
Using Semantics for Automating the
Authentication of Web APIs

Maria Maleshkova1, Carlos Pedrinaci1, John Domingue1, Guillermo Alvaro2,
Ivan Martinez2

1 Knowledge Media Institute (KMi)
The Open University, Milton Keynes, United Kingdom

{m.maleshkova, c.pedrinaci, j.b.domingue}@open.ac.uk
2 Intelligent Software Components (iSOCO). Madrid, Spain

{galvaro, imartinez}@isoco.com

Abstract. Recent technology developments in the area of services on
the Web are marked by the proliferation of Web applications and APIs.
The implementation and evolution of applications based on Web APIs
is, however, hampered by the lack of automation that can be achieved
with current technologies. Research on semantic Web services is there-
fore trying to adapt the principles and technologies that were devised for
traditional Web services, to deal with this new kind of services. In this
paper we show that currently more than 80% of the Web APIs require
some form of authentication. Therefore authentication plays a major role
for Web API invocation and should not be neglected in the context of
mashups and composite data applications. We present a thorough anal-
ysis carried out over a body of publicly available APIs that determines
the most commonly used authentication approaches. In the light of these
results, we propose an ontology for the semantic annotation of Web API
authentication information and demonstrate how it can be used to cre-
ate semantic Web API descriptions. We evaluate the applicability of our
approach by providing a prototypical implementation, which uses au-
thentication annotations as the basis for automated service invocation.

1 Introduction

Web services provide means for the development of open distributed systems,
based on decoupled components, by overcoming heterogeneity and enabling the
publishing and consuming of functionalities of existing pieces of software. Re-
cently the world around services on the Web, thus far limited to “classical” Web
services based on SOAP and WSDL, has been enriched by the proliferation of
Web applications and APIs, also referred to as RESTful services [1], when con-
forming to the REST architectural principles. Web APIs are characterised by
their relative simplicity and their natural suitability for the Web, relying directly
on the use of URIs, for both resource identification and interaction, and HTTP
for message transmission. Many popular Web 2.0 applications like Facebook,
Google, Flickr and Twitter offer easy-to-use, publicly available APIs, which not

only provide simple access to different resources but also enable combining het-
erogeneous data coming from diverse services, in order to create data-oriented
service compositions called mashups.

Despite their success, Web APIs are currently facing a number of limitations.
While the development, publication and use of Web services is guided by stan-
dards and specifications, the Web API landscape is much more heterogeneous
and diverse. This heterogeneity is especially present in the forms and structure
of the documentation, since currently most Web API descriptions are given di-
rectly in text/HTML as part of a webpage. Providers publish the APIs in a way
that they see fit, following no particular guidelines and conforming to no par-
ticular standards. As a consequence, in order to use Web APIs, developers are
obliged to manually locate, retrieve and interpret heterogeneous documentation,
and subsequently develop custom tailored software, which has a very low level
of reusability. The diversity of the Web APIs is accompanied by a wide range
of used authentication approaches, which hinder the automated Web API invo-
cation. The lack of a common structured language for describing Web APIs is
addressed by some initial proposals [2], [3], while lightweight annotations over
Web API descriptions [4], [5] have been developed as means for overcoming the
existing heterogeneity and providing basic support for service task automation.
Still, up to date, the importance of authentication as part of the invocation pro-
cess has been neglected. As our study points out (see Section 4.2) the majority
of the Web APIs require some form of authentication but none of the existing
formalisms and annotation approaches deal with this. Moreover, none of the
available tools, which provide developer support for creating mashups, such as
Yahoo Pipes and DERI Pipes3, handle authentication in an integrated way and
it still needs to be addressed separately. As a result, the invocation of individual
Web APIs and their use within mashups, requires extensive manual development
work, independently of whether they are semantically annotated or not.

In order to support the automated invocation of Web APIs, we propose the
use of semantic annotations over the existing heterogeneous HTML descriptions.
As shown by our study, the invocation of Web APIs requires authentication in
more than 80% of the cases, but currently there is no description formalism or
semantic annotation approach, which addresses this, and commonly the need for
authentication support is simply neglected. Therefore, we provide an ontology
for the annotation of authentication information on top of Web API descrip-
tions, which covers all authentication mechanisms identified by our study and
is extendable to cover further ones. We show how semantic descriptions of au-
thentication details can be created and validate our approach by providing a
prototype of an invocation system, which effectively uses the created annota-
tions to support the automated invocation of Web APIs.

