
Pellet: An OWL DL Reasoner

Bijan Parsia and Evren Sirin
MINDSWAP Research Group

University of Maryland, College Park, MD
bparsia@isr.umd.edu, evren@cs.umd.edu

Abstract
Reasoning capability is of crucial importance
to many applications developed for the Seman-
tic Web. Description Logics provide sound and
complete reasoning algorithms that can effec-
tively handle the DL fragment of the Web On-
tology Language (OWL). However, existing DL
reasoners were implemented long before OWL
came into existence and lack some features that
are essential for Semantic Web applications, such
as reasoning with individuals, querying capabil-
ities, nominal support, elimination of the unique
name assumption and so forth. With these ob-
jectives in mind we have implemented an OWL
DL reasoner and deployed it in various kinds of
applications.

1 Introduction
Many applications developed for the Semantic Web re-
quire some kind of reasoning capability. Providing sound
and complete reasoning services is essential for many of
these applications to function properly. There are known
effective reasoning algorithms for Description Logics that
can effectively handle the Lite (as the DL SHIF(D)) and
(nearly all of) the DL dialects of OWL (as the DL SH-
ION(D)). Existing DL reasoners, most notably FaCT and
Racer, are quite efficient but do not meet some important
requirements. In general, a Semantic Web reasoner should
handle individuals (provide ABox reasoning), should not
make the Unique Name Assumption, should support entail-
ment checks, should answer conjunctive ABox queries and
should work with XML Schema datatypes. At this stage of
Semantic Web adoption, having an open-source reasoner
that tries to meet these requirements is critical. Pellet has
been developed to address these issues and has become
both our test bed for experiments with DL and Semantic
Web reasoning as well as our standard reasoning compo-
nent. While not (yet) in the performance range of Racer or
FaCT, it has many features that makes it a good choice for
various lighter weight situations.

2 Pellet’s Features
Pellet has a number of features either driven by OWL re-
quirements or Semantic Web issues.

Ontology analysis and repair OWL has two major di-
alects, OWL DL and OWL Full, with OWL DL being a

subset of OWL Full. All OWL knowledge bases are en-
coded as RDF/XML graphs. OWL DL imposes a number
of restrictions on RDF graphs, some of which are substan-
tial (e.g., that the set of class names and individual names
be disjoint) and some less so (that every item have a “type”
triple). Ensuring that an RDF/XML document meets all
the restrictions is a relatively difficult task for authors,and
many existing OWL documents are nominally OWL Full,
even though their authors intended for them to be OWL DL.
Pellet incorporates a number of heuristics to detect “DLiz-
able” OWL Full documents and “repair” them.

Datatype reasoning XML Schema has a rich set of
“simple” datatypes including various numeric types (inte-
gers and floats), strings, and date/time types. It also has
several mechanisms, both standard and unusual, for creat-
ing new types out of the base types. For example, it’s possi-
ble to define a datatype by restricting the integers to the set
of integers whose canonical representation has only 10 dig-
its, or whose string representation matches a certain regular
expression. Currently, XML Schema systems tend toward
validation of documents. Pellet can test the satisfiabilityof
conjunctions of thus constructed datatypes.

Entailment In Semantic Web, entailment is the key in-
ference whereas the Description Logic community have fo-
cused on satisfiability and subsumption. While entailment
can be reduced to satisfiability, most DL systems do not
support it directly. In part to pass a large portion of the
OWL test suite, we implemented entailment support in Pel-
let.

Conjunctive ABox query Query answering is yet an-
other important feature for Semantic Web. We have im-
plemented an ABox query answering module in Pellet us-
ing the so-called “rolling-up” technique[Horrocks and Tes-
saris, 2002]. We have devised algorithms to optimize the
query answering by changing how likely candidates for
variables are found and verified. Exploiting the dependen-
cies between different variable bindings helps us to reduce
the total number of satisfiability tests, thus speeding up the
query significantly.

3 Pellet System
Pellet is based on tableaux algorithms developed for ex-
pressive Description Logics[Horrockset al., 2000]. It sup-
ports all the OWL DL constructs including owl:oneOf and
owl:hasValue. Currently, there is no known sound, com-
plete, decidable and effective algorithm for all of OWL DL
(in particular, there is none for handling nominals with in-



verse properties and cardinality restrictions). Pellet uses a
combination of existing sound and complete algorithms to
provide reasoning that is sound and complete for OWL DL
without nominals (i.e., SHIN(D)) and OWL DL without in-
verse properties (i.e., SHON(D)). We use these algorithms
in combination to achieve sound but incomplete reasoning
with regard to all of DL. This has proved practically useful
in our current work.

