

Ontology Language Extensions to Support Collaborative Ontology Building

Jie Bao and Vasant Honavar
Artificial Intelligence Research Laboratory

Computer Science Department
Iowa State University, Ames IA USA 50010

{baojie,honavar}@cs.iastate.edu
Abstract. Modular approaches to design and use of
ontologies are essential to the success of the
Semantic web. We describe P-OWL
(Package-based OWL), which extends OWL, that
supports modular design, adaptation, use, and reuse
of ontologies. P-OWL localizes the semantics of
entities and relationships in OWL to modules
called packages. P-OWL and the associated tools
will greatly facilitate collaborative ontology
construction, and reuse.
Keywords: Modular Ontology, Contextual
Ontology, OWL, Local Semantics

1. Introduction
By its very nature, ontology construction is a
collaborative process that involves direct
cooperation among domain experts, or indirect
cooperation through reuse of autonomously
developed, very likely, semantically heterogeneous
ontologies. Typically, multiple relatively
autonomous groups contribute parts of a real-world
ontology that pertain to their domains of expertise
or responsibility. The integrated ontology should be
a semantically coherent integration of the
constituent ontologies developed by the individual
groups. Some desiderata of collaborative ontology
construction tools include:
¤ Localized Semantics: Unrestricted use of
entities and relationships from different ontologies
can result in serious semantic conflicts, since the
ontologies usually represent local views of the
world.
¤ Ontology Reuse: lack of modularity and
localized semantics in ontologies forces an all or
nothing choice with regard to reuse of an existing
ontology. Modular ontologies could facilitate more
flexible and efficient reuse of existing ontologies.
¤ Knowledge Hiding: In many applications, the
provider of an ontology may not wish, because of
copyright, privacy or security concerns, to make
the entire ontology visible to the outside while
willing to expose partial ontology to certain subsets
of users.
¤ Distinction between Organizational and
Semantic Structure: organizational structure is
how the terms are put together for practical use
while semantic structure is the definitional linkage
of them. Mixture of these two structures usually
leads to logical ambiguity.

Relatively little attention has been paid to
formalisms for collaborative construction in such
settings. This state of affairs in ontology
engineering is reminiscent of the early stage of

software engineering when uncontrolled use of
global variables, spaghetti code, absence of
well-defined modules leading to uncontrolled
interactions between code fragments. Hence, there
is an acute need for formalisms that facilitate
collaborative modular design, adaptation, and reuse
of ontologies. Against this background, this paper
describes Package-extended Ontologies to support
those needs.

2. Package-extended Ontologies
Current ontology languages, such as OWL, while
offer some degree of modularization by restricting
ontology segments into separated XML
namespaces, fail to fully support above-mentioned
requirements. In this paper, we argue for package
based ontology language extensions to overcome
these limitations. A package is an ontology module
with clearly defined access interface; mapping
between packages is performed by views, which
define a set of queries on the referred packages.
Semantics are localized by hiding semantic details
of a package by defining appropriate interfaces.
Packages provide an attractive way to compromise
between the need for knowledge sharing and for
knowledge hiding in collaborative building of
ontologies. The structured organization of ontology
elements in packages bring to ontology design and
reuse the same benefits as those provided by
packages and reuse in software engineering.
Definition 1 an Ontology Entity is an axiom
e=[C|P|I] where C is a class definition, P is a
property definition and I is an instance definition.
Definition 2 Scope Limitation Modifier (SLM)
of an ontology entity e is a boolean function Ve(r),
where r is the identifier of a model that refers e.
Model(r) could access e iff Ve(r) = True.
Definition 3 A basic package is a logic model Pb=
<E, V> where E={ei} is a set of entities and V={vi}

is the set of their SLMs. A compositional package
is a logic model of Pc=<E, V, P> where E={ei} and
V={vi} are sets of entities and their SLMs and P is
a set of basic/compositional packages. For all Pi˛
P, we say Pi is ˛ N (NestedIn) Pc. Packages could
be recursively nested to form a package
(organizational) hierarchy.
Definition 4 P is called the home package of ei
and denoted as P = HP(ei). For compositional
package, P = HP(Pi) for all Pi˛ P.
Definition 5 three default SLMs are specified as:
• Public e(r) := True
• Protected e (r) := (r = identifier of HP(e)) w

Model(r) ˛ N HP(e)
• Private e (r) := (r = identifier of HP(e)).
Definition 6 Shallow Default Interface Is of a
package P is a subset of P’s signature such that ENi
˛ Is iff ei ˛ vi P and Vi(r) = True, for œr where ENi

and Vi(r) are the name and SLM of entity ei. Deep
Default Interface, or for short, Default Interface,

Id of a package P is the union of its own shallow
default interface Is and the deep default interface of
its home package.Id (P)= Is (P) c Id (HP(P)).