The remainder of this paper is structured as follows: Section 2 provides a
motivating example that illustrates the challenges related to Web API authenti-
cation, while Section 3 gives an overview of previous work in the area of semantic
Web API descriptions and Web service security. A detailed analysis of current

3 http://pipes.yahoo.com/pipes/, http://pipes.deri.org/

API authentication approaches is given in Section 4. Based on the Web API sur-
vey, in Section 5 we propose an ontology and an implementation for supporting
the automated authentication, by using lightweight semantic annotations. Sec-
tion 6 presents an overview of related work and Section 7 concludes the paper.

2 Motivating Example

In this section we present a simple example, which demonstrates the necessity
of authentication information during the invocation of Web APIs, and use it
throughout the paper to illustrate the here proposed annotation approach. In
particular, we describe one of the operations of the Last.fm Web API4. The
Last.fm API enables developers to access and use the Last.fm data. This popular
website for music claims more than 40 million active users and provides details
about artists, albums, events and user-specific information, such as playlists.

Fig. 1. Extract from the Last.fm API

Figure 1 shows the Web API operation for getting the details for a particular
artist. The provided data can be used directly or as part of a mashup, where
artists details are combined with latest charts news, for example. However, since
the Web API is described solely in HTML, the discovery and interpreting of the
documentation have to be done manually. Moreover, even if the Last.fm API were
semantically annotated or had a machine-processable description, for example
in WADL, the automated invocation would still not be possible because of the
necessity of providing an authentication API key, which cannot be captured
with existing description forms. The work presented in this paper is targeted at
addressing precisely this problem.

4 http://www.last.fm/api

3 Background

Since the advent of Web service technologies, research on semantic Web services
(SWS) has been devoted to reduce the extensive manual effort required for ma-
nipulating Web services. The main idea behind this research is that tasks such
as discovery, negotiation, composition and invocation can have a higher level
of automation, when services are enhanced with semantic descriptions of their
properties. Similarly to “classical” Web services, Web API-related tasks also
require a lot of developer involvement and face even further difficulties, since
there is no established common formalism for describing Web APIs. In order to
address this, lightweight annotations over API descriptions have been proposed
as means for achieving a higher-level of automation.

Currently, there are two main contributions aiming at using semantics to
support the automation of common Web API service-related tasks. Both ap-
proaches rely on marking service properties within the HTML description and
subsequently liking these to semantic entities. MicroWSMO [4] is a formalism for
the semantic description of Web APIs, which is based on adapting the SAWSDL
[6] approach for enhancing service properties with semantic information. Mi-
croWSMO uses microformats for adding semantic information on top of HTML
service documentation, by relying on hRESTS [7] for marking service proper-
ties. Listing 1.1 shows the hRESTS annotation of the Last.fm API, where the
different service properties are identified via HTML tags.

Listing 1.1. Last.fm Web API

1 <div class=”service” id=”service1”><h1>Last.fm Web Services</h1>
2 <div class=”operation” id=”op1”><h2>artist.getInfo</h2>
3 <div>Get the metadata for an artist on Last.fm. Includes biography.</div>
4 http://ws.audioscrobbler.com/2.0/?method=artist.getinfo&
5 artist =Cher&api key=xxx
6 <div class=”input” id=”input1”>
7 artist (Optional) : The artist name in question

8 lang (Optional) : The language to return the biography in.

9 api key (Required) : A Last.fm API key.
</div>

10 <div class=”output” id=”output1”>Artist</div></div></div>

Another formalism is SA-REST [5], which also applies the grounding princi-
ples of SAWSDL but instead of using hRESTS relies on RDFa [8] for marking
service properties. Similarly to MicroWSMO, SA-REST enables the annotation
of existing HTML service descriptions by identifying service elements and link-
ing these to semantic entities. The main differences between the two approaches
are not the underlying principles but rather the implementation techniques.

Both MicroWSMO and SA-REST, provide a solid foundation for the use
of semantics as the basis for automating common service tasks. However, they
are very lightweight and the automation support that they provide is limited.
More importantly, all existing approaches neglect the need for addressing the
automation of Web API authentication. Therefore, we use existing models for
the semantic description of Web APIs as the basis for an incremental approach
for reflecting authentication information.

3.1 WS-Security

The issues of authentication and security have already been tackled in the con-
text of WSDL and SOAP-based Web services. The result is a unified Web service
security standard. WS-Security [9] specifies a set of feature extensions to SOAP
messaging, in order to provide message integrity and confidentiality. In addition,
it also provides a mechanism for associating security tokens with message con-
tent and allows for a variety of signature formats and encryption algorithms. As
a result, the defined enhancements provide support for ensuring that the sent
message is not altered by a third party (message integrity), that its content can-
not be read by anyone but the designated client or server (confidentiality) and
that the user has the necessary credentials in order to access particular resources
(authentication).

