
Join Operations in Temporal Databases

Georgios Giannikis

Supervisor: Prof. Donald Kossmann
Shepherd: Lucia Ambrošová

Contents

1 Introduction 2

2 Mathematical Definitions 3
2.1 Generic Definitions . 3
2.2 Temporal Join Operations . 4
2.3 Reducibility . 5

3 Algorithmic Framework 6
3.1 Taxonomy . 6

4 Engineering the Algorithms 7

5 Performance Evaluation 9

6 Conclusion 10

1

1 Introduction

This report is based on a paper[2] from Dengfeng Gao et al and summa-
rizes the challenges of performing join operations over temporal relational
data. Time is an attribute of all real-world phenomena. Database man-
agement systems is one domain that are expected to handle such temporal
data, as there exist a number of scenarios where time related information is
important.

Joins are arguably the most important relational operators. Literature
reports an ever-increasing number of research that focuses on optimizing join
operators for particular use cases. This is so because efficient join processing
is essential for the overall efficiency of a query processor. Since database nor-
malization is necessary to avoid data replication and increase performance,
joins occur frequently in almost all existing database deployments. Poor im-
plementations of join operations are tantamount to computing the Cartesian
product of the input relations.

By introducing the time attribute in a database system, the problem
evolves further. Existing techniques are aimed at the optimization of joins
with equality predicates, rather than the inequality predicates, which is more
frequent in temporal queries. Moreover, the introduction of a time dimension
may significantly increase the size of the database, since it requires storing
the multiple versions of each tuple and the time information. These factors
indicate that new techniques are required to efficiently evaluate joins over
temporal relations.

Whereas most work in temporal databases has concentrated on concep-
tual issues such as data modeling and query languages, recent attention has
been on implementation related issues, most notably indexing and query
processing strategies. We consider an important subproblem of temporal
query processing, the evaluation of ad hoc temporal join operations, i.e.,
join operations for which indexing or secondary access paths are not avail-
able or appropriate.

The purpose of this report is to present a comprehensive survey of se-
mantics and implementation details of existing join operations in temporal
databases. There is a number of temporal join operators that have been pro-
posed in previous research, but little comparison has been performed with
respect to the semantics of these operators. Similarly, many evaluation al-
gorithms supporting these operators have been proposed, but little analysis
has appeared with respect to their relative performance, especially in terms
of empirical study. Specifically, we show that nearly all temporal query
evaluation work to date has extended well-accepted conventional operators
and evaluation algorithms. In many cases, these operators and techniques
can be implemented with small changes to an existing code base and with
acceptable, though perhaps not optimal, performance.

2

Research has identified two orthogonal dimensions of time in databases:
valid time, modeling changes in the real world, and transaction time, model-
ing the update activity of the database. A database may support none, one,
or both of the given time dimensions. In this report, we consider only single-
dimension temporal databases, so-called valid-time and transaction-time
databases. Databases supporting both time dimensions, so-called bitem-
poral databases, are not considered in this report, though many of the de-
scribed techniques extend readily to bitemporal databases. In this report,
we will use the term non-temporal to refer to databases that provide no
integrated support for time.

2 Mathematical Definitions

Before presenting the join algorithms, we have to define the abstract math-
ematical expressions for the temporal relational joins. The need for a math-
ematical definition comes from the data model of these operators that is
extended to include temporal information. A proper mathematical defini-
tion will allow proper classification and comparison of all defined temporal
join algorithms.

2.1 Generic Definitions

The first extension of the data model is to introduce temporal counterparts
in the relational schemas. Given two relational schemas R = (A1, . . . , An)
and S = (B1, . . . , Bm), we extend them by introducing two temporal at-
tributes, Ts and Te which are the timestamp start and end attributes re-
spectively. The timestamp attributes define a range, during which the
record’s attributes hold. The extended schemas are now defined as R =
(A1, . . . , An, Ts, Te) and S = (B1, . . . , Bm, Ts, Te). The Ai, 1 ≤ i ≤ n and
Bi, 1 ≤ i ≤ m are called explicit attributes as they define non-temporal
data.

