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Abstract. Ontologies underpin the semantic web; they define the con-
cepts and their relationships contained in a data source. An increasing
number of ontologies are available on-line, but an ontology that combines
information from many different sources can grow extremely large. As
an ontology grows larger, more resources are required to use it, and its
response time becomes slower. Thus, we present and evaluate an on-line
approach that forgets fragments from an OWL ontology that are infre-
quently or no longer used, or are cheap to relearn, in terms of time and
resources. In order to evaluate our approach, we situate it in a controlled
simulation environment, RoboCup OWLRescue, which is an extension of
the widely used RoboCup Rescue platform, which enables agents to build
ontologies automatically based on the tasks they are required to perform.
We benchmark our approach against other comparable techniques and
show that agents using our approach spend less time forgetting concepts
from their ontology, allowing them to spend more time deliberating their
actions, to achieve a higher average score in the simulation environment.

1 Introduction

Evolving ontologies enable the completion of tasks and queries that were unfore-
seen during the design phase. Ontologies may evolve in use, by incorporating in-
formation from other ontologies. Due to the abundance of available ontologies it
is possible that the uncontrolled evolution of an ontology may lead to an ontology
that is large in size. Large ontologies require increasing amounts of resources to
host, manage, and use. In time-critical environments where a fast response time
is required, large ontologies can critically degrade response times. By forgetting
concepts from an ontology in order to reduce its size the resources required to
host, manage, and use the ontology can be reduced, therefore improving response
times. However, forgetting concepts is a trade-off, because if too many concepts
are forgotten, the quality of the answers will degrade, while forgetting too few
concepts degrades the response time. For example, consider a fire brigade that
uses an ontology to describe fire vehicle capability information on a portable de-
vice. A fire requires immediate use of vehicles which can remove rubble. A nearby
building site has suitable vehicles, although information about their capabilities
and operational requirements is not present in the fire brigade’s ontology. As



such, this information can be reused from the construction vehicles manufactur-
ers’ ontologies by the fire brigade portable device, using a low-bandwidth mobile
internet connection. Response time is critical so that damage to surrounding ar-
eas can be minimised, while inferring which construction vehicles are appropriate
for the situation and will best protect the vehicles’ operators.

In this paper, we focus on reducing the size of evolving ontologies to im-
prove their response time by removing fragments, sets of axioms that represent
concepts [6]. Our approach removes fragments according to the frequency and
recency with which they are used, and the cost of their acquisition, in terms of
time and resources. We reduce the size of an ontology when it becomes too large
to complete a task within a given period of time. By removing a fragment we
hypothesise that the associated costs of using the ontology will be reduced.

We illustrate our work within a controlled environment so that, for now, we
can regulate the information available to software agents, and use a standard
success metric to compare state of the art approaches. We use an extension of
RoboCup Rescue (RCR), a widely used multi-agent platform for agent research
that simulates an emergency response scenario. RCR agents learn about concepts
that enable them to rescue targets that have been victim to an earthquake in a
virtual city. A team of agents has five second time limit in which to determine
their actions, or else automatically forfeit their turn, and thus their ontology
must enable them to use the information it contains and perform actions given
the timeframe. The agents’ ontologies evolve as they encounter tasks that re-
quire additional information to complete. By reusing the additional information
in their ontologies, they do not need to incur the cost of re-learning it in future.
However, with each additional fragment they learn, the performance of using
their ontology degrades. Thus, to ensure that agents can use their ontology effi-
ciently, our approach forgets concepts from their ontologies. While we situate our
approach using a specific multi-agent system exemplar, our algorithm is a general
approach to selecting concepts to forget from an ontology, and could therefore
be applied outside of our framework. For example, agents could learn and forget
concepts from ontologies on the Semantic Web, although doing so might bring
about challenges in managing inconsistencies and issues regarding trust. Like-
wise, our approach is not specific to the search and rescue domain; it can be
applied to any domain. It should be noted that our forgetting approach does not
guarantee that reasoning from an evolving ontology is sound or complete. How-
ever, this is not always a requirement, and a ‘good enough’ answer is appropriate
in many cases where a response is required quickly, as discussed in the example
above. Our approach is agnostic to a specific ontology language, however for
simplicity we describe our approach in the context of OWL-Lite ontologies.

