
Abstract
This paper addresses the issue of lifting XML
data into a common representational frame-
work, namely RDF. The context of this work
is the modeling of HP web-services, including
message content exchanged with the provider
agent. This is not Yet Another Serialization
Syntax for RDF, but an approach to using RDF
in a way that is complementary with XML.

1 Introduction
XML continues to be the primary data format for e-
commerce. To gain independence from any particular
serialization we prefer to model the data with RDF.
While it is straightforward to describe ad-hoc XSLT
transformations from XML into RDF/XML, the reverse
mapping is problematic because there is no canonical
RDF/XML serialization.
The round-tripping tool described in this paper allows
us to directly interpret an XML document with an RDF
model – i.e. not passing indirectly through RDF/XML.
This is the so-called problem of lift, where different,
possibly heterogeneous, data sources are mapped into a
common representational framework for ease of proc-
essing. This complements the task of mapping the
XML schema to OWL1. More than that, it allows us to
take suitably constructed RDF models and output them
directly as XML. We use XML schema as the basis for
describing how XML is mapped into RDF and back.
The trajectory of this process is for incoming messages
to be lifted into RDF. Conversely, new outgoing mes-
sages are created in RDF through the application of
rules. This outgoing message content is lowered into
XML prior to transmission. The benefits of this ap-
proach over working directly with XSLT is that XML
schema are declarative, supporting the round-trip,
whereas the form of the XSLT transform depends on
the direction of the mapping.
The challenge is to name the schema components (with
URIs) so as to preserve the local scope of elements and
attributes within their immediately enclosing type.

* Work carried out as part of EU funded Semantic Web
enabled Web Services (SWWS IST-2002-37134).

2 Simple and complex type mappings
The central idea is that every element and attribute
name maps to an RDF property2, viewing the XML
structure as a relational model between parent nodes
and their children. Alternative approaches have been
proposed; Melnik3 in particular has suggested using the
element names to classify the content of the element,
and only attributes would be identified with RDF prop-
erties. Indeed, this is quite often the intended meaning
of the XML. Melnik is interested in a generic mapping
between XML and RDF whereas we assume that an
XML schema is available to guide us.
OWL distinguishes between object and data-type prop-
erties. Our first intuition may be that this distinction
depends upon whether they are derived from an attrib-
ute or element. However, literal content is found in
both elements and attributes. XML schema describes
them in terms of simple and complex types. Simple
data-types are mapped onto a relation between a re-
source and a typed literal. Untyped simple types are
interpreted as plain literals. For derived simple-types
the property definition uses only to the base-type from
which it is derived. The content of enumerations can be
preserved as property restrictions.
XML schema ComplexTypes are described using se-
quence, all and choice compositors. For each complex
type we create a new resource that represents the class
and use it to define the rdf:type of the product informa-
tion. Complex types may also support mixed content
models with interspersed text. In this case the rdf:value
property is used where a singular literal won’t do.
XML is not strictly a tree, but a tree with pointers as
described by IDs and IDREFs. Rather than preserve the
IDREF datatype, we interpret it as a URI defined rela-
tive to the document base. IDREFs are an exception
where a simple type does not refer to a literal value.
We preserve the partitioning of the schema namespace
by appending a schema component designator to the
schema base. Like XPaths, these designators can iden-
tify the scope of an element or attribute definition even
where the enclosing type is unnamed. Attributes are
distinguished from elements by their preceding ‘@’.
We also introduce a ‘~’ prefix for global named types.
These features can be seen in the namespace declara-
tions of figures 1 and 2.

