
www.elsevier.com/locate/datak

Data & Knowledge Engineering 54 (2005) 327–354
Temporal modelling and management of normative
documents in XML format q

Fabio Grandi a,*, Federica Mandreoli b, Paolo Tiberio b

a IEIIT.BO-CNR and Dipartimento di Elettronica, Informatica e Sistemistica,

Alma Mater Studiorum—Università di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
b Dipartimento di Ingegneria dell’Informazione, Università di Modena e Reggio Emilia, Via Vignolese 905/b,

I-41100 Modena, Italy

Received 4 November 2004; received in revised form 4 November 2004; accepted 18 November 2004

Available online 8 December 2004
Abstract

In this paper, we present the results of a research project concerning the temporal management of nor-

mative texts in XML format. In particular, four temporal dimensions (publication, validity, efficacy and
transaction times) are used to correctly represent the evolution of norms in time and their resulting version-

ing. Hence, we introduce a multiversion data model based on XML schema and define basic mechanisms

for the maintenance and retrieval of multiversion norm texts. Finally, we describe a prototype management

system which has been implemented and evaluated.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Temporal database; Web information management; Legal information system; XML
0169-023X/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2004.11.002

q This work has been partially supported by the MIUR-40% Project: ‘‘La dinamica della norma nel tempo: aspetti

giuridici ed informatici’’.
* Corresponding author. Tel.: +39 051 209 3555; fax: +39 051 209 3540.

E-mail addresses: fgrandi@deis.unibo.it (F. Grandi), mandreoli.federica@unimo.it (F. Mandreoli), tiberio.paolo@

unimo.it (P. Tiberio).

mailto:fgrandi@deis.unibo.it
mailto:mandreoli.federica@unimo.it
mailto:tiberio.paolo@

328 F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354
1. Introduction

Time is one of the main aspects characterizing several real world facets and phenomena. The
ability to model the temporal dimension of the real world and to respond within time constraints
to changes in the real world as well as to application-dependent operations is essential to many
computer applications. The management of norms represents one of such applications as tempo-
ral concerns are ubiquitous in the law domain [32]. With the term ‘‘norm’’ or ‘‘normative docu-
ment’’ we intend in this paper any kind of Law, Act, Decree, Provision, Regulation, etc. with
statutory effects as officially produced by lawgiving and government activities. Time in normative
systems has become a central topic of the cultural and political debate and is of fundamental con-
cern to legal informatics. The law is under increasing pressure to keep pace with social change:
normative texts and amendments follow one another in time and get overlapped. Moreover,
the route to e-Government (e.g. [38,15]) pushes administrations for providing access to services
for publication and exchange of norms on the Web.

In the context of database research, the management of time has been extensively studied in the
last decades [36,14]. In particular, many efforts have been devoted to add time support to database
models and system functionalities. Temporal database systems provide special facilities for stor-
ing, querying, and updating historical and/or future data. In this context, two time dimensions are
usually considered: valid time and transaction time [22]. Valid time is the time of the real world
and denotes the time a fact is true in reality. Transaction time is the time of the system and de-
notes the time during which the fact is present in the database as stored data. In order to make
a more complete picture, two other temporal dimensions have been considered useful for ad-
vanced applications: event time [25] (also called decision time in [28]), which is the occurrence time
of events that initiate and/or terminate the validity of some fact in the real world, and availability
time [9], which is the time some fact is available in the information system. By the way, the first
relational query language providing for temporal queries (only considering valid time), that is LE-
GOL 2.0 [23] which appeared in the 1970s, was developed to support legal applications.

Moreover, in the database research community, there is a much current interest in representing
and querying semi-structured data. For example, database-resident data can be published as static
or dynamic XML documents, which can then be viewed on Web browsers and processed by var-
ious Web-based applications, also executing queries written in languages such as XPath [40] and
XQuery [41]. As a consequence, several works took into account change, versioning, evolution
and also explicitly temporal aspects, in semi-structured and XML-based data management
[19,18], often applying conceptual tools and techniques developed by temporal database research.
However, such approaches are not straightforwardly applicable to the legal application domain
because of the specificity of the data semantics and operation requirements. In the context of legal
computer science, previous approaches already dealt with the reconstruction of consolidated norm
texts, consisting of their current temporal version [33]. One temporal dimension was usually con-
sidered in such approaches.

In this paper, we present the results of the research activity we carried out in the context of the
multi-disciplinary project ‘‘The dynamics of norms in time: legal and informatics aspects’’ co-
funded by the Italian Ministry of University. Such a project emphasizes, from a legal point of
view, the necessity for a rigorous, effective and efficient management of time-varying norm texts.
In this context, the main objective of our work has been the development of a computer system for

F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354 329
the temporal management of multiversion norms represented as XML documents and made avail-
able on the Web. To this end, we developed a temporal XML data model which uses four time
dimensions to correctly represent the evolution of norms in time and their resulting versioning.
The model, which will be presented in Section 2, is equipped with basic operators for the modi-
fication and retrieval of multiversion norm texts, which will be described in Sections 3 and 4,
respectively. For the efficient exploitation of the data model, a system prototype has been imple-
mented and evaluated as described in Section 5. Preliminary results were also presented in [21].
Related works are discussed in Section 6, whereas conclusions can be found in Section 7.
2. The temporal data model

In this section, we present the XML-based temporal data model we propose for the represen-
tation and management of versioned normative texts. The model supports multiple temporal
dimensions, all involved in the law application lifecycle.