Against this background, we advance the state of the art in automatic ontol-
ogy evolution, with our main contribution, a technique that selects a fragment
which represents the least useful concept in the ontology to remove. We con-
tribute a technique that rates all concepts in an ontology and weights according
to their use and acquisition cost. Then, in our empirical evaluation, we compare
our forgetting approach to other state of the art approaches and evaluate the out-



come using RCR’s scoring system. Agents using our approach save 99.3% more
civilians and 12.4% more of the city, compared with the next best approach.

In Section 2 we introduce related work. In Sections 3 and 4, we introduce
RCR and highlight the benefits of forgetting. Section 5 describes our approach
and Section 6 discusses the empirical evaluation by describing our benchmark
techniques. Section 7 presents our results and Section 8 concludes.

2 Related Work

The agent community focuses primarily on augmenting an agent’s ontology, in-
stead of pruning it. In particular, Bailin and Truszkowski [7], Afsharchi et al. [8],
Wiesman and Roos [9], and Soh [10] enable their agents to augment their ontolo-
gies with new knowledge, when agents have different domain models representing
the same domain. Specifically, Bailin and Truszkowski’s approach considers se-
mantically equivalent representations, and Afsharchi et al. and Soh focus on the
validation of the knowledge to be incorporated into the agent’s ontology. These
approaches augment an agent’s ontology with one concept at a time, which in-
creases the overhead cost of retrieving the information. In addition to this work,
we presented an approach that reduces the cost associated with learning by aug-
menting a fragment into an ontology [11]. While the above discussed approaches
allow agents to augment their ontologies, they do not prune them.

However, the Semantic Web community has produced methods that prune
ontologies. An agent could apply the approaches of Eiter et al. [12] or Wang et
al. [13] and [14] to prune its ontology, who provide algorithms to remove one
concept from an ontology at a time. In contrast to the approach of [13], Eiter
el al.’s approach requires axioms to first be translated from Description Logic
(DL) syntax to rule representations, and translated back to DL syntax after
the expansion of the rules and the removal of a concept has been performed.
In contrast, Wang et al.’s approach can be applied to axioms without need of
translation. [12]’s approach has restrictions which limit the use of this technique
to OWL-Lite and subspecies of OWL-Lite. These approaches enable an agent to
evaluate the knowledge and remove a single concept at a time.

In this work, we chose to use the technique presented by Wang et al. to remove
concepts from our agent’s ontologies because it can ensure the consistency of an
ontology after the removal of a concept. However, while this work focuses on
removing a single concept from the ontology, our approach focuses on selecting
a set of concepts and remove them. Removing more than one concept at a time
results in an overall smaller ontology and reduces the number of times that the
forgetting approach needs to be used, resulting in an increase in performance.

3 RoboCup OWLRescue Framework

The RoboCup OWLRescue (RCOR) framework extends the RoboCup Rescue
(RCR) platform, which models the effects of an earthquake on a virtual city’s
buildings, civilians, and roads [15]. In RCR, at the beginning of a simulation,



buildings may have: collapsed, possibly with civilians buried inside; caused road
blockages; and, ignited. There are three types of RCR agents with specific capa-
bilities: ambulance teams recover buried civilians, and transfer them to refuges;
fire teams extinguish fires, and police force teams clear blocked roads. The goal
is to save the lives of as many civilians as possible, and to minimise the area of
the city which is burnt. The performance of a team is evaluated using a formula
which factors in the percentage of live civilians, the state of live civilians, and the
average building damage. While this scenario provides a testbed for developing
the co-ordination of agents, our extension aims to extend the variables associated
with each target (civilians, buildings, and blockages) resulting in a set of possible
actions an agent can take. Each action affects the outcome of the scenario.