WS-Security addresses the main security issues in the context of Web ser-
vices. However, in contrast to WSDL-based services, Web APIs are proliferating
autonomously without the creation of standards and independently from Web
services. The result is a very heterogeneous world of Web APIs, where secu-
rity issues such as confidentiality and message integrity, guaranteed by the WS-
Security standard, are not considered as crucial. In fact, as our study shows,
security in the context of Web APIs is reduced only to authentication, which in
turn serves mainly the purposes of access control, where providers rather want
to restrict and track the number of requests, instead of providing data integrity.

4 Investigating Authentication for Web APIs

In order to become aware of currently used Web API authentication approaches,
we conducted a study, analysing 222 Web APIs from the ProgrammableWeb5

directory. ProgrammableWeb is a popular API directory, providing information
about 2002 APIs and 4827 mashups (visited June 2010). For easier search and
browsing, the APIs are sorted in categories and our analysis covered all 51 cate-
gories, including on average 4 APIs per category. The analyzed Web APIs from
each category were randomly chosen, however, since some categories have only
one or two entries, the analyzed number of Web APIs per category varies. As
a result the survey covered 18% of the REST ProgrammableWeb APIs (1235
APIs at the time of the study, February 2010). Therefore, we consider the fol-
lowing results to be representative for the directory and in general, since Pro-
grammableWeb is currently the biggest directory6.

In the following sections we first provide an overview of common authenti-
cation approaches, as identified by our Web API analysis, and then layout the
results and conclusions of our Web API survey.

5 http://www.programmableweb.com
6 Webmashup.com (http://www.webmashup.com) contains around 1800 Web APIs

and 3100 mashups, while APIFinder (http://www.apinder.com) provides around
1100 Web APIs.

4.1 Common Authentication Approaches

Currently, as our survey shows, most Web APIs use one of five authentication
mechanisms. We differentiate between approaches based only on authentication
credentials (API key or username and password), approaches using a transmis-
sion security protocol (HTTP Basic Authentication, HTTP Digest Authentica-
tion and OAuth), and approaches that use different parts of the HTTP request
in order to transmit the authentication information. We start by describing au-
thentication mechanisms relying only on the input credentials.

API Key. Currently, the most common way of Web API authentication is
via API key (also called “developer key”, “developer token”, “token Id”, “user
Id”, “user key”). Web APIs using this mechanism include Last.fm (http://www.
last.fm/api) and Remember the Milk (http://www.rememberthemilk.com/
services/api/). This authentication mechanism does not have any security
measures for the message integrity and confidentiality but is rather only based
on the necessary credentials. The user only needs to provide the API key, which
is received by signing up for the particular Web API. The key is transmitted
either as a parameter in the Web API URI or directly in the HTTP request.
Each client that provides a valid API key is permitted access to the requested
resources. This approach is very simple to use and to implement. However, since
the API key is not protected in any way during the message transmission, but is
rather sent directly as plain text, this method is suitable for Web API providers,
who only want to somehow restrict the access to the available resources.

Username and Password. Similarly, to authentication via API key, au-
thentication via username and password is also only based on the required
credentials. It provides no message encryption or signature and the login de-
tails are transmitted as parameters of the request URI or are included in the
HTTP request. Example Web APIs include Happenr (http://www.happenr.
com/webservices/, for example http://happenr.com/webservices/
getEvents.php?username=xxx&password=xxx&town=London) and FileSocial
(http://filesocial.com/api/docs). The user only needs to create an account
for the particular Web API and can use the username and password (in some
cases email and password, telephone number and pin, username and token or
API key and private key) to access resources. Similarly to the authentication via
API key, this approach is only suitable for providers who want to restrict the
traffic and the number of requests to their APIs.

The first two authentication mechanisms are only based on the required cre-
dentials, while the following approaches, including HTTP Basic Authentication
and HTTP Digest Authentication, are transmission security protocols. These,
provide a higher level of security for the login details and the client’s message.

HTTP Basic Authentication [10] provides a simple way for user authen-
tication. It is based on a challenge-response model, where the HTTP server
requests and validates the authentication of the Web client. Example Web APIs
include Assembla (https://www.assembla.com/wiki/show/breakoutdocs/
Assembla_REST_API) and Basecamp (http://developer.37signals.com/
basecamp/). In order to access a Web API operation, which requires authenti-

cation, the client needs to provide the corresponding username and password in
the form of an authentication header (with value Base64encode [11] of the string
username+":"+password). The Base64-encoded string is transmitted and de-
coded by the receiver, resulting in the colon-separated user name and password
strings, which are checked against the expected values.

