
ODE SWS: A Semantic Web Service Development Tool
Asunción Gómez-Pérez

Universidad Politécnica de Madrid
Depto. de Inteligencia Artificial
Campus de Montegancedo s/n

28660 Boadilla del Monte, Spain
Phone: +34 91 3367439

asun@fi.upm.es

Rafael González-Cabero
Universidad Politécnica de Madrid

Depto. de Inteligencia Artificial
Campus de Montegancedo s/n

28660 Boadilla del Monte, Spain
Phone: +34 91 3367467

rgonza@fi.upm.es

Manuel Lama
Universidade de Santiago de Composte-

la
Depto. de Electrónica e Computación

Campus Universitario Sur s/n
15782 Santiago de Compostela, Spain

Phone: +34 981 563100 ext 13571

lama@dec.usc.es

ABSTRACT
ODE SWS is a development environment to design Semantic
Web Services (SWS) at the knowledge level. ODE SWS describe
the service following a problem-solving approach in which the
SWS are modeled using tasks, to represent the SWS functional
features, and methods, to describe the SWS internal structure. In
this paper, we describe the ODE SWS architecture and the capa-
bilities of its graphical interface, which enables users to design
SWS independently of the semantic markup language used to
represent them.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation Formal-
isms and Methods.

General Terms
Design, Languages.

Keywords
Web Services, Semantic Web, Problem-Solving Methods, Design
Tools.

1. INTRODUCTION
A Web Service (WS) is an interface that describes a collection of
operations, which are network-accessible through standardized
XML-messaging, and that is specified following a standard XML-
based language [1]. A WS in the Semantic Web [2], called Se-
mantic Web Service (SWS) [3], is an interface with a description
based on an ontology that semantically describes all the WS
features, and that is expressed in a semantic markup language like
OWL [4]. Once the SWS has been specified in that language,
software agents would use the reasoning capabilities to discover
and compose new services whose features would match the re-
quirements of those agents [5].
However, as a previous step to the specification of SWS in a
semantic markup language, the SWS should be designed at a
knowledge or conceptual level to avoid inconsistencies or errors
among the services that constitute the SWS. In this context, SWS
design consists in specifying the non-functional, functional, and
structural features of the service. Currently, there are some envi-
roments to edit/design SWSs [6,7,8] that present the following
features:
• They are language-dependent, because their graphical inter-

face consists of a set of containers that represent all the service
features. Thus, to design a SWS, the user must fill out these
containers by typing the features in a semantic language (like

OWL or F-Logic). This process design favours the occurrence
of errors and inconsistencies in the service development.

• Some environments [7,8] are really ontology editors (devel-
oped as plug-ins of Protégé), where the user designs the service
by instantiating the concepts and relations of the ontology that
describes the service features. Therefore, in these environments
the SWS structure is hidden (that is, the service is not visually
developed), and if there were a change in the SWS ontology,
the graphical interface itself should be modified to be adapted to
this change.

To solve those drawbacks, we have developed an environment,
called ODE SWS1 [9], to design SWSs at the knowledge and
independent-language level. This environment is based on the
assumption that a SWS is modeled as a Problem-Solving Method
(PSM) [10], where a task defines the service functional features,
and the methods that solve such task describes both the internal
components of the service and the control of the reasoning proc-
ess required to execute it.
In this paper, we describe the architecture and main features of
ODE SWS, and, specially, we will focus on the capabilities of its
graphical interface, called SWSDesigner. This interface is directly
based on the views of the PSM classical modeling: (1) in the
interaction and logic views, the task associated to the service and
the methods that solve such task are defined; (2) in the task-
method hierarchy view, the internal components of the service are
specified; (3) in the knowledge flow view, the data flow between
the components of the service is described; and (4) in the control
flow view, the coordination of the service components is speci-
fied.
This paper is structured as follows: in the following section the
main features of ODE SWS are presented; then, we will show the
software architecture of the design environment, and, finally, in
the section 4 the graphical interface of ODE SWS is described.

