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Abstract. We present a scalable, SPARQL-based computational pipeline for
testing the lattice-theoretic properties of partial orders represented as RDF triples.
The use case for this work is quality assurance in biomedical ontologies, one de-
sirable property of which is conformance to lattice structures. At the core of our
pipeline is the algorithm called NuMi, for detecting the Number of Minimal upper
bounds of any pair of elements in a given finite partial order. Our technical con-
tribution is the coding of NuMi completely in SPARQL. To show its scalability,
we applied NuMi to the entirety of SNOMED CT, the largest clinical ontology
(over 300,000 conepts). Our experimental results have been groundbreaking: for
the first time, all non-lattice pairs in SNOMED CT have been identified exhaus-
tively from 34 million candidate pairs using over 2.5 billion queries issued to
Virtuoso. The percentage of non-lattice pairs ranges from 0 to 1.66 among the
19 SNOMED CT hierarchies. These non-lattice pairs represent target areas for
focused curation by domain experts. RDF, SPARQL and related tooling provide
an efficient platform for implementing lattice algorithms on large data structures.

1 Introduction

Lattices arise naturally from many disciplines. We speak of lattices because of their
familiarity and their elegant structural properties. In the Semantic Web, lattices are
intimately related to conceptual structures, since good ontologies often have a lattice
structure [23]. The deeper philosophical and mathematical reason for lattice to be a de-
sirable structural property for the taxonomy relation (e.g. IS-A) in ontologies can be
elucidated using a theory called Formal Concept Analysis (FCA [3, 11, 15]). Starting
from two very basic types, objects and attributes, with the assumption that intension
and extension are fundamental adjoining facets of the notion of concept, one arrives at
the mathematical structure of (complete) lattices automatically using FCA. The upshot
of this is that if we encounter a non-lattice fragment in a taxonomic hierarchy, then
somewhere upstream the notion of intension and extension has not been rigorously en-
forced, revealing gaps in conceptual modeling which can be subtle to detect otherwise.

Though desirable, the lattice property of ontologies is not always found in most
biomedical ontologies. For example, SNOMED CT, the largest clinical ontology, is
only a lattice “for the most part” (assuming superficial top and bottom elements). As
can be seen from Fig. 1, the double-circled concepts “Tissue specimen from breast”
and “Tissue specimen from heart” legitimately share the two features of being a kind
of tissue specimen and a kind of specimen from trunk. The current representation in



SNOMED CT involves two minimal upper bounds shared by the two double-circled
concepts, “Tissue specimen” and “Specimen from trunk”, which is the reason why this
fragment is not part of a lattice. The corresponding lattice-conforming representation
would require the creation of the concept “Tissue specimen from trunk” (the dashed
component in Fig. 1), which would be the single minimal (least) upper bound of the two
double-circled concepts. Incidentally, the concept pair “Tissue specimen from breast”
and “Tissue specimen from heart” is one of the 28,464 non-lattice pairs found by this
work in the Specimen hierarchy (see Table 1).

Tissue specimen
from breast

Tissue specimen
from heart

Tissue specimen Specimen from trunk

Specimen
from heart

Specimen from
mediastinum

Specimen
from breast

Tissue specimen
from trunk

Fig. 1. Non-lattice fragment from the Specimen hierarchy in SNOMED CT. Dashed lines repre-
sent a possible remedy by adding the concept “Tissue specimen from trunk”.

Since the majority of biomedical ontologies are manually curated, automatic testing
for lattices plays an important role in auditing and quality assurance of these ontological
systems. The absence of a lattice structure can be indicative of issues including missing
concepts, misaligned concepts and inconsistent use of pre-coordination [7, 19]. How-
ever, it is also possible that the clinical utility of some concepts was deemed insufficient
to warrant their creation.

We present a scalable, SPARQL-based computational pipeline for testing the lattice-
theoretic properties of partial orders represented as RDF triples. The basic idea is to
simply follow the definition of a lattice and check that each pair of elements has a least
upper bound. If this is true, then each pair of elements also has a greatest lower bound,
by pure mathematical reasoning (Proposition 1). Thus to check for lattices, we only
need to check either the existence of least upper bounds, or the existence of greatest
lower bounds, for the whole partial order. For convenience, we will focus on least upper
bounds in this paper, but all results translate directly to the situation of (testing for
existence of) greatest lower bounds. In practice, for finite partial orders, including the
taxonomic backbones of ontological systems, the existence of a least upper bound for a
pair is equivalent to the uniqueness of minimal upper bounds of the given pair.

With brute force, checking for the number of minimal upper bounds can be com-
putationally daunting for large ontological systems. For example, the July 31, 2009
version of SNOMED CT comprises 307,754 (N) active concepts, with maximal depth
of 30. If for each of the 47,356,108,381 [(N*(N-1))/2] pairs we (1) find all their up-



per bounds and (2) detect the minimal ones among the upper bounds, the computation
quickly become intractable. Assuming each pair takes 10 ms (a reasonable estimate),
processing the whole SNOMED CT would take about 15 years.