This type of authentication is very simple and is supported by all popular
Web browsers. However, although it uses Base64 encoding, it does no encryption
and the username and password can directly be decoded from the transmitted
message. Therefore, this type of authentication is only suitable for Web APIs
with lower data security demands.

HTTP Digest Authentication [10] follows the same process as the HTTP
Basic one – request, credentials challenge and response. However, it only trans-
mits a digest of the username and password, which cannot be directly decoded.
Example Web APIs include Talis (http://n2.talis.com/wiki/Platform_API)
and AdSpeed (http://www.adspeed.com/Knowledges/830/AdSpeed_API/
AdSpeed_API_Overview.html, for example http://api.adspeed.com/?method=
METHODNAME¶m1=VALUE¶m2=VALUE&md5=SIGNATURE). The first time
a client sends a request to the server, the server responds with a nonce (a random
string) and the realm (typically a description of the computer or system being
accessed). The client uses the username and password, to compute the digest re-
sponse (result of MD5(username:realm:password)) and the digest of the nonce
(usually by using MD5 [12]), which are put in the response. The server processes
the response by retrieving the stored password for the user and testing the nonce.
If the nonce is correct, the response digest is checked by using the nonce, user-
name and password to compute a digest and compare it to the received one. If
the two digests match, the client is allowed access to the resources.

OAuth [13] is a protocol for making authenticated HTTP requests by using
a token. It enables users to share private resources stored on one website with
another one by using a token, which is an identifier denoting an access grant
with specific scope, duration, and other attributes, instead of the username and
password. Therefore, OAuth supports the interoperability and the combining of
resources coming from different websites, in a way that is transparent for the
user. Example Web APIs include Fire Eagle (http://fireeagle.yahoo.net/
developer/documentation) and Delicious (http://delicious.com/help/api).

Whenever a Web API (or a website) needs to access resources from another
Web API, the user is asked to provide his/her access information for the host
Web API, while in the background, OAuth creates a token, which can be used
by other APIs to gain access to the resources. As a result the username and
password are kept private and unavailable for third-party websites and APIs,
while the interoperability is still facilitated. This authentication approach is
extremely important in the context of mashups, since it does not require that
the user provides credentials for every Web API included in the composition,
but rather relies on token-based user-transparent handling of authentication.

So far we have described authentication based on different credentials and
on using different authentication mechanisms. In addition, there are also two

main ways of transmitting the authentication information. One very common
way is to directly provide the API key or username and password as param-
eters in the request URI. For example Last.fm (http://ws.audioscrobbler.
com/2.0/?method=artist.getinfo&artist=Cher&apikey=XXX) and Fire Eagle
(https://fireeagle.yahooapis.com/api/0.1/) use this approach. Since the
authentication credentials are not protected in any way, this way of sending
data is suitable for openly available resources, where providers want to restrict
the access to the API but are not concerned with enforcing access rights. The
other common way of sending authentication credentials is directly in the HTTP
request. This method is somewhat more complex because the client needs to
construct the request, instead of only calling a parameterized URI. However, it
enables a higher level of security, since the information can be encrypted and
signed. For example, this way of sending information is commonly used by the
HTTP digest authentication approach.

In summary, current authentication approaches have three main characteris-
tics: 1) the required credentials, 2) the used authentication protocol, and 3) the
way of sending the authentication information.

4.2 Web API Survey Results

After introducing the most common authentication approaches, in this section
we focus on describing the results and the main findings of our Web API study.
Table 1 shows the results of our analysis in terms of Web API authentication
approaches. As it can be seen, using an API key is by far the most common way
of authentication (38%). It is followed by 19% of APIs, which do not require any
authentication. HTTP Basic and HTTP Digest are not used as often (14%, 5%),
while about 6% of the APIs use OAuth and 5% implement their own operations,
which need to be called, before being able to invoke other operations. There are
also some APIs, which require authentication only for operations, which perform

Table 1. Common Web API Authentication Approaches

Authentication Mechanisms Number In %

API Key 89 38%
No Authentication 46 19%
HTTP Basic 32 14%
Username and Password 19 8%
OAuth 14 6%
Web API Operation 12 5%
HTTP Digest 11 5%
API Key in Combination with Other Credentials 5 2%
Session Based 5 2%
Other 2 1%

Authentication Only for Data Modification 4 2%
Offer Alternative Authentication Mechanisms 16 7%

data modification but require no authentication for only reading resources. The
sum of all APIs is greater than 222 because, APIs that offer more that one
authentication mechanism were counted more than once.