2. ODE SWS Features
2.1.1 Semantic Web Service Description
ODE SWS follows a problem-solving approach for modeling the
services. According to this approach, tasks, methods, and adapters
are introduced to describe the service features and favour the
reuse of the services:

• Task, describes the functional features of a service; that is, its
input/output roles, pre/post-conditions, and effects. A task de-
scribes, on one hand, the roles and conditions required to exe-

1 ODE SWS is available at http://kw.dia.fi.upm.es/odesws.

cute the service (input roles and pre-conditions), and, on the
other hand, the results of the service execution (output roles,
post-conditions and effects). Figure 1 shows the representation
(as an ellipse) of the task Task_BuyMovieTicket, which defines
the functional features of the service BuyMovieTicket.

• Method, describes how a task can be solved; that is, they
specify the control of the reasoning steps needed to solve a
given task. A method is used to define the internal structure of
the service: its components and the coordination of the execu-
tion of those components (usually represented as a workflow).
A method is defined by a set of input/output roles, the pre-
conditions to be verified for executing the method, and the post-
conditions that describe the world state once the method has
been executed.
 A method also describes the internal components that are
executed to solve a task. These components are tasks (so-called
sub-tasks), each of which is solved by other method that can be
composed of other sub-tasks, and so forth. Figure 2.(a) shows
an example of the internal description of a method (represented
as a rounded corner square): the task Task_BuyMovieTicket is
solved by the method Method_BuyMovieTicket, which is com-
posed of the sub-tasks Task_FindCinema, Task_SelectSeat,
Task_CheckTimetable, and Task_BuyTicket. The description of
the internal structure of the method is completed with the
definition of the execution coordination of its sub-tasks; that is,
a method specifies the control flow (reasoning process) among
its sub-tasks. Figure 2.(b) shows a graphical example of the
coordination of the sub-tasks of the method
Method_BuyMovieTicket: first, the tasks Task_FindCinema and
Task_CheckTimetable are executed to select a theater that
shows a movie in a given time; then, the task Task_SelectSeat is
executed in a loop until the user selects the desired seat; and,
finally, the task Task_BuyTicket is executed to buy the ticket
(typically using a credit card).

• Adapters, describe the conditions in which a method could
be applied to solve a particular task, and the mappings between
the method ontology and the task ontology. Typically, a task
can be solved by several methods. For example, to solve the
task Task_BuyMovieTicket a method could not include the task
Task_FindCinema if the theatre were an input. Currently, the
task-method adapters are not supported by ODE SWS, which
means that the tasks could be solved by an only method, and
both tasks and methods use the same ontology.

2.1.2 KnowledgeLevel Design
In ODE SWS, the user will design the services independent of the
semantic markup language in which they will be represented to be
accessed by the external agents. Thus, the services are designed at
the knowledge level by means of a graphical interface that is
inspired in the classical views of the PSM modeling (see section
4). As a result of the design process, the user obtains a SWS
graphical model, represented in an XML-based format, that de-
scribes the content of the PSM graphical views. This model,
therefore, is the representation of the SWS itself, but it could not
be used for reasoning about the service features beause the XML
format does not describe semantically the service. However, ODE
SWS provides an export facility that translates a service from its
graphical model into the semantic markup language (like OWL-S
or WSMO) selected by the user to represent the service.
Therefore, in ODE SWS, the design of the services is based on the
paradigm of the problem-solving methods, and it is independent
of both the semantic markup languages and the knowledge repre-
sentation models of such language. Thus, if new languages were
proposed to represent SWSs, in ODE SWS the design of services
would not change, but it would need to create a new export mod-
ule to translate from the graphical model into those languages.

2.1.3 Ontology Management
The input and output parameters of a SWS should be described in
a domain ontology (usually as concepts and attributes) to enable
external agents to reason about the SWS competence. Moreover,

(a)

(b)

Figure 2. A method (a) is composed of a set of sub-tasks,
which are solved by other methods; and (b) defines the coor-

dination of the execution of the sub-tasks.