We will use T as shorthand for the interval [Ts, Te] and A and B as short-
hand for A1, . . . , An and B1, . . . , Bn, respectively. Also, we define r and s
to be instances of R and S, respectively. Next, we provide five auxiliary
definitions over temporal relational data:
Chronon: A chronon is the minimal-duration interval (quantum) in which
we partition the timeline.
Overlap: Overlap(U, V) returns the maximum interval contained in its two
argument intervals if they exist, or ∅ if such interval does not exist.
Coalesce: The coalesce(r) function collapses value-equivalent tuples – tu-
ples with mutually equal explicit attribute values – in a temporal relation,
into a single tuple, that contains a finite union of time intervals.
Expand: The expand(U), function returns the set of maximal intervals
contained in its argument temporal element.

3

2.2 Temporal Join Operations

We begin by examining the core set of non-temporal relational joins that
have long been accepted as “standard”: Cartesian product (whose “join
predicate” is the constant expression TRUE), theta join, equijoin, natural
join, left and right outerjoin, and full outerjoin. For each of these, we define
a temporal counterpart that is a natural, temporal generalization of it.

Temporal Cartesian Product The Temporal Cartesian Product, r×T s
is defined as follows:

r ×T s ={Z(n+m+2)|∃x ∈ r∃y ∈ s(
z[A] = x[A] ∧ z[B] = y[B]∧
z[T] = overlap(x[T], y[T]) ∧ z[T] 6= ∅}

The output relation z, contains all the explicit attributes of A and B,
and additionally has an interval that is the overlap of the original intervals.
The last part of the definition ensures that the time interval of the result
is nonempty. Basically, the Temporal Cartesian Product can be interpreted
as a non-temporal Cartesian Product applied independently at each point
in time. When operating on interval stamped data, these semantics corre-
spond to an intersection: the result will be valid during those times when
contributing tuples from both input relations are valid.

Temporal Theta Join The Temporal Theta Join operator, r onT
P s, is

defined as a selection of the those tuples from r ×T s that satisfy an unre-
stricted predicate P on the explicit attributes of either r or s. The formal
definition is:

r onT
P s = σP (r[A],s[B])(r ×T s)

Temporal Equijoin The Temporal Equijoin is a subclass of the Theta
Join where the predicate is strictly an equality predicate matching explicit
attributes of the two relations. The mathematical definition of the Temporal
Equijoin is:

r onT
r[A′]=s[B′] s

The Equijoin is a very common operation in not temporal databases. In
Temporal Databases, inequality join predicates are more often, mostly on
the time interval attributes.

A specialization of the Temporal Equijoin is the Temporal Natural Join,
which requires that the two input relations, r and s, have a number of iden-
tically named explicit attributes. These attributes are used as the equality
predicates of the Temporal Equijoin.

4

Figure 1: Reducibility of Temporal Natural Join to Snapshot Natural Join

Temporal Outer Joins An outer join does not require each tuple in the
two joined relations to have a matching tuple. The joined relation retains
each tuple, even if no other matching tuple exists. Outer joins subdivide
further into left outer joins, right outer joins, and full outer joins, depending
on which relation(s) one retains the rows from (left, right, or both).

In a Temporal Database, all the tuples, including the retained not-
matching tuples, must preserve the temporal property of having a common
time interval. Mathematically, this is performed using the coalesce(r) and
expand(T) helper functions. This way, on a left outer join, r nT

r[A′]=s[B′] s,
we have to enforce the following condition to include all the tuples that do
not have a match in respect to their explicit attributes, but their intervals
overlap:

∃x ∈ coalesce(r)∀y ∈ coalesce(s)
(x[A′] 6= y[B′]⇒ z[A] = x[A] ∧ z[B] = null

∧ z[T] ∈ expand(x[T]) ∧ z[T] 6= ∅)

The Temporal Right Outer Join is symmetrical to the Left Outer Join.
Finally, the Temporal Full Outer Join can be defined as the union of the
Left Outer Join and the Right Outer Join.

2.3 Reducibility

Having defined the join operations on temporal data, we proceed to show
how the temporal operations can be reduced to non-temporal operations.
This is called Reducibility and guarantees that the semantics of the non-
temporal operator is preserved in its more complex temporal counterpart.
Reducability is possible by introducing the timeslice operation τT , which
takes a temporal relation r as argument and a chronon t as parameter and
returns the corresponding snapshot relation. The reducibility diagram for
Natural Join is shown in Figure 1. Other joins follow the same rules.

