SchemEX—Web-Scale Indexed Schema Extraction
of Linked Open Data
(BTC Submission)

Mathias Konrath, Thomas Gottron, and Ansgar Scherp

WeST - Institute for Web Science and Technologies
University of Koblenz-Landau, 56070 Koblenz, Germany
{mkonrath, gottron, scherp}@unifkoblenz .de

Abstract. We present SchemEX, an approach and tool for web-scale, real-time
indexing and schema extraction of Linked Open Data (LOD) at linear runtime
complexity. As we cannot assume that a complete retrieval of the LOD cloud
on a local machine is feasible, we follow a stream-based approach that makes
no assumption about how the RDF triples are retrieved from the web by a data
crawler. We show the applicability of our approach by applying SchemEX to the
Billion Triple Challenge Dataset 2011 and a smaller dataset with 11M triples.

1 Introduction

Linked Open Data (LOD) [5] is the collective term for publishing open data using the
Resource Description Framework (RDF). Data is provided by different, connected data
sources building a huge web-scale RDF graph. The LOD graph does not provide a
single federated interface to perform graph queries as shown in Figure 1(a). A com-
plete retrieval of this huge RDF graph with currently more than 31 billion triples
(http://lod-cloud.net/) to perfom queries locally is not feasible. Thus, one
of the challenges when working with LOD is the lack of a concise summary or de-
scription of what kind of data can be found in which data source and how these data
sources are connected. Such a summary is desirable for solving many tasks in com-
mon LOD scenarios, like searching, browsing, exploring or querying the LOD graph.
Typical tasks in these scenarios are, e.g., to find data sources that contain instances
with certain properties, to detect which data sources are interlinked and to support the
execution of distributed queries. To address this issue some datasets provide a voiD

Linked Open Data / Index Linked Open Data

Query Query

(@) (b)

Fig. 1. Index usage for identifying relevant data sources

http://lod-cloud.net/

description [1], containing metadata information such as a SPARQL endpoint loca-
tion (void:sparglEndpoint), example resources (void:exampleResource), and
compositional relationships between different parts of the data source using dcterms:
hasPart and dcterms:isPartOf. However, to date only a small fraction of datasets
are publishing voiD descriptions, mostly triple store datasets such as DBPedia. Further,
voiD does not contain explicit schema information and is not sufficient to support all
of the above tasks. Therefore, a more precise index structure is desirable that allows
to search for data sources that contain instances with certain properties or to identify
relevant data sources for a given query.

Our solution to this problem is to extract a concise schema from the LOD graph with
a suitable structure to be used as an index. In our context, schema extraction means to
abstract RDF instances to RDF schema concepts that represent instances with the same
properties. For using this schema as an index, each schema concept maps to data sources
that contain instances with corresponding properties. This allows to search for data
sources that contain instances with certain properties or to find relevant data sources for
given queries. Such a pre-processed schema-level index cannot process queries itself.
However, it supports identifying the relevant data sources as shown in Figure 1(b),
thereby operating as service provider to find data sources.

In this paper, we introduce an enhanced index structure called SchemEX that
leverages RDF typings and links for creating a graph-based web-scale schema-index.
SchemEX uses a fixed-window approach for schema extraction and index building op-
erating on a stream of RDF triples. This allows to index without persistently storing the
data and an effective integration with a Linked Data crawler such as LDSpider [6]. To
demonstrate the scalability of SchemEX and the capability to handle web-scale data in
web-quality the full Billion Triple Challenge 2011 dataset was processed. Additionally,
a crawl of 11M triples has been executed with LDSpider used for a detailed qualitative
evaluation.