(a)

(b)

Figure 1. A task has (a) input and output roles; and (b) a set of
pre/post-conditions.

complex services manage several ontologies to describe different
kinds of parameters. For example, a theater booking service could
manage a theater ontology, and, additionally, a transport means
ontology to describe how the user could go to the theater.
ODE SWS assumes that the ontologies used by the service will be
constructed in an ontology development environment, where they
could be evaluated to solve errors and inconsistencies. ODE SWS,
however, can manage multiple ontologies in read mode, and these
ontologies could be imported from OWL or RDF(S), or directly
loaded from a WebODE server [11].

3. ODE SWS Architecture
The software architecture of ODE SWS is composed of three
main layers, which reflect the layers introduced in a classical
software design (Figure 3):
Presentation layer. This layer manages the interaction between
the user and the software system. It is entirely composed of the
ODE SWS graphical editor, called ODE SWSDesigner, that pro-
vides facilities to construct graphically a service. As result of this
construction a graphical model of the service, called ODE
SWSgm, will be generated. The main functionalities of this editor
are: (1) the appropriate management and representation of the
service model; and (2) the graphical processing of all the possible
interactions among the elements that compose such model.
Domain layer. This layer contains all the components that oper-
ate in the domain of ODE SWS (that is, development of SWS). As
Figure 3 shows, the ODE SWSDesigner directly will invoke the
execution of the components of this layer to support the execution
of the operations needed to guarantee the correct design of the
service. The intended functionalities of these components are:
• SWSOntologiesManager. The aim of this module is both to

offer a uniform manner for accessing to ontologies implemented
in different languages, and to access to repositories of ontolo-
gies. Currently, this module can manage either ontologies im-
plemented in RDF(S) and OWL, or ontologies stored in the
WebODE platform.

• SWSMappingsManager. This module deals with the map-
pings that are (semi) automatically defined between the task
ontologies and the method ontologies. Currently, the user estab-
lishes manually these mappings through the SWSDesigner, and
the SWSMappingsManager automatically generates the adapters
between tasks and methods.

• SWSWorkspace. In the development process of a SWS, an
incomplete, and even inconsistent, representation of the service
may be stored and managed (to be completed later). This mod-
ule performs these activities, enabling the store and recovery of
ongoing SWS.

• SWSInstanceCreator. This module generates the instances of
the stack of ontologies that describe the features of the SWS
following the problem-solving based approach (described in
section 2). These instances will be created from the graphical
representation of the service generated by SWSDesigner.

• SWSTranslator. This module supports the translation from
the graphical representation of the service into a SWS-oriented
markup language (as OWL-S). Thus, once the service has been
developed, the user will select the language in which the service
will be expressed. Then, the SWSTranslator generates automati-
cally the translation and, additionally, it incorporates informa-
tion related to the problem that might risen in the translation
process. Currently, services can be exported to OWL-S and/or
WSDL.

Data Source Layer. In this layer, other applications act on behalf
of the ODE SWS environment to provide support for operations
do not implemented in the environment. For ODE SWS, this layer
will be just composed by the WebODE platform, which will
provide services for the management and access to the ontologies
used in the SWS development.

4. SWSDesigner: ODE SWS INTERFACE
The design of ODE SWSDesigner has been inspired in the classi-
cal modelling of the problem-solving methods, including hierar-
chical trees of tasks-methods, input/output interaction diagrams
among the sub-tasks that compose a method, and diagrams to
specify the control flow that describes the coordination of the
execution of the sub-tasks. Taking this into account, in the ODE
SWSDesigner we distinguish the following graphical components
(Figure 4):

• Task (Method) trees allow users to just create the tasks
(methods) associated to the functional features (internal struc-
ture) of a service. Once the tasks (methods) have been created,
from these trees the user could drag the icons representing a
task (method) to be dropped into the views that allow the speci-
fication of the service features. As Figure 4 shows, these trees
are on the right of the SWSDesigner.