It is important to point out that currently 81% of the Web APIs require
some form of authentication. Therefore, providing support for the annotation
and automation of authentication is crucial for Web API use. In addition, there
is no established approach for Web API authentication but rather a landscape
of different approaches. Also, about only a quarter of the APIs use a mechanism
that protects the user credentials and does not transmit them directly in plain
text. This shows that providers are not so much concerned with verifying the
user identity and do not invest implementation work in securing the message
transfer but rather prefer to employ simple measures for access control. This
is verified by the fact that less than 10% of the Web APIs use signatures and
encryption.

Table 2. Way of Transmitting Credentials

Transmission Medium Number In %

URI 117 70%
HTTP Header 45 27%
URI or HTTP Header (Depending on the 6 3%
Type of Authentication and HTTP Method)

Table 2 shows the most commonly used ways of transmitting authentication
credentials. As it can be seen, 70% of the Web APIs send authentication infor-
mation directly in the URI, while less than one third require that the HTTP
header is constructed. This means that even if Web APIs require authentication,
most of them do not need a custom client but can rather be invoked directly
from a Web browser.

The survey also delivered some important information about the Web API
description forms. In particular, none of the analyzed APIs used WSDL [3] or
WADL [2] and the majority of the APIs are documented directly in HTML
Web pages. The main conclusions of the Web API survey can be summarised as
follows:

1. More that 80% of the Web APIs require authentication. Therefore authenti-
cation is a vital part of the invocation process and any approach disregarding
authentication information has very limited support.

2. The currently used authentication approaches are very heterogeneous and
there is no commonly accepted way for addressing Web API authentication.

3. Only about 25% of the Web APIs use an authentication approach that pro-
tects the user credentials and/or the content of the message.

5 Supporting the Automation of Web API Authentication

As highlighted by the Web API survey, authentication is essential and any
general purpose solution aiming at supporting the invocation of Web APIs or
mashups would necessarily be restricted to only 20% of the APIs or requires
customisation. In addition, the authentication approaches are very diverse and
similarly to Web API descriptions in general, authentication details are not de-
scribed in a machine processable way but are given as part of documentation
websites. In order to overcome the heterogeneity and provide means for the au-
tomatic recognition and processing of authentication details, we propose that
Web API descriptions are annotated with semantic information about authen-
tication. We next present the main design principles followed when deriving the
proposed authentication ontology and continue by describing it in detail.

5.1 Design Principles

Guided by the results of the Web API study, we analyzed the collected data and
derived an authentication ontology, which enables the annotation of authenti-
cation information as part of a semantic Web API description. The process of
defining this ontology was guided by a number of competency questions and
design principles. First, we started by identifying the cases, in which authenti-
cation is required, and the information that is needed. Relevant information in
this respect is: “Does the service require authentication?”, “Which operations re-
quire authentication?”, “What kind of authentication is used?”, and “What is the
required information to complete the authentication?”. As we concluded, based
on the analysis of common authentication approaches, authentication has three
main characteristic including the required credentials, the used authentication
protocol, and the way of sending the authentication information. Therefore, we
can identify the information necessary for supporting a particular authentica-
tion mechanism by determining: “What are the required credentials?”, “What is
the used authentication protocol?” and “How is the authentication information
transmitted?”. In addition to the competency questions, used for identifying the
information that needs to be captured by the authentication ontology, we im-
plemented some complementary requirements, which are specified in the form of
design principles. The principles are as follows:

1. The ontology should cover all common authentication approaches identified
by the Web API study.

2. The ontology should be extendable to cover further mechanisms.
3. The ontology should capture the information required for the automation of

authentication as part of the invocation process.
4. The ontology should be compatible with existing semantic annotation ap-

proaches, such as MicroWSMO and SA-REST.
5. The ontology should support simplicity of use for making annotations.
6. The ontology should aim to be minimal but capture the necessary informa-

tion for supporting the authentication.

The so designed ontology is not bound to any particular annotation formalism,
but can be used as an extension by simply attaching it to the service and opera-
tion elements. In the following section we introduce the authentication ontology
and show how it supports the automation of the invocation of Web APIs by
using it as part of an authentication engine.

5.2 Authentication Ontology

Figure 2 depicts the Web API authentication ontology with namespace waa (Web
API Authentication), which consists of three main classes–AuthenticationMechanism,
Credentials and TransmissionMedium7.

