
ASSAM: A Tool for Semi-Automatically
Annotating Semantic Web Services

Andreas Heß and Nicholas Kushmerick

Computer Science Department, University College Dublin, Ireland
{andreas.hess, eddie.johnston, nick}@ucd.ie
http://moguntia.ucd.ie/projects/annotator

1 Introduction

The vision of Semantic Web Services is to provide the means for fully automated
discovery, composition and invocation of loosely coupled software components.
One of the key efforts to address this “semantic gap” is the well-known OWL-S
ontology [1].

However, software engineers who are developing Web Services usually do not
think in terms of ontologies, but rather in terms of their programming tools.
Existing tools for both the Java and .NET environments support the automatic
generation of WSDL. We believe that the semantic service web will flourish only
when similar tools existed to (semi-) automatically generate OWL-S or a similar
form of semantic metadata.

In this demo we present a tool called ASSAM—Automated Semantic Ser-
vice Annotation with Machine Learning—that addresses these needs. This ex-
tended abstract is structured as follows: In the next section, we will introduce
the ASSAM annotator application. In section 3, we describe the machine learn-
ing algorithm behind ASSAM. Finally, we present some related work and discuss
planned future extensions to our current application.

2 ASSAM: A Tool for Web Service Annotation

The ASSAM WSDL annotator is a tool that enables the user to semantically
annotate a Web Service using a point-and-click interface. The key feature of
ASSAM is the ability to suggest which ontological class to use to annotate each
element in the WSDL. The recommendations are based on a machine learning
algorithm.

Use Cases. ASSAM is designed primarily for users who want to annotate many
similar services. Typically, these will be end users wanting to integrate several
similar Web Services into his or her business processes. But the annotation task
might also be performed by a centralized semantic Web Service registry.

Our tool could also be useful for programmers who are only interested in
annotating a single Web Service they have created.1 In order to make his or her
1 Thanks to Terry Payne who pointed out this use case.



Fig. 1. ASSAM uses machine learning techniques to semi-automatically annotate Web
Services with semantic metadata.

service compatible with existing services, a developer might want to annotate it
with the same ontology that has already been used for some other Web Services.
The developer could import the existing Web Services in ASSAM and use them
as training data in order to obtain recommendations on how to annotate his or
her own service.

Functionality Fig. 1 shows the ASSAM application. Note that our application’s
key novelty—the suggested annotations created automatically by our machine
learning algorithm—is shown in the small pop-up window.

The left column in the main window contains a list of all Web Services
currently and the category ontology. Web Services can be associated with a
category by clicking on a service in a list and then on a node in the category
tree. When the user has selected a service and wants to focus on annotating it
this part of the window can be hidden.

The middle of the window contains a tree view of the WSDL. Port types,
operations, messages and complex XML schema types are parsed from the WSDL
and shown in a tree structure. The original WSDL file is also shown as well as
plain text descriptions from the occasional documentation tags within the WSDL
or a plain text description of the service as a whole, such as often offered by a
UDDI registry or a Web Service indexing web site.

Note that in the ASSAM GUI the parts that are not used can be hidden.
During annotation of a single service, the user can for example hide the category
ontology and the list of all services. Also, if the user is not interested in the
WSDL code, this view can be hidden, too.

Once the annotation is done it can be exported in OWL-S. The created
OWL-S consists of a profile, a process model, a grounding and a concept file if



complex types where present in the WSDL. Note that this also includes XSLT
transformations as needed in the OWL-S grounding to map between the tradi-
tional XML Schema representation of the input and output data and the OWL
representation.

Limitations. Because we do not handle composition and workflow in our ma-
chine learning approach, the generated process model consists only of one atomic
process per operation. For the OWL-S export, we do not use the annotations
for the operations at the moment, as there is no direct correspondence for the
domain of an operation.