The existence of multiple versions of norms is a consequence of the dynamics of the legislative
activity. Assume a norm N1 has been in force since 2000. Further assume that a norm N2, which
modifies norm N1 by replacing its Article 1, was passed in 2002 (for this modification, N2 is called
the active norm, while N1 is called the passive norm). After the modification takes effect, N1 has
two versions: the former, say v1, corresponding to its initial text, and the latter, say v2, with the
new contents of Article 1 as replaced by N2. Both versions are important from an application
point of view. Of course, the most important version of N1 is v2, which corresponds to the form
in which N1 currently belongs to the regulations and, thus, must be enforced now (such a version,
produced by the application of all the modifications the norm underwent so far, is the one called
consolidated version). However, also v1 is of an utmost application importance now: if a Court has
to pass judgment today on some fact committed in 2001, the version of N1 which must be applied
to the case is the one that was in force then, that is v1. Hence, a legal information system should
be able to retrieve or reconstruct on demand any version of a given norm to meet common appli-
cation requirements.

Moreover, a realistic scenario is far more complex than the one described above, because of the
coexistence of multiple interacting time dimensions which rule the actual life of versions. For
example, although N2 has been in force and its modification on N1 has taken effect since 2002
(so that actually v2 has validity from 2002), it might be the case that the modified Article 1 expli-
citly contains the sentence: ‘‘The present Article becomes effective from 2003’’. In such a case, v2
must not be applied during 2002: though valid, it has no efficacy yet. Hence, v1 must still be ap-
plied during 2002, whereas v2 starts to be actually applied from 2003 only. Therefore, validity and
efficacy of versions are different time notions in the law field.

Notice that similar cases, although they might seem quite odd, are not such unusual indeed. For
instance, in order to prepare the national regulations to the introduction of the Euro currency
(whose circulation officially has begun on 2002, January 1st), several norms concerning the Euro
were issued in Italy and in other European countries in 2000 and 2001. Although such norms came
into force before 2002, they all explicitly stated that some of their provisions were effective from
2002 only. By the way, some of such norms were also modified, even several times, before they
became applicable (and eventually some of their versions have never been applied at all).

330 F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354
Last but not least, when norms are stored in a legal information system, another specific time
dimension comes into action. For example, it might be the case that a public servant takes a
wrong decision in settling an affair by following the provisions of a norm he/she retrieves from
the system, if the returned consolidated version is actually out-of-date: the decision was taken
while a modified version of the norm was already in force, whereas the modification has been re-
corded in the system only later (retroactively). Hence, transaction time is needed to keep track of
the update activity in the system and, in our case, to ascertain a posteriori that the correct version
was stored retroactively and, thus, the public servant acted in good faith.

Therefore, in order to draw a complete picture and meet all application requirements, the time
dimensions we consider are the following:

Publication time. It is the time of publication of the norm on the Official Journal. It has the same
semantics as event time (and availability time, as the two time dimensions, in such a context, coin-
cide). It is a global and unchangeable property for the whole norm contents and, thus, it will be
treated separately.
Validity time. It is the time (some part of) the norm is in force (in the Italian regulations, usually a
norm is in force from the publication date plus 15 days on, until its validity is changed by a sub-
sequent act). It has the semantics of valid time, as it represents the time the norm actually belongs
to the regulations in the real world.
Efficacy time. It is the time (some part of) the norm can be applied to a concrete case. It usually
corresponds to the validity of norms, but it can be the case that an abrogated norm continues to
be applicable to a limited number of cases. Until such cases cease to exist, the norm continues its
efficacy in the real world though no longer in force.
Transaction time. It is the time (some part of) the norm is stored in a computer system. Obviously,
it has the same semantics of transaction time as in temporal databases.

The first time dimension, publication time, is a global property of the document which cannot
be changed after publication and, thus, is not involved in the versioning mechanism. Disregarding
publication time, the other three dimensions above are ‘‘orthogonal’’ as far as document version-
ing is concerned. Notice that validity and efficacy time both have the semantics of valid time but
represent different and independent valid time notions. As a matter of fact, validity and efficacy
time come out generally independent as a consequence of the legislative practice (although validity
and efficacy are usually in the future with respect to the time the modifications are applied, retro-
active modifications cannot be excluded a priori). Moreover, transaction time depends on a com-
pletely independent information system maintenance activity (i.e. versions can be stored retro- or
even pro-actively with respect to their validity/efficacy).

2.1. Representation of time and multiversion norms

As for many other countries, the textual structure of Italian norms is based on a contents-sec-
tion-article-paragraph hierarchy. Our data model encodes the hierarchical organization of norma-
tive texts into the tree-like inner structure of XML documents conforming to an XML schema
[42]. Such an encoding is enriched with timestamping metadata modelling the temporal aspects
of normative texts.

