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ABSTRACT
Most database management systems maintain statistics on
the underlying relation. One of the important statistics is
that of the “hot items” in the relation: those that appear
many times (most frequently, or more than some threshold).
For example, end-biased histograms keep the hot items as
part of the histogram and are used in selectivity estimation.
Hot items are used as simple outliers in data mining, and in
anomaly detection in networking applications.

We present a new algorithm for dynamically determin-
ing the hot items at any time in the relation that is un-
dergoing deletion operations as well as inserts. Our algo-
rithm maintains a small space data structure that monitors
the transactions on the relation, and when required, quickly
outputs all hot items, without rescanning the relation in the
database. With user-specified probability, it is able to re-
port all hot items. Our algorithm relies on the idea of “group
testing”, is simple to implement, and has provable quality,
space and time guarantees. Previously known algorithms
for this problem that make similar quality and performance
guarantees can not handle deletions, and those that handle
deletions can not make similar guarantees without rescan-
ning the database. Our experiments with real and synthetic
data shows that our algorithm is remarkably accurate in dy-
namically tracking the hot items independent of the rate of
insertions and deletions.

1. INTRODUCTION
One of the most basic statistics on a database relation

is that of which items are hot, i.e., occur frequently.1 This
gives a useful measure of the skew of the data. High-biased
and end-biased histograms [19, 20] specifically focus on hot
items to summarize data distributions for selectivity esti-
mation. Iceberg queries generalize the notion of hot items

1They are also known as popular items, but we use “hot” to
emphasize the notion of “current interest”, since hot items
may change from time to time.
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in the relation to aggregate functions over an attribute (or
set of attributes) in order to find aggregate values above a
specified threshold. Hot item sets in market data are in-
fluential in decision support systems. They also influence
caching, load balancing and other system performance is-
sues. There are other areas — such as data warehousing,
data mining, and information retrieval — where hot items
find applications. Keeping track of hot items also arises in
application domains outside traditional databases. For ex-
ample, in telecommunication networks such as Internet and
telephone, it is of great importance for network operators
to see meaningful statistics about the operation of the net-
work. Keeping track of which network addresses are gen-
erating the most tra�c allows management of the network,
as well as giving a warning sign if this pattern begins to
change unexpectedly. This has been studied extensively in
context of anomaly detection [5, 9, 17, 21]. Our focus in this
paper is on dynamically maintaining hot items in the pres-
ence of delete and insert transactions. In many of the moti-
vating applications above, the underlying data distribution
changes, sometimes quite rapidly. Transactional databases
undergo insert and delete operations, and it is important to
propagate these changes to the statistics maintained on the
database relations in timely and accurate manner. In the
context of continuous iceberg queries, this is apt since the
iceberg aggregates have to reflect new data items that mod-
ify the underlying relations. In the networking application
cited above, network connections start and end over time,
and hot items change over time significantly. A thorough
and thoughtful discussion in [14] describes many applica-
tions for finding hot items and the challenges in maintaining
them over a changing database relation. Also, [11] presents
an influential case for finding and maintaining hot items and
more generally, iceberg queries.

Formally, the problem is as follows. We imagine that we
observe a sequence of n transactions on items. Without
loss of generality, we assume that the item identifiers are
integers in the range 1 to m. The net occurrence of any
item i at time t, denoted ni(t), is the number of times it has
been inserted less the number of times it has been deleted.
The current frequency of any item is then given by fi(t) =
ni(t)/

Pm
j=1

nj(t). The most frequent item at time t is the
one with fi(t) = maxi fi(t). The k most frequent items at
time t are those with the k largest fi(t)’s. We are interested
in the related notion of frequent items that we call hot items.
An item i is said to be a hot item if fi(t) > 1/(k + 1), that
is, it appears a significant fraction of the entire dataset; here



k is a parameter. Clearly, there can be at most k hot items,
and there may be none. We assume throughout that a basic
integrity constraint is maintained, that ni(t) for every item
is non-negative (the number of deletions never exceeds the
number of insertions).

Our main result is a highly e�cient, randomized algorithm
for maintaining hot items. This algorithm monitors the
changes to the data distribution and maintains O(k log k log m)
space summary data structure. When queried, we can find
all hot items in time O(k log k log m)) from the summary
data structure, without scanning the underlying relation.2

Thus our result here maintains a small summary data struc-
ture — significantly sublinear in the dataset size — and ac-
curately detects hot items at any time in presence of the
full repertoire of inserts and deletes. Despite extensive work
on this problem (which will be summarized in Section 2),
most of the prior work with comparable guarantees works
only for insert-only transactions. Prior work that deals with
the fully general situation where both inserts and deletes are
present can not provide the guarantees we give, without res-
canning the underlying database relation. Thus, our result
is the first provable result for maintaining hot items, with
small space.

A common approach to summarizing data distribution or
finding hot items relies on keeping samples on the underlying
database relation. These samples — deterministic or ran-
domized — can be updated if data items are only inserted.
Samples can then faithfully represent the underlying data
relation. However, in presence of deletes, in particular, in
cases where the data distribution changes significantly over
time, samples can not be maintained without rescanning the
database relation.3 Our result here relies on random sam-
pling to construct groups (O(k log k) sets) of items, but we
further group such sets deterministically into a small num-
ber (log m) of subgroups. Our summary data structure com-
prises sum of the items in each group and subgroup. The
grouping is based on error correcting codes, and the entire
procedure may be thought of as “group testing” which is
described in more detail later.

