
I18n of Semantic Web Applications

Sören Auer+, Matthias Weidl+, Jens Lehmann+, Amrapali J. Zaveri+, and
Key-Sun Choi*

+ Universität Leipzig, Institut für Informatik, Johannisgasse 26,
D-04103 Leipzig, Germany,

{lastname}@informatik.uni-leipzig.de
http://aksw.org

* KAIST, Semantic Web Research Center
335 Gwahangno Yuseong, Daejeon 305-701, Korea

kschoi@cs.kaist.ac.kr
http://www.kaist.edu

Abstract. Recently, the use of semantic technologies has gained quite
some traction. With increased use of these technologies, their matura-
tion not only in terms of performance, robustness but also with regard
to support of non-latin-based languages and regional differences is of
paramount importance. In this paper, we provide a comprehensive re-
view of the current state of the internationalization (I18n) of Semantic
Web technologies. Since resource identifiers play a crucial role for the
Semantic Web, the internatinalization of resource identifiers is of high
importance. It turns out that the prevalent resource identification mech-
anism on the Semantic Web, i.e. URIs, are not sufficient for an efficient
internationalization of knowledge bases. Fortunately, with IRIs a stan-
dard for international resource identifiers is available, but its support
needs much more penetration and homogenization in various semantic
web technology stacks. In addition, we review various RDF serializations
with regard to their support for internationalized knowledge bases. The
paper also contains an in-depth review of popular semantic web tools
and APIs with regard to their support for internationalization.

1 Introduction

Recently, the use of semantic technologies has gained quite some traction.
With the growing use of these technologies, their maturation not only in terms
of performance, robustness but also with regard to support of non-latin-based
languages and regional differences is of paramount importance. International-
ization and localization are means of adapting computer software to different
languages and regional differences. Internationalization is the process of design-
ing a software application so that it can be adapted to various languages and
regions without engineering changes. Localization is the process of adapting in-
ternationalized software for a specific region or language by adding locale-specific
components and translating text. For the localization of Semantic Web applica-
tions, existing software methodologies (such as GNU gettext for translation or



different locales for region-specific data formating) can be applied. Also, with
the datatype and language tags for RDF literals, there is good support for local-
ization of knowledge bases. With regard to internationalization of Semantic Web
technologies the situation, however, is much more challenging as we experienced
during the process of internationalizing the DBpedia extraction framework [4]
for creating a Korean version of DBpedia.

We noticed in particular, that Asian languages and resources pose a special
challenge for Semantic Web and Linked Data applications, tools and technolo-
gies. The (non-standard) generation of URIs (for Asian language resources) can
have a substantial impact also with regard to classification, interlinking, fus-
ing and information quality assessment. The importance of tackling a proper
internationalization of the Semantic Web technology stack is stressed by the
fact that Asia has compared to Europe and the USA the largest number of In-
ternet users1 and many Asian languages are based on fundamentally different
linguistic paradigms and scripts. Hence, for the success of individual tools and
the Web of Data as a whole it is crucial (a) to incorporate and outreach to user
communities beyond the western world and (b) to consider the varying scripting
paradigms in order to achieve a wider applicability of the Semantic Web research
and development results.

In this paper we want to contribute to a successful internationalization of
Semantic Web technologies by summarizing our findings, providing a review of
the current state of the internationalization (I18n) of Semantic Web technolo-
gies and outlining some best-practices for Semantic Web tool and application
developers as well as knowledge engineers.

We are starting to look at the situation with one of the uttermost important
building blocks of the Semantic Web – resource identifiers. It turns out that
the currently prevalent resource identification mechanism on the Semantic Web,
i.e. URIs, are not sufficient for an effective internationalization of knowledge
bases. Fortunately, with IRIs a standard for international resource identifiers
is available, but its support needs much more penetration and homogenization
in various semantic web technology stacks. Hence, one goal of this paper is to
sensitize the Semantic Web community for the use of IRIs instead of URIs.
We review various RDF serializations with regard to their support for interna-
tionalized ontologies and knowledge bases. Surprisingly, also here, the currently
prevalent serialization technology - RDF/XML - is not adequate for serializing
internationalized knowledge bases. The paper also contains an in-depth review
of popular Semantic Web tools and APIs with regard to support for I18n.

