
The OWL-S Java API

Evren Sirin and Bijan Parsia
MINDSWAP Research Group

University of Maryland, College Park, MD
evren@cs.umd.edu, bparsia@isr.umd.edu

Abstract
The OWL-Services (OWL-S) suite of ontologies
is the most mature and probably the most widely
deployed comprehensive Semantic Web Service
technology. However, the intended semantics of
OWL-S service descriptions is not expressed (or
expressable, often) in OWL. Furthermore, work-
ing with OWL-S descriptions at the RDF or even
the OWL level is quite difficult and tedious as
they tend to be at the wrong level of abstrac-
tion. The OWL-S API is a Java library for work-
ing with OWL-S service descriptions. It pro-
vides parsing, serializing, validation, reasoning,
and execution services for OWL-S versions 0.7
through 1.0.

1 Introduction
The OWL-S[OWL Services Coalition, 2004] suite of on-
tologies are designed to support the automation of a range
of Web Service related tasks, such as discovery, compo-
sition, and execution. The ontologies are canonically ex-
pressed in the Web Ontology Language (OWL), and in
particular, as of version 1.1, the DL subspecies of OWL.
OWL’s exchange syntax is RDF/XML and many proces-
sors work with an RDF based model, in part, to facilitate
the smooth integration of OWL-S service descriptions and
other Semantic Web knowledge bases.

However, working with the RDF triples directly can be
quite cumbersome and confusing. Furthermore, the OWL
DL axioms do not sufficiently constrain the OWL-S de-
scriptions. There are huge chunks of the intended mean-
ing of the various OWL-S constructs which are only spec-
ified in natural language. So, for programmatic generation
of descriptions, for validation, for certain sorts of reason-
ing (e.g., planning) and for execution and monitoring, it is
helpful to have service descriptions represented at a higher
level of abstraction.

The OWL-S API is a Java library which provides this
higher level of abstraction. These classes also support var-
ious useful services such as validation of OWL-S descrip-
tions (beyond what is expressed in the ontologies), match-
making, and execution.

2 The Design Objectives
The OWL-S API was designed to let programmers access
and manipulate OWL-S service descriptions easily. There-

fore, the basic purpose of the API is to provide a data model
that covers the specifics of OWL-S. However, the design
of the API was driven by many other factors and objectives:

Support for multiple OWL-S versions OWL-S ontolo-
gies are constantly being refined and extended by the
OWL-S coalition. The radical changes in the ontologies
between different versions make it harder to develop and
maintain applications based on the structure of the OWL
ontologies. For example, the OWL-S processes were
modeled as OWL classes in OWL-S 0.9 whereas they are
modeled as OWL individuals in OWL-S 1.0 and higher
versions. The data model in the API should be general
enough to support different versions of the ontologies.

Execution of services OWL-S Process Model defines how
a service works. Processes are defined either as one-step
directly-invocableAtomicProcesses or asCompositePro-
cesses that are composed of other processes combined
with one (or more) of the control construct defined in the
Process ontology. An execution engine should handle
interpreting these control constructs. The invocation of
AtomicProcesses are described byGrounding specifica-
tions that map the processes to WSDL operations. Some
applications may extend the grounding specification to use
other standards such as UPnP. The execution engine should
support the invocation of WSDL services as a minimum
requirement but it must also be flexible to handle other
grounding specifications.

Extensibility of OWL-S descriptions One essential fea-
ture in describing Web Services with OWL-S is being able
to extend the base OWL-S ontologies in order to describe
specific features for a service. For this purpose, OWL-S
profile ontology defines a construct namedServiceParame-
ter so that concepts defined in other ontologies may easily
be integrated into OWL-S profile descriptions. The API
should let the users easily handle the concepts that are not
part of the core OWL-S ontologies, thus not part of the core
data model in the API.

3 Architecture of the OWL-S API
The OWL-S API was designed to achieve the objectives de-
scribed in the previous section. The data model for services
were created to reflect the structure of the OWL-S model.
While the Java interfaces and methods were designed in
conjunction with the classes and properties defined in the



Figure 1: Basic components of the OWL-S API

OWL-S ontologies, there is no tight coupling between the
two. A set ofReaders have been created to parse descrip-
tions of different versions of OWL-S into the same data
model. Therefore, there is one consistent view for all the
services even if different versions of the ontologies have
been used. Serialization of the descriptions are handled by
a set ofWriters. Writers are generally used to serialize the
service for a specific OWL-S version but may also be used
for other purposes, e.g. generating an HTML presentation
for the service. The basic components of the API are shown
in the Figure 1.