2 The SchemEX Approach

Several approaches and algorithms have been developed for extracting schemata infor-
mation from general semi- or unstructured graphs [3,7]. In the context of Linked Open
Data and Semantic Web, different approaches for schema extraction and building in-
dexes have been developed. For example, [4] uses a QTree structure to identify relevant
data sources for a given query. This is done by adding triples to corresponding buckets
in the QTree. Queries are answered by finding relevant buckets for each query triple
pattern and detecting overlaps between them. An approach for creating voiD descrip-
tions [2] from web-scale datasets uses the Map-Reduce paradigm for identifying voiD
datasets and links between them. The created voiD descriptions can be used for sup-
porting distributed queries. Another approach is to use n-bisimulation for building a
structure index [8]. Bisimulation defines an equivalence relation on instances based on
equal sets of edge labels as the resources share the same outgoing RDF properties. The
equivalence classes induced by this relation build the index structures that are mapped
to individual instances. In this setting, bisimulation does not regard RDF typings that
are usually existing and available in LOD.

Cx RDF classes
1
£
8 TCm type clusters
] 2
® o x
)
©
£
equivalence
EQC, classes
data
DSy sources

Fig. 2. Enhanced index structure with two additional layers leveraging RDF typings

While our index structure is based on equivalence classes induced by bisimulation,
it extends previous approaches under several aspects. On one hand, our index structure
adds two further schema layers to leverage RDF typings. On the other hand, we use
these additional layers to adapt the bisimulation itself to effectively incorporate RDF
type information into the equivalence classes. Thereby, the index is extended to support
a wider range of query types and improve and refine the results of type-selecting queries.

An example of the enhanced index structure underlying SchemEX is shown in Fig-
ure 2. The index consists of three schema layers that reference the data source layer.
The entries in the schema layer capture different schema information targeted at differ-
ent types of queries. The schema information attached to the entries is defined by class
and link patterns observed in the RDF instances. The index then maps the elements of
the layers to those data sources that actually provided the RDF data complying with
these patterns.

The first layer captures schema information defined by the set I" of individual RDF
classes (e.g. foaf:Person) found in the dataset, indicated by C7, Cs, and Cj in Fig-
ure 2. This allows for supporting queries that select instances of a specified, single RDF
class. Formally, we can map the elements C; in this layer to data sources containing
instances of those classes.

The second layer describes type clusters. Each type cluster T'C' is an element in the
power set P(I") over the RDF classes in layer 1. To be more efficient, we use only those
type clusters in the index that are actually observed in the data. The type clusters are
mapped to those data sources providing instances that belong to a precise set of RDF
classes, such as T'C; and T'C'y denoted in Figure 2.

The third layer corresponds to equivalence classes extracted by bisimulation. Here,
the type clusters are additionally partitioned into equivalence classes defined by out-
going RDF links and the type cluster of the target instances. Literals are derived and
mapped to corresponding XML schema data types in the schema. This way also prop-

erties with literals can be processed. These equivalence classes allow to query over RDF
properties with and without constraints on the RDF classes of subject and object. The
advantage of this approach over a complete bisimulation is that it avoids the very high
number of equivalence classes that was observed in [8].

The presented index can be built given access to the complete LOD cloud. However,
this involves knowledge about the RDF type information for each resources as well as
for each referenced resource. Thus, this approach does not scale to an arbitrary amount
of data sources. Therefore, we have developed a scalable stream-based approach for
schema extraction called SchemEX. The stream-based processing allows to supply the
schema extractor directly with a quadruple stream (RDF triple + context/provenance
URI) of a LOD crawler. To reach web-scale performance and a moderate memory con-
sumption only a window of the stream with a certain width is observed and buffered by
the schema extractor. This approach leverages the characteristic that a crawler traverses
the graph from resource to resource via RDF properties so that linked instances are
following in a certain distance within the stream. The buffer is implemented as a FIFO-
cache (first in, first out) of RDF instances with a fixed size. Each incoming quadruple
is parsed and assigned to the subject instance in the cache. If the instance does not exist
in the cache yet, an instance object is created and appended to the FIFO-cache. If the
cache is full, the oldest instance is removed, its schema information with respect to the
three layers is derived and incorporated in the index. Due to this stream-based approach,
SchemEX has by design a linear runtime complexity.