The main contribution of this paper is a demonstration of the suitability of Semantic
Web technologies, namely RDF and SPARQL, for quality assurance in large biomedi-
cal ontologies by testing their lattice-theoretic properties. We have discussed the clin-
ical significance of our work in [19]. Here, we focus on general technical aspects. We
have developed an algorithm called NuMi, for detecting the Number of Minimal upper
bounds of any pair of elements in a given partial order, which we have implemented
completely in SPARQL. We also propose further optimization by applying a reverse
version of the algorithm. The experimental results reported here are groundbreaking:
for the first time, we have been able to exhaustively check the entirety of SNOMED CT
for its lattice-theoretic properties within a time frame of 2 months sequential computa-
tion. The percentage of non-lattice pairs ranges from 0 to 1.66 (Table 2) among the 19
SNOMED CT hierarchies among over 34 million candidate pairs. These pairs represent
potential target areas for focused curation by domain experts. The reason that testing the
lattice-property allows us to efficiently and systematically identify targets for curation
stems from the rationale broadly captured in FCA [3, 11, 15] and indirectly through the
work of Jiang and Chute [7] as well.

2 Background

2.1 SNOMED CT

SNOMED CT is a comprehensive concept system for healthcare, distributed and main-
tained by the International Health Terminology Standard Development Organization
(IHTSDO) [6]. SNOMED CT provides broad coverage of clinical medicine, including
findings, diseases, and procedures, and is used in electronic medical records [1].

The development of SNOMED CT is supported by an infrastructure based on de-
scription logics. From a structural perspective, SNOMED CT can be seen as a series
of large directed acyclic graphs, one for each of its 19 “hierarchies”: Procedure, Physi-
cal force, Event, Staging and scales, Substance, Environment or geographical location,
Situation with explicit context, Body structure, Observable entity, Pharmaceutical / bio-
logic product, Physical object, Qualifier value, Special concept, Specimen, Social con-
text, Clinical finding, Organism, Linkage concept, and Record artifact. No concept is
shared across hierarchies except for the root. Each concept comes with a SNOMED CT
ID, which is an integer such as those given in the first column of Table 1. SNOMED CT
concepts are linked by hierarchical relations, within each hierarchy (e.g., “Tissue spec-
imen from heart” IS-A “Tissue specimen”). Associative relations (across hierarchies)
form the basis of the logical definitions (e.g., “Nephrectomy” procedure site “Kidney”),
but are not used in this work. The version of SNOMED CT used in this study is dated
July 31, 2009 and comprises 307,754 active concepts.

The motivation for this work comes in part from the application of Formal Concept
Analysis (FCA) to a limited subset of SNOMED CT by Jiang and Chute [7]. These au-
thors used FCA as an auditing tool by constructing local contexts from normal form pre-
sentations in SNOMED CT (i.e., logical definitions in description logic) and compared



with the resulting lattices for anonymous (unlabeled) nodes. They showed that given a
small SNOMED CT fragment, this method can automatically identify a candidate pool
of missing concepts for further examination by domain experts. However, constructing
lattices from contexts is so computationally expensive that it is hardly scalable [10, 15].
FCA-based analysis is therefore not applicable to the entirety of large ontologies such
as SNOMED CT. Moreover, for ontological systems without rich logical definitions,
the need for background contexts would render the FCA-based approach inapplicable.

2.2 Lattices, complete lattices and quasi-primes

We first review basic definitions in lattice theory. Our main references are [5, 20].
A partially ordered set (poset) is a set L with a reflexive, transitive relation ≤ ⊆ L×L.

If (L,≤) is a poset, then its dual is the poset (L,≥). We denote posets by their carrier
set as long as the partial order is clear from the context. An element u is called a upper
bound of a subset X ⊆ L, if for each x ∈ X we have x ≤ u. For convenience, we
write ub(X) for the set of upper bounds of X. An element m is called an minimal upper
bound of a subset X ⊆ L, if m is an upper bound of X, and for any n ≤ m such that
x ≤ n for each x ∈ X, we have m = n. We write mub(X) for the set of minimal upper
bounds of X. When mub(X) is a singleton, the unique minimal upper bound is called
the least upper bound, or join, of X. The notion of lower bound, maximal lower bound,
greatest lower bound (meet), is defined dually. Specifically, mlb(X) represents the set of
maximal lower bounds of X.

A poset L is a lattice if every two elements of L have a join and a meet. These
meets and joins of binary sets will be written in infix notation:

∨
{x, y} = x ∨ y and∧

{x, y} = x ∧ y. A poset L is a complete lattice if every subset S ⊆ L has a least upper
bound

∨
S (join) and a greatest lower bound (meet)

∧
S .

⊥

a b

x y

>

Fig. 2. A poset which is not a lattice.

