
LogMap results for OAEI 2011

Ernesto Jiménez-Ruiz, Antón Morant, and Bernardo Cuenca Grau

Department of Computer Science, University of Oxford
{ernesto,anton.morant,berg}@cs.ox.ac.uk

Abstract. We present the preliminary results obtained by the ontology matching
system LogMap within the OAEI 2011 campaign. This is the first participation
of LogMap in the campaign, and the results have so far been quite promising.

1 Presentation of the System

The LogMap project started in January 2011 with the objective of developing a scalable
and logic-based ontology matching system.

Such system should be able to deal efficiently with large-scale ontologies; further-
more, it should exploit logic-based reasoning and diagnosis techniques to compute out-
put mappings that do not lead to logical inconsistencies when integrated with the input
ontologies [7]. Although the development of LogMap is relatively recent, the authors’
experience in the field of ontology integration dates back to 2008 [9, 11].

1.1 Motivation and Problem Statement

Despite the impressive state of the art, large-scale biomedical ontologies still pose seri-
ous challenges to existing ontology matching tools [15, 6].

Insufficient scalability. Although existing matching tools can efficiently deal with
moderately sized ontologies (e.g. those in the OAEI Anatomy track), large-scale on-
tologies such as FMA, SNOMED CT and NCI are still beyond their reach.

Logical inconsistencies. OWL ontologies have well-defined semantics based on first-
order logic, and mappings are commonly represented as OWL class axioms. Many ex-
isting tools, however, disregard the semantics of the input ontologies; thus, they are
unable to detect and repair inconsistencies that logically follow from the union of the
input ontologies and the computed mappings. Although there is a growing interesting
in applying reasoning techniques to ontology matching, reasoning is known to severely
aggravate the scalability problem.

1.2 Technical Approach

LogMap is a highly scalable ontology matching system with ‘built-in’ reasoning and
diagnosis capabilities, which aims at addressing the aforementioned challenges.

We next present a brief overview of LogMap and refer the reader to [7] for a com-
prehensive description. The main steps performed by LogMap are schematically repre-
sented in Figure 1.



O1

O2

Lexical and

Structural

Indexation

Compute

Initial

Anchors

Mapping

Repair
Expand?

Mapping

Discovery

Compute

Overlapping O
′
2

O
′
1

M
No

Yes

Fig. 1. LogMap in a nutshell.

Inverted index for NCI Anatomy labels Index for NCI Anatomy class URIs
Entry Cls ids Cls id URI
external,ear 1 1 NCI C12292 (external ear)
atrial,auricle 1,392 392 NCI C32165 (auricle)
auricle 1,392; 529 529 NCI C12394 (ear)
ear 529
Inverted index for Mouse Anatomy labels Index for Mouse Anatomy class URIs
Entry Cls ids Cls id URI
auricle 214 214 MA 0000259 (auricle)
atrial,auricle 214 216 MA 0000258 (outer ear)
ear,external 216
outer,ear 216

Table 1. Fragment of the lexical indices for NCI and Mouse anatomy ontologies

Lexical indexation. The first step after parsing the input ontologies is their lexical in-
dexation. LogMap indexes the labels of the classes in each ontology as well as their
lexical variations, and allows for the possibility of enriching these indices by using ex-
ternal sources (e.g., WordNet or UMLS-lexicon) or a stemming algorithm (e.g., [14]).
LogMap constructs an ‘inverted’ lexical index (see Table 1) for each input ontology. In
general, an entry in the index can be mapped to several classes (e.g., see ‘auricle’ in
Table 1). This type of index, which is commonly used in information retrieval appli-
cations, will be exploited by LogMap to efficiently compute an initial set of candidate
mappings, called anchors.

Structural indexation. LogMap exploits the information in the (extended) class hier-
archy of the input ontologies in different steps of the matching process. Efficient access
to the information in these hierarchies is critical to LogMap’s scalability.