The restriction to a certain window size of the data stream typically leads to incom-
plete results. This happens, if information about a single RDF instance is separated in
the stream by triples referring to a number of instances larger than the cache size. In this
case, the instance has already been removed from the cache when we see additional in-
formation potentially relevant for the schema. This occurs in particular when assigning
an instance to an equivalence classes as it involves knowledge about the type clusters
of all linked resources. Hence, the essential parameter for this approach is to choose an
appropriate cache size value to obtain a certain quality level for the extracted schema.

3 Computing the SchemEX

We considered two datasets for different evaluation purposes. The full BTC dataset is
used in Section 3.1 to show the applicability of the SchemEX approach on a web-scale
data. A smaller dataset is introduced and used in Section 3.2 to determine the quality of
the index and schema extraction process.

3.1 BTC Dataset Schema Extraction

To show that SchemEX can handle web-scale data of realistic web-quality, we have ex-
tracted a schema from the Billion Triples Challenge 2011 dataset. We have processed
the BTC data in two parts as well as the entire dataset. For our experiments we have
applied a cache size of 50K instances. Table 1 shows the statistics of the schema extrac-
tion process and the extracted schemata. Each chunk of 10M triples has been processed
with an average of ca. 250 seconds using a single Intel Xeon CPU core with 2.93 GHz

1st billion|2nd billion |full dataset

#triples 1 billion| 1 billion| 2.17 billion
#instances 187.7"M 222.6M 450.0M
#data sources 13.5M 9.5M 24.1M
#type clusters 208.5k 248.5k 448.6k
#equivalence classes 0.97M 1.14M 2.12M
#triples index 29.1M 24.8M 54.TM
Compression ratio 2.91% 2.48% 2.52%
runtime (hh:mm) 6:51 6:05 15:16
average runtime per 10M chunk 247 s 219s 252s
standard deviation 80s 12s 57s
#triples/sec. 40.5k 45.6k 39.5k

Table 1. Characteristics of the BTC 2011 dataset (cache size = 50K instances)

and 4 GB of RAM. This allows to process 1 billion triples in <7 hours and the full
dataset in approximately 15 hours.

The processing time demonstrates that SchemEX is suitable for real time process-
ing. Using commodity hardware, we have managed to realize a throughput of about
40k triples per second. Thus, SchemEX can easily handle the stream generated by a
LOD crawler (we observed LDSpider providing ca. 2k triples per second). Further, our
stream-based approach has been proved to be able to handle BTC data and can in prin-
ciple be extended to an arbitrary amount of data.

Having such a schema for a very large dataset crawled from the web allows us to
provide a look-up service for linked data clients to find relevant data sources on the web
of data. The schema extracted from the full BTC data is made available on the web at
http://west.uni-koblenz.de/schemex/.

By applying SchemEX on the BTC dataset, we have demonstrated the effectiveness
and efficiency of our schema extraction process. In the following section, we investigate
the quality of the extracted index, in particular with respect to the cache size.

3.2 Qualitative Evaluation of SchemEX on the TimBL Dataset

There are different query types that can be answered by the SchemEX index and that
target the different schema layers. These query types are of different complexity and
are affected to a different degree by incomplete schema information.

The simplest type of query retrieves all data sources providing instances of a cer-
tain type, therefore we refer to them as RDF-Class queries. Slightly more information
is needed to obtain those data sources providing instances which belong to a certain
type cluster (TC queries). An extension of these TC queries target a set of RDF classes
by considering all type clusters and super-type clusters that contain the RDF classes
(TC+S-TC). A super-type cluster is a type cluster whose RDF classes contain a sub-
set of classes of another existing type cluster. The next type of query makes use of the
third schema layer and addresses equivalence classes. Equivalence classes can be se-
lected just by RDF properties (EQC) or in combination with type-selection constraints

http://west.uni-koblenz.de/schemex/

(EQC+TC). The latter query type is the most complex type and targets all schema lay-
ers.