Fig. 2 contains the diagram of a small
poset which is not a lattice. Note that in
this poset, we have ub{a, b} = {x, y,>}, and
mub{a, b} = {x, y}, i.e. x and y are minimal
upper bounds of a and b. Hence the pair {a, b}
does not have a least upper bound and this di-
agram does not represent a lattice. When the
size of mub{a, b} is greater than 1, we call a, b
a non-lattice pair (e.g., a, b in Fig. 2).

In connection with ontology, one can
think of concepts as elements of a poset, and
the ordering relation as the subsumption rela-
tion [8]. If x, y are concepts, we write x ≤ y
to mean x IS-A y, or y subsumes x. The join
x ∨ y of two concepts x, y is the lowest com-
mon ancestor of x and y, and the meet x∧ y is
their greatest common descendant.

Every finite lattice is a complete lattice. Therefore, every finite lattice has a top
(largest) element, denoted as >, and a bottom (least) element, denoted as ⊥. One can
think of a tree as a lattice by adjoining a superficial bottom. In this sense, lattices are



more general than trees, but posets are more general than lattices. Multiple inheritance
is not permitted in trees: each node in a tree can have at most one parent (the node
immediately above it). Lattices permit multiple inheritance but insist on the existence
of (unique) join and meet for any pair of nodes. Since adding top and bottom elements
can be globally achieved either conceptually or materialized, we assume that posets
come with top > and bottom ⊥ in the remainder of the paper. By convention, we have∨
∅ = ⊥ and

∧
∅ = >.

If every pair of elements in a finite poset has a least upper bound ∨, then the greatest
lower bound of a pair a, b can be obtained as a ∧ b :=

∨
{x | x ≤ a and x ≤ b}.

This leads to the well-known property of “half-implies-whole” in the next proposi-
tion, which forms the basis of our computational strategy later.

Proposition 1. Let (L,≤) be a finite poset. If any pair of elements in L has a least upper
bound, then L is a lattice.

In a poset (L,≤), an element x is covered by y if x ≤ y, x , y, and for any z such that
x ≤ z ≤ y, we have either z = x or z = y. To reduce storage, it is often the case that only
the coverage relation is stored explicitly for ontological systems such as SNOMED CT.

The notion of quasi-prime [21] will be useful later on for selecting candidate pairs
for our SPARQL query. An element q in a poset (L,≤) is called a quasi-prime if for
any subset X ⊆ L, q ∈ mlb(X) implies q ∈ X (when

∧
exists for X, we have mlb(X) =

{
∧

X}). Since we will be concerned with finite posets with top and bottom elements,
the combinatorial interpretation of quasi-primes for finite posets will be useful. Note
that the top element of a poset cannot be a quasi-prime, since > =

∧
∅ but > < ∅. The

notion of coquasi-prime can be defined similarly.

Proposition 2. An element q in a poset (L,≤) is a quasi-prime if and only if there exists
q∗ > q, such that for any x > q, we have x ≥ q∗.

Proposition 2 implies that for each quasi-prime q, there is a unique element (q∗)
covering q, or q has a single parent node. Moreover, for any a ∈ L such that neither
a ≤ q nor a ≥ q holds, if x is an upper bound of {a, q}, then x must already be an upper
bound of {a, q∗}. As a consequence, we have mub{a, q} = mub{a, q∗}.

Proof. We provide a general proof without assuming L to be finite.
(Only If). For a quasi-prime q ∈ L, consider the set Uq := {x ∈ L | x > q}.

Since the top element is not a quasi-prime, Uq is not empty. If no lower bound of Uq is
strictly above q, then q ∈ mlb(Uq) but q < Uq, which is impossible for a quasi-prime
q. Therefore, there exists a lower bound q′ of Uq such that q < q′. Since q′ ∈ Uq by
definition of Uq, q′ must be the least element in Uq. We take the required q∗ to be q′.

(If). Suppose there exists q∗ > q, such that for any x > q, we have x ≥ q∗. Suppose
q ∈ mlb(X) for some X ⊆ L. X cannot be empty since otherwise q = >, and there cannot
be an element q∗ strictly above top. If q ∈ X, then there is nothing to prove. Otherwise,
for any x ∈ X we have q < x, and so q∗ ≤ x by assumption. This means q∗ is a lower
bound of X strictly dominating q, which contradicts the assumption that q is a maximal
lower bound (q ∈ mlb(X)). Therefore, we must have q ∈ X.



As a consequence of Proposition 2, quasi-primes are not needed in detecting non-
lattice properties, since if there is any violation of the uniqueness of minimal upper
bounds involving a quasi-prime q, there must already be such a violation involving q∗.
In Fig. 1, the concepts “Specimen from breast”, “Specimen from heart” and “Specimen
from mediastinum” are quasi-primes with visually identifiable q∗’s in the same diagram.
This leads to the following definition.

Definition 1. A pair a, b in a poset (L,≤) is called a probe pair (probe, for short) if

1. neither a nor b is a quasi-prime;
2. a and b are not comparable, i.e., neither a ≤ b nor b ≤ a holds.