The paper is structured as follows: We describe the internationalization is-
sues with URIs and possible solutions in the Sections 2. We describe problems
with regard to internationalization of the RDF/XML serialization in Section 3.
We survey the other available RDF serialization techniques for their compati-
bility with internationalization in Section 4. We also provide a comprehensive
evaluation of internationalization support in popular Semantic Web tools and
APIs in Section 5 and conclude in Section 6.
1 http://www.internetworldstats.com/stats3.htm



2 What’s wrong with URIs?

Resource identifiers are one of the main building blocks of the Semantic Web.
The concept of Universal Resource Identifiers (URIs) is the prevalent mecha-
nism for identifying resources on the Semantic Web. URIs only use US-ASCII
characters for names of the resources. However, from the standpoint of an inter-
nationalization, URIs are not suitable since characters from non-latin alphabets
or special characters have to be encoded in a cumbersome way. The W3C sug-
gests to use percent-encoding in such cases, where a special character is encoded
using its two digit hexadecimal value prefixed with the percent character ”%”.
For example, ”%20” is the percent-encoding for the US-ASCII space character.

There exist different character encodings for different languages or language
families, such as ISO 88591 for Western Europe, KS X 1001 for the Korean
language or Big-5 for traditional Chinese characters. If these encodings would
be used for URIs, conflicts would arise when merging knowledge bases using
different encodings for their URIs. For this purpose, the W3C suggested the use
of UTF-8 for encoding in URIs2 as it supports almost every language currently
used in the world; it is widely supported, needs one to four bytes to encode the
characters and also preserves US-ASCII characters3. First the characters not
allowed in URIs are encoded according to UTF-8 and then each byte of the
sequence is percent-encoded. The Korean word 베를린 (transcription of Berlin),
for example, encoded in UTF-8 and percent-encoded looks as follows:

1. byte (베): EB B2 A0
2. byte (를): EB A5 BC
3. byte (린): EB A6 B0

http://ko.wikipedia.org/wiki/%EB%B2%A0%EB%A5%BC%EB%A6%B0

Even though the use of percent-encoding solves the problem of representing
special characters, the URIs are (as the above example demonstrates) not easily
readable by humans. In software applications it adds additional overhead, since
URIs have to be encoded and decoded. It also has to be considered that different
parts of the URI (such as the server name, the path and the local name) have
different sets of allowed characters or that have to be encoded differently.

IRIs for the Semantic Web. To eliminate the disadvantages of URIs, the idea to
use UTF-8 without percent-encoding in resource identifiers was raised by Fran-
cois Yergeau in 19964. The W3C introduced IRIs (Internationalized Resource
Identifier) in 2001 [3]. With the use of IRIs and UTF-8 it is possible to use all
characters of the Unicode standard, which covers 107,000 characters and 90 dif-
ferent scripts5. With this technology users can easily use, read, alter, and create
2 http://www.w3.org/TR/REC-html40/appendix/notes.html
3 http://unicode.org/faq/utf_bom.html
4 http://www.w3.org/International/O-URL-and-ident.html
5 http://www.unicode.org/standard/principles.html



IRIs in their native language. The above mentioned URI for Berlin in Korean as
an IRI would look as follows:

http://ko.wikipedia.org/wiki/베를린

Since non-USASCII characters do not have to be encoded, the ”%” character
does not have to be used in most cases. XML also does support IRIs and UTF8
but does not allow certain characters in XML tags like %, (, ), or & and some
others. But since IRIs can contain all these characters, it can cause problems
when serializing RDF in XML as we discuss in detail in the next section. Since
most of the knowledge bases on the Semantic Web are currently represented
using URIs, they have to be converted to IRIs. The challenge is to figure out
whether a percentencoded sequence was created from a legacy encoding or from
UTF8. But there exists a high chance of heuristic identification of UTF-8 [2] and
rare coincidences with byte sequences from legacy encodings as is pointed out
in [3]. Furthermore, URIs and IRIs are identical as long as no special characters
are used [3].

The main security problem with IRIs is spoofing, because some characters are
visually almost indistinguishable. This problem is an extension of those for URIs.
However, because UTF-8 contains far more characters the chance for spoofing
may increase. One example is the similarity of the Latin ”A”, the Greek ”Alpha”,
and the Cyrillic ”A” [5].