Our RoboCup OWLRescue (RCOR) framework extends buildings to contain
(possibly hazardous) chemicals, and extends civilians to have symptoms. The
RCOR agents require different knowledge for each run because variables such
as chemicals in buildings and civilians’ symptoms are stochastic, and differ with
each run. All agents have their own ontologies so that an agent can augment
its ontology with information about its tasks from ontologies in the environ-
ment. These environment ontologies describe the available resources which can
be used in the agents’ decision making processes, and describe vehicles and their
ability to deal with fires, building collapses and casualties. The RCOR agents
access the environment ontologies by requesting information about concepts and
receive fragments representing a desired concept. The agent can then augment
its ontology with all the concepts or a selection of concepts depending on the
agent’s strategy. In order for an agent to retain its core knowledge, two ontolo-
gies are used, a Domain Ontology (DO) from which an agent cannot forget, and
an Evolving Ontology (EO) which an agent learns in and forgets from. Both
ontologies are used when deciding on the action to take. Each command centre
is assigned a set of vehicles which it can allocate on a first-come, first-served
basis to agents. Each agent is allocated a vehicle; if its vehicle does not have the
necessary equipment for a task, it can then exchange it at a command centre.

The RCOR agents can learn about variables encountered while rescuing a
target and alternative resources. For example, a police rescue agent can discover
an appropriate construction vehicle which can remove a blockage from a road. It
is beneficial for agents to augment their ontology so that they can successfully
perform tasks that they could not complete before. In the RCR, a team of agents
must complete a task within five seconds which represents one timestep in the
simulation. Specifically, a timestep is the amount of time that each agent has to
decide on its next action before the targets in the world are updated either with
new targets or changes to existing targets. Thus an agent must spend its time ef-
ficiently performing actions. In order to do this, our agents maintain a relatively
small ontology and send a minimal number of requests for information from the
environment ontologies. The next section describes our forgetting approach.



4 The Forgetting Approach

When an ontology becomes too large to use given a specific timeframe, our
approach: first evaluates the concepts in its ontology to select which concept to
remove; second selects a fragment of the concept that is deemed to be the most
irrelevant; and third removes the concept so that the ontology remains consistent.

In order to motivate forgetting concepts, we first consider costs associated
with a large ontology. Using an ontology incurs costs with hosting, maintaining,
and using it, and the larger the ontology, the greater the need for physical mem-
ory and time to access information. It is therefore beneficial to reduce the size of
an ontology. We categorise three situations when forgetting concepts is beneficial:

1. Performance: If the performance of querying an ontology falls below re-
quired parameters, for example after new information has been learned, re-
moving older less used information can result in performance gains.

2. Specialisation: In order to retain specialisation in an ontology, information
that is unrelated to the domain can be removed. This can occur because the
specialist domain of an ontology is predetermined, or because the specialist
domain of an ontology changes over time.

3. Relevance: Concepts and relationships in an ontology can become outdated
when superseded by information. Forgetting out of date concepts therefore
keeps an ontology up to date. Depending on the scenario it might also be
beneficial to utilise OWL’s deprecation semantics to mark out of date con-
cepts as obsolete.

In our RoboCup Rescue example, the agents decided to forget when they cannot
complete their actions within a single timestep. In our scenario, we only consider
removing concepts that have been learnt through participating in tasks because
we do not want to change an agent’s core knowledge. This is because fire brigade
agents require a different core set of concepts than an ambulance team because of
their specialisation, thus, we only remove concepts from an agent’s EO. The fol-
lowing three sections describe how we enable an agent to automatically evaluate
the concepts within its ontology, select a fragment to prune from the ontology,
and remove the fragment. We use the following running example.

A fire brigade is tasked with extinguishing a building. The chemicals in
the building are particularly toxic and human exposure results in severe
damage to airways. The fire brigade wants to be able to increase the
amount of equipment it carries in its first aid kit so that it can treat af-
fected civilians, and augments an ontology fragment with such equipment.
During this augmentation the agent learns about intubation equipment,
but is unable to use the equipment because it is not specialised to do so.
Therefore, this knowledge is not used during the agent’s lifetime. The
agent’s response time is waning and it decides to reduce the size of its
ontology in order to reduce the cost of using it.