In Section 4, our quality assurance use case will significantly reduce the candidate
pairs to be tested by running NuMi on probes only.

2.3 RDF and SPARQL

The Resource Description Framework (RDF) is a directed, labeled graph data format for
representing information in the Web [12]. Based on (subject, predicate, object) triples,
RDF is well suited for the representation of graphs in general, including posets and
lattices. Because of its origins in the Semantic Web, RDF uses Unified Resource Iden-
tifiers (URIs) as names for the nodes and the links in the graph.

SPARQL is a query language for RDF graphs [13]. SPARQL queries are expressed
as constraints on graphs, and return RDF graphs or sets as results. For example,
SPARQL can be used for retrieving the set of common ancestors of two nodes in a
graph, i.e., to compute the upper bounds for a pair of nodes from the graph. In practice,
as shown in Fig. 3, the list of direct ancestors common to two nodes a and b can be
easily obtained by querying the nodes of which both classes are a subclass. The same
variable (?upper) is used in the constraints imposed to the graph for the two nodes a and
b. This pattern forms the basis for testing the lattice-theoretic properties in the queries
we developed for this work.

SELECT ?upper
WHERE {

:a rdfs:subClassOf ?upper.
:b rdfs:subClassOf ?upper.}

Fig. 3. SPARQL query for common ancestors of
a and b.

Although developed in a descrip-
tion logic environment, SNOMED
CT is distributed as a set of rela-
tional tables and there is no version
of SNOMED CT available in RDF.
We transformed SNOMED CT into
RDF using a simple script. A base
URI was added to SNOMED CT
identifiers in order to create URIs for
concepts and predicates. The fully-
specified name was used as the label
for the concepts. All relations among concepts were transformed into triples, using
rdfs:subClassOf for representing the native IS-A relationship.

Additionally, we precomputed the transitive closure of rdfs:subClassOf, because
a transitively-closed graph was assumed in some aspects of our algorithm to both im-
prove speed and avoid computing transitive closure on the fly, which is not supported
in most existing SPARQL environments.



3 Methods

In this section we first present a simple algorithm in the conventional style for comput-
ing the mub set (see Section 2.2) mub{a, b} for a given pair a, b within a finite poset
(L,≤). We then introduce a SPARQL implementation of the algorithm with the input
poset viewed as a graph, represented as RDF triples. Finally, we revisit the original
algorithm and propose an optimization.

3.1 Algorithm for identifying minimal upper bounds

The following algorithm finds the number of minimal upper bounds of a, b by keeping
track of “counts” of the number of times an element in L occurs as an upper bound
of a, b. After count is initialized (lines 1-3), every upper bound of a, b gets count in-
cremented by 1 (lines 4-8). So by line 8, the counts for each upper bound of a, b is
precisely 1, and we have ub{a, b} = {x | count(x) = 1}, at this point. The third iteration
(lines 9-13) increases counts for those members in ub{a, b} that are not minimal within
ub{a, b} (i.e., those elements that are strictly above some other element in ub{a, b}). At
the end of this iteration (line 13), we have mub{a, b} = {x | count(x) = 1}.

Data: Elements a, b in a finite poset (L,≤)
Output: The size of mub{a, b}
for each x ∈ L do1

count(x) := 02
end3
for each u ∈ L do4

if u is an upper bound of {a, b} then5
count(u) := count(u) + 16

end7

end8
for each v ∈ ub{a, b} do9

if v > u for some upper bound u of {a, b} then10
count(v) := count(v) + 111

end12

end13
Count the number of x ∈ L with count(x) = 1 and output this number14

Algorithm 1: NuMi in the conventional procedural style, for finding the number
of minimal upper bounds.

The correctness of NuMi is self-evident. To check for lattices, one runs NuMi on
every pair a, b from an input poset L for potential violations of the lattice property. If all
pairs have exactly one minimal upper bound, then L is a lattice; otherwise, pairs with
more than one minimal upper bound will be identified as non-lattice pairs.

3.2 Implementing NuMi in SPARQL

We describe a method to implement NuMi completely in SPARQL. This allows us to
take advantage of the highly optimized storage and access environment of RDF stores



in existing systems such as Virtuoso. To implement Algorithm 1, we construct a two-
part SPARQL query, corresponding to two iterations in Algorithm 1: (1) to compute
ub{a, b} (lines 4-8), and (2) to compute mub{a, b} (lines 9-13).

Although aggregation operators such as count are not part of the SPARQL 1.0
specification, they are already available in many SPARQL environments, including Vir-
tuoso. In contrast, ancestor tracing and computing transitive closure are not supported
in most of existing SPARQL environments. Both for this reason and for saving com-
putational time, we decided to precompute the transitive closure of rdfs:subClassOf
in RDF store for the input graph for L. In other words, the RDF store, for which the
SPARQL queries are made, is assumed to be transitively closed.

The first part of the query finds all upper bounds ?u, and tracks the result by having
each upper bound to receive 1 as count. This is straightforward using the query fragment
indicated in the middle of Fig. 4.