The rest of the paper is organized as follows. In Section
2, we summarize previous work, which is rather extensive.
In Section 3, we present our algorithms and prove our guar-
antees. In Section 4, we present a preliminary experimental
study of our algorithm using synthetic data as well as real
network data addressing the application domain cited earlier
and show that our algorithm is e↵ective and practical.

2. PRELIMINARIES
If one is allowed O(m) space, then a simple heap data

structure will process each insert or delete operation in O(log m)
time and find the hot items in O(k log m) time in the worst
case [1]. Our focus here is on algorithms that only maintain
a summary data structure, that is, one that uses sublinear
space as it monitors inserts and deletes to the data.

In a fundamental paper [3], the authors proved that es-
timating f⇤(t) = maxi fi(t) is impossible with o(m) space.
Estimating the k most frequent items is at least as hard.

2More formally, for any user specified probability �, the algo-
rithm succeeds with probability at least 1��, as is standard
in randomized algorithms.
3For example, the entire set of sampled values may get
erased from the relation by a sequence of deletes.

Hence, research in this area studies related, relaxed versions
of the problems. For example, finding hot items, that is,
items each of which has frequency above 1/(k + 1), is one
such related problem. The lower bound of [3] does not di-
rectly apply to this problem. But a simple information the-
ory argument su�ces to show that solving this problem ex-
actly requires the storage of a large amount of information
if we give a strong guarantee about the output. We provide
the simple argument here for completeness.

Lemma 1. Any algorithm which guarantees to find all and
only items which have frequency greater than 1/(k+1) must
store ⌦(m) bits.

Proof. Consider a set S ✓ {1 . . . m}. Transform S into
a stream of n = |S| items by including i in the stream ex-
actly once if and only if i 2 S. Now process this stream
with the proposed algorithm. We can then use the algo-
rithm to extract whether i 2 S or not: for some i, insert
bn/kc copies of i. Suppose i 62 S, then the frequency of i is
bn/kc/(n + bn/kc) = bn/kc/bn(k + 1)/kc  bn/kc/(k +
1)bn/kc = 1/(k + 1), and so i will not be output. On
the other hand, if i 2 S then bn/kc + 1/(n + bn/kc) >
(n/k)/(n+n/k) = 1/(k+1) and so i will be output. Hence,
we can extract the set S, and so the space stored must be
⌦(m).

This argument suggests that, if we are to use less than
⌦(m) space then we must sometimes output items which are
not hot, since we will endeavor to include every hot item in
the output. To overcome this disadvantage, then in certain
cases we may adopt a restriction based on the small tail
assumption, to help with the analysis of the approach. Say
f
1

� . . . � fm is the frequencies of items at any time in the
non-increasing order. A set of frequencies is said to have a
small tail if (

P
i>k fi)  1/(k + 1), that is, the items except

the top k do not amount to a significant count. If there are
k hot items, then surely the small tail probability holds. If
small tail probability holds then it is still possible some of
the top k items are not hot. We shall analyze our solution
in the presence and absence of this small tail property. We
will later see that this condition is overly strong, and that
in fact only a weaker condition is needed to guarantee no
infrequent items are output.

2.1 Prior Work
Finding which items are the hot is a problem that has a

history stretching back over two decades. The earliest work
considered the problem of finding an item which occurred
more than half of the time [6, 12]. This procedure can be
viewed as a two pass algorithm: after one pass over the data
a candidate is found, which is guaranteed to be the majority
element if any such element exists. A second pass verifies
the frequency of the item. Only a constant amount of space
is used. A natural generalization of this method to find
items which occur more than n/k times in two passes was
given by Misra and Gries [24]. The total time to process n
items is O(n log k), with space O(k) (we assume throughout
that any item label or counter can be stored in constant
space). In their implementation, the time to process any
item is bounded by O(k log k) but this time is only incurred
O(n/k) times, giving the amortized time bound. The first
pass generates a set of at most k candidates for the hot
items, and the second pass computes the frequency of each



Algorithm Type Time Per Item Space Reference

Lossy Counting Deterministic O(log(n/k)) amortized ⌦(k log(n/k)) [23]
Misra-Gries Deterministic O(log k) amortized O(k) [24]
Frequent Randomized (LV) O(1) expected O(k) [9, 21]
Charikar et al Approximate, Randomized (MC) ⌦(k/✏2 log n) ⌦(k/✏2 log n) [8]

Table 1: Summary of previous results. LV (Los Vegas) and MC (Monte Carlo) are types of randomized

algorithms. See [25] for details.

candidate exactly, so the infrequent items can be pruned
out. It is possible to drop the second pass, in which case at
most k items will be output amongst which all hot items are
guaranteed to be included.

Recent interest in processing data streams, which can be
viewed as one-pass algorithms with limited storage, has re-
opened interest in this kind of problem. Several authors [9,
21] have rediscovered the algorithm of Misra and Gries, and
using more sophisticated data structures they are able to
process each item in expected O(1) time while still keeping
only O(k) space. As before, the output guarantees to include
all hot items, but some others will be included in the output,
about which no guarantee of frequency is made. A similar
idea is used by Manku and Motwani [23] with the stronger
guarantee of finding all items which occur more than n/k
times and not reporting any that occur fewer than n( 1

k
� ✏)

times. The space required is O( 1

✏
log ✏n) — note that ✏  1

k
and so the space is e↵ectively ⌦(k log(n/k)). If we set ✏ = c

k
for some small c then it requires time at worst O(k log(n/k))
per item, but this occurs only every 1/k items, and so the
total time is O(n log(n/k)). Another recent contribution is
that of Babcock and Olston [4]. This is not immediately
comparable to our work, since their focus is on maintain-
ing the top-k items in a distributed environment, and the
goal is to minimize communication. Counts of all items are
maintained exactly at each location, so the memory space is
⌦(m). All of these mentioned algorithms are deterministic
in their operation: the output is solely a function of the in-
put stream and the parameter k. We summarize the prior
work in Table 1.