4.1 Evaluate Concepts

Once a task agent determines that it needs to contract its ontology, it decides
which concepts it wants to remove. Our approach enables an agent to evaluate
the concepts in its EO using two influential factors:

1. How recently and frequently the concept is used to answer queries: This ap-
proach aims to reduce the cost of acquiring regularly required concepts so we
therefore adopt the Least Recently, Frequently Used value (LRFU) used in
[17] and is used in caching scenarios to select concepts to remove from a query
agent’s ontology. Each time a concept is used the LRFU increases as does
LRFUs of the concepts which are used to define it. The LRFU is normalised
into a ranking so that it can be summed with the concept acquisition below.

2. The cost of the original acquisition of the concept: this cost is recorded in mil-
liseconds and is recorded by our learning approach, in order to be used here.
The acquisition value depends on the availability of the concept, and the net-
work bandwidth available to transfer the fragment from another agent. The
acquisition cost is normalised into a ranking, and is summed with the LRFU.

In order to indicate the usefulness of a concept, we sum these two factors to
calculate a concept forgetting value (CFV) for each concept in an agent’s EO
(see Equation 1).

CFV = LRFU + AC (1)

where CFV is the concept forgetting value of a concept in an agent’s EO, the
LRFU is the LRFU value for a concept, and AC is the acquisition value of
the concept. A low CFV weighting indicates that the concept has not been
used recently, often, and was inexpensive time wise to acquire, and a high CFV
weighting indicates that the concept is used recently, frequently and was expen-
sive to acquire. A medium CFV weighting can indicate that LRFU is high and
AC is low, or that AC is high and LRFU is low, and as such the likelihood of
the concept being forgotten is lower than those with a low CFV weighting. In
more detail, the LRFU is calculated for each concept in the agent’s EO using
Algorithm 1. This algorithm shows how an agent calculates the LFRU value
for each of its ontologies concepts, where concept(EO) is a function that holds
the set of concepts in an agent’s EO, T = {< t1, cu1 >, . . . , < tn, cun >} is a
set of tasks where each task is a tuple representing the task (t) and the set of
concepts required to complete the task (cu), all concepts in cu are a subset of
concept(EO), and all concepts in the EO have a LFRU weighting which is rep-
resented using a tuple < c, LRFU >. The LRFU weighting for each concept is
calculated over time. After each time period each concept’s LRFU is calculated,
by increasing the value by 1 if it is used and decaying it exponentially when it
is not, so that concepts not used recently have a lower value. In our RoboCup
Rescue example, concepts’ LRFU weightings are calculated each timestep and
are represented by tasks in the Algorithm because an agent has to complete a
task per timestep. Depending on the scenario, it may be appropriate to weight



the AC or LRFU differently. For example if network bandwidth fluctuates, the
acquisition cost is time-sensitive, and therefore it would be appropriate to weight
it lower than LRFU. In our environment available bandwidth does not change,
and therefore we do not apply weightings when calculating the CFV.

Algorithm 1 Algorithm calculating the LRFU for each concept in an agent’s
ontology.
Ensure: concepts(EO) 6= ∅
Ensure: T = {< t1, cu1 >, . . . , < tn, cun >} /* T is the set of tasks, where tasks require a

set of concepts to complete them. */
Ensure: cu 6= ∅ /* the set of concepts used for current task */
Ensure: cu ⊂ concepts(EO)
Ensure: ∀c ∈ concepts(EO) = < c, lrfu >
1: for all T do
2: for all c ∈ concepts(EO) do
3: if c ∈ cu then
4: c = < c, lrfu + 1 >
5: else
6: c = < c, e−lrfu >
7: end if
8: end for
9: end for

Once a concept’s LRFU factor has decayed so that the acquisition cost be-
comes more influential in the weighting, an agent can determine which concept
from a set of concepts that have the same LRFU to forget. It is more likely that
concepts will have different acquisition costs due to different agent’s network
location and bandwidth, than different a LRFU because concepts decay expo-
nentially. Performance wise, it is better for the agent to forget concepts that are
inexpensive to acquire because the cost of re-acquiring them is less, compared
to concepts that are expensive to acquire. To summarise, the agent selects the
concept with the lowest rating in its EO to remove. In our example (see Figure
1), the agent selects the concept labelled endotrachealTubes, which is a piece of
intubation equipment, because it has the lowest weighting. In the next section,
we describe how the agent removes a fragment representing the selected concept.