3 Machine Learning

The key feature of the ASSAM annotator is the annotation assistant that sug-
gests annotations to the user based on a machine learning algorithm. We cast the
problem of classifying the components of a Web Service as a text classification
problem. Our tool learns from Web Services with existing semantic annotation.
Given this training data, a machine learning algorithm can generalize and pre-
dict semantic labels for previously unseen Web Services. We use an iterative
relational classification algorithm to exploit the internal structure of a Web Ser-
vice in a way to improve classification accuracy: For example, the list of possible
datatypes is dependent on the category of the Web Service as a whole.

In a mixed-initiative setting, the suggestions made by the assistant do not
have to be perfectly accurate to be helpful. In fact, the classification task is quite
hard, because the domain ontologies can be very large. But for that reason it is
already very helpful for a human annotator if he or she would have to choose
only between a small number of ontological concepts rather than from the full
domain ontology.

For a more detailed explanation of our algorithms and experimental results,
the reader is referred to our paper at the ISWC main conference [2] and our
paper at the European Conference on Machine Learning [3].

4 Related Work

Paolucci et al addressed the problem of creating semantic metadata (in the
form of OWL-S) from WSDL [4]. However, because WSDL contains no semantic
information, this tool provides just a syntactic transformation. The key challenge
is to map the XML data used by traditional Web Services to classes in an
ontology.

Currently, Patil et al [5] are also working on matching XML schemas to
ontologies in the Web Services domain. They use a combination of lexical and
structural similarity measures. They assume that the user’s intention is not to
annotate similar services with one common ontology, rather they also address
the problem of choosing the right domain ontology among a set of ontologies.



Sabou [6] addresses the problem of creating suitable domain ontologies in
the first place. She uses shallow natural language processing techniques to assist
the user in creating an ontology based on natural language documentation of
software APIs.

Sudhir Agarwal et al. [7] created a tool that assists the user in annotat-
ing semantic Web Services by using plain text descriptions found on web sites
describing the service.

5 Future Development

We are planning various improvement for the next version of ASSAM to reach
production quality. For example, at the moment, we do not do inference checks
on the annotations. Also, as mentioned above, OWL-S defines atomic processes
in terms of preconditions and effects. Instead of assigning a domain to an oper-
ation, future versions of ASSAM could instead assign preconditions and effects.
However, the techniques used in ASSAM are independent of the actual syntax
of the modeling language that is exported. Future versions could also export dif-
ferent formats like WSMO/WSML. We are also planning to include our OATS
algorithm as described in [8] in future versions of ASSAM.

Acknowledgments. This research was supported by grants SFI/01/F.1/C015
from Science Foundation Ireland, and N00014-03-1-0274 from the US Office of
Naval Research.

References

1. The DAML Services Coalition: OWL-S 1.0. White Paper (2003)
2. Heß, A., Johnston, E., Kushmerick, N.: Assam: A tool for semi-automatically an-

notating semantic web services. In: 3rd International Semantic Web Conference,
Hiroshima, Japan (2004)

3. Heß, A., Kushmerick, N.: Iterative ensemble classification for relational data: A
case study of semantic web services. In: European Conference on Machine Learning,
(Pisa, Italy)

4. Paolucci, M., Srinivasan, N., Sycara, K., Nishimura, T.: Towards a semantic chore-
ography of web services: From WSDL to DAML-S. In: Int. Conf. for Web Services.
(2003)

5. Patil, A., Oundhakar, S., Sheth, A., Verma, K.: Meteor-s web service annotation
framework. In: 13th Int. WWW Conf., New York, USA (2004)

6. Sabou, M.: From software APIs to web service ontologies: a semi-automatic extrac-
tion method. In: 3rd International Semantic Web Conference, Hiroshima, Japan
(2004)

7. Agarwal, S., Handschuh, S., Staab, S.: Surfing the service web. In: 2nd International
Semantic Web Conference, Sanibel Island, FL, USA (2003)

8. Johnston, E., Kushmerick, N.: Aggregating web services with active invocation and
ensembles of string distance metrics. In: 14th International Conference on Knowl-
edge Engineering and Knowledge Management, Whittlebury Hall, Northampton-
shire, UK (2004)