F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354 331
Our temporal model supports lossless updates at any level of the hierarchy by means of tempo-

ral versions representing the results of the changes normative texts undergo. The timestamp of a
version represents its temporal pertinence as a subset of the tridimensional space validity · efficacy
· transaction. The temporal pertinence of a version can be represented by a temporal element
[16,22], that is a disjoint union of tridimensional time intervals, each obtained as the Cartesian
product of one time interval (open to the right) for each of the supported temporal dimensions.
Since any norm version is potentially subject to changes with respect to all the three time dimen-
sions, we will express right-unlimited time intervals as [t, UCUC), where UCUC means ‘‘Until Changed’’,
though such a symbol is often used in the temporal database literature [22] for transaction time
only (whereas, e.g. ‘‘forever’’ or 1 is used for valid time). Actually, norms in force usually have
a continued validity and efficacy until such properties are changed by a subsequent act of the leg-
islator. Publication time, which is a constant and global document property, is not included in the
version timestamping mechanism.

The adoption of timestamps made up of temporal elements instead of tridimensional intervals
avoids the duplication of version contents in the presence of a temporal pertinence with a complex
shape. For example, consider a version v1 with initial pertinence P1 = [t1,UCUC) · [t1,UCUC) · [t1,UCUC)
and a modification producing a new version v2 with pertinence P2 = [t2,UCUC) · [t2,UCUC) · [t2,UCUC)
(with t2 > t1). The time pertinence left to v1 after the modification is P1nP2, which can be decom-
posed into a minimal number of three non-overlapping tridimensional intervals (e.g. [t1,UCUC) ·
[t1,UCUC) · [t1, t2), [t1,UCUC) · [t1, t2) · [t2,UCUC) and [t1, t2) · [t2,UCUC) · [t2,UCUC)). Hence, if we used
interval timestamps, at least three copies of v1 would be required to cover the region. Indeed,
we make the union of such intervals and produce a single temporal element to timestamp a
single copy of v1. In other words, we preferred to store different versions only once with a
complex timestamp rather than storing multiple copies of them with a simple timestamp. We
will show in Section 5 how such a design choice paid off in terms of improved retrieval perfor-
mance.

As far as the norm hierarchical structure is concerned, timestamps can occur at any level of the
hierarchy and obey to an ancestor-descendant inheritance semantics. In particular, the time-
stamps of any node are inherited by its descendants, unless redefined. Redefinitions can only in-
volve a restriction of the inherited values. In other words, the timestamps owned by each version
must be contained in the timestamps of its parent. Finally, the temporal pertinence of sibling ver-
sions must be disjoint, that is at each level at most one version is associated to any tridimensional
time point (or chronon [22]). A typical example of the inheritance and redefinition mechanism,
which actually comes out of the modification dynamics, is the following. Let us consider a node
with a single version v with time pertinence P, which is initially inherited by all the (single-version)
descendant nodes of v, once created. If one child of v is then modified, its single version v 0

with pertinence P is ‘‘replaced’’ by two versions, v 0 with pertinence P 0 and v00 with pertinence
P00, where v00 and P00 are the outcome and the temporal pertinence of the modification, respectively,
and P 0 [P00 = P. In general, the inheritance and redefinition mechanism can be formalized as
follows:

Definition 1 (Inheritance). If the version v with pertinence P of a node n has m children
n1,n2, . . .,nm, where child ni has k versions vi1,vi2, . . .,vik with pertinence Pi1,Pi2, . . .,Pik,
respectively, we have, for all i, the following constraints:

332 F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354
\

16j6k

P ij ¼ ; ðpertinence disjunctionÞ;
[

16j6k

P ij � P ðpertinence inclusionÞ:
Similar relationships, which extend the hierarchical organization of XML documents with tem-
poral semantics, have also been adopted by other authors (e.g. [1,17]).

The XML Schema [42] we are going to introduce comes out as a quite unfaithful translation
and extension of one of the DTDs published by the ‘‘Norma in Rete’’ (Norm on Network) [29]
working group. The ‘‘Norma in Rete’’ initiative has been jointly promoted by the Italian agency
for the introduction of information technology in public administrations (AIPA) and the Ministry
of Justice, and is framed to supply the missing link between information technology and the public
administration in the field of legimatics. The project has a major role in trying to overcome the
fragmentation affecting online availability of norms by means of the introduction of standards,
mainly based on XML-related technologies, for publication and exchange of norms on the
network.

The full version of our XML schema is depicted in Fig. 1, where ‘‘R’’ and ‘‘O’’ symbols near
attribute names stand for ‘‘required’’ and ‘‘optional’’, respectively, and one-to-many relationships
are denoted with arrows ending with a diamond. The dashed boxes represent optional elements
(headings). As norms are identified by a (type, number) pair (e.g. type = ‘‘Law’’, num-
ber = ‘‘27/2003’’) the meta-level of normative texts is rooted at a norm top element, characterized
by type and num(ber) attributes, which includes the title and contents elements. The con-
tents element has attributes defining global temporal properties: an attribute publication

storing the publication date of the norm and also temporal attributes which define a tridimen-
sional bounding box for all the timestamps the document contains and which is used as a sum-
mary temporal pertinence of the whole norm for faster query processing. Then, at each level of
the contents-section-article-paragraph hierarchy, it is possible to represent one or more temporal
versions by means of the ver elements, whose attribute num represents the version number
whereas an_ref is the reference to the active norm whose enforcement caused the versioning.
Each version is characterized by a temporal element-type timestamp, which is defined by the un-
ion of the TA XML elements the version contains. Each TA element represents a tridimensional
time interval whose boundaries are encoded as TA attribute values: validity (vt_start and
vt_end), efficacy (et_start and et_end), and transaction time (tt_start and tt_end).
The ‘‘end’’ attribute associated to each dimension (e.g. vt_end) is optional and its absence
represents a UCUC value denoting, thus, a right-unlimited interval. For instance, the XML
element: <TA vt_start=‘‘2000-01-01’’ vt_end=‘‘2003-12-31’’ et_start=‘‘2000-01-01’’
tt_start=‘‘1999-12-20’’/> represents the tridimensional interval: [2000/01/01,2003/12/
31) · [2000/01/01,UCUC) · [1999/12/20,UCUC).