4.2 Select Concepts

Once the agent has selected a concept it desires to forget, it creates a fragment
(made up of multiple concepts) representing that selected concept so that the
agent can benefit performance wise from a smaller ontology. We also hypothesise
that an agent can benefit from removing more than one concept at a time so
that it can perform forgetting less often than forgetting methods that forget less
concepts (as proposed by other state of the art approaches, see Section 2).

In order to select concepts to prune, the agent generates a fragment repre-
senting the selected concept and selects concepts with a similar CFV weighting
to prune. The fragment is generated using the basic segmentation technique pre-
sented in [6], where the technique selects the target concept first, in our example



(see Figure 1) the target concept is endotrachealTubes, and selects concepts by
traversing the ontology’s concept hierarchy upwards all the way to the root class.
It then traverses downwards to the target’s leaf classes. Additionally, any links
across the hierarchy from any of the traversed classes are followed upwards but
not downwards. Once there are no concepts to traverse, the traversed concepts
form a fragment representing the target concept (described in more detail in [6]).

In order to detail how our agent selects the concepts to remove from the
fragment, we formally introduce the components described above. Let: l be the
capacity limit at which the agent is required to prune concepts from its EO;
W be the set of weightings for the concepts contained in the EO, where W =
{w : C ∈ concepts(EO) ∧ w = weight(c)} and c1 . . . cn ∈ concepts(EO); foq,ct

be the fragment representing the concept to be forgotten, where oq is the query
agent’s ontology (where oq = DO ∪ EO) and ct is the concept to be forgotten;
Wfoq,ct

= {W : C ∈ foq,ct∧w = weight(c)} be the set of concept weightings asso-
ciated with the concepts contained in foq,ct , where concepts(foq,ct) = {c1, . . . cn}.
Using this formal notation we describe how we select the concepts to forget in
Algorithm 2, which is run over all concepts in the EO.

Algorithm 2 Lowest Weighted Concept Selection Technique: This algorithm is
used to select the concepts to be pruned from an agent’s EO.
Initialise: ct ← null
Initialise: conceptsToRemove← ∅
Initialise: wct ← +∞ /* the weight of the concept; calculated from the LRFU value and

Acquisition Cost of ct*/
1: {finds the concept with the lowest concept weighting}
2: for ∀c ∈ concepts(EO) do
3: if wc < wct then

4: ct ← c
5: wct ← wc

6: end if
7: end for
8: conceptsToRemove← conceptsToRemove ∪ {ct}
9: {finds all the concepts in the fragment with a similar concept weighting to ct}
10: for ∀c ∈ concepts(foq,ct ) do

11: if |wc − wct | ≤ t then

12: conceptsToRemove← conceptsToRemove ∪ {c}
13: end if
14: end for
15: return conceptsToRemove

In our example, Figure 1 shows the ontology fragment representing concept
endotrachealTubes which has weight wct

= 0.02, thus our selection algorithm se-
lects the concepts endotrachealTubes, laryngoscopes, connellAnotomicMask, and
intubationEquipment to forget (these concepts have a shaded background). These
concepts have not been used by the agent so they have a low CFV because the
agent has not had specialist knowledge to use the equipment, because it spe-
cialises in extinguishing fires and only supports first response first aid and triage.
Once our agents have selected the concepts they desire to remove they then
remove these concepts from their ontology, this is described in the next section.



4.3 Remove Concepts

After the agent has selected the concepts that it desires to remove, the agent
then prunes these from its ontology. In order to prune these concepts from an
ontology we use the technique presented in [13] so that the ontology remains
consistent. For example, we aim to remove concept B from A v B, B v C
which results in A v C; and the removal of B from A v B, B v C and B v D
results in A v C and A v D.

5 Evaluation

In order to evaluate our approach, forget-fragment, we compare the effective-
ness of agents using different forgetting techniques (discussed below) to: rescue
civilians; put out burning buildings; to evaluate the requirements of rescuing a
target against its RoboCup score (see Section 2); and investigate the amount of
time used to forget. Similar to the RCR Competition, our simulation allows a
team of agents five seconds to complete an action in a timestep, and are given
two thousand timesteps to save as many of the civilians and burning buildings
as possible. The pseudo-code in Algorithm 3 provides the basic scenario of the
agents in the RCOR.