⊥ 0

a 0 b 0

x 0 y 0

> 0

SELECT count(?u)
WHERE {
:a rdfs:subClassOf ?u.
:b rdfs:subClassOf ?u. }

⊥ 0

a 0 b 0

x 1 y1

>

1

Fig. 4. SPARQL query for finding ub{a, b} indicated in the shaded area. Dashed edges represent
those due to the effect of transitive closure.

The second part of the query finds elements ?u that are strictly above some elements
in ub{a, b}. This can be achieved by the query fragment indicated in the middle of Fig. 5.

Joining the two query fragments with the union operator, we obtain a complete
SPARQL query for finding the minimal upper bounds mub{a, b}. Fig. 6 displays a com-
plete working SPARQL query.

3.3 Optimization: reverse SPARQL query

In earlier sections, we described optimization strategy by skipping pairs of concepts
that (1) do not belong to the same SNOMED CT sub-hierarchy; (2) are in hierarchical
relationship to one another (i.e., comparable); (3) involve a quasi-prime. This subsection
describes a strategy that checks for the existence of greatest lower bounds, rather than
least upper bounds, achieved by running SPARQL queries “in reverse.”

On average, concepts in ontological hierarchies tend to have fewer upper level con-
cepts representing more general and abstract entities, and more lower level concepts.



⊥ 0

a 0 b 0

x 1 y1

>

1

SELECT count(?u)
WHERE {
:a rdfs:subClassOf ?v.
:b rdfs:subClassOf ?v.
?v rdfs:subClassOf ?u. }

⊥ 0

a 0 b 0

x 1 y1

>

3

Fig. 5. SPARQL query for finding mub{a, b} indicated in the shaded area on the right side.

SELECT ?sb count(?sb) as ?sb_links
FROM <http://newton.case.edu/TEST>
WHERE {
{

<http://mor.nlm.nih.gov/SNOMEDCT#256889002> rdfs:subClassOf ?sb.
<http://mor.nlm.nih.gov/SNOMEDCT#258462005> rdfs:subClassOf ?sb.

}
union
{

<http://mor.nlm.nih.gov/SNOMEDCT#256889002> rdfs:subClassOf ?sa.
<http://mor.nlm.nih.gov/SNOMEDCT#258462005> rdfs:subClassOf ?sa.
?sa rdfs:subClassOf ?sb.

} }
ORDER BY ASC (?sb_links)

Fig. 6. Example SPARQL query for SNOMED CT concepts 256889002 and 258462005

Since lattices can be viewed either top-down or bottom-up, only one direction (i.e.,
among least upper bounds or greatest lower bounds) needs to be tested (see Propo-
sition 1). For distinct elements u, v, x, y in a finite poset, if x, y ∈ mub({u, v}) then
u, v ∈ mlb({x, y}) in most cases, as illustrated in the top part of Fig. 7. Since there are
generally more concepts lower in a hierarchy (as in SNOMED CT’s taxonomic back-
bone), this motivates us to test for maximal bounds (mlb) in the original order (L,≤),
or equivalently, minimal upper bounds (mub) in the reverse order (L,≥), to reduce the
number of non-lattice pairs. The following proposition ensues that even though the lat-
tice and non-lattice status of a given pair is usually different when the order is reversed,
a non-lattice pair in the original order is guaranteed to appear in a “fragment” generated
by some non-lattice pair in the reverse.

Proposition 3. Suppose x, y ∈ mub{a, b}, where x, y, a, b are distinct elements in a finite
poset (L,≤). Then there exists u, v ∈ L, such that a ≤ u, b ≤ v, and

x, y ∈ mub{u, v} and u, v ∈ mlb{x, y}.



x y

u v

SELECT ?lower
WHERE {

?lower rdfs:subClassOf :x.
?lower rdfs:subClassOf :y.}

Fig. 7. Template for reverse SPAQRL query
to obtain lower bounds.

The reverse query in SPARQL for
the lower bounds (i.e., common descen-
dants) of nodes x and y is straightfor-
ward. It is obtained by switching the po-
sition of variables and input nodes in the
query (at the bottom part of Fig. 7).

4 Quality assurance pipeline
for SNOMED CT

We applied the SPARQL implementation
of NuMi to auditing SNOMED CT by
systematically identifying all non-lattice
fragments. The following phases were in-
volved in this quality assurance study: (1)
acquiring SNOMED CT data; (2) select-
ing probes; (3) testing probes; (4) summarizing and analyzing results.

4.1 Acquiring SNOMED CT data

From the 307,754 active concepts in SNOMED CT, we created RDF triples for repre-
senting the IS-A relations. We created URIs for all SNOMED CT concepts and used
the rdfs:subClassOf predicate to represent the IS-A relationship. Then we computed
the transitive closure of the IS-A relation and created a distinct set of triples for it. The
graph of hierarchical relations contains a total of 439,733 rdfs:subClassOf triples,
while the transitively-closed graph contains 1,191,796 triples. The two sets of triples
were loaded into two separate graphs using the open source Virtuoso triple store [16].