LogMap classifies the input ontologies using either incomplete structural heuristics,
or an off-the-shelf complete DL reasoner. Then, the classified hierarchies are indexed
using an interval labelling schema—an optimised data structure for storing DAGs and
trees [1], which has been shown to significantly reduce the cost of computing typical
queries over large class hierarchies [3, 13].



Entry NCI ids Mouse ids Mappings
external,ear 1 216 NCI C12292 ≡ MA 0000258

atrial,auricle 1,392 214
NCI C12292 ≡ MA 0000259
NCI C32165 ≡ MA 0000259

auricle 1,392; 529 214
NCI C12292 ≡ MA 0000259
NCI C32165 ≡ MA 0000259
NCI C12394 ≡ MA 0000259

Table 2. Fragment of the intersection between the inverted indices for NCI and Mouse ontologies

The class hierarchies computed by LogMap are extended since, apart from the typ-
ical classification output of DL reasoners, they also include those explicit axioms in
the input ontologies that can be directly encoded in Horn propositional logic (e.g., class
disjointness axioms, subsumption axioms between an intersection of named classes and
a named class).

Computation of ‘anchor mappings’. LogMap computes an initial set of anchor map-
pings by intersecting the inverted indices of the input ontologies (i.e., by checking
whether two lexical entries in those indices contain exactly the same strings). Anchor
computation can hence be implemented very efficiently. Table 2 shows the intersection
of the inverted indices of Table 1, which yields four anchors.

Given an anchor m = (C1 ≡ C2), LogMap uses the string matching tool ISUB
[16] to match the neighbours of C1 in the hierarchy of O1 to the neighbours of C2

in the hierarchy of O2. LogMap then assigns a confidence value to m by computing
the proportion of matching neighbours weighted by the ISUB similarity values. This
technique is based on a principle of locality: if classes C1 and C2 are correctly mapped,
then the classes semantically related to C1 in O1 are likely to be mapped to those
semantically related to C2 in O2. Thus, if the hierarchy neighbours of the classes in an
anchor mapping match with low confidence, then the anchor may be incorrect.

Mapping repair and discovery. The core of LogMap is an iterative process that alter-
nates mapping repair and mapping discovery steps (see Figure 1).

Unsatisfiability checking and repair. LogMap uses a Horn propositional logic repre-
sentation of the extended hierarchy of each ontology together with all existing map-
pings. Although such propositional Horn encoding is possibly incomplete, it is key to
LogMap’s scalability. Probably complete DL reasoners do not scale well when inte-
grating large ontologies via mappings; the scalability problem is exacerbated by the
number of unsatisfiable classes (more than 10,000 found by LogMap when integrating
SNOMED and NCI using only anchors) and the large number of additional reasoner
calls required for repairing each unsatisfiability.

For unsatisfiability checking, LogMap implements the highly scalable Dowling-
Gallier algorithm [5] for propositional Horn satisfiability, and calls the Dowling-Gallier
module once (in each repair step) for each class. Our implementation takes as input a



class C (represented as a propositional variable) and determines the satisfiability of the
propositional theory PC consisting of

– the rule (true→ C);
– the propositional representations P1 and P2 of the extended hierarchies of the input

ontologies O1 and O2; and
– the propositional representation PM of the mappings computed thus far.

LogMap computes a repair for each unsatisfiable class in the input ontologies.
Given an unsatisfiable class C and the propositional theory PC , a repair R of PC is a
minimal subset of the mappings in PM such that PC \ R is satisfiable.

LogMap extends Dowling-Gallier’s algorithm to record all active mappings (Pact)
that may be involved in each unsatisfiability. To improve scalability, repair computation
is based on a ‘greedy’ algorithm. Given each unsatisfiable class C and the relevant
active mappings Pact computed using Dowling-Gallier, the algorithm identifies subsets
of Pact of increasing size until a repair is found. Thus, our algorithm is guaranteed to
compute all repairs of smallest size. If more than one repair is found, LogMap selects
the one with involving mappings with the lowest confidence values.