In our experiments, we initialise a RCOR scenario where there are ten of
each of the ambulance, fire brigade and police agents and they use the learning
technique presented in [11] when they encounter unknown concepts or do not
have the right equipment to rescue their target. This learning technique selects
fragments from ontologies about a requested concept, and demonstrated the
most efficient learning algorithm (in terms of resulting performance) compared to
benchmark approaches. We compare our technique to the following approaches:

Forget Concept This approach removes all concepts and relationships related
to the selected concept, where eo−cp and cp is the concept to be pruned

treatmentFor

    Intubation 
Equipment

Laryngo
-scopes

  Endotrac  
-heal Tubes

 Connell 
anotomic 

mask

Blocked 
Airways

thing

Symptom    Medical
Equipment

treatmentFor

treatmentFor

CFV=0.029

CFV=0.02 CFV=0.026 CFV=0.027

CFV=1.24CFV=1.96

CFV=0.91

Fig. 1. Concepts selected to be forgotten, the curved lines represent relationships (do-
main and range restrictions) between concepts.



Algorithm 3 Pseudo-code of the RoboCup simulator
Require: function: contains(set, element) returns true if set contains element
Require: simulator ← RoboCup rescue simulator
Require: agent ← RoboCup rescue agent
1: simulator.generateFires()
2: simulator.generateBlockades()
3: simulator.generateCivilians()
4: for timestep ∈ timesteps do
5: target = getFirstTarget()
6: targetInfo = agent.getInformation(target)
7: if ¬ contains(agent.ontology, targetInfo) then
8: fragments ← requestFragements(targetInfo)
9: axioms ← selectAxioms(fragments)
10: agent.ontology.learn(axioms)
11: end if
12: if ¬ contains(agent.vehicle, requiredEquipment) then
13: travelToCentre()
14: changeVehicle()
15: end if
16: rescue(target)
17: simulator.update()
18: end for

from the ontology. This technique removes one concept at a time, and is
comparable to the techniques presented by [12] and [13].

Forget Tree This approach extends the above approach by selecting a subtree
from the hierarchy of concepts in the agent’s EO. The subtree is selected by
comparing the weight used for each concept (see Algorithm 4), where eoctree

and ctree is a concept represented by the fragment (which is a subtree)
being pruned from the ontology. Removing a connected subtree can result in
removing a subtree, branch, or extraction of a subtree (shown in Figure 2).

(i) Subtree Removal              (ii) Branch Removal            (iii) Subtree Extraction

Fig. 2. Subtree Removal, Branch Removal and Subtree Extraction, where the high-
lighted nodes are removed from the graph.

Forget Redundant This approach removes all concepts that are not used in
future queries. We provide a list of the future queries to the agent at the
start of the simulation, which have been recorded on a dummy run using
the same random seed. This is the only agent that requires a complete list
of future queries. This agent is not limited by a capacity.



Algorithm 4 This algorithm is used to select the concepts which are connected
by their concept weighting, to form a subtree, to be pruned from an agent’s EO.
Require: function: getConceptWithMinimalWeight(set), returns tuple < concept, weight > with

the lowest weight in the set.
Require: ct ← null, wct ← null
Require: conceptsToRemove← ∅
Require: CH ← {∅}
1: < ct, wct > =getConceptWithMinimalWeight(concepts(EO)) {wct is the lowest weight in EO
}

2: {traverses the children of ct}
3: CH ← children(ct)
4: for CH do
5: for ch ∈ CH do
6: if |wch− wct | ≤ t then

7: conceptsToRemove← conceptsToRemove ∪ {ch}
8: CH ← CH ∪ {children(ch)}
9: end if
10: end for
11: end for
12: P ← parents(ct)
13: for ∀ P do
14: for ∀ p ∈ P do
15: if |wp − wct | ≤ t then

16: conceptsToRemove← conceptsToRemove ∪ {p}
17: P ← P ∪ {parents(p)}
18: end if
19: end for
20: end for
21: return conceptsToRemove

Forget Nothing This approach does not remove any concepts from the agent’s
ontology. Hence this agent is not limited by a capacity.

