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PROBLEM APPLICATION SCENARIO

Problem. Streaming time series often have missing values, e.g. due to Consider the set {s,r1, 72} of streaming time series obtained from a sensor
sensor failures or transmission delays! network. Time series s has a missing value at current time ¢, = 14:20

that is imputed using the d = 2 reference time series r; and rs.

Goal. Accurately impute (i.e. recover) the latest measurement by exploit-

ing the correlation among streams. -
S
Challenge. Streaming time series are often non-linearly correlated,
e.g. due to phase shifts. 91 | | | | | | | | | -
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. L(?ok for the £ m.ost sm.nlar non-overlapping patterns in a sliding Applying TKCM.
window over the time series

. Impute the missing value s(t,,) as the average of the values of s at

r1,7T2} in a time frame of [ = 10 minutes
the anchor time points of the k£ previously found patterns {r1,m2}

Parameter | (called the “pattern length”) enables TKCM to deal with P(13:35)

non-linearly correlated time series, e.g. phase-shifted time series. o o A .
3. Missing value is imputed as 5(14:20) = 5(s(14:00) + s(13:35))
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PHASE SHIFTS TKCM & NON-LINEAR CORRELATIONS
With pattern length [ > 1,

s(t) = sind(t)

1. Define query pattern P(t,) = P(14:20) over reference time series

2. The k = 2 most similar non-overlapping patterns are P(14:00) and

r(t) = sind(t — 90) o TKCM takes the temporal context into account and captures how
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e The scatterplot shows that s and r are non-linearly correlated. , | Pattern dissimilarity - , | Pattern dissimilarity B
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e For example, whenever r(t) = 0.5, time series s has two different ' ' ' '
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values, either s(t) = 0.86 or s(t) = —0.86
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