All the methods discussed thus far have certain features
in common: in particular, they all hold some number of
counters, each of which counts the number of times a sin-
gle item is seen in the sequence. These counters are incre-
mented whenever their corresponding item is observed, and
are decremented or reallocated under certain circumstances.
As a consequence, it is not possible to directly adapt these
algorithms to the dynamic case where items are deleted as
well as inserted. We would like the data structure to have
the same contents following a deletion of an item as if that
item had never been inserted. But it is possible to insert
an item so that it takes up a counter, and then later delete
it: it is not possible to decide which item would otherwise
have taken up this counter. So the state of the algorithm
will be di↵erent to that reached without the insertions and
deletions of the item.

Previous work that studied hot items in presence of both
of inserts and deletes is sparse [13, 14]. These papers pro-
pose methods to maintain a sample and count of times the
sample appears in the data set. These methods work prov-
ably for insert-only case, but provide no guarantees for the
fully dynamic case with deletions. However, the authors

study how e↵ective these samples are for the deletion case
through calculations and experiments. [15] presents meth-
ods to maintain various histograms in presence of inserts
and deletes using “backing sample”, but these methods too
need access to large portion of the data periodically in pres-
ence of deletes. A recent theoretical work presented provable
algorithms for maintaining histograms with guaranteed ac-
curacy and small space [16]. The methods in this paper may
yield algorithms for maintaining hot items, but the methods
are rather sophisticated and use powerful range summable
random variables resulting in k logO(1) n space and time al-
gorithms where the O(1) term is quite large. We draw some
inspiration from the methods in this paper — maintaining
the sum of items in various groups may be thought of as
the “sketching” developed in [16], but our overall methods
are much simpler and more e�cient. Finally, recent work in
maintaining quantiles [18] is similar to ours since it keeps the
sum of items in random subsets. However, the result here is,
of necessity, more involved, involving a random group gen-
eration phase based on group testing which is not needed
in [18]. Also, once such groups are generated, we maintain
sums of deterministic sets (in contrast to the random sets as
in [18]) given again by error correcting codes. Finally, our
algorithm is more e�cient than the ⌦(k2 log2 m) space and
time algorithms therein.

2.2 Sketch based methods
An important recent result is that of Charikar et al [8],

who gave an algorithm to find k items whose frequency is
at least (1� ✏) times the frequency of the kth most frequent
item, with probability 1 � �. If we wish to only find items
with count greater than n/(k + 1) then the space used is
O(k/✏2 log n/�). The method works as follows: a random-
ized “sketch” structure is constructed and updated which
guarantees with high probability that the count of any item
can be approximated up to an additive quantity of �, where
� is a function of the frequencies of the infrequent items. As
each item is encountered, the structure is updated, and the
approximate frequency of the item is extracted. A heap of
frequent items is kept, and if the current items exceeds the
threshold, then the least frequent item in the heap is ejected,
and the current item inserted. It is possible to amend this
method so that the approximate counts can reflect item dele-
tions. However, it is important to realize that this does not
allow the current hot items to be found with this method:
suppose that an item which is currently frequent is sub-
ject to a number of deletions so that it is not longer among
the most frequent. In this case, it is not possible using the
method of [8] to retrieve items from the past which have
consequently become frequent.

We will now propose a novel algorithm which makes use
of approximate methods such as those in [8], and which can



DivideAndConquer(l, r, thresh)
if oracle(l, r) > thresh then

if (l = r) then

output(l);
else

DivideAndConquer(l, r/2);
DivideAndConquer(r/2 + 1, r);

Figure 1: Divide and conquer algorithm to find hot

items using a dyadic range sum oracle

handle insertions and deletions. We shall analyze its space
requirements in detail, and show that these are significantly
larger than those of the algorithm which we propose here.
We shall make use of the fact that the range of items can be
mapped onto the integers 1 . . . m. We will initially describe
the method in terms of an oracle, and then show how this
oracle can be realized in a variety of ways.

Definition 1. A dyadic range sum oracle returns the (ap-
proximate) sum of the counts of items in the range (i2j +
1) . . . (i + 1)2j for 0  j  log m and 0  i  m/2j .

Using such an oracle which reflects the e↵ect of items ar-
riving and departing, it is possible to find all hot items,
with the following binary search divide-and-conquer proce-
dure. For simplicity of presentation, we assume that m, the
range of items, is a power of two. Beginning with the full
range, recursively split in two. If the total count of any
range is less than n/(k + 1), then do not split further. Else,
continue splitting until a hot item is found. The procedure
is presented in Figure 1.

Theorem 1. Calling DivideAndConquer(1, m, n/(k + 1))
will output all and only hot items. A total of O(k log m/k)
calls will be made to the oracle.

Proof. The procedure rejects dyadic intervals whose range
sum is less than the threshold, n/(k+1). These cannot con-
tain a hot item, since negative counts are not possible. For
each length, there can be at most k dyadic regions with
weight greater than n/(k + 1), since the total weight must
sum to n. Because there are log m levels, this bounds the
number of calls to the oracle as O(k log m). A tighter anal-
ysis improves this to O(k log m/k).