Fig. 2. Web API Authentication Ontology

The AuthenticationMechanism class has six subclasses, corresponding to com-
mon authentication mechanisms, where the Direct subclass is used to describe
approaches, which rely on using only credential details and employ no authen-
tication protocol. The Credentials class has a number of instances including
API Key, Username, Password and OAuth Credentials, which can be combined
to produce composite credentials, such as authentication through username and
password. The composedOf relationship as well as the class AuthenticationMech-
anism, which can have further subclasses, represent points of extensibility for
the ontology. The Service class has a relationship to the ServiceAuthentication
class, which has three instances including All, Some and None that are used to
point out that the service requires authentication for all its operations, for only
some of them or for none of them. The TransmissionMedium has two instances
(ViaHTTPHeader and ViaURI), used to describe that the credentials are sent
by using only the URI or through constructing an HTTP header.
7 The ontology is available at http://purl.oclc.org/NET/WebApiAuthentication

The Service and Operation classes lack a namespace, because they serve as
placeholders that can be replaced by the service and operation elements of any
Web API model whether it is semantic, such as MicroWSMO or SA-REST, or
not. In this way, the ontology can be used as an extension to existing formalisms
or independently from them.

In order to show how the authentication ontology can be used to annotate
Web APIs, we have taken the Last.fm motivating example from Section 2 and
provide its HTML annotation (Listing 1.2) and semantic description (Listing
1.4). We apply the annotation approach presented in [14], where Web API de-
scriptions are enhanced with semantic information by using MicroWSMO and
SWEET as a supporting tool. In the example we use the wsl (http://www.wsmo.
org/ns/wsmo-lite) namespace for WSMO-Lite, which is used in MicroWSMO
annotations for the service model. However, as pointed out, the authentication
annotations can be assigned to any operation and service model elements.

Listing 1.2. Example MicroWSMO Authentication Annotation

1 <div class=”service” id=”service1”><h1>Last.fm Web Services</h1>
2
3 <div class=”operation” id=”op1”><h2>artist.getInfo</h2>
4
5 http://ws.audioscrobbler.com/2.0/?method=artist.getinfo...
6 <div class=”input” id=”input1”>...</div>
7 <div class=”output” id=”output1”>Artist</div></div></div>

Listing 1.2 shows the annotated HTML of the Last.fm API. The Web API re-
quires authentication for all its operations (Line 2) and has authentication infor-
mation for the artist.getInfo operation reflected in Line 4. The model reference
contains a URI pointing to a particular instance of the AuthenticationMechanism
class, which contains details about the operation requiring an API key, which is
sent in the URI without the use of any authentication protocols.

Listing 1.3. Example Instance of the AuthenticationMechanism Class

1 @prefix rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix waa: <http://purl.oclc .org/NET/WebApiAuthentication#> .
3 <http://purl.oclc .org/NET/WebApiAuthentication/LastFm> rdf:type waa:Direct ;
4 waa: hasInputCredentials waa:API Key ;
5 waa:wayOfSendingInformation waa:ViaURI .

Listing 1.3 shows how this instance of the AuthenticationMechanism class looks
like. As it can be seen, the capturing of authentication information with the
provided Web API authentication ontology is very simple and easy to apply.

Listing 1.4. Example RDF Authentication Annotation

1 : service1 rdf :type wsl : Service ;
2 rdfs : isDefinedBy <http://www.last.fm/api/show?service=267> ;
3 waa:requiresAuthentication waa:All .
4 : operation1 rdf :type wsl :Operation ;
5 rdfs : label ” artist . getInfo ” ;
6 hr :hasAddress ”http://ws. audioscrobbler .com/2.0/?method=artist.getinfo&...” ;
7 waa:hasAuthenticationMechanism <http://purl.oclc.org/NET/WebApiAuthentication/LastFm> .
8 <http://purl.oclc .org/NET/WebApiAuthentication/LastFm> rdf:type waa:Direct ;
9 waa:hasInputCredentials waa:API Key ;

10 waa:wayOfSendingInformation waa:ViaURI .
11 : service1 wsl :hasOperation :operation1 .

Based on the annotated HTML, the authentication information can easily be
extracted in RDF (Listing 1.4) by using a simple XML transformation. All ex-
amples are available at http://sweet.kmi.open.ac.uk/examples/.

5.3 Authentication Engine

In this section we show how the authentication Web API annotations can be used
to support the automated invocation of services. The contribution described here
is implemented as part of SPICES8 [15] (Semantic Platform for the Interaction
and Consumption of Enriched Services), a platform for the easy consumption of
services based on their semantic descriptions. In particular, SPICES supports
both the end-user interaction with services and the invocation process itself, via
the generation of appropriate user interfaces. Typically, the user is presented
with a set of fields, which must be completed to allow the service to execute,
and these fields cove input parameters as well as authentication credentials.

