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Abstract. Data streams, often seen as sources of events, have appeared
on the Web. Event processing on the Web needs however to cope with the
typical openness and heterogeneity of the Web environment. Semantic
Web technology, meant to facilitate data integration in an open envi-
ronment, can help to address heterogeneities across multiple streams. In
this paper we discuss an approach towards efficient pattern matching over
RDF data streams based on the Rete algorithm, which can be considered
as a first building block for event processing on the Web. Our approach
focuses on enhancing Rete with knowledge from the RDF schema as-
sociated with data streams, so that implicit knowledge can contribute
to pattern matching. Moreover, we cover Rete extensions that cope with
the streaming nature of the processed data, such as support for temporal
operators, time windows, consumption strategies and garbage collection.
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1 Introduction

Data streams are becoming more and more common on the Web. Many streams
regarding e.g. stock exchange movements, weather information, sensor readings,
or social networking activity notifications are already present, and platforms to
collect and share these streams, such as Patchube,1 have appeared. These data
streams can often be seen as sources of events, and the opportunity to efficiently
detect event occurrences at the Internet scale while correlating different sources
on this “Web of Events” could open the doors for new powerful applications.

Event processing is an established computing paradigm that provides ap-
proaches and techniques to process event streams and to respond in a timely
fashion. The combination of event processing techniques with data streams dis-
tributed across the Web comes as a natural fit; event processing on the Web
needs however to cope with the typical openness and heterogeneity of the Web
environment. Semantic Web technologies are meant to facilitate data integration
in an open environment, thus can help to overcome these problems by using ma-
chine processable descriptions to resolve heterogeneities across multiple streams.

1 http://www.patchube.com/



For example, Semantic Sensor Web [11] represents an attempt to collect and
process avalanches of data about the world using semantic Web technologies.

While there are a few systems bridging semantic Web technologies and event
processing, bringing together these two areas and providing an efficient solution
for event processing on the Web is an open research topic. In this paper we
present a work-in-progress solution towards efficient pattern matching over RDF
data streams, which can be considered as a first building block in this vision.

2 Problem Statement and Related Work

A solution for pattern matching over RDF data streams in the context of event
processing on the Web needs to address issues along two different dimensions.
First, the presence of RDF schema entailments can materialise RDF statements
at runtime, which is not the usual case in event processing systems. Entailed
statements, even if they are not explicitly present in the input streams, can
contribute to pattern completion. Second, the streaming nature of the data calls
for support to express and match patterns taking into account the temporal
dimension, and thus for operators that are common for event processing systems
but are not part of the usual notion of RDF pattern matching (e.g. in SPARQL).

ETALIS [2] is a Complex Event Processing system providing a number of
features such as evaluation of out-of-order events, computation of aggregate func-
tions, dynamic insertion and retraction of patterns, and several garbage collec-
tion policies and consumption strategies. To operate on RDF streams ETALIS
provides EP-SPARQL, an extension of SPARQL that introduces a number of
temporal operators (compliant to ETALIS ones) used to combine RDF graph
patterns along time-related dependencies. The presence of background knowl-
edge, in the form of an RDFS ontology, is also supported. EP-SPARQL patterns
are evaluated on top of ETALIS, and thus can benefit from all ETALIS features.

C-SPARQL [4] is a SPARQL-based stream reasoning system and language
extended with the notions of RDF streams, time windows, handling of multiple
streams and aggregation functions. It is suited for cases in which a significant
amount of static knowledge needs to be combined with data streams (e.g., coming
from heterogeneous and noisy data sensors) in order to enable time-constrained
reasoning. The RDF statements from the streams are fed into pre-reasoners
performing incremental RDF schema-based materialisation of RDF snapshots,
which are further fed into reasoners to which SPARQL queries are submitted [3].

These approaches fall in our problem space, but neither of them provides a
complete solution. Although it covers RDF data stream processing, ETALIS does
not provide native support for entailments based on RDF schema.2 On the other
hand, C-SPARQL only provides a simple timestamp() function to express tem-
poral relationships between RDF patterns, but it does not provide more expres-
sive temporal operators like ETALIS, which can hinder its application in the area
of event processing. Since queries are periodically evaluated, C-SPARQL does

2 ETALIS translates an RDFS ontology into a set of Prolog rules via an external
library.



not provide truly continuous querying, and in case of short time windows, high-
frequency streams and rich background knowledge, the overhead to compute
the incremental materialisation of RDF snapshots becomes significant. ETALIS
suffers from performance issues in case of complex pattern expressions.

The goal of our system is to provide efficient pattern matching functionalities
on RDF streams, enabling the expression of temporal dependencies and taking
into account RDF schema entailments. Unlike C-SPARQL, our system operates
over a fixed RDF schema, does not support static background knowledge (besides
the schema), and does not provide generic reasoning capabilities. We believe that
a fixed schema does not significantly limit the applicability of our solution, since
in most applications only data statements come through the streams (e.g., sensor
readings). This makes the inclusion of schema-driven entailments simpler, as it
can be realised in a pre-running step. The exclusion of background knowledge
is due to performance reasons. Our system can be used as the entry block of a
bigger system and has performance as a primary concern, whereas more complex
operations and semantics are left to subsequent blocks (which can have less
stringent performance requirements, as they operate after the first “filtering”).