We put forward these four approaches: forget-concept, forget-tree, forget-
redundant, forget-nothing, as benchmarks for the performance of our forget-
ting approach, forget-fragment. These agents adopt their behaviour defined
by the sample package in RCR, which determines the agents’ behaviour such
as planning a path through the virtual city and which target to rescue first.
We note this adopted behaviour is basic, whereby there are no algorithms used
to co-ordinate agents’ targets or to minimise path traversal. Our investigation
consists of comparing how five different learning techniques perform given the
same set of 200 scenarios, using the standard Kobe map provided with RCR.
Each scenario is randomly generated by the RCR simulators. For our evaluation
our framework includes the following environment ontologies:

1. EAC Ontology: This ontology describes the Emergency Action Code (EAC),
which is a three character code displayed on all dangerous goods classed car-
riers. This ontology provides fire agents with information about the required
equipment for attending burning targets, and is derived from the National
Chemical Emergency Centre (NCEC) code list.

2. HazChem Ontology: This Hazardous Chemical (HazChem) ontology clas-
sifies chemicals using Hazardous Identification (ID) Numbers (HIN). Simi-
lar to the EAC Ontology, this ontology provides fire agents with informa-
tion about the required equipment for attending burning targets, and is



derived from the The National Institute for Occupational Safety and Health
(NIOSH) HIN system.

3. Chemical Ontology: This ontology contains chemicals and their EAC and
HIN classification. This ontology allows agents to use either standard pro-
vided by the EAC and HIN, and enables the agent to translate chemicals
between both standards.

4. Vehicle Ontology: This ontology describes vehicles, their attributes, pur-
pose, and manufacturer. In particular, this ontology provides information
about the track type of a vehicle, and its capabilities, and is derived from ve-
hicle categorisations from the Driver and Vehicle Licensing Agency (DVLA).

5. HantsFireEngineFleet Ontology: This ontology contains information ab-
out the fleet of fire engines in the county of Hampshire (UK). This informa-
tion is derived from the Hampshire fire service website1, which details vehicle
types, their model, manufacturer, and registration numbers.

6. Ambulance Ontology: This ontology contains information about different
types of ambulance, their attributes, and equipment and is derived from the
standards of the Ontario Ministry of Health and Long-Term Care2.

7. ConstructionVehicles Ontology: This ontology contains information ab-
out construction vehicles and their capacity, and is derived from information
from the book “Fundamentals of Technical Rescue.”3

8. Triage Ontology: This ontology describes the 5-Category Triage System
and identifies symptoms for each category, and is derived from the Australian
Ministry of Health guidelines4.

9. CSI Ontology: This ontology contains information from the Chemical Sam-
pling Information (CSI) of the US Department of Labor Occupational Safety
and Health Administration. The CSI contains details about chemicals and
their health effects on humans, and the organs affected.

10. Treatment Ontology: This ontology contains information about burns and
broken bones, their symptoms, and their treatment. This information has
been taken from the NHS website5.

These ten ontologies have been chosen because they are representative of stan-
dard industry vocabularies for the domains of interest of RCR agents. This
combination of ontologies covers the areas required by the RCOR extension and
represent a realistic set of information that rescue agents would need to consult
in real conditions. The number of concepts in each of the ontologies is given in
Table 1. The next section presents the results and our analysis of our evaluation.

1
Hampshire Fire and Rescue Service: http://www.hantsfire.gov.uk/theservice/sp-and-
sr/fleetmanagement

2
Ontario Ambulance Standards: http://www.health.gov.on.ca/english/providers/pub/ambul/equi
pment/standard.pdf

3
Fundamentals of Technical Rescue, International Association of Fire Chiefs:
http://books.google.com/books?id=mLyYsT8YEWkC&pg=PT33

4
Ministry of Health Triage Guidelines: http://www.moh.govt.nz/moh.nsf/indexmh/ed-about-
triage

5
NHS Health Information: http://www.nhs.uk/chq/pages/Category.aspx?CategoryID=72



Table 1. The number of concepts in each of the environment ontologies.