Recent work has given several methods of implementing
the dyadic range sum oracle approximately, which can be
updated to reflect the arrival or departure of any item. We
now list three examples of these:

1. The technique of [2], as refined in [18], allows arbitrary
range sums to be computed for a range of length l ac-
curate up to an additive factor of ✏n

p
l with probabil-

ity at least 1�� using space O(1/✏2 log 1/�). Applying
this here, we are interested in ranges up to length m/k
(above this length, we can store the O(k) range sums
exactly), and we will want to set ✏n

p
l to be less than

n/(k+1). This will require us to make ✏ = O(1/
p

kn),
and consequently the space required will be ⌦(km).

2. The method of Random Subset Sums described in [18]
allows finding the frequency of a single item, up to
additive error of ✏n using O(1/✏2 log 1/�) space. It

succeeds with probability at least 1 � �. This can be
transformed into a method for finding the approximate
dyadic range sum by keeping log m independent copies
of the procedure, one for each length 2i. When a new
item arrives or departs, each of the log m copies is
updated, for each of the log m dyadic ranges which
the item falls in. When setting ✏, a trivial bound is
that ✏  �/(k + 1) for some small constant � (say,
� = 1� 10%). Overall, this transformation requires a
total of O(k2/�2 log m log k/�) space. This guarantees
with probability at least 1�� that we output all items
with frequency at least (1+ �)/(k +1), and we output
no items with frequency less than (1� �)/(k + 1).

3. The method of Charikar et al builds a structure which
allows the approximation of the count of any item cor-
rect up to an additive quantity of �n/(k + 1) for q
queries in space O(

Pm
i=k+1

ni(t)
2/(�n/(k+1))2 log q/�).

In our situation, we know that ni(t) < n/(k+1), so this
quantity is O(k/�2 log q/�). We use the same observa-
tion as above to reduce dyadic range sum queries to
point queries in log m levels. The overall space require-
ment is O(k/�2 log m log k/�), since we make q  2k
queries at each of log m levels. The big-O notation
here hides large constant multiples of several hundred,
according to [8]. This guarantees with probability at
least 1� � that we output all items with frequency at
least (1 + �)/(k + 1), and we output no items with
frequency less than (1� �)/(k + 1).

The most promising of these approaches is based on the
structure of [8], which has space cost of O(k/�2 log m log k/�).
The big-O notation hides large constant factors and makes
this appear competitive with our approach, so we give an
example showing the di↵erence. For k = 100, � = 10%, m =
232 and � = 0.1, this method takes approximately 800Mb
(storing counts exactly would take several gigabytes). We
will propose a method using a simple randomized construc-
tion, which has a similar asymptotic memory cost. However,
the constant factors are much smaller (we shall make these
explicit in our description of the algorithm). For the same
parameters as above, the method we propose requires under
128Kb.

2.3 Our Approach
We propose a new approach to this problem, based on

ideas from group testing and error correcting codes. We do
not keep counters for any individual item but rather for sub-
sets of items, and the pattern of which items are monitored
is fixed in advance, and so does not vary whatever the input
distribution. As a consequence, it can find hot items given
an input which is a sequence of insertions and deletions with
only a small amount of storage.

3. OUR ALGORITHMS
Our algorithms depend on ideas drawn from Group Test-

ing [10]. The idea of (non-adaptive) Group Testing is to
design a number of tests, each of which groups together a
number of the m items in order to find up to k items which
test “positive”. This maps neatly onto our goal of finding
up to k hot items. The familiar puzzle of how to use a pan
balance to find one “positive” coin among n good coins of
equal weight, where the positive coin is heavier than the



groups
of items

space of m items

log m

Figure 2: Each test includes half of the range

[1 . . . m], corresponding to the binary representation

of values

good coins is an example of group testing. The goal is to
minimize the number of tests, where each test in group test-
ing consists of a subset of the items.

Our general procedure is as follows: for each transaction
on an item i, we determine which subsets it is included
in (denote these S(i)). Each subset is associated with a
counter, and for an insertion, we increment the counter for
all S(i); for a deletion, we correspondingly decrement these
counters. The test will be whether the count for a subset ex-
ceeds a certain threshold: under certain restrictions, this will
inform us that there is a hot item within the set. Identifying
the hot items is a matter of putting together the information
from the di↵erent tests to find an overall answer.

There are a number of challenges involved in following this
approach: (1) Bounding the number of subsets required (2)
Finding a concise representation of the subsets (3) Giving
an e�cient way to go from the results of tests to the set of
hot items. We shall be able to address all of these issues. To
give greater insight into this problem, we first give a simple
solution to the k = 1 case, which is to find an item that
occurs more than half of the time. Later, we will consider
the more general problem of finding k > 1 hot items.

3.1 Deterministic algorithm for maintaining
the majority item

If an item occurs more than half the time, then it is said
to be the majority item. While finding the majority item
is mostly straightforward in the insertions only case (it is
solved in constant space and constant time per insertion by
the algorithms of Boyer and Moore [6], and Salzberg and
Fischer [12]), in the dynamic case, it looks less trivial. We
might have identified an item which is very frequent, only
for this item to be the subject of a large number of deletions,
meaning that some other item is now in the majority.