Figure 1 shows the main components of Pellet reasoner.
An OWL ontology is parsed into RDF triples (RDF/XML,
N3 and N-Triple syntaxes are supported). Pellet validates
the species of the ontology while the triples are converted to
assertions and axioms in the knowledge base. If the ontol-
ogy level is OWL Full because of missing type triples then
Pellet uses some heuristics to repair the ontology. For ex-
ample an untyped resource that has been used in the pred-
icate position of a triple will be inferred to be a datatype
property if the triple has a literal in the object position.
As usual, Pellet stores the axioms about classes in the
TBox component and stores the assertions about individ-
uals in the ABox component. TBox partitioning, absorp-
tion and lazy unfolding optimizations are implemented.
The tableau reasoner uses the standard tableau rules (as
described above) and includes various standard optimiza-
tions such as dependency directed backjumping, seman-
tic branching and early blocking strategies. Datatype rea-
soning for the built-in and derived primitive XML Schema
datatypes are supported.

Pellet is implemented in pure Java and available under
the MIT licence. The source files along with some mini-
mal documentation can be downloaded from the Pellet Web
page (http://www.mindswap.org/2003/pellet/).

Figure 1: Architecture of Pellet reasoner

4 Applications
The capabilities of Pellet are exposed from a Java API, a
command line interface, and a Web form. The Web form
has been used by a number of people for species valida-
tion, consistency checking, and experimenting with OWL
DL classification and entailment. Pellet provides program-
matic access to the reasoning functions through two differ-
ent interfaces, one for the Jena toolkit and one for the OWL
API library.

Pellet is the default reasoner in Swoop, a lightweight on-
tology browser and editor. Pellet is used for classification,
class satisfiability testing, query, and species validation and
repair. Pellet is also used to find the inconsistent concept
descriptions in browsed ontologies. This feature helps to
locate the errors in the ontology. Generating explanations
for inconsistencies would notably improve the usefulness
of the reasoner in Swoop, and is being worked on as a fu-
ture enhancement.

We also use Pellet for web service discovery and com-
position. Pellet has been incorporated as the knowledge
base for a version of the SHOP2[Nau et al., 2003] plan-
ning system to evaluate the preconditions of Web Services
and simulate the effects of executing these services. Pel-
let is also being used as a service matchmaker as a part
of Fujitsu Lab of America’s Task Computing Environment
(TCE) [Masuokaet al., 2003]. The OWL-S service de-
scriptions are loaded to Pellet and subsumption relation be-
tween the inputs and outputs of Web Services are computed
to find likely matches.

5 Future Work
We have begun experimenting with various multi-
ontology/logic formalisms, such as distributed description
logics and E-Connections, implementation techniques. Ini-
tial results have been both instructive and promising. We
also aim to integrate the reasoner with rules to support Se-
mantic Web Rule Language (SWRL). Other future work
projects include generating explanations for concept satis-
fiability, querying usingK operator and experimenting with
non-monotonic reasoning using annotated logics.

6 Acknowledgements
The authors would like to thank Ron Alford, Micheal
Grove and Daniel Hewitt who helped in the implementa-
tion of some modules in Pellet.

References
[Horrocks and Tessaris, 2002] Ian Horrocks and Sergio

Tessaris. Querying the semantic web: a formal ap-
proach.ISWC 2002, pages 177–191. 2002.

[Horrockset al., 2000] I. Horrocks, U. Sattler, and S. To-
bies. Practical reasoning for very expressive description
logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

[Masuokaet al., 2003] Ryusuke Masuoka, Bijan Parsia,
and Yannis Labrou. Task computing - the semantic web
meets pervasive computing.ISWC2003, Florida, 2003.

[Nauet al., 2003] Dana Nau, Tsz-Chiu Au, Okhtay Il-
ghami, Ugur Kuter, William Murdock, Dan Wu, and
Fusun Yaman. SHOP2: An HTN planning system.Jour-
nal of Artificial Intelligence Research, December 2003.