5

3 Algorithmic Framework

Having described the semantics of the previously proposed temporal join op-
erators, we will continue by examining the various implementation details
of the state of the art systems. First we need to identify the space of algo-
rithms applicable to temporal join operators. This will allow the creation of
a consistent framework within which all existing temporal join algorithms
can be placed.

The framework is based on paradigms from existing non-temporal databases.
However, the nature of time in a database increases the complexity of the
system for two different reasons. First of all, there is a need to compare
against complex data types, e.g. intervals requiring inequality predicates,
which non-temporal database processors are not optimized to handle. Ad-
ditionally, a temporal database is usually larger in terms of data size, which
is a result of the different versions of the tuples that are stored.

3.1 Taxonomy

All the query evaluation algorithms derive from four basic paradigms: nested-
loop, partitioning, sort-merge and index-based. We will not consider index-
based algorithms that use auxiliary access paths to the tuples of the rela-
tions. Such algorithms have been studied extensively in former literature[1].

Nested-loop join algorithms operate by exhaustively comparing pairs of
tuples from the input relations. In other words, the algorithm fetches a tuple
from relation r and tries to match it against the whole relation s. Being an
I/O intensive operation, various optimizations have been proposed, like the
block-nested-loop-join, in which the algorithm fetches a block of tuples from
r and tries to match it against s.

Partitioning based join algorithms operate on a divide and conquer
paradigm, where tuples are placed into buckets based on their join attribute.
Corresponding buckets contain all tuples that could possibly match. Sim-
ilarly, the sort merge based algorithms divide the input relation in sorted
buckets that are located in physical memory. These buckets are sorted and
then a merge phase over these buckets produces the result.

For a non-temporal relation, sort-based join algorithms order the in-
put relation on the explicit join attributes. However, on a temporal rela-
tion, which includes timestamp information, we can identify four different
approaches on ordering tuples: order using the explicit attributes exclu-
sively, order using the timestamp attributes, order primarily on explicit
attributes and secondarily on time and finally, order primarily on tempo-
ral attributes and secondarily on explicit attributes. By duality, the division
step of partition-based algorithms can partition the tuples using any of these
options. Hence four choices exist for the dual steps of merging in sort-merge
or partitioning in partition-based algorithms.

6

Figure 2: Space of Possible Evaluation Algorithms

As the sort-merge and partition based algorithms require heavy use of
buffering, we identify two different buffer allocation strategies that are used
in existing algorithms: the GRACE and the hybrid buffer. Both of them
dynamically allocate buffer space, however in the hybrid buffer allocation
strategy one bucket holding tuples from the outer relation is designated as
memory resident. and its buffer space is increased accordingly to hold the
whole bucket in memory.

Finally, the new time dimension allows for a new time-based join al-
gorithm, called the interval join. Using knowledge from multi-dimensional
spatial joins, the interval join operates similarly to an one-dimensional spa-
tial join over time. Using this transformation, an temporal equijoin can be
represented as a two dimensional spatial join, where one dimension is the
temporal attribute and the other dimension is the explicit attribute(s). In-
terval joins, require buffering of tuples, which adds an option for the two
different (GRACE, hybrid) buffer allocation strategies.

All these algorithm design choices are summarized in Figure 2. What is
omitted is the block-nested loop join algorithm and the interval join with
the two different buffer allocation strategies.

Each of these 19 algorithms exhibits different characteristics that make
them more appropriate for one problem or another. Next we will implement
each of these 19 algorithms in order to evaluate their performance under
different scenarios.

4 Engineering the Algorithms

In this section we discuss all the implementation choices that were made
while engineering the different algorithms.

Nested Loop Algorithm The Temporal Nested Loop Join algorithm
derives from the non-temporal algorithm by including a timestamp predicate
at the same time as the predicate on explicit attributes, as illustrated on
Figure 3. In order to minimize I/O overhead, we performed joins over blocks
of tuples rather than one tuple at a time. The Block-Nested Loop Join is
conceptually simple, however the quadratic cost is often non-competitive.