Mapping discovery. In order to discover new mappings, LogMap maintains two con-
texts (sets of ‘semantically related’ classes) for each anchor. Contexts for the same
anchor are expanded in parallel using the class hierarchies of the input ontologies. New
mappings can then be found by matching classes in the relevant contexts using ISUB.
Matches with a similarity value exceeding a given confidence threshold are considered
as candidate mappings.

LogMap continues the iteration of repair and discovery steps until no context is
expanded. The output of this process is a set of mappings that is likely to be ‘clean’,
in the sense that it will not lead to unsatisfiable classes when merged with the input
ontologies.

Ontology overlapping estimation. In addition to the mappings, LogMap can also
returns two (hopefully small) fragments O′1 and O′2 of O1 and O2, respectively. Intu-
itively, O′1 and O′2 represent the ‘overlapping’ between O1 and O2, in the sense that
each ‘correct’ mapping not found by LogMap is likely to involve only classes in these
fragments. The computation of O′1 and O′2 is performed in two steps.

1. Computation of ‘weak’ anchors. LogMap computed the initial anchor mappings
by checking whether two entries in the inverted index of O1 and O2 contained ex-
actly the same set of strings. For the purpose of overlapping estimation, LogMap
also computes new anchor mappings that are ‘weak’ in the sense that relevant in-
dex entries are only required to contain some common string. Thus, weak anchors
represent correspondences between classes with a common lexical component.

2. Module extraction. The sets Si of classes in Oi involved in either a weak anchor
or a mapping computed by LogMap are then used as ‘seed’ signatures for module
extraction. In particular, O′1 (resp. O′2) are computed by extracting a locality-based
module [4] for S1 in O1 (resp. for S2 in O2).



1.3 Adaptations made for the evaluation

To participate in the OAEI 2011, LogMap has been extended with a property matching
facility as well as with the ability to consider ‘weak’ anchors as candidate mappings.

Computation of property anchors. Similarly to the case of anchor mappings between
classes, the computation of anchor mappings between (object or data) properties also
relies on the intersection of inverted lexical indexes. These mappings, however, are
currently not taken into account by LogMap’s repair module.

In the current version of LogMap, a mapping between properties p1 and p2 is re-
turned as output only if both their respective domains D1, D2 and ranges R1, R2 are
‘compatible’— that is, if LogMap’s repair module does not find inconsistencies when
extending the final output class mappings with the mappings D1 ≡ D2 and R1 ≡ R2.

For example, in the OAEI conference track, LogMap identified an equivalence map-
ping between the properties cmt:writtenBy and confOf:writtenBy. This mapping, how-
ever, was discarded since the extension of LogMap’s output class mappings with the
mappings cmt:Reviewer ≡ confOf:Author and cmt:Review ≡ confOf:Contribution
between the respective domains and ranges of these properties led to an inconsistency.

Inclusion of ‘weak’ anchors. Weak anchor mappings are well-suited for overlapping
estimation purposes (see Section 1.2); however, it is dangerous to treat them as candi-
date output mappings since they are likely to introduce unmanageable levels of ‘noise’
during mapping repair.

The upper part of Table 3 shows an excerpt of the inverted indices for NCI and
Mouse Anatomy ontologies extended with partial lexical entries. The intersection of
these inverted indices includes the entry ‘smooth,muscle’, which appears in 19 concepts
in Mouse Anatomy and in 9 concepts in NCI Anatomy; as a result, 171 weak anchor
mappings can be obtained (see lower part of Table 3). Most of these mapping are ob-
viously incorrect (e.g. NCI C49483 ≡ MA 0001741 or NCI C49306 ≡ MA 0001741),
however valid mappings can still be discovered (e.g. NCI C49483 ≡ MA 0001635).

The current version of LogMap considers a weak anchor as a candidate output map-
ping (hence taking it into account for mapping repair) only if exceeds a given ISUB
confidence threshold.

2 Results

In this section, we present the preliminary results obtained by LogMap for the OAEI
tracks provided by the SEALS client: Anatomy 2010, Conference 2010, and Benchmark
2011.1 Tests were performed using a laptop computer with 4 Gb of RAM.