Notice that the XML Schema encodes only those aspects of our model which are directly sup-
ported by an off-the-shelf XML document validator. Advanced features of the model, like correct-
ness of the inheritance and redefinition mechanism, cannot be embedded in an XML Schema
definition and are explicitly enforced by our management application, thanks to a careful defini-
tion of the semantics of the modification operators.

publication–R
vt_Start –R
vt_End–O
tt_Start –R
tt_End–O
et_Start –R
et_End–O

num –R

type –R

num – R

num – R

num – R

vt_Start –R
vt_End–O
tt_Start –R
tt_End –O
et_Start –R
et_End–Onum–R

an_ref–O

vt_Start –R
vt_End–O
tt_Start –R
tt_End –O
et_Start –R
et_End–O

vt_Start –R
vt_End–O
tt_Start –R
tt_End – O
et_Start –R
et_End–O

vt_Start –R
vt_End–O
tt_Start –R
tt_End–O
et_Start –R
et_End–O

num– R
an_ref –O

num – R
an_ref –O

num– R
an_ref –O

TA

TA

TA

TA
ver

norm

title contents

paragraph

ver

headings

ver

articleheadings

ver

section

Fig. 1. The XML-schema for the representation of norms in time.

F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354 333
Example 1. Fig. 2(a) shows the tree-like structure of a document conforming to the temporal
XML schema. The Law 247/1999 concerns the cereal importation and contains two sections, three

norm [num=”247/1999” type=”Law”]

contents[vt_start=”2000-01-01” et_start=”2000-01-01” tt_start=”2000-01-10” publication=”1999-12-15”]

Cereals
importation ver[num=”1”]

section[num=”1”]

ver [num=”1”]

Import from
Communitarian

countires

article[num= “1”] article[num= “2”]

ver[num= “1”]

paragraph[num= “1”]

Import from Spain

ver [num= ”1”]

Import from countries
outside EC

title

headings

headings paragraph[num= “2”]

ver [num= ”2” an_ref=”LD135/2000”]

TA[vt_start=”2000-01-01” et_start=”2000-01-01” tt_start=”2000-01-10” tt_end=”2000-06-01”]

TA[vt_start=”2000-06-01” et_start=”2000-06-01” tt_start=”2000-06-10”]

Sec. 1 Art. 1 Par. 2
after modification

section[num=”2”]

ver [num=”1”]

headings article[num= “1”]

ver[num= “1”]

paragraph[num= “1”]

ver [num= ”1”] ver [num= ”2” an_ref=”L107/2001”]

Sec. 2 Art. 1 Par. 2
before modification

Sec. 2 Art. 1 Par. 2
after modification

TA[vt_start=”2000-01-01” et_start=”2000-01-01” tt_start=”2000-01-10” tt_end=”2000-07-15”]

TA[vt_start=”2000-06-01” vt_end=”2001-07-05” et_start=”2000-06-01” et_end=”2000-07-05” tt_start=”2000-07-15”]

Sec. 1 Art. 1 Par. 2
before modification

TA[vt_start=”2000-07-05” et_start=”2000-07-05” tt_start=”2000-07-15”]

TA[vt_start=”2000-01-01” vt_end=”2001-06-01” et_start=”2000-01-01” tt_start=”2000-06-10”]

VT

TT

2000-01-01

2000-01-10

2000-06-01

2000-06-10
Contents

Paragraph 2 v.2 Paragraph 2 v.1

Section 1

Article 1

(a)

(b)

Fig. 2. An example of multiversion XML document. (a) The tree-like structure of a sample document and (b)

hierarchical representation of temporal pertinence.

334 F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354
articles and four paragraphs. It has been published on 1999/12/15 and is valid from 2000/1/1 (it
has been recorded in the system on 2000/1/10). Only (two) paragraphs underwent punctual

F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354 335
modifications and thus have more than one version. For this reason, all parts but paragraphs
inherit the timestamps from the contents tag. For the paragraphs, instead, it is necessary to
explicit the temporal attributes since they are redefined by the corresponding versions. Paragraph
2 of Sec. 1, Art. 1 has been modified by the ‘‘LD135/2000’’ Legislative Decree, in force since 2000/
6/1 (modification recorded on 2000/6/10). Paragraph 1 of Sec. 2, Art. 1 has been modified by the
‘‘L107/2001’’ Law, in force since 2001/7/5 (modification recorded on 2001/7/15).