Round-tripping between XML and RDF*

Steve Battle
Hewlett-Packard Labs,

Bristol, UK
steve.battle@hp.com

3 Sequence
A naive translation of XML into RDF has the side

effect of losing the sequencing implicit in the XML.
Patel-Schneider et al4,5 make up for this deficit at a
semantic level so that XML may be read directly as
RDF. Our approach is more modest, using existing
RDF constructs in conjunction with a defined mapping.
We note that even in XML, sequencing is often redun-
dant. XML schema is the cue for when sequence is
important, with its sequence compositor. ‘Lift’ is a
function of both the XML input and its schema.
There are many approaches we could take to sequenc-
ing. RDF lists, in particular empty lists with properties,
are problematic. We adopt a simple solution based on
RDF containers. RDF sequences get a bad press but
provide a low overhead solution (few added triples).
We classify the container as an rdf:Seq.
A problem we encounter is how to describe this in
OWL. In particular, container membership properties
fall foul of the need to discriminate between Object
and Datatype properties in OWL DL. In fact we face
the same problems whether we select containers or
collections. We treat sequencing as a data structuring
issue rather than as ontological. Our approach allows
the relational model and ordering to be separated with-
out losing connectivity. The ontology, containing only
the relational structure remains coherent.

4 XML to RDF
The XML fragment below is based on real messages
exchanged with a web-service for online purchasing.
Product is a relationship between the outer context and
a complex typed product node, and is defined to be in
sequence (alphabetical order). ProductID and Pro-
ductName are relationships between this product node
and string typed data. The vendorRef is a reference
(IDREF) to another part of the document where vendor
information is collated.

<Product vendorRef="HP">
<ProductID>C8991C</ProductID>
<ProductName>HP Deskjet 3550
</ProductName>

</Product>
The figure below illustrates the underlying tree struc-
ture of the XML in graphical form6. Namespace pre-
fixes preserve the distinction between complex-types,
attributes, and elements; defined globally and locally.

j.0= http://example.com/productList.xsd/~
j.1= http://example.com/productList.xsd/~Product/@
j.2= http://example.com/productList.xsd/Product_List/Products/
j.3= http://example.com/productList.xsd/~Product/

Fig. 1: simple and complex type properties

5 RDF to XML
The aim here is to construct an XML document by

manipulating the RDF model. We will create a follow-
up product information request. The schema for this
output message is simple, comprising a getProduct-
Data element containing a single ProductCode.

Little work is needed to generate a model for this
message as we already have one in figure 1; in the node
of type Product. We assert OWL equivalences to define
that a ProductCode is (property) equivalent to a Pro-
ductID, allowing us to use a different property name.
Similarly we establish (class) equivalence between the
existing Product and the required getProductData mes-
sage. Finally we insert a getProductData relationship
representing the new document element.

j.0 to j.3 as in fig.1
j.4= http://example.com/getProductData.xsd/~
j.5= http://example.com/getProductData.xsd/~getProductData/
j.6= http://example.com/getProductData.xsd/

Fig. 2: results of alignment

The product information is now a mixture of the old
and the new. The XML production process is seeded
with a starting node, the root node of fig. 2 above.
Given a schema, it tries to match the available content
to the schema. Because it is selective, it ignores the
older information, using only information in the j.3 and
j.4 namespaces, emitting the following XML.

<getProductData>
<ProductCode>C8991C</ProductCode>

</getProductData>

References

1 Klein, M., Fensel, D., von Harmelen, F., Horrocks, I.,
The relation between ontologies and XML schemas,
http://www.cs.man.ac.uk/~horrocks/Publications/download/200
1/etai01.pdf
2 Trastour, D., Ferdinand, M. Zirpins, C., Pragmatic Rea-
soning-Support for Web-Engineering: Lifting XML-
Schema to OWL, ICWE 2004, Munich, Germany.
3 Melnik, S, Bridging the Gap between RDF and XML,
http://www-db.stanford.edu/~melnik/rdf/fusion.html
4 Patel-Schneider, P. Simeon, J., Building the Semantic
Web on XML, ISCW2002.
5 The Yin/Yang Web: A Unified Model for XML Syntax
and RDF semantics, IEEE Transactions on Knowledge
and Data Engineering, 15(3), July/Aug 2003, pp797-812.
6 Sayers, C., Node-centric RDF Graph Visualization,
http://www.hpl.hp.com/techreports/2004/HPL-2004-60.html