Fig. 3. Invoking the Last.fm API

Dealing with the different types of credentials and the way they have to be
used, is the purpose of an Authentication Engine, part of SPICES, developed as
a REST service, which is capable of handling the storage and retrieval of creden-
tials for different Web APIs. This engine has the necessary logic to support the
user in his/her interaction with services. In particular, if the engine has the cre-
dentials for a given service, thanks to the authentication annotations described
previously, it is able to create a suitable request including the credentials. If
the authentication credentials are not available yet, based on the authentication
annotations, the authentication engine will be aware of the missing credentials
and will prompt the user to provide them. Currently, the authentication engine
plays the role of a trusted party, since it accesses and stores all user credentials.
However, SPICES is only a prototypical implementation, with the main focus on
supporting the invocation of Web APIs, and the authentication engine represents

8 http://soa4all.isoco.net/spices

an initial practical application of the here presented approach. Therefore some
issues such as appropriately storing and managing user credentials, still need to
be addressed. However, since more than 70% of the authentication approaches
do not protect the user credentials, this issue is not so crucial.

Figure 3 shows how the authentication engine prompts the user for the
Last.fm API key, based on the API annotation, during the process of invoking
the artist.getInfo operation. In this way the authentication engine can collect
the required credentials and compose an API request, which together with the
provided input information, supports the automated Web API invocation.

6 Related Work

In this section we describe further existing Web API authentication approaches,
which address different challenges in the context of authentication but have not
yet reached greater popularity.

Web-key [16] is an authentication mechanism, especially designed to tackle
the difficulties arising in the context of mashup authentication. Web-key is an
https URL convention for representing a transferable permission in a Web appli-
cation. It binds each permission issued from the Web application to a randomly
generated bit string (key), which is transmitted in the fragment segment of the
URL (for example https://www.emaple.com/app/#mhbqcmmva5ja3). The
keys are generated on behalf of the user for every Web API that is part of the
composition. In this way, each Web API has its unique key, instead of the user
having to share his username and password across all composite APIs. However,
this approach is fairly new and its adoption is still limited.

Another authentication mechanism is FOAF+SSL [17]. FOAF+SSL is a
simple protocol for RESTful authentication, which enables a one-click signing
into websites by using a browser as the client application. It requires the user to
enter neither a password nor an identifier but rather uses SSL and a custom trust
protocol. The custom trust protocol is based on authentication certificates, which
contain semantic descriptions of the authentication information in the subject
alternative Name URI. FOAF+SSL presents a novel authentication approach,
which includes Semantic Web principles in the authentication process. It remains
to be seen how well it will be adopted for Web API implementations.

OpenID9 targets to solve the problem of one user being forced to have many
different Web application and API accounts, in order to be able to execute a
mashup. It is a method based on using a single login at a trusted provider to
automatically gain access to other websites. In this way the user can log into
different services with the same digital identity, where these services trust the
authentication body. Website providers, which use OpenID include AOL, IBM,
Microsoft and others. OpenID is often seen as a complimentary approach to
OAuth, where OpenID credentials can be used for generating OAuth tokens.

9 http://openid.net

XAuth10 provides an approach for extending authenticated user services
throughout the Web by issuing user browser tokens for each of the participating
services. In this way the provider can recognize, which users are logged into the
services and not only give access to resources but also give additional relevant
options. A different approach is followed by Yadis11, who instead of suggesting
a new authentication mechanism, propose means for automatically detecting,
which authentication protocol a particular system is most likely to use. There-
fore, Yadis addresses the question of how do we know, what authentication needs
to be used, by providing a service discovery system that determines automati-
cally, without end-user intervention, the most appropriate protocol to use.

The approach, which we propose in this paper, differs from Web-key, FOAF+
SSL, XAuth and Yadis and other authentication mechanisms because we are not
suggesting to alter the current Web API authentication landscape by introducing
a common standard. Instead, based on a study of current Web API authenti-
cation mechanisms, we provide a lightweight model and an approach for the
annotation of APIs. The resulting semantic descriptions serve as the basis for
automating the Web API invocation process.

In addition to the here listed authentication mechanisms, there is also one
approach that uses semantic Web service descriptions in order to capture au-
thorisation and privacy service properties [18]. The authors suggest that privacy
and authentication policies should be incorporated into the OWL-S Web service
descriptions. This additional information can then be integrated into the service
matchmaking process. Similarly to our approach, this approach uses semantic
descriptions for capturing authentication information. However, it is suitable
only for WSDL-based services annotated in OWL-S.