3 Solution

Unlike the aforementioned solutions, our system takes as foundation an efficient
pattern matching algorithm: Rete [8]. The Rete algorithm, originally designed
as a solution for production rule systems, represents a general approach to deal
with many pattern/many object situations. The algorithm emphasises on trading
memory for performance by building comprehensive memory structures, called
α- and β-networks, designated to check respectively intra- and inter-pattern
conditions. The algorithm internally preserves intermediate matches in the form
of tokens which point to all contributing objects. The intrinsic dataflow nature of
Rete goes in favour of using it also over data streams. However, in order to cope
with our requirements, the basic Rete algorithm needs to be extended to properly
address the issues of RDF schema entailments and data stream processing.

3.1 Support for Schema Entailments in Rete

The RDF semantics specification [10] includes a set of entailment rules to derive
new statements from known ones (Table 13). Since in our system the schema
is fixed, some rules have no impact at runtime: in particular, rules rdfs5, rdfs6,
rdfs8, rdfs10, rdfs11, rdfs12 and rdfs13 have in their bodies only T-box state-
ments, thus cannot be activated by statements in the streams. Rule rdf1 is also
not relevant at runtime because, if the property is not in the schema, nothing else
(i.e., domain, range, sub/super-properties) can be stated about it, thus no fur-
ther entailments are possible. Finally, unless we look for resources, rules rdfs4a,

3 Rules are named as in the specification. We omit rules dealing with blank nodes and
literals, since they are not relevant to our discussion.



Table 1. RDF/RDFS entailment rules

Rule name If Then add

rdf1 (x p y) (p rdf:type rdf:Property)
rdfs2 (p rdfs:domain c),(x p y) (x rdf:type c)
rdfs3 (p rdfs:range c),(x p y) (y rdf:type c)
rdfs4a (x p y) (x rdf:type rdfs:Resource)
rdfs4b (x p y) (y rdf:type rdfs:Resource)
rdfs5 (p rdfs:subPropertyOf q),(q rdfs:subPropertyOf r) (p rdfs:subPropertyOf r)
rdfs6 (p rdf:type rdf:Property) (p rdfs:subPropertyOf p)
rdfs7 (p rdfs:subPropertyOf q),(x p y) (x q y)
rdfs8 (c rdf:type rdfs:Class) (c rdfs:subClassOf rdfs:Resource)
rdfs9 (c rdfs:subClassOf d),(x rdf:type c) (x rdf:type d)
rdfs10 (c rdf:type rdfs:Class) (c rdfs:subClassOf c)
rdfs11 (c rdfs:subClassOf d),(d rdfs:subClassOf e) (c rdfs:subClassOf e)
rdfs12 (p rdf:type rdfs:ContainerMembershipProperty) (p rdfs:subPropertyOf rdfs:member)
rdfs13 (x rdf:type rdfs:Datatype) (x rdfs:subClassOf rdfs:Literal)

rdfs4b and rdfs8 are not relevant, since their output is not used as input by other
rules. Therefore, only rules rdfs2, rdfs3, rdfs7 and rdfs9, i.e. inference based on
the hierarchies of classes and properties together with their domain and range,
need to be considered at runtime. The other rules are relevant only when the
extended Rete network is built, based on the schema and the patterns.

A similar discussion can be found in [12], which distinguishes between rules
for online and offline computation (the latter used to compute schema closure).
Similarly, in our system we can pre-compute schema closure, and use it in build-
ing our extended Rete network. Our approach extends the Rete architecture
with an additional network of entailment nodes, called ε-network, responsible
for generating network objects following schema entailments. Given a schema
and a set of patterns, the ε-network consists of an optimised set of nodes ar-
ranged according to the dataflow paradigm. In contrast to the typical usage of
Rete in forward-chaining reasoners, i.e. detecting patterns corresponding to the
bodies of entailment rules, our approach encodes in the ε-network schema-driven
property hierarchies with specified domain and range definitions connected to
class hierarchies. The triples that constitute the schema are not part of the data
streams, therefore they are not present as data items in the network and are not
used as such in the pattern-matching process. The outputs of the ε-network are
connected to the appropriate inputs of the α-network. This approach retains the
efficiency of Rete, and fits appropriately with the support for data stream issues.

The ε-network is built as follows. Each property and each class in the schema
correspond to a node:4 for each property p in the schema a node with the triple
pattern (? p ?) is created, and for each class c in the schema a node with the triple
pattern (? rdf:type c) is created. Nodes are connected by three different types
of links: S-links, which transfer the subject of the triple to the following class
node, O-links, which transfer the object of the triple to the following class node
(where it becomes the subject), and SO-links, which transfer both the subject
and the object of the triple to the following property node. For each subclass
statement in the schema, an S-link between the corresponding class nodes is

4 Actually, only the subset of the schema that is relevant for the patterns is considered.



created. For each subproperty statement in the schema, an SO-link between
the corresponding property nodes is created. For each domain statement in the
schema, an S-link from the corresponding property node to the corresponding
class node is created. For each range statement in the schema, an O-link from
the corresponding property node to the corresponding class node is created. A
simple example of ε-network and the corresponding ontology fragment are shown
in Figure 1.