3 What’s wrong with RDF/XML?

RDF/XML and the RDF embedding in XHTML (i.e. RDFa) are the only RDF
serializations officially recommended by the W3C. In essence, RDF/XML is an
XML dialect for representing data adhering to the RDF data model. In XML
documents, it is possible to use different languages simultaneously even when
they use different alphabets. To specify the language for content in the document
the xml:lang attribute is used. XML markup, however, such as tag and attribute
names, is not affected by this attribute. RDF resources are in RDF/XML rep-
resented as XML markup, i.e. XML tags and attributes of XML tags. XML tag
names, for example, are limited to the following characters [7]:

Name ::= NameStartChar (NameChar)*
NameStartChar ::= ":" | [A-Z] | "_" | [a-z] | [#xC0-#xD6] |
[#xD8-#xF6] | [#xF8-#x2FF] | [#x370-#x37D] | [#x37F-#x1FFF] |
[#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] |
[#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD] |
[#x10000-#xEFFFF]
NameChar ::= NameStartChar | "-" | "." | [0-9] | #xB7 |
[#x0300-#x036F] | [#x203F-#x2040]

Consequently, some IRIs, which use certain characters of the UTF8 encod-
ing, cannot be used with RDF/XML and there are no simple workarounds or



solutions to this dilemma. A solution to this problem would either require a
change of the XML standard to allow UTF-8 encoded XML tag names, or a
substantial change or extension of RDF/XML, which allows to represent IRIs as
XML content.

As we described in Section 2, non US-ASCII characters can be represented
in URIs by using the percent-encoding. The ”%” character in UTF-8 is defined
as #x0025 and not allowed for XML tag names (cf. XML tag name definition
above). Thus, a RDF graph with non US-ASCII characters cannot be serialized
in RDF/XML. The possible workarounds to this problem are:

1. Use of a different character or sequence of characters instead of the ”%”
character.

2. Add an underscore to the end of an URI with encoded characters.
3. Use of a different RDF serialization, possibly with IRIs instead of URIs.

Encoding of the % character. The solution used by DBpedia for the English
DBpedia edition was to replace the ”%” character by ” percent ”. With this
solution the default Wikipedia encoding (i.e. percentencoding) could be main-
tained. But this solution produced errors during the DBpedia extraction process
for languages with many special characters like Korean, for example. This is due
to the fact that after replacing the ”%” character with e.g. ” percent ” URIs get
very long and although the URI length is not a constraint, some tools (such as
the Internet Explorer6) have trouble processing very long URIs. This solution
is also problematic since RFC3986 states: ”URI producers should ... limit these
names (URIs) ... to no more than 255 characters in length” [6]. If we would limit
URIs to 255 characters, Korean URIs could only encode 7 Korean characters.
To increase this number, it would be possible to use a shorter replacement, for
example, ” p ” instead of ” percent ” for the ”%” character. Thus, a Korean
URI could reach up to 17 characters. Such a solution may be sufficient for some
applications but renders URIs with nonLatin characters unreadable by humans.
Also exchanging data using these URIs with other applications not being aware
of the non-standard % encoding (or making already otherwise use of the encoding
sequence) will render the encoding irreversible.

Underscore workaround. During the search for different solutions it was discov-
ered that adding an underscore at the end of every URI with special characters
makes it possible that this URI can be serialized in XML with certain tools
e.g. Jena 7 even though this did not adhere to the XML standard as mentioned
above. This approach was used for the Korean DBpedia, because it enabled to
fully maintain the Wikipedia encoding. Furthermore, this workaround did not
require dramatic changes, since only the underscore at the end of an URI had
to be considered.
6 http://support.microsoft.com/kb/208427
7 http://lists.w3.org/Archives/Public/semantic-web/2009Nov/0116.html



Use of a different RDF serialization. The last mentioned possibility is to use a
different RDF serialization with IRIs instead of URIs. This solution is discussed
more in detail in the following Section and different serializations are evaluated
wrt. their support of IRIs.

Furthermore, the idea was raised to use XML entities for special characters
instead of percent-encoding. First, the special characters have to be encoded
according to UTF-8. The encoded character can be represented in two formats:
&#nnnn; for the decimal form and &#xhhhh; for the hexadecimal form. Unfor-
tunately, the & and the # character are both reserved characters in URIs and,
thus, XML entities cannot be used for replacing percent-encoding.

4 Looking at other RDF serializations
In addition to RDF/XML, there exist a number of other RDF serialization for-
mats, which partially go beyond the RDF data model in their expressivity and
differently accentuate the balance between human readability and simple ma-
chine processability. In this section, we assess these different RDF serializations
with regard to their support for internationalized resource identifiers. In our com-
parison, we include JSON, N-Triples, Notation 3, Turtle and RDFa. In order to
demonstrate the support for international resource identifiers in the different
formats, we showcase the RDF triples from Listing 1 serialized in each of the
different formats. These example triples are an exerpt from the Korean DBpedia
describing the Korean Advanced Institute of Science and Technology (KAIST).