• Ontology trees show the concepts and attributes of the ontol-
ogy (or ontologies) used to specify the service input/output
roles. Although ODE SWS cannot create ontologies, it just can
import their concepts and attributes that will be showed in the
ontology tree. Then, the user could drag the icons representing a
concept/attribute to be dropped into the views that allow the
specification of the input/output roles of both tasks and meth-
ods. As Figure 4 shows, the ontology trees are on the left of the
SWSDesigner.

• Service definition View is used to specify the functional and
non-functional features of a service, including its input/output
roles (interaction diagram), pre/post-conditions (logical dia-
gram), providers, commercial classification, geographical loca-
tion, and quality rating parameters.

• Decomposition View allows users to specify the decomposi-
tion of the method (that solves the task associated to the service)
into its sub-tasks, which will be solved by other methods, and so
forth. The user carries out this specification by dragging the Figure 3. Software architecture of the ODE SWS environ-

icons of the tasks and methods from the related trees and drop-
ping such icons into the view.

• Knowledge Flow View allows users to define the input/output
interactions among the sub-tasks of a method: the user, when
requires, connects the output of a sub-task to the input of other
sub-task, and establish the mappings between the roles used in
the definition of a sub-task (carried out in the service definition
view) and the roles named when such sub-task is used as an in-
ternal component of a method. For example, City_0 could be an
input role of the task Task_FindCinema and when that task is
used as part of the method Method_BuyMovieTicket, its input
role could be named as selectedCity. In this view, the user also
defines the mappings between the roles of a method and the
roles of the task solved by that method: the role names of meth-
ods and tasks could be different.

• Control Flow View enables users to describe the control flow
of the method. The elements of this view are the sub-tasks of
the method, which are dragged-and-dropped from the task tree,
and the workflow constructions (if, while-until, split and join),
which are introduced through a contextual menu.

5. ACKNOWLEDGMENTS
Authors would like to thank the Esperonto project (IST-2001-
34373) for their financial support in carrying out this work.

6. REFERENCES
[1] Kreger, H. Web Services Conceptual Architecture (WSCA).

http://www.ibm.com/software/solutions/webservices/p
df/WSCA.pdf (2001)

[2] Berners-Lee, T., Hendler, J., and Lassila, O. The Semantic
Web. Scientific American, 284 (2001), 34-43.

[3] McIlraith, S.A., Son, T.C., and Zeng, H. Semantic Web
Services. IEEE Intelligent Systems, 16 (2001), 46-53.

[4] Dean, M., and Schreiber, G. (eds.). OWL Web Ontology
Language Reference. W3C Candidate Recommendation.
http://www.w3c.org/TR/owl-ref (2004)

[5] Hendler, J. Agents and the Semantic Web. IEEE Intelligent
Systems, 16 (2001), 30-37

[6] Dimitrov, M., Marinova, Z., and Radkov, P. SWWS Studio –
A WSMO compliant editor. Proceedings of the 1st WSMO
Implementation Workshop (Frankfurt, September, 2004).
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-113/pospaper3.pdf (2004)

[7] Lausen, H., and Felderer, M. WSMO Editor. WSMO Work-
ing Draft. http://www.wsmo.org/2004/d9/v0.1 (2004)

[8] Elenius, D. Modeling services with Protégé. In Proceedings
of the 7th International Protégé Conference (Bethesda, 2004)
http://protege.stanford.edu/conference/2004/posters/Elenius.
pdf

[9] Gómez-Pérez, A., González-Cabero, R., and Lama, M. ODE
SWS: A Framework for Designing and Composing Semantic
Web Services, IEEE Intelligent Systems, 19 (2004), 24-32.

[10] Benjamins, R.V., and Fensel, D. (eds.). Problem-Solving
Methods. International Journal of Human-Computer Studies,
49 (1998) 4 (entire issue).

[11] Arpírez, J.C., Corcho, O., Fernández-López, M., and Gómez-
Pérez, A. WebODE in a nutshell. AI Magazine, 24 (2003)
37-48.

Figure 4. Knowledge flow view of the ODE SWS graphical interface (SWSDesigner).

