Continuous Imputation of Missing Values in Streams of Pattern-Determining Time Series

KEVIN WELLENZOHN^{\dagger} · MICHAEL H. BÖHLEN^{\dagger} ANTON DIGNÖS[‡] · JOHANN GAMPER[‡] · HANNES MITTERER[‡]

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

PROBLEM

Problem. Streaming time series often have **missing values**, e.g. due to sensor failures or transmission delays!

<u>Goal.</u> Accurately **impute** (i.e. recover) the latest measurement by exploiting the **correlation** among streams.

Challenge. Streaming time series are often non-linearly correlated, e.g. due to phase shifts.

APPLICATION SCENARIO

Consider the set $\{s, r_1, r_2\}$ of streaming time series obtained from a sensor network. Time series s has a **missing value** at current time $t_n = 14:20$ that is **imputed** using the d = 2 reference time series r_1 and r_2 .

APPROACH

Intuition. Impute a missing value in time series s with past values from swhen a set of correlated **reference time series** exhibited similar **patterns**.

Top-k Case Matching (TKCM). To impute a missing value in a time series s at time t_n :

- 1. Define query pattern $P(t_n)$, spanning the values of d reference time series over a time frame of l time points anchored at time t_n
- 2. Look for the k most similar non-overlapping patterns in a sliding window over the time series
- 3. Impute the missing value $s(t_n)$ as the average of the values of s at the anchor time points of the k previously found patterns

Parameter l (called the "**pattern length**") enables TKCM to deal with non-linearly correlated time series, e.g. phase-shifted time series.

PHASE SHIFTS

Applying TKCM.

- 1. Define query pattern $P(t_n) = P(14:20)$ over reference time series $\{r_1, r_2\}$ in a time frame of l = 10 minutes
- 2. The k = 2 most similar non-overlapping patterns are P(14:00) and P(13:35)
- 3. Missing value is imputed as $\hat{s}(14:20) = \frac{1}{2}(s(14:00) + s(13:35)) =$ $21.85^{\circ}\mathrm{C}$

TKCM & NON-LINEAR CORRELATIONS

With pattern length l > 1,

- Time series s and r are **phase-shifted** by 90 degrees
- The scatterplot shows that s and r are **non-linearly correlated**. Their Pearson Correlation Coefficient is 0!
- For example, whenever r(t) = 0.5, time series s has two different values, either s(t) = 0.86 or s(t) = -0.86

- TKCM takes the temporal context into account and captures how time series change over time
- there are less patterns with pattern dissimilarity 0

Pattern length l = 1

Pattern length l = 100

EXPERIMENTS

The Chlorine dataset contains phase-shifted and hence \triangleright non-linearly correlated time series

 \triangleright A larger pattern length decreases the oscillation in the imputed time series

for non-linearly correlated time series

Published in: Proceedings of the 20th International Conference on Extending Database Technology, Venice, Italy, March 2017.