1 http://ko.dbpedia.org/resource/KAIST
2 http://ko.dbpedia.org/property/ 이름
3 ”KAIST 한국과학기술원”
4

5 http://ko.dbpedia.org/resource/KAIST
6 http://ko.dbpedia.org/property/ 설립
7 ”1971”
8

9 http://ko.dbpedia.org/resource/KAIST
10 http://ko.dbpedia.org/property/ 종류
11 http://ko.dbpedia.org/resource/ 국립대학

Listing 1. RDF triples of KAIST.

JSON JSON (JavaScript Object Notation) was developed for easy data inter-
change between human beings and applications as well. JSON, allthough carry-
ing JavaScript in its name and being a subset of JavaScript, meanwhile became
a language independent format which can be used for exchanging all kinds of
data structures and is widely supported in different programming languages.
Compared to XML, JSON does require less overhead wrt. parsing and serializ-
ing. There is a non-standardized specification8 for RDF serialization in JSON.
8 http://n2.talis.com/wiki/RDF_JSON_Specification



Text in JSON and, thus, also RDF resource identifiers are encoded in Unicode
and hence can contain IRIs. Also, there is no problem to use the ”%” charac-
ter for URIs in JSON. The only characters that must be escaped are quotation
marks, reverse solidus, and the control characters (U+0000 through U+001F)9.
Thus, JSON can be considered to be an excellent solution for the serialization
of internationalized RDF.

1 {
2 ”http://ko.dbpedia.org/resource/KAIST” : {
3 ”http://ko.dbpedia.org/property/ 이름” : [ { ”type” : ” literal ”,
4 ”lang” : ”ko”, ”value” : ”KAIST 한국과학기술원” } ],
5 ”http://ko.dbpedia.org/property/ 설립” : [ { ”type” : ” literal ”,
6 ”value” : ”1971” } ],
7 ”http://ko.dbpedia.org/property/ 종류” : [ { ”type” : ”uri”, ”lang” :
8 ”ko”, ”value” : ”http://ko.dbpedia.org/resource/ 국립대학” } ]
9 }

10 }

Listing 2. RDF triples in RDF/JSON.

N-Triples. This serialization format was developed specificially for RDF graphs.
The goal was to create a serialization format which is very simple. N-Triples are
easy to parse and generate by software. They are a subset of Notation 3 and
Turtle but lack, for example, shortcuts such as CURIEs. This makes them less
readable and more difficult to create manually. Another disadvantage is that N-
triples use only the 7-bit US-ASCII character encoding instead of UTF-8. Thus,
it does not support IRIs but can handle the ”%” character.

1 <http://ko.dbpedia.org/resource/KAIST> <http://ko.dbpedia.org/property/%EC
%9D%B4%EB%A6%84> ”KAIST\n\uD55C\uAD6D\uACFC\uD559\uAE30\
uC220\uC6D0”@ko .

2 <http://ko.dbpedia.org/resource/KAIST> <http://ko.dbpedia.org/property/%EC
%84%A4%EB%A6%BD> ”1971”ˆˆ<http://www.w3.org/2001/XMLSchema#
gYear> .

3 <http://ko.dbpedia.org/resource/KAIST> <http://ko.dbpedia.org/property/%EC%
A2%85%EB%A5%98> <http://ko.dbpedia.org/resource/%EA%B5%AD%EB%
A6%BD%EB%8C%80%ED%95%99> .

Listing 3. RDF triples in N-Triple.

Notation 3. N3 (Notation 3) was devised by Tim Berners-Lee and developed
just for the purpose of serializing RDF. The main aim was to create a very
human-readable serialization. That’s why a RDF model serialized in N3 is much
more compact than the same model in RDF/XML but still allows a great deal
of expressiveness. The encoding for N3 files is UTF-8. Thus, the use of IRIs does
not pose a problem. The ”%” character can be used at any place that is allowed
in RDF.
9 http://www.ietf.org/rfc/rfc4627.txt



1 @base <http://ko.dbpedia.org/resource/> .
2 @prefix koprop: <http://ko.dbpedia.org/property/> .
3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
4

5 <KAIST> koprop: 이름 ”KAIST 한국과학기술원”@ko ;
6 koprop: 설립 ”1971”ˆˆxsd:gYear ;
7 koprop: 종류 < 국립대학> .

Listing 4. RDF triples in Notation 3 (or Turtle).

