL queries to relational tables, but does not support unbound-property 

SPARQL queries [19] [20]. 

Work on optimizing disjunctive database queries in general is described in 

[6][11][13]. The closest work to GCT is the combinatorial algorithm [13], which 

merges disjuncts with common sub-expressions in general disjunctive logical 

expression in order to avoid repeated evaluation of the same predicate on the same 

tuple. By contrast, the purpose of GCT is to group in a DNF predicate query 

fragments that can be translated to SQL, and therefore the simpler linear GCT 

algorithm can be used.  
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The idea of bypass evaluation of disjunctive queries in [6][11] is based on 

implementing specialized operators that produce two output streams: the true-stream 

of the tuples that fulfill the operator‟s predicate and the false-stream of the tuples that 

do not match. The main profit of the technique of bypass evaluation is in eliminating 

duplicates by avoiding unnecessary join operators. The purpose of GCT is not 

duplicate elimination, but to rewrite complex disjunctive queries for faster execution. 

7 Conclusions  

We have presented an approach to optimize simple unbound-property SPARQL 

queries to RDF views over back-end relational databases in a system called SAQ for 

querying and archiving relational databases as RDF. Simple unbound-property 

queries retrieve dynamic sets of properties for given subjects, which is important for 

archiving selected parts of a database with SPARQL. Such queries are optimized by 

the presented GCT (Group Common Terms) query transformation rule, which groups 

those common terms from a DNF predicate that can be translated to SQL.  

By using data from the Berlin SPARQL benchmark, GCT was shown to improve 

query execution time compared to naïve processing. Compared to not using GCT, it 

reduces the number of SQL queries to execute and retrieves data in relational row 

order rather than column order. The performance of SAQ was compared to other 

systems that support SPARQL queries to views of existing relational databases. It was 

shown experimentally that SAQ with GCT performs better than those systems, since 

they do not use any similar transformation strategy. 

Future work includes investigating the impact of GCT and other rewrite rules on 

the performance of other kinds of queries, such as queries with multiple unbound-

property triple patterns and other kinds of archival queries. 
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