We give an algorithm to solve this problem by keeping
dlog

2

me + 1 counters. The first counter, c merely keeps
track of n(t) =

P
i ni(t) which is how many items are ‘live’:

in other words, we increment this counter on every insert,
and decrement it on every deletion. The remaining counters
are labeled 1 up to dlog

2

me. We make use of the function
bit(i, j), which reports the value of the jth bit of the binary
representation of the integer i; and gt(i, j), which returns 1
if i > j and 0 otherwise. Our procedures are as follows:

Insertion of item i: Increment each counter cj such that
bit(i, j) = 1 in time O(log m).
Deletion of i: Decrement each counter cj such that bit(i, j) =
1 in time O(log m).
Query: If there is a majority, then it is given byP

log2 m
j=1

2jgt(cj , c/2), computed in time O(log m).

The two procedures of this method — one to process up-
dates, another to identify the majority element — are given
in Figure 3. The arrangement of the counters is shown
graphically in Figure 2.

Theorem 2. The Algorithm in Figure 3 finds a majority
item if there is one with time O(log m) per operation.

Proof. We make two observations: firstly, that the state
of the data structure is equivalent to that following a se-
quence of c insertions only, and secondly that in the inser-
tions only case, this algorithm identifies a majority element.
For the first point, it su�ces to observe that the e↵ect of
each deletion of an element i is to precisely cancel out the
e↵ect of a prior insertion of that element. Following a se-
quence of I insertions and D deletions, the state is precisely
that obtained if there had been I �D = c insertions only.

The second part relies on the fact that if there is an item
whose count is greater than c/2 (that is, it is in the ma-
jority), then for any way of dividing the elements into two
sets, then the set containing the majority element will have
weight greater than c/2, and the other will have weight less
than c/2. The tests are arranged so that each test deter-
mines the value of a particular bit of the index of the major-
ity element. For example, the first test determines whether
its index is even or odd by dividing on the basis of the least
significant bit. The log m tests with binary outcomes are
necessary and su�cient to determine the index of the ma-
jority element.

The simple structure of the tests is standard in group
testing, and also resembles the structure of the Hamming
single error-correcting code. This is no coincidence, and we
shall now see the relation between error correcting codes and
the style of group testing that we wish to apply.

3.2 Intuition:
Algorithms using error-correcting codes

When we perform a test based on on comparing the count
of items in two buckets, we extract from this a single bit of
information: whether there is a hot item present in the set
or not. This leads immediately to a lower bound on the
number of tests necessary: to locate k items amongst m
locations requires log

2

(m
k ) � k log(m/k) bits.

One way to generate the groups is to use ideas from error
correcting codes. Consider a code with m codewords each of
length l. We will keep l counters, each corresponding to one
bit of the codeword. Any codeword consists of a sequence of
0s and 1s. A 1 in location j in the ith codeword tells us that
when item i is encountered we should increment counter j for
an insertion, and decrement if for a deletion. Superimposed
codes of order k have the property that the sum (bitwise-or)
of any k codewords is distinct from any other such sum [22].
From a sum, it is possible to uniquely identify which code-
words contributed to the sum. Deterministic constructions
of superimposed codes are known, based on Reed-Solomon
codes, which have length l = k2 log2 m. However, while the
construction of any individual codeword may be made e�-
ciently in small space, we do not know of any construction
of superimposed codes that allows for the e�cient decoding
of the superimposition of several codewords. Existing meth-
ods rely on an exhaustive comparison with all m codewords,
something that is not practical in our model, where m can
be very large. We leave the construction of e�cient deter-
ministic solutions as an open problem, and instead consider



UpdateCounters(i, transtype, c[0 . . . log m])
c[0] total + diff
for j = 1 to log m do

if (transtype = insertion) then

c[j] c[j] + bit(j, i)
else

c[j] c[j]� bit(j, i)

FindMajority(c[0 . . . log m])
position = 0; t = 1;
for j = 1 to log m do

if (c[j] � c[0]/2) then

position position + t
t 2 ⇤ t

return(position)

Figure 3: Algorithm to find the majority element in a sequence of updates

a class of randomized constructions of subsets which, with
arbitrary probability, have the desired properties.

3.3 Randomized constructions
for finding hot items

We make the following observation: suppose we selected
a subset of items to monitor which happened to contain ex-
actly one hot item. Then we could apply the algorithm of
Section 3.1 to this subset (splitting it into a further log m
subsets) and, by keeping log m counters, identify which item
was the hot one. We simply have to “weigh” each bucket,
and (with some caveats), the hot item is always in the heav-
ier of the two buckets. This makes use of the algorithm for
finding a single majority item described at the start of this
section. In this section, we will show that a choice of enough
subsets at random will allow us to apply this procedure, and
that these subsets can be described in a way that will require
a small amount of space.

Definition 2. Let F ✓ [1 . . . m] denote the set of hot items.
We have that |F |  k. We define a good subset as a set
S ✓ [1 . . . m] such that |S \ F | = 1.

Theorem 3. Picking O(k ln k) subsets by drawing (m/k)
items uniformly at random from the items [1 . . . m] means
that with constant probability we have included k subsets
S

1

. . . Sk such that each Si is a good subset, and [i(F \Si) =
F .

Proof. If there are k hot items and we pick any item
from the space of m items then the probability of picking
a member of F is k/m. If we repeat this procedure m/k
times, then the probability of picking exactly 1 member of
F is p = m

k
· k

m
(1� k

m
)

m
k �1 = m

m�k
(1� k

m
)

m
k . For all non-

trivial cases, then 1  k  m/2 and so 1

4

 p  2

e
 3

4

— in other words, the probability of a randomly chosen
set being “good” like this is a constant. We now have the
coupon collector’s problem [25]: how many sets do we need
to collect in order to guarantee with constant probability
that we have a set that is good for each hot item? Picking
O(k ln k) sets gives us this result.