4.2 Selecting eligible probes

Not every pair of SNOMED CT concepts needs to be tested for its lattice properties.
For efficiency reasons, we start by selecting eligible probes for further testing. Since the
19 hierarchies in SNOMED CT do not share any concepts (except the root), only pairs
within the same hierarchy require testing. In addition, only probe pairs (see Definition 1)
need to be tested for the lattice property, since pairs in which each concept does not
have at least two parent concepts will always have their evidence as part of a non-
lattice structure exhibited by pairs without involving a quasi-prime (see Subsection 2.2).
Moreover, any pair in which one concept is an ancestor of the other does not need to
be tested because the ancestor concept in such pairs is the unique common ancestor
of the two, with reflexivity assumed. In practice, we constructed SPARQL queries to
implement the eligibility criteria described above and ran them in order to establish
the list of probes to be tested for lattice properties. Because reverse queries operate on
the graph of descendants instead of that of ancestors, eligibility criteria for probes are
slightly different. More specifically, probe concepts are required to have at least two
child concepts (instead of at least two parent concepts).



4.3 Testing probes using SPARQL

The algorithms presented earlier for selecting the probes to be tested, and testing them,
were implemented without any ad hoc programming. Generic queries were created for
each algorithm and subpart thereof and loaded as stored procedures in Virtuoso. Stored
procedures are used to compensate for the fact that SPARQL queries could not be “pre-
pared” (i.e., the query plan cannot be cached by the ODBC driver in our environment),
which is a serious limitation, as about half of the query execution time is generally
devoted to building the query plan.

We used a simple script to compute the cartesian product of all pairs of concepts
within a given hierarchy of SNOMED CT. Each pair was evaluated as a potential probe
by querying a stored procedure instantiated with the pair. If qualified as a probe, the
pair was then tested using NuMi by querying a second stored procedure. The results
were stored in text files for further processing. The open source Virtuoso RDF store
version 06.00.3123 was used for this experiment, running on a Dell 2950 server (Dual
Xeon processor) with 32GB of memory. A total of 500,000 9kB buffers were allocated
to Virtuoso. For benchmarking purposes, we tested both direct and reverse queries on
all eligible probes.

5 Results

Although all 19 hierarchies of SNOMED CT were processed, due to space constraints,
we only report results on the 7 largest and most clinically relevant hierarchies, covering
84% of all concepts. Table 1 provides summary statistics of our analysis of the lattice-
theoretic property of SNOMED CT by the "direct" approach (Section 3.1). Table 2
contains the corresponding results for the "reverse" approach (Section 3.3). The first
column contains names of the hierarchies and their SNOMED CT ID numbers. The
second column (Size) displays the number of concept nodes for each hierarchy. The PP
column represents the total number of probe pairs (see Definition 1). The NL column is
the total number of non-lattice pairs found. PP% is the percentage of probe pairs among
all pairs, NL% is the percentage of non-lattice pairs among all probe pairs, i.e. NL/PP.
AT(ms) is the average query time for all probe pairs in milliseconds and TT(h) is the
total query time for all probe pairs in hours.

The SPARQL implementation of NuMi was run on each probe, whose total number
for each hierarchy is displayed in the PP column. Over 1.6 billion queries were issued
to Virtuoso for testing the probes. Note that the proportion of probe pairs (PP%) and
non-lattice pairs (NL%) is significantly lower in the reverse approach compared to the
direct approach. Overall, about 1.9% of all pairs are non-lattice pairs with the direct
approach, but only 0.009% are non-lattice pairs with the reverse approach.

What is more significant is the total number of non-lattice pairs. With the direct
approach, a total of 151,353,439 pairs are non-lattice pairs, while “only” 543,738 pairs
are non-lattice pairs with the reverse approach (i.e., 0.36% of the pairs in the direct
approach). It is also observed that in the direct approach, the size of the set mub{a, b}
for probe (a, b) is moderate, ranging from two to a few hundreds. In contrast, the size
of the set mlb{x, y} (reverse approach) can reach several thousands.



Hierarchy Size PP NL PP% NL% AT(ms) TT(h)
Body Structure (123037004) 31,309 84,809,733 57,134,031 17.3 67.4 13.463 317.16
Clinical Finding (404684003) 101,027 871,780,229 53,988,609 17.1 6.2 6.758 1,636.53
Organism (410607006) 30,149 682,168 74,460 0.2 10.9 2.657 0.50
Pharmaceutical (373873005) 16,718 24,204,248 1,034,394 17.3 4.3 2.569 17.27
Procedure (71388002) 55,328 307,032,527 35,802,137 20.1 11.7 9.950 848.60
Specimen (123038009) 1,209 227,941 28,464 32.1 12.5 2.657 0.17
Substance (105590001) 23,514 9,695,574 3,291,344 3.5 33.9 3.371 9.08
Total 259,254 1,298,432,420 151,353,439 16.2 11.7 7.84 2,829.31

Table 1. Summary of query results (direct approach).