Fig. 1. N3 subsets [1]

Turtle. Turtle (Terse RDF Triple Language) is a subset of, and compatible with,
Notation 3 and a superset of the minimal N-Triples format (cf. Figure 1). The
goal was to use the essential parts of Notation 3 for the serialization of RDF
models and omit everything else. Turtle became part of the SPARQL query
language for expressing graph patterns. Turtle, just like Notation 3, is human-
readable, can handle the ”%” character in URIs as well as IRIs due to its UTF-8
encoding. Our example in Turtle format is exactly the same as in Notation 3,
since Notation 3 specific syntax is required.



Table 1. Overview of RDF serialization techniques.

Technique Percent-
encoding

UTF-8/IRI
support

Expressivity Readability Overhead

RDF/XML n r + ⃝ ⃝

JSON s s + + +

N-Triples s n - + +

Notation 3 s s + ++ ++

Turtle s s + ++ ++

RDFa s s + + ⃝

++: Very good +: Good ⃝ : Moderate -: Poor
s:supported r: supported with some restrictions n: not supported

RDFa. RDFa10 (RDF in Attributes) was developed for embedding RDF into
XHTML pages. Since it is an extension to the XML based XHTML, UTF-8 and
UTF-16 are used for encoding. The ”%” character for URIs in triples can be
used because RDFa tags are not used for a part of a RDF statement. Thus IRIs
are usable, too. Because RDFa is embedded in XHTML, the overhead is bigger
compared to other serialization technologies and also reduces the readability.

1 <!DOCTYPE html PUBLIC ”−//W3C//DTD XHTML+RDFa 1.0//EN” ”http://
www.w3.org/MarkUp/DTD/xhtml−rdfa−1.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
3 xmlns:kores=”http://ko.dbpedia.org/resource”
4 xmlns:koprop=”http://ko.dbpedia.org/property”>
5 <head>
6 <title></title>
7 <meta http−equiv=”Content−Type” content=”text/html; charset=utf−8”/>
8 </head>
9 <body>

10 <div about=”kores:KAIST”>
11 <span property=”koprop: 이름”>KAIST 한국과학기술원</span>
12 <span property=”koprop: 설립”>1971</span>
13 <span property=”koprop: 종류”
14 resource=”[kores: 국립대학국립대학]”></span>
15 </div>
16 </body>
17 </html>

Listing 5. RDF triples in RDFa.

10 http://www.w3.org/2001/sw/wiki/RDFa



5 Tool Evaluation

In this section, we review some popular Semantic Web applications and APIs
with regard to their support for internationalization. For testing purposes we use
the Korean DBpedia edition in two different versions: firstly percent-encoded and
secondly with IRIs.

5.1 OntoWiki and Erfurt API

OntoWiki11 is a tool for agile, distributed knowledge engineering scenarios. It
follows a Wiki like approach for browsing and authoring of RDF knowledge
bases. It offers different views on the stored information and an inline editing
mode for RDF data. Social collaboration aspects are added as well. It can be
used with relational databases and triple stores and is based on the Erfurt API,
an API for developing Semantic Web applications, which is written in PHP.
Besides RDF/XML, OntoWiki also supports Turtle, RDF/JSON, and Notation
3 for exporting RDF data.

We tested OntoWiki 0.9 with a MySQL database with UTF-8 encoding and
collation for storing the RDF data. OntoWiki supports percent-encoded URIs as
well as IRIs. It was possible to load both Korean DBpedia editions in OntoWiki.
Unfortunately, when accessing triples with IRIs, the error message “Illegal mix of
collations“ appeared (but this seems to be fixed in version 0.9.5 alpha). Exporting
percent-encoded triples did not cause problems. The serialization of RDF/XML
with percent-encoded properties was performed, although this is not allowed as
outlined above. When exporting triples with IRIs, the properties only contained
question marks, independently of the serialization format used.