The API has been built using the Jena[HP, 2001] toolkit
but the interfaces has been designed so that functionality
of the OWL-S API is not bound to the specifics of the
underlying RDF/OWL API. A basicOWLResourcein-
terface is provided for accessing the information in the
RDF model and can easily be implemented for different
RDF toolkits. Querying the RDF model makes it possible
to get the extended parameters that are not part of the
standard OWL-S ontologies. It is also possible to wrap the
frequently used OWL concepts in a Java interface. This
feature is similar to polymorphic views in the Jena toolkit
and makes programming easier when applications are
being developed for a fixed set of ontologies. Creation of
Java interfaces can even be automated so a code template
can be generated for a given OWL-S description, similar
to how stubs are generated from WSDL descriptions.

The execution of processes are handled by aProcessExe-
cutionEngine. The default implementation provides the ex-
ecution of control constructs such asSequence, Unordered,
Split andSplit+Join. Conditional constructs, e.g.If-Then-
Else, Repeat-While, Repeat-Until, is not yet supported be-
cause current release of OWL-S (1.0) does not specify how
to express and evaluate the conditional expressions. The in-
vocation of WSDL services are achieved through the Axis
Web Services package. The API also provides for the exe-
cution of OWL-S services that have UPnP groundings. The
specification of UPnP groundings were developed in col-
laboration with Fujitsu Labs of America, College Park and
used to interact with devices in pervasive environments.

4 Applications
The OWL-S API is already being used in a number of in-
house applications, and by various of our industrial part-
ners. For example, Fujitsu Labs of America uses the API

in their Task Computing framework[Masuokaet al., 2003].
Indeed, we built the API, in part, to simplify our support of
their work.

The API has also been used to translate OWL-S descrip-
tions to SHOP2[Nauet al., 2003] planning domains[Wu
et al., 2003]. The translation algorithm described in[Wu
et al., 2003] was implemented as awriter in the API. The
SHOP2 planner used the OWL-S execution engine to in-
voke Web Services for gathering information that is used
in the planning process.

5 Conclusions and Future Work
This paper describes the basic features of the OWL-S API
and the design issues behind the architecture of the API.
To our knowledge, it is the only open-source API de-
signed specifically for working with OWL-S ontologies.
The source code, documentation and examples illustrating
the usage of the API can be downloaded from the Web page
http://www.mindswap.org/2004/owl-s/api.

We plan to keep the OWL-S API in sync with future
releases of OWL-S. In particular, we plan to support the
syntax and evaluation of the default condition language in
OWL-S 1.1 (e.g., conjunction of SWRL atoms). When the
expression of conditions are resolved we intend to extend
the execution engine to handle the conditional control con-
structs.

6 Acknowledgements
OWL-S API was developed in collaboration with Fujitsu
Labs of America, College Park and is currently being used
in the Task Computing Environment. The authors would
like to thank Ryusuke Masuoka and Zhexuan Song from
FLA, CP for their feedback and help in the development of
the OWL-S API.

References
[HP, 2001] Hewlett Packard, Jena semantic web toolkit,

2001. http://www.hpl.hp.com/semweb/jena.htm.

[Masuokaet al., 2003] Ryusuke Masuoka, Bijan Parsia,
and Yannis Labrou. Task computing - the semantic web
meets pervasive computing. InProceedings of 2nd Inter-
national Semantic Web Conference (ISWC2003), Sani-
bel Island, Florida, October 2003.

[Nauet al., 2003] Dana Nau, Tsz-Chiu Au, Okhtay Il-
ghami, Ugur Kuter, William Murdock, Dan Wu, and
Fusun Yaman. SHOP2: An HTN planning system.Jour-
nal of Artificial Intelligence Research, 20, December
2003.

[OWL Services Coalition, 2004] OWL Services
Coalition. OWL-S: Semantic Markup for
Web Services, 2004. OWL-S White Paper
http://www.daml.org/services/owl-s/1.0/owl-s.pdf.

[Wu et al., 2003] Dan Wu, Bijan Parsia, Evren Sirin,
James Hendler, and Dana Nau. Automating daml-
s web services composition using SHOP2. InPro-
ceedings of 2nd International Semantic Web Conference
(ISWC2003), Sanibel Island, Florida, October 2003.