To evaluate index quality, we have constructed a gold standard. Therefore a com-
plete schema regarding the index structure was extracted from a smaller collection of
LOD data: the TimBL dataset. This dataset was crawled by Andreas Harth with LDSpi-
der starting at Tim Berner-Lee’s FOAF file and aborted at a size of 11M triples. As said
in Section 2, our schema can be computed lossless without constraint on the window
size in the stream-based approach. Such a lossless schema provides the gold standard to
compare with the schema extracted by the SchemEX tool. The gold standard also pro-
vides all combinations of RDF classes, type clusters and equivalence classes present in
the dataset. We compare all of these combinations in the gold standard with the schema
extracted by SchemEX. Thereby we can evaluate recall and precision over the relevant
data sources for virtually all possible queries on the dataset.

The gold standard on the TimBL dataset provides a total of ca. 674K instances in the
data graph, which are mapped to 2,763 type clusters and ca. 12K equivalence classes.
Type clusters are partitioned by an average of 4.33 and up to a maximum of 1,071
equivalence classes of common types like foaf:Person.

This evaluation of the quality of SchemEX is performed with respect to both the
different query types and variable cache sizes. We ran the SchemEX approach with
window sizes from 100 up to 100,000 instances and compared the generated index
to the gold standard. Table 2 shows the statistics and values of the schema extraction
process and the generated schemata. For each cache size, ten runs in randomized order
were done. In addition to the SchemEX-extracted schemata the numbers of the gold
standard schema are shown.

100 1K| 10K| 50K| 100K|Gold/700k

Runtime 182s| 223s| 192s| 194s| 203s 376 s
Standard deviation 2.57s| 2.83s| 1.52s| 242s| 2.01s 4.39s
#triples/sec. 60.4k| 49.3k| S57.3k| 56.7k| 54.2k 29.3k
Max. memory consumption 84 MB|136 MB|315 MB|731 MB|874 MB| 3393 MB
#type cluster 2772 2751 2749 2757 2761 2763
#equicalence classes 13570 12885| 12281| 12062 12184 11955
#triples 270871| 241187| 246396| 255751 263916 277695

Table 2. Schema extraction processes and results in dependency of window size (average of 10
runs)

As expected, the window size does not have a strong influence on the runtime per-
formance. Regarding the maximum memory consumption, an increased window size
by a factor of 10 results only in a 2 to 3 times higher memory consumption. This can
be attributed to observing tendentially more triples about the same instances within a
larger window size.

The second part of the table shows values regarding the extracted schemata. The
higher the window size, the closer the values are to the gold standard. As this is merely
a quantitative analysis, it is not clear that the counted type clusters and equivalence
classes are exactly the same.

100 100
< 80 — 80
= &
.5 60 = 60
g 40 3 40
& 20 & 20
0 0
RDF- TC TC+ EQC EQC RDF- TC TC+ EQC EQC
Class S-TC +TC Class S-TC +TC

[Cachesize: 100 HEEEEE 10k BEEEEN 1k BN 50k 3 100k 1|

Fig. 3. Precision and recall for different query types in dependency on cache window size

Figure 3 shows precision and recall regarding the five query types introduced above.
For each query type the values for different window sizes are shown. For the simpler
type selecting queries (RDF-Class, TC and TC+S-TC) both precision (>98%) and re-
call (>91%) show very good results at any window size. On the more complex EQC and
EQC+TC type queries precision and recall are lower. However, with an increasing win-
dow size also recall and precision can be boosted to more than 70% for a window size
of 100K instances. Based on this evaluation, we chose a window size of 50K instances
for processing the BTC dataset.

Regarding the evaluation results, it has to be considered that even wrongly classi-
fied instances are mostly assigned to very similar equivalence classes. Those wrongly
classified instances may be returned correctly by EQC and EQC+TC queries as they do
not put constraints on all properties of an equivalence class.