We do not wish to pick the sets and store them explic-
itly: this would consume ⌦(k log k log( m

m/k)) = ⌦(m log2 k)
space, which is much too large (depending superlinearly on
m). Instead, we choose the sets in a pseudo-random fashion
using universal hash functions derived from those given by
Carter and Wegman [7]. We define a family of hash func-
tions ha,b as follows: fix a prime P > 2k, and draw a and
b uniformly at random in the range [0..P � 1]. Then set
ha,b(x) =((ax + b mod P ) mod 2k). We use members of
this family of functions to define our sets: Sa,b,i ={x|ha,b(x) = i}.

Fact 1. Proposition 7 of [7] Over all choices of a and b,
for x 6= y, Pr(ha,b(x) = ha,b(y))  1/2k

This means that for any pair of items, the probability
that they are both in the same set is at most 1/2k. We will
choose T = O log k/� values of a and b. which has the e↵ect
of creating 2Tk = 2k log k/� sets — each pair a, b defines
2k sets. Our procedure in processing an input item i is to
determine which T sets it is a member of, and for these to
update log m counters based on the bit representation of i in
exactly the same way as the algorithm for finding a majority
element.

Lemma 2. The probability of each hot item being in at
least one good set is at least 1� �.

Proof. Consider each hot item in turn, remembering
that there are at most k of these. For each of T indepen-
dent repetitions, we choose to put it in one of 2k buckets.
By the pairwise independence, we expect the total frequency
of other items which land in the same bucket as item j to
be

P
i6=j fi/2k < 1/2(k+1). Our test cannot fail if the total

weight of other items which fall in the same bucket is less
than 1/(k + 1). This is because, each time we compare the
counts of items in the set, we conclude that the hot item is
in the half with greater count. If the total frequency of other
items is less than 1/(k + 1), then the hot item will always
be in the heavier half, and so, using a similar argument to
the majority case, we will be able to read o↵ the index of
the hot item using the results of log m groups. The proba-
bility of failing due to the weight of other items in the same
bucket being more than 1/(k+1) is bounded by the Markov
inequality as 1/2, since this is twice the expectation. So the
probability that we fail on every one of the T independent
tests is less than 1/2log k/� = �/k. Using the Union bound,
then over all hot items, the probability of any of them failing
is less than �, and so each hot item is in at least one good
set with probability 1� �.

The space required to represent the set is that necessary
to store a and b, which are integers less than P . P itself is
chosen to be O(m), and so the space required to represent
each set is O(log m) bits. The total space requirements is
then k log k/�(1 + dlog me) counters, plus log k/� values of
a and b. The main component of this cost is the counters,
which can typically be represented as a machine word, so
the space required is close to 2k log k/� log 2m words.

We also maintain a count, c, of the number of active items,
which is maintained by adding one for every insertion, and
subtracting one for every deletion. The idea is that we can
use these counters to identify any hot items in a subset at
query time, since such an item will be the majority if the
set is a good subset. If the subset is not good, then we can



ProcessItem(i, transtype, T, k)
c = 0
Initialize c[0 . . . 2Tk][0 . . . log m] = 0
Draw a[1 . . . T ], b[1 . . . T ] from 0 . . . P � 1
for all (i, transtype) do

if (transtype = insertion) then

c c + 1
else

c c� 1
for x = 1 to T do

index = 2(x� 1) + (i ⇤ a[x] + b[x] mod P mod k)
UpdateCounters(i, transtype, c[index])

GroupTest(T, k, �)
for i = 1 to T do

if c[i][0] > c� then

position = 0; t = 1;
for j = 1 to log m do

if (c[i][j] > c� and

(c[i][0]� c[i][j] > c�) then

Skip to next value of i
if (c[i][j] � c�) then

position position + t
t 2 ⇤ t

output(position)

Figure 4: Procedures for finding hot items using Group Testing

detect this and discard the set from our calculations when
locating hot items, as the following Lemma shows.

Lemma 3. Given a subset Sa,b,i, and its associated set of
counters c

0

. . . c
log m, it is possible to detect deterministically

whether Sa,b,i is a good subset, given the small tail property.

Proof. There are two ways that a subset may fail to be
good: it might have no hot items, or it might have more than
one hot item. We can detect both cases. (1) If there are no
hot items, then the count for the subset will be less than
c/(k+1), due to the small tail property. (2) If there are two
or more hot items in the set, then there will be a division
of the set into two where both halves have a hot item in.
Hence (regardless of the small tail property) there will be
some j for which cj > c/(k + 1) and c

0

� cj > c/(k + 1). If
either condition is met, then we know for sure that the test
is bad and can reject it.

The full algorithms are illustrated in Figure 4. On receiv-
ing each item i and the information about whether this is an
insertion or deletion, we pass this to the ProcessItem rou-
tine. At any point we can search for hot items by calling the
GroupTest procedure with parameters (T, k, 1/(k + 1)).

Theorem 4. With probability at least 1 � �, calling the
GroupTest(log k/�, k, 1/(k +1)) procedure finds all the hot
items using O(k(log k + log 1/�)) space. The time for an
update is O(log k/� log m) and the time to list all hot items
is O(k log k/� log m).

Proof. By Lemma 2, we know that we will have su�-
cient good sets to cover the k hot items with arbitrary prob-
ability, and by Theorem 2, we know that we can find a hot
item in a set if there is one, since it must be in the majority
for that set. To process an item, we compute T hash func-
tions, and update T log m counters, giving the time cost.