5.2 Protégé

Protégé12 is a Java desktop application for developing ontologies and knowledge
bases. Protégé 3 supports OWL 1. The first version of OWL does not support
IRIs and accordingly Protégé 3 does not support IRIs, either. Protégé 4 supports
OWL 2 and IRIs. Protégé serialized IRIs without errors but IRIs were encoded
using HTML entities:

http://ko.dbpedia.org/Ontology1276166885490.owl#CA_&#50724;
&#49324;&#49688;&#45208;/

Working with percent-encoded URIs in Protégé does not pose a problem. But
when serializing such URIs in RDF/XML, which should not work, Protégé often
serialized the triples without any error. The supported serialization formats of
Protégé include Notation 3 and Turtle.
11 http://ontowiki.net/
12 http://protege.stanford.edu/



5.3 Virtuoso Universal Server.

Virtuoso Universal Server is a middleware and database engine which contains
a triple store to save and query RDF graphs. There exists an open source
and a commercial edition of Virtuoso, which vary with regard to support and
some functionality (e.g. clustering). Virtuoso handles RDF graphs with percent-
encoding in URIs very well. When loading the Korean DBpedia data set, which
was serialized in N-Triples format, no problems have been discovered and the
data could be easily accessed using the integrated SPARQL endpoint. When up-
loading data sets with IRIs, however, Virtuoso did not accept all triples. 92 triples
of the dataset, consisting of 5.21 million triples, were not processed correctly.
The reason is that some triples contain the ”>” character, which in Notation
3 format represents the end of the subject, predicate, or object, respectively.
If this character occurs, the Virtuoso parser probably assumes that the end of
the N-Triple representation of the triple has been reached and expects the ”.”
character. We will analyze this issue in more detail, since it leads to a part of
the IRI specification, which is problematic in our opinion. The following is an
example triple from the Korean DBpedia extraction:

<http://ko.dbpedia.org/resource/더 _ 로드>
<http://ko.dbpedia.org/property/wikilink>
<http://ko.dbpedia.org/resource/< 로드> > .

In Listing 6 we look at the ABNF of the IRI specification (RFC 3987) [5] in
order to determine whether this kind of IRI is allowed and should be accepted
by Virtuoso.

1 IRI = scheme ”:” ihier−part [ ”?” iquery ] [ ”#” ifragment ]
2 ihier−part = ”//” iauthority ipath−abempty / ipath−absolute
3 / ipath−rootless / ipath−empty
4 iauthority = [ iuserinfo ”@” ] ihost [ ”:” port ]
5 ipath−abempty = ∗( ”/” isegment )
6 isegment = ∗ipchar
7 ipchar = iunreserved / pct−encoded / sub−delims / ”:” / ”@”

Listing 6. Excerpt of the IRI specification ABNF.

The observed issue is related to the ihier-part. The iauthority part starts with
a double slash (”//”) and is terminated by another slash (”/”), a question
(”?”) mark or number sign (”#”), or the end of the IRI. In RDF iuserinfo
and port are not needed and ihost specifies the server address, in this case
http://ko.dbpedia.org. The second part of the ihier-part is ipath-abempty
which is formed by a slash (”/”) followed by isegment: The first time ipath-
abempty is used for ”resource” and the second time for ”/< 로드 >”. The first
part (”resource”) only uses US-ASCII characters and, thus, is correct. ipchar
are formed as follows: iunreserved contains all unreserved characters from URIs
(see Table 2) as well as ucschars:



Table 2. Unreserved characters in URIs [6]

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 - . ˜

ucschar = %xA0-D7FF / %xF900-FDCF / %xFDF0-FFEF
/ %x10000-1FFFD / %x20000-2FFFD / %x30000-3FFFD
/ %x40000-4FFFD / %x50000-5FFFD / %x60000-6FFFD
/ %x70000-7FFFD / %x80000-8FFFD / %x90000-9FFFD
/ %xA0000-AFFFD / %xB0000-BFFFD / %xC0000-CFFFD
/ %xD0000-DFFFD / %xE1000-EFFFD

pct-encoded refers to percent encoding (”%” HEXDIG HEXDIG) and sub-delims
are a part of the reserved characters of URIs (see Table 3).

The isegment part of the object of our example IRI uses Korean characters (로
드), which are allowed in IRIs (these are contained in ucschar). The characters
”<” and ”>” that caused the problems (003C and 003E) are not included in the
unreserved characters but are also not mentioned in the reserved characters for
IRIs. Furthermore, RFC 3987 [5] states ”Systems accepting IRIs MAY also deal
with the printable characters in US-ASCII that are not allowed in URIs, namely
”<”, ”>”, ’ ” ’, space, ”{”, ”}”, ”|”, ”\”, ”ˆ”, and ” ‘ ” ”. In our opinion, this part
of the specification is problematic, because it allows different tools and APIs
to handle such IRIs differently, since it is not defined exactly how to handle
these characters. This conflicts with the goals of Semantic Web technologies,
which aim at a clear and unambiguous transfer of knowledge between different
systems.