Notice that, in the former case the old version continues to be applicable (e.g. to the cases for
which it was applicable before the modification), whereas in the latter case the modifying Law has
stated that the old version is definitely no longer applicable (hence, efficacy time has been stopped
to 2001/7/5 like validity). In both cases, the temporal elements correctly map the temporal
pertinence of the text before the modification on a tridimensional space (validity · efficacy ·
transaction). In particular, Fig. 2(b) shows the projection on the bidimensional space validity ·
transaction of the containment relationship (due to inheritance) between the temporal pertinence
of the versions in the path to the second paragraph. In the figure, the different levels of the
document hierarchy are represented on the z-axis, v. is used in place of version (e.g. Paragraph 2 v.
1 corresponds to the version number 1 of the Paragraph number 2) and the dotted line on the
second version of the second paragraph shows how the temporal pertinence has been represented
as union of disjoint intervals, each of which corresponds to a TA element.
3. Managing the dynamics of norms

During its lifespan, a normative text usually undergoes several modifications. As a conse-
quence, the ability to correctly and efficiently managing the dynamics of norms is essential for
many legal information systems. On the other hand, the versioning of norms is a quite complex
task. Each modification is enforced by an active norm which contains a reference to the portion of
the passive norm to be modified and specifies the kind of modification to be applied. Such rela-
tionship is known as normative nexus as it connects the active with the passive norm. The mod-
ifications of interest in the legistic application field include abrogation, textual substitution or
integration, prorogation and suspension [34,32]. Moreover, each modification may affect a differ-
ent portion of the passive norm, ranging from a single word (or even a single punctuation sign) to
the whole text contents. Informally, abrogation, substitution and integration consist of the dele-
tion, update and insertion of some text in a norm, respectively. Prorogation and suspension con-
sist of the enlargement and restriction, respectively, of the validity (or efficacy) of some norm
portion without affecting the text.

In order to provide a compact but complete, modular support to the management of norm
modifications, instead of introducing one operator for each kind of modifications, we equipped
the model with two basic operators on which all the modifications of interest can be mapped:
changeText and changeTime. The former is devoted to implement an explicit textual modification,
that is the replacement of (a part of) the contents of a passive norm with a new text, possibly
empty. By means of this operator, it is possible to perform abrogations, suspensions, and textual
substitutions and integrations. The latter implements pure temporal modifications as it affects the
temporal pertinence of (some part of) the passive norm in order to support prorogations. In both

336 F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354
cases, the updates are performed in a lossless way by means of an accurate management of the
versions and their temporal pertinence making up the history of the document contents. The gran-
ularity of versioning is the single node in the XML document tree. In this way, we are able to sup-
port modifications occurring at any level of the hierarchical structure of norm texts.

In the following, we will show the algorithms underlying the implementation of the two oper-
ators, changeText and changeTime, and describe their properties. Before doing it, we introduce
some notation and the basic functions used by the algorithms.

3.1. Notation

The two operators act on norms complying with the XML schema of Fig. 1 and thus on XML
documents similar to the example in Fig. 2. In particular, modifications occurring at any level of
the tree-like inner structure of documents are supported by performing punctual updates on the
nodes of the tree. XML nodes are univocally identified by paths which can be specified by means
of the XPath [40] language. For instance, the path expression:

/norm[@num=‘‘12/2004’’ and @type=‘‘Law’’]/section[@num=‘‘1’’]

identifies the node corresponding to the first section of the Law number 12/2004. In order to work
on tree nodes, our algorithms make use of the following basic functions: parent: Node ! Node,
children: Node ! {Node}, addChild: Node · Tree! Tree. The parent(q) and chil-

dren(q) functions return the parent and the set of children of the node q, respectively, whereas
addChild(q, t) returns the tree obtained by adding the argument tree t as child of the node q.

As far as the temporal aspects are concerned, two basic functions are necessary for the perti-
nence management. The function restrictTimestamps deletes from the temporal pertinence
of a given version the part that overlaps a given temporal element. Moreover, as the inheritance
semantics of our temporal model requires that the pertinence of each version is contained in that
of its parent, the function is recursively applied to each version in the subtree rooted at the initial
version. For instance, in Fig. 3 the restriction of the temporal pertinence of the version number 1
of Article 1 caused by the deletion of the part overlapping the temporal element represented by
two white rectangles also requires the ‘‘propagation’’ with timestamp restriction to the underlying
level(s) corresponding to the versions 1 and 2 of Paragraph 2.
VT

TT
Article 1
version 1

Paragraph 2
version 2

Paragraph 2
version 1

level

Fig. 3. Effect of the restriction of the temporal pertinence of a version on that of its sub-versions.

Fig. 4. The restrictTimestamps function.

F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354 337
The restrictTimestamps code is shown in Fig. 4. Given a version identified by the path $m

and a temporal element te, in steps 2–3, it determines the temporal pertinence P of the version by
incrementally adding the tridimensional intervals embedded in the ta tags. If P overlaps te (step
4), step 5 determines the new temporal pertinence obtained by excluding from P the portion over-
lapped by te and step 6 updates the XML document by updating the timestamps of $m with the
new temporal pertinence. Notice that the difference between two temporal elements involved in
step 5 must be computed carefully in order to obtain another temporal element as a result.

