
RDFMatView: Indexing RDF Data for SPARQL
Queries

Roger Castillo

Humboldt Universitaet zu Berlin
{castillo}@informatik.hu-berlin.de

http://www.hu-berlin.de/

Abstract. The Semantic Web is now gaining momentum due to its
efforts to create a universal medium for the exchange of semantically
tagged data. The representation and querying of semantic data have been
made by means of directed labelled graphs using RDF and SPARQL,
standards which have been widely accepted by the scientific commu-
nity. Currently, most implementations of RDF/SPARQL are based on
relational database technology. But executing complex queries in these
systems usually is rather slow due to the number of joins that need to
be performed. In this article, we describe an indexing method using ma-
terialized SPARQL queries as indexes on RDF data sets to reduce the
query processing time. We provide a formal definition of materialized
SPARQL queries, a cost model to evaluate their impact on query per-
formance, a storage scheme for the materialization, and an algorithm to
find the optimal set of indexes given a query. We also introduce different
approaches to integrate materialized queries into an existing SPARQL
query engine.

Key words: SPARQL, Indexing, RDF, Materialized Queries, Semantic
Web

1 Introduction

The Semantic Web aims to create a universal medium for the exchange of data
where data can be shared and processed by automated tools as well as by people.
The basis for this proposal is a logical data model called Resource Description
Framework (RDF) [1]. An RDF data set is a collection of statements called
triples, of the form (s,p,o) where s is a subject, p is a predicate and o is an object.
Each triple states the relation between subject and object. A set of triples can be
represented as a directed graph where subjects and objects represent nodes and
predicates represent edges connecting these nodes. The SPARQL query language
is the official standard for searching over RDF repositories [2].

The increasing amount of RDF data have motivated the development of
approaches for efficient RDF data management. Initially, most SPARQL imple-
mentations were built upon relational databases (e.g. Jena [3], 3Store [4, 5], or
Sesame [6]).



2 Roger Castillo

Some other approaches have proved to be very efficient based on relational
database technology but following a native data scheme (see for instance [7–9]).
Basically, they propose data structures, which transform the triples table into
several tables according to different conditions and create indexes by combining
triple elements (s,p,o) in all possible ways.

In contrast to these systems, our approach fundamentally is based on the
assumption that some patterns are combined more frequently than others, and
that only indexing those combinations promises to provide large speed-ups at
manageable space and maintenance cost. Note that we do not claim that our
approach offers a particular fast SPARQL-processor, compared to systems such
as [7–9]. Instead, we present a new technique to speed up query execution with
SPARQL that is applicable to any SPARQL query processor. We want to show-
case its potential and compare different ways to integrate it into query processing
using one particular system (namely ARQ [10]), which has been chosen because
of its widespread use. An extended version of this paper can be found in [11].

1.1 Contributions

In our research, we capture the following contributions:

– We propose an indexing method, which fully exploits the RDF graph-structure.
We do not index single attributes or triples, but fractions of queries that oc-
cur frequently in an expected workload. Therefore, our approach is a native
RDF/SPARQL indexing method whose concepts are viable for all possible
implementations of RDF stores.

– We provide an indexing method using Materialized Queries for RDF data
sets. Our method can be seen as an orthogonal indexing solution that acts
as cache between SPARQL query processors and triple stores, which may be
used in conjunction with other indexing methods.

2 The RDFMatView Approach

RDFMatView is a theoretical framework for using materialized SPARQL queries
as indexes [11]. Formally, RDFMatView defines an index as follows:

Definition 1 (Index). An index I over a data graph G is a pair I = (P,O),
where P represents a pattern1 and O represents the set of all occurrences of P
in G.

Indexes are precomputed queries suitable to speed up other queries when
the index pattern is entirely contained in the query pattern. We say, an index
I is eligible for a query Q when the patterns of I are entirely contained in
the patterns of Q [12]. However, it would be more advantageous when query
processing uses more than one index. For those cases, we require that indexes
overlap. Overlapping indexes are good candidates for reducing query processing

1 Set of triple patterns in the body of I.



RDFMatView: Indexing RDF Data for SPARQL Queries 3

because the query engine can combine occurrences of these indexes and generate
solutions without matching against the RDF dataset. To estimate which indexes
bring more savings in time to query execution, the optimizer must choose an
index, a set of indexes or decide to execute the query without using indexes.

We propose a simple model for estimating these savings by using the concept
of selectivity of an index. It defines the relation of the number of occurrences of
an index in a given graph to the possible total number of index occurrences in
the graph. Having computed the selectivity of all indexes, the query optimizer
must determine which index or set of indexes is the best for query processing.