Now we turn to connecting the modules by
specifying mappings between them. We argue that
to maintain the local semantics of a package,
view-based mappings provide a better alternative
than one-to-one name mapping.
Definition 7 a distributed interpretation of a set
of packages {Pi}, i=1,…m is a family ød={øi}
where øi=<ªøi , (.)øi> is the local interpretation of Pi.
The union of all ªøi is the distributed concept space
ªød and (.)ød =f{ ªød · ªød } is the distributed role
space.
Definition 8 Given a set of packages {Pi}, and
e1,…,em are some entity names in {Id (Pi)}. ød is the
distributed interpretation of {Pi}. A query over {Pi}
is an expression of one of the following forms:
• Class Query: Cq(x):= fc(e1,…, e m) f ªød where fc

is a unary logic construction function.
• Property Query: Pq(x,y):= fp(e1,…, e m) f (.)ød

where fp is a binary logic construction function.
• Instance Query: Iq:= fi(e1,…, e m)˛ ªød where fi

is logic construction function with no variable.
Definition 9 a view W over a set of packages {Pi}
is a set of queries over {Pi}. {Pi} is called the
domain of the view. An interface F over package
P is a view over and only over P.

One module can have multiple interfaces thus
allow partial reuse of the huge ontology. Views
also offer a reusable mechanism to connect
packages if they (the views) are defined over
multiple packages.
Definition 10.(Imported) a package P1 /view W is
said being imported into a package P2 if the default
interface of P1 / subset of the signature of W is used
in some entity definition axioms in P2. The set of
all imported packages and views of a package P is
called the domain of P.
Definition 11 a package-extended ontology O =
<P,W> where P is a set of packages , W is a set of
views defined on P. P and W constitute an
importing closure.

When a package P or view W is imported into
a package, note that only the signature (name set)of
that P /W is used. The referring package only takes
care of the set of referred names, while semantics
of its domain are maintained intact.

3. Reasoning in Packages
Reasoning in package-extended ontology can be
seen as distributed reasoning among autonomous
ontology modules where no global semantics is
guaranteed. Therefore, the whole reasoning process
has to be built on local reasoning offered by
individual modules. We focus on the most
important reasoning task, subsumption. The
algorithm is an extension to the standard Tableau
Algorithm [BC2003].

SubsumptionAnswer (C, D, O)
Input: Concept C and D, Ontology O=<P, W>
Return: True or False
1. Construct an ABox A = {C¢ D (x)}, Transform A

into negation normal form (NNF).
2. FOR all package/views P being referred in A
3. { RETURN Satisfiable ({A}, P) ; }

Satisfiable (S, P)
Input: Initial ABox set S, package/view P
Return: True or False
1. FOR all ABoxes Ai in S
2. { Transform concepts in Ai into NNF, wrt

visible entities from P ;
3. Do ABox transformation as that in standard

tableau algorithm, result in an augmented set of
ABoxes Si, S’= S c Si.

4. IF ›A ˛ Si is complete(no transformation rule
applies to it) and consistent (no logic clash)

5. {RETURN True;}
6. ELSE{
7. FOR all imported packages/views P’
8. {IF Satisfiable (S’, P’) RETURN True;} } }
9. RETURN False;

The basic idea of Satisfiable algorithm is that
a package or view could answer a Satisfiable
request if a possible interpretation is found locally;
otherwise it will consult the packages/views in its
domain. Although no global semantics is available,
an interpretation of the “global” model is
incrementally constructed by the queries among
packages/views.

4. Discussion
Compared with Modular Ontology [SK2003], our
approach includes A-Box query definition, and the
mapping between modules is directional thus local
semantics is preserved. The improvement of
P-OWL over Contextual ontology/C-OWL
[BG2003] is the introduction of SLM and
query-base view. Bridge rules could be seen as
special cases of query and SLM offers a
controllable way to keep content local by definition.
Future work includes more careful investigation
of the reasoning algorithm; the study of the basic
operations needed in reasoning with package and
view, such as the construction of default interface
of a package; Efficient representation of mapping
between packages; and tools to support P-OWL,
such as ontology editor and reasoner.
Acknowledgement: This work is supported by
grants from NSF (0219699) and NIH (GM
066387).

References
[BC2003] F. Baader,D. Calvanese, etal(ed) The
Description Logic Handbook. Cambridge Univ. Press,
2002.
[BG2003] P. Bouquet, F. Giunchiglia, etal. {C-OWL}:
Contextualizing ontologies. In 2nd ISWC, LNCS,
(2870),164-179. Springer Verlag, 2003.
[SK2003] H. Stuckenschmidt, M.Klein. Modularization
of Ontologies. WonderWeb report. Version 1.0.
26.6.2003