Fact 1. Let P i ¼
S

16j6niIij, where all Iij are multidimensional intervals, be two temporal elements
(i 2 {1,2}). Then the difference P1nP2 can be computed as

S
16j6n1I1j n P 2 and it is a temporal

element if I1j n P 2 is a temporal element for each j.

Thus, in the restrictTimestamps evaluation, the exclusion of the portion overlapped by te
is applied to each tridimensional temporal interval making up P. In this way, each interval of P is
simply transformed into a smaller one, or it needs splitting into two or more tridimensional inter-
vals, if the non-overlapped region has a complex shape. If such splitting only produces non-over-
lapping intervals, the result is a temporal element, according to Fact 1.

For instance, the exclusion of the interval [5,7) · [3,8) · [6,UCUC) from [1,UCUC) · [1,UCUC) · [1,UCUC)
can be expressed as [1,UCUC) · [1,UCUC) · [1,6) [[1,UCUC) · [1,3) · [6,UCUC) [[1,5) · [8,UCUC) · [6,UCUC) [
[5,UCUC) · [8,UCUC) · [6,UCUC)[1,5) · [3,8) · [6,UCUC) [[7,UCUC) · [3,8) · [6,UCUC), which is a temporal ele-
ment since the unioned intervals are non-overlapping.

Moreover, in order to minimize the number of intervals after splitting, coalescing [22] can also
be applied to merge adjacent temporal intervals. For example, the decomposition of the difference
result above is not optimal, as the intervals [1,5) · [8,UCUC) · [6,UCUC) and [5,UCUC) · [8,UCUC) · [6,UCUC)
can be coalesced into [1,UCUC) · [8,UCUC) · [6,UCUC) to produce a minimal decomposition. 1 There-
fore, coalescing, as effected in step (5) of the algorithm in Fig. 4, minimizes the number of
1 In general, there is no unique minimal representation of temporal elements by multidimensional intervals.

However, all our implemented algorithms are designed to always obtain and efficiently maintain one minimal

representation.

338 F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354
tridimensional intervals for representing a temporal pertinence and, as such, represents a space
optimization.

Finally, the function recursively applies itself to the first descending versions (step 7). Notice
that they are the grandchildren of $m as the XML schema of our model requires a contents/sec-
tion/article/paragraph node between the given version and each of them. The algorithm avoids
accessing the descendants of such versions for which the pertinence does not need updates. More
precisely, thanks to the inheritance semantics, if the temporal pertinence of a given version does
not overlap te then its first descending versions do not overlap too, as there is a containment rela-
tionship, and so on. These observations allows us to state the fact which follows.

Fact 2. The restrictTimestamps function is correct, that is the output is an XML document
complying with the temporal model introduced in Section 2 and, in particular, with the inheritance
semantics.

Hence the following proposition shows the time complexity of the restrictTimestamps

function.

Proposition 3.1. In the worst case, the complexity of the restrictTimestamps function is
linear in the number of nodes in the XML document in the subtree rooted at $m.

Proof. The restrictTimestamps function, given the node $m corresponding to the version to
be modified, updates the temporal pertinence of $m and goes down to the descendants of $m, if
necessary. Notice that the function works in a depth-first manner and, thus, each node in the sub-
tree rooted at $m is visited at most once. Notice that the worst case happens when the restriction
has to be propagated up to all the leaves of the subtree rooted at $m. h

The other function for the pertinence management is the extendTimestamps which extends
the temporal pertinence of a given version by adding a given temporal element. Moreover, as the
inheritance semantics of our model requires both the pertinence of sibling versions to be disjoint
and the pertinence of each version to be contained in that of its parent, it also restrict the perti-
nence of each version which is sibling of the newly added one and recursively applies itself to the
ancestor versions. In particular, as shown in Fig. 5, it works on the version identified by the path
Fig. 5. The extendTimestamps function.

F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354 339
$m and first it determines the temporal pertinence P of the version (steps 1–3), then, if P does not
already include the temporal element te, it updates P by adding te and then assigns the resulting P
to $m as timestamp. Notice that step 5 performs the union of two temporal elements and that such
an operation not necessarily produces a temporal element, as the pertinence should be. For this
reason, an explicit coalescing operation is required (actually, coalescing is applied to the decom-
position resulting from the evaluation of (Pnte) [te, which eliminates overlap regions).

Finally, steps 7 and 8 have been included in order to comply with the inheritance semantics. In
particular, step 7 restricts the pertinence of the versions which are siblings of the newly added one
by calling the restrictTimestamps function. The correctness of such operation is ensured by
the fact that the function recursively applies itself to the descendant versions, if necessary. Step 8
recursively applies itself to the ancestor version of $m which, in the tree representation, is the
grandparent of $m. The algorithm avoids accessing the ancestor of such versions for which the
pertinence does not need updates. More precisely, thanks to the inheritance semantics, if the tem-
poral pertinence of a given version has not been extended then its first ascending version does not
need to be extended too, thanks to the containment relationship, and so on. Such observations
allow us to state the fact which follows.

Fact 3. The extendTimestamps function is correct, that is the output is an XML document
complying with the temporal model introduced in Section 2 and, in particular, preserving the
inheritance semantics.

The complexity of the extendTimestamps function is shown in the following proposition.

Proposition 3.2. In the worst case, the complexity of the extendTimestamps function is linear in
the number of nodes in the XML document.