7 Conclusion and Future Work

Nowadays, finding, interpreting and invoking Web APIs requires extensive hu-
man involvement due to the lack of API machine-processable descriptions. Ef-
forts like SA-REST and MicroWSMO aim to overcome this difficulty and provide
basic support for the automation of common service tasks such as discovery and
composition. However, currently none of the existing approaches support the au-
tomated authentication as part of the Web API invocation process. As a result,
developers are required to manually retrieve and interpret the HTML documen-
tation, to signup with API providers, in order to receive access credentials, and
to implement support for the different authentication protocols. In addition,
none of the existing frameworks for supporting the creation of mashups, such
as Yahoo Pipes and DERI Pipes, enable the handling of authentication in an
integrated way and it has to be addressed with additional manual effort.

Our Web API study shows that more than 80% of the APIs require au-
thentication, which makes authentication a vital part of the invocation process
and any invocation approach disregarding authentication information has very
10 http://xauth.org
11 http://yadis.org

limited support. Therefore, we propose the annotation of authentication infor-
mation by using an authentication ontology, which overcomes Web API hetero-
geneity and provides the basis for automated authentication handling. We base
the annotation approach on a thorough study of current Web API authenti-
cation mechanisms and show how it can be used as input to SPICES and the
authentication engine, in order to support the automated invocation of Web
APIs. Future work will focus on further developing the authentication engine.

Acknowledgments The work presented in this paper is partially supported
by EU funding under the project SOA4All (FP7 - 215219).

References

1. L. Richardson, S. Ruby: RESTful Web Services. O’Reilly Media, May 2007.
2. M. J. Hadley: Web Application Description Language (WADL). Technical report,

Sun Microsystems, November 2006. Available at https://wadl.dev.java.net.
3. Web Services Description Language (WSDL) Version 2.0. W3C Recommendation,

June 2007. Available at http://www.w3.org/TR/wsdl20/.
4. J. Kopecký, T. Vitvar, D. Fensel, K. Gomadam: hRESTS & MicroWSMO. Tech-

nical report. Available at http://cms-wg.sti2.org/TR/d12/, 2009.
5. A. P. Sheth, K. Gomadam, J. Lathem: SA-REST: Semantically Interoperable and

Easier-to-Use Services and Mashups. IEEE Internet Computing, 11(6):91-94, 2007.
6. J. Kopecký, T. Vitvar, C. Bournez, J. Farrel: SAWSDL: Semantic Annotations for

WSDL and XML Schema. IEEE Internet Computing, 11(6):60-67, 2007.
7. J. Kopecký , K. Gomadam, T.Vitvar: hRESTS: an HTML Microformat for De-

scribing RESTful Web Services. In Proceedings of International Conference on
Web Intelligence (WI-08), 2008.

8. RDFa in XHTML: Syntax and Processing. Proposed Recommendation, W3C,
September 2008. Available at http://www.w3.org/TR/rdfa-syntax/.

9. A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker: Web Services Security:
SOAP Message Security 1.1. (WS-Security 2004), 2006.

10. J. Franks, P. Hallam-Baker, J. Hostetler: HTTP Authentication: Basic and Digest
Access Authentication RFC2617. The Internet Society, 1999.

11. N. Freed, N. Borenstein: Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies. http://tools.ietf.org/html/rfc2045.

12. The MD5 Message-Digest Algorithm: http://tools.ietf.org/html/rfc1321,
Visited 6/2010.

13. M. Atwood, et al: OAuth Core 1.0 Specification. http://oauth.net/core/1.0/.
14. M. Maleshkova, C. Pedrinaci, J. Domingue: Supporting the creation of semantic

RESTful service descriptions. In Service Matchmaking and Resource Retrieval in
the Semantic Web (SMR2) at 8th International Semantic Web Conference, 2009.

15. G.Álvaro, I. Mart́ınez, J.M. Gómez, F. Lecue, C. Pedrinaci, M. Villa, G. Di Matteo:
Using SPICES for a Better Service Consumption. Poster at the 7th Extended
Semantic Web Conference (ESWC), 2010.

16. T. Close: Web-key: Mashing with Permission. In Proceedings of Web 2.0 Security
and Privacy, 2008.

17. H. Story, B. Harbulot, I. Jacobi, M. Jones: FOAF+SSL: RESTful Authentication
for the Social Web. In SPOT2009 European Semantic Web Conference, 2009.

18. L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T. Finin, K. Sycara: Authorization
and Privacy for Semantic Web Services. IEEE Intelligent Systems 19, 4 (Jul. 2004).