1 Final results will be provided in the workshop proceedings.



Extended inverted index for NCI Anatomy Index for NCI Anatomy class URIs
Lexical entry Cls ids Cls id Cls name
gallbladder,smooth,tissue,muscle 2061 2061 NCI C49483 (gallbladder smooth muscle tissue)
smooth,muscle 2061; 3214,. . . 3214 NCI C49306 (trachea smooth muscle tissue)
Extended inverted index for Mouse Anatomy Index for Mouse Anatomy class URIs

Lexical entry Cls ids Cls id Cls name
gall,bladder,smooth,muscle 600 600 MA 0001635 (gall bladder smooth muscle)
smooth,muscle 600; 2629; . . . 2629 MA 0001741 (prostate gland smooth muscle)

Entry NCI ids Mouse ids Mappings

smooth,muscle 2061; 3214; . . . 600; 2629; . . .

NCI C49483 ≡ MA 0001635
NCI C49483 ≡ MA 0001741
NCI C49306 ≡ MA 0001635
NCI C49306 ≡ MA 0001741
. . .

Table 3. Extend inverted indices an their intersection for NCI and Mouse Anatomy ontologies

Systems Precision Recall F-score
LogMap 0.938 0.836 0.884
AgrMaker 0.903 0.853 0.877
Ef2Match 0.955 0.781 0.859
NBJLM 0.920 0.803 0.858
SOBOM 0.949 0.778 0.855
BLOOMS 0.954 0.731 0.828

Table 4. Comparing LogMap with the top 5 tools in the Anatomy Track of the OAEI 2010

2.1 Anatomy 2010 Track

This track involves two biomedical ontologies: the Adult Mouse Anatomy ontology
(2,744 classes) and a fragment of the NCI ontology describing human anatomy (3,304
classes). The reference alignment [2] has been manually curated, and it contains a sig-
nificant number of non-trivial mappings.

Table 4 compares LogMap’s results with the top 5 tools in the Anatomy 2010 track.
LogMap was faster than the other tools: while LogMap matched these ontologies in
44.5 seconds, tools like AgrMaker and SOBOM required 23 and 19 minutes respec-
tively.2 We verified, using an off-the-shelf DL reasoner, that the integration of these
ontologies with LogMap’s output mappings did not lead to unsatisfiable classes.

2.2 Conference 2010 Track

The Conference 2010 Track contains 16 ontologies describing the domain of conference
organisation.

Table 5 compares LogMap’s results with the official results obtained by the top
5 tools in 2010. LogMap obtained the best results in terms of F-score; furthermore,
reasoning with the union of the input ontologies and LogMap’s output mappings did not
lead to unsatisfiable classes; thus, the degree of incoherence [12] of LogMap’s output
mappings was 0%.

2 These times correspond to the 2009 OAEI results since no official times were given in 2010.



Systems Precision Recall F-score Incoherence
LogMap 0.85 0.53 0.66 0%
CODI 0.86 0.48 0.62 0.1%
ASMOV 0.57 0.63 0.60 5.6%
Ef2Match 0.61 0.58 0.60 7.2%
Falcon 0.74 0.49 0.59 >4.8%
AgrMaker 0.53 0.62 0.58 >14.8%

Table 5. Comparing LogMap with the top 5 tools in the Conference Track of the OAEI 2010.

2.3 Benchmark 2011 Track

The goal of this track is to evaluate the tools’ behaviour when the input ontologies are
lacking important information. The test ontologies for this track have been obtained by
performing certain synthetic transformations on realistic ontologies (e.g., suppressing
entity labels, flattening the class hierarchy).

The computation of candidate mappings in LogMap heavily relies on the similarities
between the lexicons of the input ontologies; hence, replacing entity names by random
strings has a direct negative impact in the number of discovered mappings.