Proof. The extendTimestamps function, given the node $m corresponding to the version to be
modified, updates the temporal pertinence of $m and that of its siblings by calling the restrict-
Timestamps function. In the worst case, such an operation is linear in the number of nodes in
the subtrees rooted at each of the $m siblings. Moreover, the function goes upwards by recursively
applying itself to the ancestor versions of $m. In any case, each node is visited at most once as the
intersection between the siblings of each node and the siblings of its parent is always empty.
Finally, notice that the worst case happens when $m is a leaf and it is required to go upwards until
the root of the document is reached. h
3.2. Modification algorithms

This subsection is devoted to the presentation of the algorithms defining the operational seman-
tics of the two basic operators of our model: changeText and changeTime.

The former operator has been included in the temporal XML model in order to support textual
modifications occurring at any level of the hierarchical structure of documents. changeText per-
forms a lossless update of the structural element of the normative text to be modified by essen-
tially creating a new temporal version. Moreover, in order to comply with the inheritance
constraints, it also accommodates the temporal pertinence of:

340 F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354
• the sibling versions, as their pertinence should be disjoint;
• the ancestor and descendant versions, as the pertinence of each version should be contained in

the pertinence of its parent.

As far as the pertinence of the newly added version is involved, the efficacy and validity time are
specified by means of input parameters according to the provisions of the active norm, whereas
the transaction time semantics forces the interval [now, UCUC) (now is the current chronon [22]) to
be assigned as transaction time pertinence. Indeed, the transparent management of transaction
time allows the system to keep track of when the modifications were applied for archival and
auditing purposes.

The algorithm implementing changeText is shown in Fig. 6. As input parameters, changeText
requires a path $p identifying the node to be modified, the validity and efficacy temporal element
to be assigned to the new version, specified by the parameter

S
16i6n[vtsi,vtei) · [etsi,etei), the new

XML text txt, the number of the version vnum and a reference to the active norm an. Starting
from the root of the passive norm, the algorithm goes along the tree down to the node rooting
the portion undergoing modification and it updates such a node by adding the new version (step
5) with temporal pertinence

S
16i6n[vtsi,vtei) · [etsi,etei) · [now, UCUC). Moreover, in order to comply

with the inheritance semantics, the algorithm updates the temporal pertinence of the versions
which are siblings (steps 1–2) and ancestors (step 4) of the newly added one, if necessary. More
precisely, as the temporal pertinence of sibling versions must be disjoint, for each version which
is sibling of the newly added one, the restrictTimestamps function is called in order to ex-
clude from the temporal pertinence of such version that of the newly added one. Similarly, by call-
ing the extendTimestamps function, we extend the pertinence of the parent version for which
it is required to add the new pertinence.

The content of the new version is a snapshot text in XML format which must comply with the
contents-section-article-paragraph hierarchy of our XML schema. In this way, versioning can be
performed at any level of the hierarchical structure of the document. Moreover, the addition of
the new version and the corresponding extension of the ancestor�s pertinence is performed if
and only if the XML text is not empty (step 4). Otherwise, when the XML text is empty, it only
Fig. 6. The changeText algorithm.

F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354 341
restricts the pertinence of the already existing versions by excluding the temporal element specified
by the parameter

S
16i6n[vtsi,vtei) · [etsi,etei). In this way, the changeText operator can be used to

perform a suspension or an abrogation when the ending values for the validity and efficacy time
are set to UCUC.

The changeText algorithm is correct as it produces an XML document complying with the
XML schema and the inheritance semantics of our model. Its complexity is instead shown in
the following Proposition.

Proposition 3.3. In the worst case, the complexity of the changeText algorithm is linear in the
number of nodes in the XML document.

Proof. The changeText algorithm acts on the nodes in the XML document by means of the
extendTimestamps and restrictTimestamps functions. The latter is applied to the ver-
sions which are descendant of the node $p undergoing the textual modification and its complexity
is thus linear in the number of nodes rooted at $p. On the other hand, the former is applied to the
version which is $p�s parent version (version of $p in the following). Notice that, as already
shown in Proposition 3.2, the extendTimestamps function could act on the subtrees rooted
at the versions which are siblings of the version of $p and recursively on the version which is
ancestor of the version of $p. Thus, the two functions, extendTimestamps and restrict-

Timestamps, will never act on the same set of nodes and the algorithm visits each node of the
XML document at most once. h

The other operator, named changeTime, is devoted to the extension of the temporal pertinence
of an existing document portion. Such operator too requires a path expression $p denoting the
portion of the passive norm requiring temporal pertinence extension. Moreover, it also requires
a set of temporal coordinates (i.e. a tridimensional time point (vt,et, tt)) to select the version to
be modified, and the new validity and efficacy to be assigned to the selected version, expressed
as a bidimensional temporal element

S
16i6n[vtsi,vtei) · [etsi,etei). The code is shown in Fig. 7. As

the previous operator, it works by first identifying the node corresponding to the document
portion undergoing modification. Then, in step 1, it selects the node $v corresponding to the
version of $p for which the temporal modification is required. If it exists, such a version is the
only one whose temporal pertinence contains the time point (vt,et, tt). Indeed, as the temporal
pertinence of sibling versions must be disjoint, each time point is contained in the timestamp
of at most one version. Then it adds the new tridimensional temporal elementS

16i6n[vtsi,vtei) · [etsi,etei) · [now, UCUC) to the temporal pertinence of the selected version, by calling
the extendTimestamps function, which also ensures that the resulting document complies with
Fig. 7. The changeTime algorithm.