Ontology No. of Concepts

EAC Ontology 1906
Chemical Ontology 1800
HantsFireEngineFleet Ontology 745
ConstructionVehicles Ontology 114
CSI Ontology 3841
EAC Ontology 1906
Chemical Ontology 1800
HantsFireEngineFleet Ontology 745
ConstructionVehicles Ontology 114
CSI Ontology 3841
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Fig. 3. Chart showing the percentage of buildings unburned for each forgetting
approach.

6 Results

We compare our results using standard measures of the RoboCup Rescue scorevec-
tor [18] scoring system: saved civilians, and buildings unburned. The agents using
the forget-fragment approach outperform the other agents using benchmark ap-
proaches, by having the highest average number of civilians alive (99.3% more
civilians saved compared to the next highest approach, forget-tree) and percent-
age of the city that is unburned at the end of the simulation (12% more than
the next highest approach, forget-tree), see Table 2 and Figures 3 and 4.



Table 2. Comparison of average results for each forgetting technique.

Percentage Percentage Number Number of
of City of Civilians of Times Concepts Forgotten

Technique Unburned in Refuge Forgot per Forget
Forget-Concept 31.5 29.1 11.0 50.4

Forget-Tree 33.0 29.0 10.3 50.3
Forget-Redundant 31.5 19.8 50.3 215.1

Forget-Nothing 31.5 1.4 0.0 0.0
Forget-Fragment 37.1 58.0 3.1 44.1
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Fig. 4. Chart showing the percentage of civilians rescued for each forgetting approach,
our results range from 0 - 700 timesteps; result after 700 timesteps are the same trend.

The agents using our approach reduce the size of their ontologies by remov-
ing a fragment of a concept, instead of removing trees that contain a smaller
number of concepts or removing a single concept. By removing a higher number
of concepts from an ontology the agents forget less frequently, and ultimately
spend less time deciding what to forget and forgetting than the other approaches,
with the exception of the forget-nothing approach (forget-tree forgets 332% more
times than forget-fragment, and 14% more concepts when it forgets), see Table 2
and Figure 5. We also note that despite our approach forgets fewer concepts than
other approaches, it still outperforms them, because it spends less time forget-
ting, thus demonstrating the trade-off between spending time managing an on-
tology, and spending time querying a large ontology. Our approach helps agents
save civilians at a faster rate than the other approaches, because the fire brigade
agents put out more fires thus reducing the injuries to the civilians in the simu-
lation. The forget-tree and forget-concept approaches’ performances are similar;
this is because they have a similar forgetting frequency, and thus spend a simi-
lar amount of time performing actions derived from their ontology. The forget-
nothing approach is unable to submit any commands because it took too long to



deliberate over its actions. Despite the forget-redundant approach having perfect
foresight it spent too long forgetting because it forgot every unnecessary concept
increasing the forgetting frequency compared to the forget-fragment approach.
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Fig. 5. Chart showing the time spent forgetting for each forgetting approach.

7 Conclusions

In this paper we present a novel technique that can be used to remove a frag-
ment from an ontology. Our technique is tested using an agent-based search
and rescue domain, but is generalised and applicable to any scenario where an
ontology evolves limitlessly over time. In order to support this contribution we
have also developed a semantic extension to the RoboCup Rescue framework
which enables its agents to evolve their ontologies, and a technique that rates all
concepts in an ontology with a weighting. We have also implemented benchmark
approaches which were used to compare the forgetting approaches. Our evalu-
ation shows that our method saves 99.3% more civilians and 12.4% more city
area, compared with the next best approach. For the future, we plan to inves-
tigate the benefits of using our technique in scenarios that require random and
regularly used concepts. This investigation aims to explore the hypothesis that
our approach will remove the concepts acquired from the random queries, while
generally keeping the fragments required for the regularly repeated queries. We
will also explore other motivations for an agent to forget concepts, for exam-
ple agents that can predict future queries so that they can prioritise forgetting
concepts which are unlikely to reoccur.
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