When taking into account only those tests for which LogMap was able to compute
at least one mapping, we obtained an average precision of 0.992 and an average recall
of 0.605. In 17 (out of 112) test cases, however, LogMap found no mappings. When
taking into account also these cases, we obtained average precision and recall values of
0.827 and 0.504, respectively.

3 General Comments and Conclusions

Comments on the results. We find LogMap’s results quite promising.

– In all cases, LogMap was able to compute a clean set of output mappings (i.e., not
leading to unsatisfiable classes when merged with the input ontologies).

– LogMap was the fastest of all tools in the the Anatomy 2010 Track (computation-
ally, the most challenging of all tracks).

– LogMap obtained the best results in terms of F-score for both the Anatomy 2010
and Conference 2010 tracks.

LogMap’s main weakness is that the computation of candidate mappings relies on
the similarities between the lexicons of the input ontologies. As already mentioned,
LogMap could not find any mappings for 17 of the test cases in the Benchmark 2011
track, since class names were substituted by random strings.

Comments on the OAEI 2011 test cases. Ontology matching tools have significantly
improved in the last few years, and there is a need for more challenging and realis-
tic matching problems [15, 6]. To address this need, in [10, 8] we proposed the use of
(clean subsets of) UMLS mappings as reference alignments between the large-scale
biomedical ontologies FMA, SNOMED CT and NCI. The use in an OAEI track of



these ontologies represents a significant leap in complexity w.r.t. the existing anatomy
track; however, we take our positive experiences with LogMap as an indication that a
new track based on these ontologies and their UMLS alignments would be feasible.

Acknowledgements.

We would like to acknowledge the funding support of the Royal Society and the EPSRC
project LogMap, and also thank the organizers of the OAEI campaign for providing test
data and infrastructure.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships in
large data and knowledge bases. SIGMOD Rec. 18, 253–262 (1989)

2. Bodenreider, O., Hayamizu, T.F., et al.: Of mice and men: Aligning mouse and human
anatomies. In: AMIA Annu Symp Proc. pp. 61–65 (2005)

3. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes for the
Semantic Web. In: Proc. of WWW. pp. 544–555. ACM (2003)

4. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount: extracting
modules from ontologies. In: Proc. of WWW. pp. 717–726 (2007)

5. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of proposi-
tional Horn formulae. J. Log. Program. pp. 267–284 (1984)

6. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology Alignment
Evaluation Initiative: six years of experience. J Data Semantics (2011)

7. Jimenez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and Scalable Ontology Matching.
In: et al., L.A. (ed.) The 10th International Semantic Web Conference (ISWC). LNCS, vol.
7031, pp. 273–288. Springer (2011)

8. Jimenez-Ruiz, E., Cuenca Grau, B.: Towards more challenging problems for ontology match-
ing tools. In: Proc. of the 3th International Workshop on Ontology Matching (OM) (2011)

9. Jimenez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology integration using
mappings: Towards getting the right logical consequences. In: Proc. of European Semantic
Web Conference (ESWC). pp. 173–187 (2009)

10. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Towards a UMLS-based sil-
ver standard for matching biomedical ontologies. In: Proc. of the 5th International Workshop
on Ontology Matching (2010)

11. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Logic-based assessment of
the compatibility of UMLS ontology sources. J Biomed. Sem. 2 (2011)

12. Meilicke, C., Stuckenschmidt, H.: Incoherence as a basis for measuring the quality of ontol-
ogy mappings. In: Proc. of the 3rd International Workshop on Ontology Matching (2008)

13. Nebot, V., Berlanga, R.: Efficient retrieval of ontology fragments using an interval labeling
scheme. Inf. Sci. 179(24), 4151–4173 (2009)

14. Paice, C.: Another stemmer. SIGIR Forum 24(3), 56–61 (1990)
15. Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. In: On the Move to Mean-

ingful Internet Systems (OTM Conferences) (2008)
16. Stoilos, G., Stamou, G.B., Kollias, S.D.: A string metric for ontology alignment. In: Proc. of

the International Semantic Web Conference (ISWC). pp. 624–637 (2005)