7

For each tuple r in R do

For each tuple s in S do

If r and s satisfy the join condition and overlap(r, s)

Then output the tuple <r, s, overlap(r, s)>

Figure 3: Temporal Nested Loop Join

Sort Merge Based Algorithms There are a number of optimizations for
sort merge based algorithms. First, we combined the last sort step with the
merge step, thereby avoiding one read and one write scan. Then, we used
SC-n, a spooled cache on multiple runs technique, which has better perfor-
mance in the presence of intrinsic skew. In general, sort based algorithms
are extremely sensitive to skew, as repetition of attributes values requires
rereading of the corresponding tuples. Additionally, in order to introduce
the time notion in the algorithm, we created a variant of the algorithm that
sorts on timestamps rather than on the join attribute. Timestamp sorting
eliminates any skew that may exist over the explicit join attributes, however,
it is sensitive to timestamp skew. For completeness, two more variants were
constructed by allowing two-way sorting, first over the explicit attribute
and then over time and vice-versa. We expect the extra sorting step will
not optimize the algorithm but rather simply increase the CPU time.

In order to reduce the I/O operations, we used a specialized purge
caching, where cache is purged periodically rather than when it is already
full. Another optimization is the use of a Heap for the last run of the sort-
ing phase. This effectively reduces the computational cost from O(n) to
O(log2n). Finally, we used the two variants of buffer allocation strategies,
GRACE and hybrid, that were discussed earlier.

Partition Based Algorithms In partitioning-based algorithms, there is
a tradeoff between a large outer input buffer and a large inner input buffer
and cache. A large outer input buffer implies a large partition size, which
results in fewer seeks for both relations. But the cache is more likely to
spool. On the other hand, allocating a large cache and a large inner input
buffer results in a smaller outer input buffer, thus a smaller partition size,
which increases random I/O. As a compromise, a slightly large outer buffer
size that is able to fit 32 pages. A more appropriate choice of the buffers’
size is considered future work.

The implemented partition based algorithm fetches the whole outer par-
tition into memory, assuming that it will not overflow the buffer space. The
outer partition is then sorted, using an in-memory quicksort algorithm and
the remaining memory is used for scanning the inner partition. For each
inner tuple, matching outer tuples are found using a binary search. If the
outer partitions overflow the available buffer space, then the algorithms de-
fault to an explicit attribute sort-merge join of the corresponding partitions.

8

Figure 4: Experimental System Characteristics

Finally, as with the sort-merge based algorithms, we implemented two dif-
ferent variants using GRACE and hybrid buffer allocation strategies.

5 Performance Evaluation

The described algorithms were evaluated using a scaled down instance of a
database system. The sizes of the different parameters are summarized in
Figure 4. We were less interested in absolute system size than in the ratio
of data size to available main memory. Similarly, the ratio of the page size
to the main memory size and the relation size is more relevant than the
absolute page size. A scaling of these factors would provide similar results.
In all cases, the generated relations were randomly ordered with respect to
both their explicit and timestamp attributes.

A number of different experiments was performed in order to identify the
advantages and disadvantages of each algorithm. In the first experiment the
selectivity of the explicit attributes was very low and the time intervals were
very small. This experiment mimics a foreign key-primary key natural join
in that the cardinality of the result is the same as one of the input relations.
Then the same experiment with longer time intervals was performed. The
longer time intervals increase the amount of time-overlapping tuples which
should effectively deteriorate the performance of the time-based algorithms.
The third experiment was a natural extension of the first two, where a mix-
ture of short and long time intervals was used. The goal of this experiment
is to identify the relative overhead of long time intervals.

A second set of experiments was designed to evaluate the performance
of these algorithms when the sizes of the two relations vary. For these
experiments, both short and long time intervals were used concurrently.
This experiment should show that when the input relation is small relative
to the available memory, the partition based algorithms will exhibit higher
performance as the relation will be stored entirely in main memory.

9

Then, an evaluation of the performance of all algorithms in case of at-
tribute skew follows. Three types of skew were considered: explicit attribute
skew, temporal attribute skew and explicit and temporal attribute skew.
The goal of this set of experiments is to identify how sensitive are the algo-
rithms to data skew and on what degree.

After executing all the sets of experiments on all 19 algorithms we are
able to understand if a certain algorithm outperforms the others. Of course,
in an environment of so many dimensions, it is hard to find a single winner;
however, there are many losers.