4 Conclusion

We have presented an effective and efficient index structure for supporting distributed
queries on Linked Open Data. Our SchemEX approach for schema extraction provides
a good trade-off between scalability and result quality. Its stream-based processing al-
lows the easy integration with a LOD crawler. Future work will target on evaluating and
optimizing crawling strategies for gaining even better results. In addition, other cache
strategies could be evaluated for optimization purposes. As the developed index struc-
ture cannot deal with instance level queries, extending it in this direction would be of
interest. Finally, SchemEX can be integrated with a federated query processing system
and direct subqueries to relevant distributed data sources.

References

1. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets with the
void vocabulary. http://www.w3.0rg/TR/void/ (May 2011), visited 30.08.2011

2. Bohm, C., Lorey, J., Naumann, F.: Creating void descriptions for web-scale data. Web Seman-
tics: Science, Services and Agents on the World Wide Web (2011)

3. Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimization in
semistructured databases. In: VLDB. pp. 436-445. Morgan Kaufmann (1997)

http://www.w3.org/TR/void/

4. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data summaries
for on-demand queries over linked data. In: WWW. pp. 411-420. ACM (2010)

5. Heath, T., Bizer, C.: Linked Data: Evolving the Web Into a Global Data Space. Synthesis
Lectures on the Semantic Web: Theory and Technology, Morgan & Claypool (2011)

6. Isele, R., Harth, A., Umbrich, J., Bizer, C.: LDspider: An open-source crawling framework
for the Web of Linked Data. In: Poster, ISWC2010; Shanghai, Chinam (2010)

7. Nestorov, S., Abiteboul, S., Motwani, R.: Extracting schema from semistructured data. In:
Haas, L.M., Tiwary, A. (eds.) SIGMOD Conference. pp. 295-306. ACM Press (1998)

8. Tran, T., Haase, P., Studer, R.: Semantic search - using graph-structured semantic models for
supporting the search process. In: ICCS. pp. 48—65. Springer (2009)

Addressing the Billion Triples Challenge Evaluation Requirements

Minimal requirements

Web Scale: SchemEX works on web-scale data. We have demonstrated this by applying
our index structure and tool on the Billion Triples Challenge (BTC) 2011 Data Set in
different ways. First, we have applied SchemEX on the first and second half of the data
set. Finally, it has been applied on the entire data set.

Realistic Web-quality Data: SchemEX works with realistic web-quality data, i.e., it can
cope with the specifics of data from the web as it does not make any assumption how
and in which order the triples are retrieved for the stream-based indexing and schema
extraction. This is shown by applying the SchemEX tool to the BTC data set as well as
to a smaller data set of 11M triples crawled from the data web.

Additional Desirable Features

More than Simply Store/Retrieve Large Numbers of Triples: SchemEX can be consid-
ered as service provider for discovering data sources that contain specific linked data
instances. This is achieved by extracting an index and schema of linked open data at
web scale using a stream-based approach.

Scalable in Terms of Amount of Data: Following a stream-based approach, SchemEX
can in principle process an arbitrary amount of linked data. Thus, the amount of data
that is processed by SchemEX is only limited to how the triples are provided by a linked
data crawler.

Scalable in Terms of Distributed Components: In principle, SchemEX can work to-
gether with more than one linked data crawler at the same time, i.e., process triples
coming from multiple crawlers. Also multiple SchemEX threads are conceivable, ex-
tracting a common schema.

Use of Very Large, Mixed Quality Data: For our experiments, we have used parts and
the entire BTC data set as well as an own, smaller data set of 11M triples crawled from
the web and containing data of different origin and quality.

Function in Real-time: Our SchemEX approach can process ~40k triples per second
on a standard single CPU machine with 4 GB RAM. Thus, it is able to serve the data
stream crawled by a data crawler such as LDSpider (providing about ~2k triples/s).

	SchemEX—Web-Scale Indexed Schema Extraction of Linked Open Data