@prefix rdf:

  <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs:

  <http://www.w3.org/2000/01/rdf-schema#>.

@prefix :

  <http://example.org/ns#>

:Post          rdf:type            rdfs:Class.

:Tweet         rdf:type            rdfs:Class;

               rdfs:subClassOf     :Post.

:FBPost        rdf:type            rdfs:Class;

               rdfs:subClassOf     :Post.

:Place         rdf:type            rdfs:Class.

:TalksAbout    rdf:type            rdf:Property;

               rdfs:domain         :Post;

               rdfs:range          :Place.

:TAPositively  rdf:type            rdf:Property;

               rdfs:subPropertyOf  :TalksAbout.

:TANeutrally   rdf:type            rdf:Property;

               rdfs:subPropertyOf  :TalksAbout.

:TANegatively  rdf:type            rdf:Property;

               rdfs:subPropertyOf  :TalksAbout.

Rete network

α - network

β - network

Streams of RDF triples 

Instances of RDF graph patterns 

ε - network

TAPositively TANeutrally TANegatively

TalksAbout

Place Tweet FBPost

Post

SO SO
SO

O S

S S

Fig. 1. Extended Rete with ε-network

When a triple enters the ε-network, it activates the node with the correspond-
ing pattern (if it exists), in the same way as in the α-network in basic Rete. When
a node is activated, it emits the corresponding triple to the α-network and it
transfers the subject and/or the object of the triple (depending on the link type)
to the following nodes, activating them. The activation mechanism is governed
by tokens (as in basic Rete), which allows detecting multiple inference paths, in
order to avoid passing the same inferred triple to the α-network more than once.

3.2 Support for Data Stream Issues in Rete

Our solution intends to incorporate and adapt the following stream processing
extensions to Rete: temporal operators in RDF patterns, time windows, and data
consumption strategies coupled with appropriate garbage collection approaches.



An event pattern specification language usually introduces a number of oper-
ators to build comprehensive pattern expressions. The operators can be divided
into logical operators (conjunction, disjunction and negation), data operators
(comparison and arithmetic), and temporal operators. Basic Rete provides only
support for conjunctions between objects in a pattern. Support for the remaining
logical and data operators has been introduced soon after the algorithm [9, 7],
and our system follows the same design and implementation guidelines. Tempo-
ral operators allow to express time-dependent constraints over a set of objects in
a pattern. Our system treats pattern occurrences in accordance to interval-based
semantics [1], in which an occurrence spans a time interval (unlike point-based
semantics in which the last contributing object defines the time of the pattern
occurrence). Motivated by [5] and [14], we consider to implement the temporal
operator semantics through extensions of join-nodes behaviour. The extensions
allow nodes to perform interval-based comparisons to establish a temporal re-
lationship between the joining patterns (i.e., partial graph pattern matches) by
executing basic timepoint and time interval arithmetics. In order to perform the
join, the node further detects if the established relationship is in accordance to
the one designated by the pattern.

Rete implementations usually provide no time-window support. An initial
work [13] proposes a method to automatically discard objects no longer needed
by computing temporal dependency matrices over the Rete network tokens. The
work in [16, 15] gives an implementation that adds new time-aware Rete nodes
checking time-window boundaries during the matching process, based on tempo-
ral token dependency computations. Our system follows a similar approach by
extending β-node behaviour to include time-window boundary checking. Tokens
falling out of the time-window boundaries are excluded from further matching re-
sults and flagged as candidates for garbage collection. The checks are performed
in the same way as for temporal operators (i.e., by establishing a relationship
between the intervals, where one interval defines the time window boundaries).

Event consumption strategies (also called parameter contexts) [6, 1] resolve
the issue of multiple simultaneous matches to a pattern inside of a time window.
Rete implementations usually lack support for these strategies; we will consider
further extensions to the join-node behaviour to enable their support. The issue
of garbage collection is closely related. In [14] it is proposed to compute an
object lifetime during which the object must be retained due to the participation
in partial matches inside the time window. Our system will consider the same
approach by implementing an incremental garbage collection process using the
lifetime information to schedule deletion of objects.

4 Conclusions and Further Work

An efficient mechanism for schema-enhanced pattern detection on RDF data
streams is required to address the challenges of event processing on the Web.
In this paper we proposed a system based on the Rete algorithm, extended to
include statements materialised through schema entailments and to support the



temporal nature of data streams. We consider several dimensions as our further
work. First, more precise answers to the issues of how to integrate the chosen
temporal and entailment approaches into Rete will need to be defined. Second,
special attention will be devoted to the analysis of mutual influence of temporal
and entailment extensions. Third, performance evaluation will be conducted in
order to ensure the overall system responsiveness under different conditions.
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