Furthermore, from the experimental results, it is clear that the nested-
loop algorithms are not competitive. The quadratic cost dominates the per-
formance of these algorithms. Also, the timestamp sort-based algorithms
are not competitive as they are quite sensitive to the duration of input
tuple timestamps. Additionally, these algorithms exhibit very poor perfor-
mance in the presence of large amounts of skew due to cache overflow. In
the absence of explicit and timestamp skew, the results parallel those from
non-temporal query evaluation. In particular, when attribute distributions
are random, all sorting and partitioning algorithms (other than those al-
ready eliminated as noncompetitive) have nearly equivalent performance,
irrespective of the particular attribute type used for sorting or partitioning.

In datasets where skew is present, the choice of timestamp or explicit par-
titioning depends on which attribute type the skew exists. Interestingly, the
performance differences are dominated by main memory effects. In general,
timestamp partitioning algorithms were less affected by increasing temporal
skew, while explicit partitioning algorithms are heavily affected by explicit
attribute skew. Explicit sort-merge based algorithms were non competitive
in case of explicit skew, which was expected.

Regarding, buffer allocation strategies, the GRACE variants were com-
petitive only when there was low selectivity and a large memory size relative
to the size of the input relations. In all other cases, the hybrid variants per-
formed better.

It is interesting that the combined explicit/timestamp based algorithms
can mitigate the effect of either explicit attribute skew or timestamp skew.
However, when dual skew was present in the explicit attribute and the
timestamp simultaneously, the performance of all the algorithms degraded,
though again less so for timestamp partitioning.

6 Conclusion

The report surveys a number of existing temporal join algorithms, proposes
an algorithmic framework that is used to classify each of the temporal join
algorithm and finally, studies the advantages and disadvantages of the dif-
ferent classes of temporal joins. The taxonomy that is used to classify the

10

algorithms is a natural one, in the sense that it classifies the temporal join
operators as extensions of non-temporal operators, irrespective of special
joining attributes or other model-specific restrictions.

Based on this taxonomy, a framework of temporal join algorithms is
introduced which extends the three main paradigms of query evaluation
algorithms to temporal databases, thereby defining the space of possible
temporal evaluation algorithms. The framework defines 19 temporal equi-
join algorithms, representing the space of all such possible algorithms, and
places all existing work into this framework.

Then, the report defines the space of database parameters that affect
the performance of the various join algorithms. This space is characterized
by the distribution of the explicit and timestamp attributes in the input
relation, the duration of timestamps in the input relations, the amount of
main memory available to the join algorithm, the relative sizes of the input
relations, and the amount of dual attribute and/or timestamp skew for each
of the relations.

Finally, experimentation was conducted on this framework of algorithms.
The empirical study shows that some algorithms can be eliminated from
further consideration due to the poor exhibited performance. Due to the
high dimensions of the experiments, it is not clear if there is a single winner
between these algorithms. A relatively good compromise that gives good
performance on almost all dimensions is an algorithm based on two way
partitioning, first on explicit attributes and then on temporal attributes
that uses hybrid buffer allocation strategies.

Personal Assessment The paper is well illustrated, based on a real prob-
lem. It defines a quite big framework in which all existing work could be clas-
sified and based on that framework evaluates the advantages and disadvan-
tages of each algorithm. The authors draw a straight line to separate tem-
poral and non-temporal join algorithms by claiming that all non-temporal
systems are heavily optimized for equijoin. However, when it comes to eval-
uation, they use equijoin to compare the set of algorithms. Additionally,
what is missing from the paper is a comparison to a real system and prob-
ably experimentation on a bigger scaled system.

References

[1] Salzberg B and Tsotras VJ. Comparison of access methods for time-
evolving data. In ACM Comput Surv 31, 1999.

[2] Dengfeng Gao, Christian S. Jensen, Richard T. Snodgrass, and
Michael D. Soo. Join operations in temporal databases. VLDB Journal,
2005.

11

	Introduction
	Mathematical Definitions
	Generic Definitions
	Temporal Join Operations
	Reducibility

	Algorithmic Framework
	Taxonomy

	Engineering the Algorithms
	Performance Evaluation
	Conclusion