3 Methodology

To integrate our approach into an existing SPARQL query processor we de-
veloped three strategies. Our first strategy (MatView-and-ARQ) uses ARQ to
process the residual part of the query. RDFMatView extends the results of the
chosen cover by joining the partial solutions with the solutions of the residual
patterns. The second strategy (MatView-to-SQL) is based on a SPARQL-to-SQL
algorithm to translate SPARQL queries into SQL queries. The idea is to directly
access the native Jena storage tables and to combine those results with the index
tables to generate the final solution. The last strategy (Hybrid) is built from a
combination of the previous two strategies, i.e. ARQ and database execution
engine. We present these strategies for the ARQ system [10]. However, we want
to stress that general process would be the same for any other SPARQL query
processors.

4 Evaluation

Because of space reasons, we present an evaluation of our approach by executing
one query on five data sets [13] ranging from 250K to 25M triples using our three
RDFMatView methods and plain ARQ (without indexes). A description of the
tested query is shown in Listing 1.

Listing 1. Query1 finds products for a given set of generic features.

SELECT * WHERE {

?product rdfs:label ?label .

?product rdf:type ?ProductType .

?product bsbm:productFeature ?ProductFeature1 .

?product bsbm:productFeature ?ProductFeature2 .

?product bsbm:productPropertyNumeric1 ?value1 .}

Figure 1(a) illustrates the average processing time of Query1 in 5 different
datasets. Clearly, processing time significantly improves when using MatView-
and-ARQ (M1) and Hybrid (M3). The improvements are the higher, the larger
the database. However, processing time does not significantly improve when us-
ing MatView-to-SQL (M2). The reason for this is the Jena native storage schema.
Since the values are encoded following the Jena layout, our process needs to parse



4 Roger Castillo

(a) Methods comparison

(b) Processing Query1

Fig. 1. Figure 1(a) shows the processing time for Query1 on five data sets using three
rewriting methods. M1: MatView-and-ARQ; M2: MatView-to-SQL; M3: Hybrid; ARQ:
plain ARQ (y-axis in logarithmic scale). Figure 1(b) shows estimated and real costs for
query1.

the stored values and extract the required information. Figure 1(b) show that
the costs estimated by our model roughly correlate with the real processing time
and that it manages, in all cases, to prevent the selection of exceptionally bad
plans. Actually all plans improve the total execution times when compared to
those without using indexes. However, they also show that our model can be im-
proved. Especially, it does not yet reflect that using less indexes is advantageous
as this requires less joins at runtime. This fact is captured only indirectly by our
model as we concentrate on the number of covered patterns.

5 Conclusions and Future Work

We have proposed a novel logical and physical framework to speed-up the exe-
cution of SPARQL queries by using materialized queries as indexes. The use of



RDFMatView: Indexing RDF Data for SPARQL Queries 5

RDFMatView indexes focuses on minimizing query pattern comparison against
the RDF data set and on minimizing the number of self-joins to answer a query.
We analyze query and index patterns and provide three rewriting methods to use
indexes and get the final query result set. We also provide a simple cost model
to estimate the savings in time these indexes may bring to query execution. Our
preliminary results have shown that the performance gains are considerable. As
future directions, and in addition to the previous described ideas, we plan to
use variable bindings stored in the index structures to restrict uncovered query
patterns. Another promising topic to extend our approach is index selection for
SPARQL queries taking into account the particularities of RDF and SPARQL,
especially in the area of cost models and scope of selectable indexes.

References

1. Manola, F., Miller, E.: RDF Primer (February 2004) W3C Recommendation.
2. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (April

2008) W3C Recommendation.
3. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF storage and

retrieval in Jena2. In: Proc. First International Workshop on Semantic Web and
Databases. (2003)

4. Stephen Harris, N.G.: 3store: Efficient Bulk RDF Storage. In: 1st International
Workshop on Practical and Scalable Semantic Systems (PSSS’03). (2003)

5. Harris, S.: SPARQL Query Processing with Conventional Relational Database
Systems. In: International Workshop on Scalable Semantic Web Knowledge Base
System. (2005)

6. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: International Semantic Web
Conference. (2002) 54–68

7. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web
Data Management using Vertical Partitioning. In: VLDB ’07: Proceedings of the
33rd international conference on Very large data bases, VLDB Endowment (2007)
411–422

8. Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple Indexing for Semantic
Web Data Management. Proc. VLDB Endow. 1(1) (2008) 1008–1019

9. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. Proc. VLDB
Endow. 1(1) (2008) 647–659

10. ARQJena: ARQ - A SPARQL Processor for Jena.
http://jena.sourceforge.net/ARQ/ (2010)

11. Castillo, R., Leser, U., Rothe, C.: RDFMatView: Indexing RDF Data for SPARQL
Queries. Technical Report 234, Humboldt Universitaet zu Berlin (2010)

12. Halevy, A.Y.: Answering Queries Using Views: A Survey. The VLDB Journal
10(4) (2001) 270–294

13. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International Journal
On Semantic Web and Information Systems - Special Issue on Scalability and
Performance of Semantic Web Systems, 2009 (2009)