Table 3. sub-delim characters in IRIs [5]

! * ’ ( ) ; & = + $ ,

Due to these reasons and because ”<” and ”>” are used for the start and
end of the subject, predicate, or object in Notation 3, these characters should
be percent-encoded to avoid misunderstandings. In this case Virtuoso accepted
all triples. Thus, Virtuoso appears to be a very good solution for storing RDF
graphs with URIs as well as IRIs.

5.4 Jena.

Jena13 is an open-source Java framework for developing Semantic Web appli-
cations. It includes a RDF API, an OWL API, a SPARQL query engine, an
inference engine, and it can read and write RDF in RDF/XML, Notation 3 and
N-Triples.
13 http://jena.sourceforge.net/



Fig. 2. Virtuoso with the Korean DBpedia data set and IRIs.

When testing the Korean DBpedia with the Jena framework and the output
format RDF/XML, Jena stopped and threw an InvalidPropertyURIException.
This behaviour was expected, because percent-encoded URIs cannot be serial-
ized in XML. When adding an underscore to properties with such URIs, Jena
magically could serialize the triples. In this workaround the namespace is (due
to a ”misimplementation” of the URI segmentation algorithm in Jena) extended
with a part of the property name. Only the underscore is written in the start-tag
and end-tag. Thus, the tags do not contain a percent character and the XML
file becomes valid. An example of Jena’s RDF/XML serialization of triples with
the underscore appended to URIs is shown in Listing 7.

1 <?xml version=”1.0”?>
2 <rdf:RDF
3 xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”
4 xmlns:j.0=”http://ko.dbpedia.org/property/%EC%A0%9C%EB%AA%A9”>
5 <rdf:Description rdf:about=”http://ko.dbpedia.org/resource/Rock U %281

st Mini Album%29”>
6 <j.0: xml:lang=”ko”>Good Day</j.0: >
7 </rdf:Description>
8 </rdf:RDF>

Listing 7. Korean DBpedia in RDF/XML by Jena framework.

The Jena framework handles IRIs generally well. However, there exist some
triples which were not accepted, such as the following:

<http://ko.dbpedia.org/resource/2006 년 _ 태풍/태풍 _ 정보 _(소)1>



<http://ko.dbpedia.org/property/최대강풍반경 (kma)>
"550"^^<http://www.w3.org/2001/XMLSchema#integer> .

This triple was not accepted, because of the ”(” and ”)” in the property part.
During the test with Jena no triples with such brackets have been accepted. This
could be caused by a code migration problem, because usually brackets are not
allowed at this position in URIs. However, as discussed in Section 5.3, in IRIs
additional characters can be used at this position. These characters, which are
reserved in a URI but allowed in an IRI, are summarised in Table 3.

5.5 Sesame.

Sesame14 is an open-source triple store implemented in Java. It also supports
RDFS inference.

Sesame did fine in the most tests. There were no errors during the tests
with percent-encoded triples. When loading the Korean DBpedia data set with
IRIs we observed an anomaly when processing IRIs containing the bracket ”{”
character. This is not a reserved character in IRIs but also not part of the
unreserved characters. This issue has been discussed in Section 5.3 which points
out that the specification does not define exactly how to handle these characters.

Table 4. Reserved characters in URIs [6]

! * ’ ( ) ; : @ & = + $ , / ? # [ ]

5.6 OWL API.

The OWL API is an open-source API written in Java for creating, manipulating
and serializing OWL ontologies. It includes a parser and writer for RDF/XML,
OWL/XML, and Turtle15. Since version 3.0, the OWL API uses the OWL 2
specification. This is a requirement for using IRIs in OWL.

Percent-encoded triples were used for the first test. As expected, the OWL
API did not accept these triples resulting in the error message ”Illegal Element
Name (Element Is Not A QName)”. When adding an underscore at problematic
triples, the OWL API could serialize the triples. It uses the same strategy as
Jena, i.e. usage of an extra namespace for such properties.

OWL API also supports Turtle as output format. When using Turtle, serial-
izing of percent-encoded triples works well. The OWL API failed to load RDF
triples with IRIs when non-ASCII character occurred in a resource or property
(with exeption ”org.xml.sax.SAXParseException: Element or attribute do not
match, QName production: QName::=(NCName’:’)?NCName.”). It seems that
OWL API was not able to find an appropriate QName even though such a
14 http://www.openrdf.org/
15 http://owlapi.sourceforge.net/index.html



QName does exist and only allowed characters have been used. However, the
OWL API was able to serialize triples into XML with IRIs. It uses non-ASCII
characters in tags as intended by the XML specification. Unfortunately, XML
entities where used in XML tag attributes, as the following example shows:

1 <?xml version=”1.0”?>
2 ...
3 <owl:NamedIndividual rdf:about=”http://ko.dbpedia.org/#M2

(&#52380;&#52404;)”>
4 <rdf:type rdf:resource=”http://ko.dbpedia.org/#&#51060;&#47492;”/>
5 <ko: 별자리 rdf :resource=”http://ko.dbpedia.org

/#&#47932;&#48337;&#51088;&#47532;”/>
6 </owl:NamedIndividual>
7 ...