Corollary 1. If we have the small tail property, then
we will output no items which are not hot.

This corollary follows by observing that, using Lemma 3,
we know that we can detect whether a set is good or not. So
if we have the small tail property then anything we output
must be a hot item.

This is an important feature of our method: without any
mention of the small tail property, we are guaranteed of in-
cluding every hot item in the output with arbitrarily high

probability. The small tail property comes into play to guar-
antee that no infrequent items will be output. Without it,
it is possible that items which are not hot will be included
in the output. We summarize the results: On any input,
all hot items will be included in the output with probabil-
ity 1 � �. An infrequent item can only be output if there
are no frequent items in a set: If there are two or more fre-
quent items in a set then we detect this and output nothing
for the set. If there is one frequent item, then we will only
output an infrequent item if for some split, the weight of
the half containing only infrequent items is greater than the
half with the hot item. But then both halves with exceed
the threshold, and we will reject the set. Lemma 3 bounds
the chances of this event happening. This leaves the case
where there are no hot items in a set. We will only output
an item for this set if in every of the log m ways we divide
the set in two, one half has weight more than 1/(k + 1) and
the other has weight less than this threshold. This event
is unlikely, but unwieldy to analyze. Instead, we observe
that with the small tail property, this event cannot happen,
and so in this case we can guarantee that we will output no
infrequent items (with probability 1). We will see in prac-
tice through our experiments that on data sets without this
property, remarkably few infrequent items are output.

Next, we describe additional properties of our method
which implies its stability and resilience.

Corollary 2. The set of counters created with T = log k/�
can be used to find hot items with parameter k0 for any
k0 < k with the same probability of success 1 � � by call-
ing GroupTest(log k/�, k, 1/(k0 + 1)).

Proof. Observe in the proof of Lemma 2 that to find k0

hot items, we require that the expected frequency of items
falling in the same bucket be at most 1/2(k0 + 1). This
is achieved if the number of buckets increases above 2k0:
the more buckets there are, the lower the probability of the
set being bad. So, if we run the procedure with a higher
threshold, then with probability at least 1 � �, we will find
the hot items.

This property means that we can fix k to be as large as we
want, and are then able to find hot items with any frequency
greater than 1/(k + 1) determined at query time.

Lemma 4. The output of the algorithm is the same for
any reordering of the input data.
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Figure 5: Experiments on synthetic data consisting of 106

transactions. Left: testing recall (proportion of

the hot items reported). Right: testing precision (proportion of the output items which are hot)

Proof. During any insertion or deletion, the algorithm
takes the same action and does not inspect the contents of
the memory. It just adds or subtracts values from the coun-
ters, as a function solely of the item value. Since addition
and subtraction commute, the lemma follows.

4. EXPERIMENTS
To evaluate our approach, we implemented our Group

Testing algorithm in C. We also implemented two algorithms
which operate on non-dynamic data, the algorithm Lossy
Counting [23] and Frequent [9]. Neither algorithm is able to
cope with the case of the deletion of an item, and there is
no obvious modification to accommodate deletions and still
guarantee the quality of the output. We instead performed a
“best e↵ort” modification: since both algorithms keep coun-
ters for certain items, which are incremented when that item
is inserted, we modified the algorithms to decrement the
counter whenever the corresponding item is deleted. When
an item without a counter is deleted, then we take no ac-
tion.4 This modification ensures that when the algorithms
encounter an inserts-only dataset, then their action is the
same as the original algorithms. We ran tests on both syn-
thetic and real data, and measure the two standard qualities
of the output: the recall and the precision.

Definition 3. The recall of an experiment to find hot items
is the proportion of the hot items that are found by the
method. The precision is the proportion of items identified
by the algorithm which are hot items.

It will be interesting to see how these properties interact.
For example, if an algorithm outputs every item in the range
then it clearly has perfect recall (every hot item is indeed
included in the output), but its precision is very poor. At the
other extreme, an algorithm which is able to identify only
the most frequent item will have perfect precision, but may
have low recall if there are many hot items. For example,

4Many variations of this theme are possible. Our experi-
mental results here that compare our algorithms to modifi-
cations of Lossy Counting [23] and Frequent [9] should be
considered proof-of-concept only.

the Frequent algorithm gives guarantees on the recall of its
output, but does not bound the precision, whereas for Lossy
Counting, the parameter ✏ a↵ects the precision indirectly
(depending on the properties of the sequence). Meanwhile,
given a sequence with the small tail property, Group Testing
guarantees that no infrequent items will be output and for
general sequences it is unlikely to output infrequent items.

4.1 Synthetic Data
We created synthetic datasets designed to test the behav-

ior when confronted with a sequence including deletes. The
datasets were created in three equal parts: first, a sequence
of insertions distributed uniformly over a small range; next,
a sequence of inserts was drawn from a zipf distribution
with varying parameter; lastly, a sequence of deletes was
distributed uniformly over the same range as the starting
sequence. The net e↵ect of this sequence is that first and
last groups of transactions should (mostly) cancel out, leav-
ing the “true” signal from the zipf distribution. The dataset
was designed to test whether the algorithms could find this
signal from the added noise. We generated a datasets of
1,000,000 items so it was possible to compute the exact an-
swers in order to compare, and searched for the k = 50 hot
items while varying the zipf parameter of the signal from
0 (uniform) to around 3 (highly skewed). The results are
shown in Figure 5, with the recall plotted on the left, and
the precision on the right.