Hierarchy Size PP NL PP% NL% AT(ms) TT(h)
Body Structure (123037004) 31,309 29,934,856 91,787 6.1 0.31 11.710 97.37
Clinical Finding (404684003) 101,027 243,428,748 251,662 4.8 0.1 5.069 342.76
Organism (410607006) 30,149 6,739,818 1,040 1.5 0.02 2.425 4.54
Pharmaceutical (373873005) 16,718 5,190,080 6,446 3.7 0.1 2.020 2.91
Procedure (71388002) 55,328 65,800,235 174,574 4.3 0.26 8.239 150.59
Specimen (123038009) 1,209 53,397 889 7.3 1.66 2.244 0.033
Substance (105590001) 23,514 4,666,656 17,340 1.7 0.4 2.368 3.07
Total 259,254 355,813,790 543,738 4.5 0.2 6.08 601.27

Table 2. Summary of query results (reverse approach).

In summary, the average query time with the direct approach is about the same
as with the reverse approach. However, the number of probe pairs to be tested differs
significantly between the two approaches (16.2% vs. 4.5% of all possible within each
hierarchy). This difference is attributable to the structure of the ontology, not the algo-
rithm. Nonetheless, the reverse approach represents a significant saving by focusing on
pairs that do not involve quasi-primes and are not in a hierarchical relationship. The
total computational time of about 600 hours is in stark contrast to over 2,800 hours. In
practice, domain experts curating the ontology will review either the (non-single) upper
bounds resulting from the analysis by the direct approach, or the non-lattice pairs (i.e.,
pairs with no greatest lower bound) resulting from the analysis by the reverse approach.
Therefore, while the reverse approach offers superior computational performance over
the direct approach.

6 Discussion

6.1 Technical significance

To our knowledge this work is the first systematic analysis of the lattice-theoretic prop-
erties of a large ontology. Unlike other similar techniques such as Formal Concept Anal-
ysis (FCA), our approach is scalable and can be applied to the entirety of the ontology.



In contrast, in their analysis of the same ontology (SNOMED CT) with FCA, Jiang and
Chute had to rely on stratified sampling of a limited subset of hierarchies in order to
estimate the proportion of anonymous nodes [7].

The availability of efficient tools for Semantic Web technologies including RDF
stores and SPARQL query engines primarily enables the integration of large datasets in
the framework of the Semantic Web, as illustrated by the increasing amount of linked
data available [9]. It also provides alternative implementation options for problems that
can be construed as constraints on graphs, including the analysis of lattice-theoretic
properties of ontologies. This is particularly important when algorithms for such prob-
lems need to be applied to large ontologies, created for real-life applications. While it
was somewhat challenging (and not completely intuitive at first) to express the NuMi
algorithm entirely in a declarative query language such as SPARQL, the alternative,
i.e., implementing the algorithm procedurally with a traditional programming language,
would have required far more ad hoc coding and have posed different challenges due to
the sheer size of SNOMED CT. The only coding required for this work was the script-
ing needed for choreographing the various elements of our quality assurance pipeline
(probe selection, probe testing and limited post-processing of the results for statistical
analysis purposes). The bulk of the processing was supported by Virtuoso, the triple
store and SPARQL query engine, to which some 2.5 billion queries were sent (counting
probe selection and testing).

We also take advantage of the mathematical properties of lattices for optimization
purposes. We show that the most intuitive algorithm designed for testing the least upper
bond (Section 3.1) is equivalent to the “reverse” algorithm testing the greatest lower
bound (Section 3.3). While the complexity of the two algorithms is the same, we show
that the reverse algorithm is significantly more efficient due to the structure of the data,
reducing total execution time by 80% and reducing the total number of non-lattice pairs
by more than 2 orders of magnitude.

6.2 Ontological significance

Quality assurance in ontologies is an active field for research (see, for example, [22]
for quality assurance in biomedical ontologies). The quality of SNOMED CT has been
examined from several perspectives.

On the one hand, SNOMED CT is developed using an environment based on
description logic. Therefore, all the relations made available through the relational
database in which SNOMED CT is distributed are guaranteed to be logically consistent.
However, the limited expressiveness of the description logic dialect used by SNOMED
CT, EL, severely limits the types of inconsistency discoverable by the DL classifier [14].

Structural approaches have been developed for analyzing SNOMED CT, including
the Abstraction Network methodology [17], and have been contrasted with description
logics [18]. Examples of errors identified by the Abstraction Network methodology and
invisible to the DL classifier include missing IS-A relations and duplicate concepts.
The analysis of SNOMED CT using this methodology was restricted to the Specimen
hierarchy.

The application of Formal Concept Analysis (FCA) to SNOMED CT was discussed
earlier [7]. Its strongest limitation is the lack of scalability. We also showed that our



results (based on the lattice-theoretic properties) were generally consistent with that
of [7] based on FCA. A benefit of FCA is that, unlike our approach, it provides some
explanatory information for missing concepts (anonymous nodes).