Listing 8. Korean DBpedia in RDF/XML with IRIs by the OWL API.

Table 5. Overview of I18n support in popular tools and APIs.

Tools Percent-
encoding

Underscore
workaround

UTF-8/IRI
support

Problematic
Characters
with IRIs

Output
formats

OntoWiki 0.9 + - ⃝ 1, 2, 3, 5

Protégé 4.1 + - ⃝ 1, 2, 3

Jena 2.6.2 + + ⃝ ( 1, 2, 4

Virtuoso 6 + - + > 1, 4, 5, 6

Sesame 2.3.1 + + + { 1, 2, 3, 4, 6

OWL API 3 + + ⃝ 1, 3

+: Available; ⃝ : Available with some restrictions; -: Not available
1: RDF/XML 2: Notation 3: Turtle 4: N-Triples 5: RDF/JSON 6: HTML

6 Conclusions

With the maturing of Semantic Web technologies proper support for internation-
alization is a crucial issue. This particularly involves the internationalization of
resource identifiers, RDF serializations and corresponding tool support. As it
was, for example, noted by Richard Cyganiak ”the relationships between URIs,
IRIs, RDF, XML, UTF-8 etc are incredibly complex”16. With this work we aimed
at shedding some light on this intricate matter and providing some guidelines
for knowledge engineers and tool developers alike. It turned out, that there are
serious issues with the two most prevalent building blocks of the Semantic Web,
16 http://lists.w3.org/Archives/Public/semantic-web/2009Nov/0122.html



namely URIs and the RDF/XML serialization. With IRIs, some workarounds for
RDF/XML or the use of alternative serialization techniques these issues, how-
ever, can be circumnavigated. Unfortunately, the semantic web tools landscape
is very diverse with regard to support for IRIs, RDF/XML workarounds and
alternative serializations. As a result of our evaluation of some prominent tools,
it turns out, that an internationalization is possible, when one limits oneself to
IRIs, which do not contain a relatively small set of characters commonly causing
problems with certain tools or RDF serializations. For the future, it would be
desirable, if all RDF serializations could cope with IRIs in a natural way and
the tool support would be more homogeneous. However, besides some engineer-
ing effort, this will also require some modifications to better align the different
standards and specifications.

Acknowledgments

We would like to thank the members of Semantic Web Research Center at
KAIST as well as the anonymous reviewers for their helpful comments on ear-
lier versions on this document. This work was partially supported by a grant
from the European Union’s 7th Framework Programme provided for the project
LOD2 (GA no. 257943).

References

1. Tim Berners-Lee. Notation 3, 1998. See http://www.w3.org/DesignIssues/
Notation3.html.

2. M. J. Dürst. The properties and promises of UTF-8. In Unicode Consortium,
editor, 11th International Unicode Conference. The Unicode Consortium, 1997.
http://www.ifi.unizh.ch/mml/mduerst/papers/PDF/IUC11-UTF-8.pdf.

3. Martin J. Dürst. Internationalized resource identifiers: From specification to test-
ing. In Proc. of the 19th Internationalization and Unicode Conference, San Jose,
California, September 2001.

4. Jens Lehmann, Chris Bizer, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. Dbpedia -a crystallization point for
the web of data. Journal of Web Semantics, (3):154–165, 2009.

5. M. Duerst and M. Suignard. Internationalized Resource Identifiers (IRIs). Network
Working Group, 2005. ftp://ftp.rfc-editor.org/in-notes/rfc3987.txt.

6. T. Berners-Lee and R. Fielding and L. Masinter. Uniform Resource Identifier
(URI): Generic Syntax. Network Working Group, 2005. ftp://ftp.rfc-editor.org/in-
notes/rfc3986.txt.

7. Tim Bray and Jean Paoli and C. M. Sperberg-McQueen and Eve Maler and
François Yergeau. Extensible markup language (XML) 1.0 (fifth edition), 2008.
http://www.w3.org/TR/REC-xml/.