We immediately see that existing algorithms perform very
badly on this data set including deletions. Lossy counting
performs worst on both recall and precision, while Frequent,
which does reasonably well when zipf parameter of the signal
is low (all hot items have about the same frequency) does
less well as the distribution becomes more skewed (when the
lower ranked frequent items are pushed closer to the thresh-
old. Group Testing finds all hot items, and only hot items
in every case, even though the zipf distribution does not
satisfy the small tail assumptions: this property is slightly
stronger than is needed, and so Group Testing is able to
succeed on data sets on which it does not hold. Even when
the recall of the other algorithms is reasonably good (find-
ing around three-quarters of the hot items), their precision
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Figure 6: Performance results on real data

is very poor: for every hot item that is reported, around
ten infrequent items are also included in the output, and we
cannot distinguish between these two types.

There is a price to pay for the extra power of the Group
Testing algorithm: it takes longer to process each item under
our implementation, and requires more memory. However,
these memory requirements are all very small compared to
the size of the dataset: Group Testing used 17Kb, Lossy
Counting used 6Kb on average, and Frequent needed only
3Kb. Additional speed could be achieved by a more opti-
mized implementation, with more attention paid to making
the hash function fast to evaluate. It is also trivial to par-
allelize the Group Testing algorithm, since each test can be
done separately.

4.2 Real Data
We obtained data from one of AT&Ts networks for part

of a day, totaling around 100Mb. This consisted of a se-
quence of new telephone connections being initiated, and
subsequently closed. The duration of the connections varied
considerably, meaning that at any one time there were many
tens of thousands of connections in place. In total, there
were 3.5 million transactions. We ran the algorithms on this
dynamic sequence in order to test their ability to operate on
naturally occurring sequences. After every 100,000 transac-
tions we posed the query to find all (source,destination) pairs
with current frequency greater than 1%. We were grouping
connections by their regional code, giving many millions of
possible pairs, m, although we discovered that neighboring
areas generated the most communication. This meant that
there were significant numbers of pairings achieving the tar-
get frequency. Again, we computed recall and precision for
the three algorithms, with the results shown in Figure 6.

The Group Testing approach is shown to be justified here
on real data, which has no guarantee of having the small
tail property. In terms of both recall and precision, it is
near perfect. On one occasion, it overlooked a hot item,
and a few times it includes items which are not hot. Under
certain circumstances this may be acceptable if the items in-
cluded are “nearly hot”, that is, are just under the threshold
for being considered hot. However, we did not pursue this
line. Lossy Counting performs generally poorly on this dy-
namic dataset, its quality of results swinging wildly between
readings but on average finding only half the hot items. The

recall of the Frequent algorithm looks reasonably good es-
pecially as time progresses, but its precision, which begins
poorly, appears to degrade further. One possible explana-
tion is that the algorithm is collecting all items which are
are ever hot, and outputting these whether they are hot or
not. Certainly, it outputs between two to three times as
many items as are currently hot, meaning that its output
will necessarily contain many infrequent items.

Lastly, we ran tests which demonstrated the flexibility of
our approach. As noted in Section 3.3, if we have created a
set of counters for a particular frequency level f = 1/(k +
1), then we can use these counters to answer a query for a
higher frequency level without any need for re-computation.
To test this, we computed the data structure for the first
million items of the real data set based on a frequency level
of 0.5%. We then asked for all hot items for a variety of
frequencies between 10% and 0.5%. The results are shown
in Figure 7. As predicted, the recall level was the same
(100% throughout), and precision was high, with a few non-
hot items included at various points. We then examined
how much below the designed capability we could push the
group testing algorithm, and ran queries asking for hot items
with progressively lower frequencies. Results maintained an
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impressive level of recall and precision down to around the
0.1% level, after which the quality deteriorated (around this
point, the threshold for being considered a hot item was
down to having a count in single figures, due to deletions
removing previously inserted items). We were unable to
compare with other algorithms, since not only are these not
designed to cope with dynamic transaction sequences, but
they are also designed around a fixed frequency threshold,
which has to be supplied in advance, and cannot be chosen
at query time.

5. CONCLUSIONS
We proposed a new method for identifying hot items which

occur more than some frequency threshold. This is the first
method which can cope with dynamic datasets, that is, the
removal as well as the addition of items. It performs to a
high degree of recall in practice, as guaranteed by our anal-
ysis of the algorithm, and is simple to implement.

There are also some future extensions of this work, which
we outline here. The algorithm here allows us to aggregate
information from separate sources by summing the coun-
ters from two or more copies (for example, to compute the
new hot items when merging two sets). This should be con-
trasted to other approaches [4], which also compute the over-
all hot items from multiple sources, but keeps a large amount
of space at each location: instead the focus is on minimiz-
ing the amount of communication. Immediate comparison
of the approaches is not possible, but for periodic updates
(say, every minute) it would be interesting to compare the
communication used by the two methods.

In future work, it will be interesting to attempt to use our
structure in order to compare the di↵erence in frequencies
between di↵erence datasets (which items have the biggest
frequency change between two datasets?). This is of interest
in a number of scenarios, such as trend analysis, financial
data sets and anomaly detection [26].

Our approach of group testing may have application to
other problems, notably in designing summary data struc-
tures for maintenance of other statistics of interest and in
data stream applications. An interesting open problem is to
find combinatorial designs which can achieve the same prop-
erties as our randomly chosen subsets, in order to give a fully
deterministic construction for maintaining hot items. The
challenge here is to find good “decoding” methods: given
the result of testing various groups, how to determine what
the hot items are. We need such methods that work quickly
in small space.
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