Overall, we believe that these various methods provide complementary prospectives
on the quality of SNOMED CT and have different strengths and limitations. None of
these approaches provides an automated solution to auditing ontologies. In fact, each
method identifies deviation from properties assumed to be desirable (e.g., logical con-
sistency in DL, structural properties of lattices). Further analysis of the consequences of
such deviation generally requires manual review by domain experts. These approaches,
however, are important elements of quality assurance as they point out potential prob-
lems and help focus the review of the ontology. In addition to scalability, one advantage
of our approach is applicable to underspecified ontologies consisting mostly of a tax-
onomic backbone, while the other three approaches require a richer set of source data
(e.g., associative relations across hierarchies) for maximal efficiency.

6.3 Biomedical significance

Using our approach, we have been able to reproduce the findings of Jiang and Chute [7],
which we have discussed in [19]. As shown through the example of the procedure con-
cept “Hypophysectomy” used in [7], the presence of anonymous nodes revealed by
FCA generally corresponds to the presence of non-lattice fragments in the ancestors
of this concept. The trade-off between the two approaches is in part more explanatory
power (FCA) vs. scalability to the entire ontology.

One unresolved question is the extent to which the concepts identified as “missing”
(anonymous nodes in FCA, missing least upper bound in the lattice analysis) have clin-
ical utility, i.e., whether their absence from SNOMED CT is detrimental to some of its
uses, including clinical documentation and clinical decision support. With over 300,000
concepts, SNOMED CT is the largest clinical ontology currently available and both its
developers and the user community are reluctant to increase its size unless this is really
needed to satisfy some use case.

SNOMED CT can be extended through post-coordination, i.e., by refining exist-
ing concepts and by combining existing concepts in a controlled way. For example,
while anatomical structures are lateralized in SNOMED CT (e.g., “Left kidney”), proce-
dure concepts are generally not lateralized (e.g., “Nephrectomy”, but no “Left nephrec-
tomy”). However, lateralized procedure concepts can be created by refining the non-
lateralized procedure concept with a lateralized anatomical structure (e.g., creating
“Left nephrectomy” by making “Left kidney” the procedure site of “Nephrectomy”).
Similar concepts could be created through post-coordination for variants of nephrec-
tomy (e.g., “Partial nephrectomy” and “Cadaver nephrectomy”).

While these concepts could also be created in SNOMED CT as pre-coordinated
concepts, creating concepts for all possible combinations of variants would likely re-
sult in combinatorial explosion and management issues for both developers and users.
Therefore, it is unclear whether the concepts identified as missing from a structural per-
spective have enough clinical utility (defined by the editorial guides for SNOMED CT)
to warrant their creation as pre-coordinated concepts.



It is beyond the scope of this paper to assess clinical utility. Our study simply iden-
tifies areas from which concepts are potentially missing. The availability of models (not
just guidelines) for desirable levels of pre-coordination (vs. excessive pre-coordination)
would enable us to filter out cases were the absence of a least upper bound corresponds
to a feature in SNOMED CT, rather than a bug.

6.4 Limitations, generalization and future work

As mentioned earlier, our algorithm can help guide the manual curation of SNOMED
CT by domain experts, but is incomplete by itself for quality assurance purposes. In
particular, our algorithm is known to identify false positives, i.e., concepts missing from
a the structural perspective of lattices, but lacking clinical utility for them to be created
as pre-coordinated concepts in SNOMED CT. In future work, we will work on the
formalization of criteria for excessive pre-coordination and filter out these cases from
the output of our algorithm. It would be desirable to develop computable metrics to
assess the quality of ontological systems.

The strengths of our approach and FCA could be combined. Our approach could be
used for efficient identification of non-lattice pairs, and followed by a limited analysis
of the local fragments around the non-lattice pairs by FCA. The combined methods
are expected to provide a more efficient and powerful pipeline for quality assurance of
SNOMED CT. This combination is also a possible direction for future work.

Unlike FCA and other structural methodologies, our approach relies solely on the
taxonomic backbone of ontologies and could therefore be applied to other ontologies,
including ontologies lacking a rich network of associative relations (e.g., the Gene On-
tology [4]).

Our results summarized in Table 1 and Table 2 were carried out by running SPARQL
queries coding NuMi and instantiated for all probe pairs. The queries can be parallelized
and run independently by partitioning the probe pairs into smaller groups. If we spread
the queries to n processors, each with its own local, independent SNOMED CT RDF
triple store, then an n-fold reduction of the computational time can be achieved.

Finally, we also plan to extend our analysis to other order-theoretic properties such
as “part of”, which is a key relation in anatomical ontologies such as the Foundational
Model of Anatomy [2]. This may suggest the formulation of other order-theoretic prop-
erties in SPARQL than the lattice-theoretic one presented in this study.
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