342 F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354
the inheritance semantics. As the changeTime operator only makes us of the extendTime-

stamps function, it can be easily shown that its complexity is in the worst case linear in the num-
ber of nodes of the XML document.

As a final remark, notice that we did not include an operator performing the restriction of the
temporal pertinence of (a part of) the passive norm. Indeed, temporal restriction can be performed
by means of the changeText operator, whenever a suspension or an abrogation is required, or by
means of the changeTime operator, whenever the portion of the temporal pertinence to be deleted
has to be substituted by the temporal pertinence of another version.

Notice that after modifications effected via the changeTime operator, no trace of the active
norm is kept in the modified document. In order to keep a reference to the active norm after a
pure temporal modification (e.g. an efficacy suspension), the changeText operator should indeed
be used to create a new version, with the same textual content as the old one, to which the new
timestamps and the active norm reference are assigned. However, this solution gives rise to ver-
sion duplication and, thus, it is not the preferred solution in our system. As a matter of fact,
the implemented changeTime operator has an optional parameter an which can be used to add
additional active norm references to the modified version (as values of an_ref2,an_ref3, . . .
attributes in the ver element, which have not included in the XML Schema of Fig. 1 for the sake
of simplicity).
4. Querying normative documents

Legal text repositories are usually managed by means of traditional information retrieval tech-
niques. In particular, users are allowed to access the repository contents by means of keyword-
based queries expressing the subjects they are interested in [8].

We have extended such a framework by offering the possibility of expressing temporal specifi-
cations, which are used to select and reconstruct temporally consistent versions of the normative
acts of interest. In this way, we allow users to interact with the temporal aspects of the normative
acts, which become essential, for instance, when they want to know the text version(s) applicable
in a given period, or access the current consolidated version, or retrieve a snapshot in the past or
in the future of the normative acts they are interested in. To this purpose, temporal support is
required at query level. From a technical point of view, the reconstruction of temporally consis-
tent document version(s), corresponds to a timeslicing operation: in particular, the reconstruction
of all the consolidated versions qualifying for a given (multidimensional) time period corresponds
to the execution of sequenced queries in [17], that is queries applied independently at each point in
time in order to return a consistent history.

According to the requirements of a legal information system managing time-varying normative
texts, our model supports queries involving timeslicing and having the following XQuery [41]
format:

FOR $a IN path

WHERE constraints on $a

RETURN const-tree(document($a), temporal specs)

F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354 343
The FOR. . .WHERE construct follows the XQuery syntax and specifies selection constraints on
the variable $a iterating over the nodes returned by the XPath expression path. Search keywords
can be specified by means of the function contains [43] in the WHERE clause (e.g. con-

tains($a,�sailing�)). In the RETURN clause, the operator �const-tree()� is devoted to
the reconstruction of the versions of the XML documents containing the selected nodes and which
are temporally consistent with the specifications in the �temporal specs� expression. More pre-
cisely, the �temporal specs� expression defines the temporal conditions the versions of interest
must satisfy, as a conjunction of elementary selection predicates on the values of the four sup-
ported temporal dimensions. In accordance with a common syntax adopted for temporal query
languages (e.g. TSQL2 [35]), each elementary predicate has the form �dimension [NOT] op VA-

LUE�, where NOT is an optional keyword negating the meaning of the comparison operator op,
and dimension can be PUBLICATION, VALIDITY, EFFICACY or TRANSACTION, in order
to specify a selection condition on the corresponding time pertinence of versions in a normative
text. The kind of the operator op and the type of VALUE which can be used depends on the in-
volved temporal dimension.

Since the publication time of a norm is a single date, it can be compared with another date by
means of the op operators =, PRECEDES and FOLLOWS. Otherwise, it can be compared with an
interval of dates by means of the op operator CONTAINED-IN. In the former case VALUE is a
date in the form �yy-mm-dd�, whereas in the latter case it is a an interval built from its bounding
dates with the function PERIOD(�yy1-mm1-dd1�, �yy2-mm2-dd2�). Examples of valid expres-
sions involving publication time are, thus, PUBLICATION=�2002-01-01� and PUBLICATION

CONTAINED-IN PERIOD(�2002-01-01�, �2002-05-01�).
The other three temporal dimensions, validity, efficacy and transaction time, have temporal ele-

ments as values and, thus, can be compared both with single dates and intervals. In fact, interval-
based op operators PRECEDES, FOLLOWS, =, OVERLAPS, MEETS, MET-BY, CONTAINS and
CONTAINED-IN can be used either with intervals or with dates, as dates can be perceived as spe-
cial cases of intervals. Examples of valid expressions involving these temporal dimensions are,
thus, VALIDITY OVERLAPS �2002-01-01� and TRANSACTION MEETS PERIOD(�2002-01-
01�, �2002-05-01�). The semantics of the operators introduced above is the standard one
(i.e. the same as defined for the TSQL2 language [35]). Finally, we do not require the �temporal
specs� expression to contain a temporal condition for each of the four dimensions. Whenever a
temporal condition is missing, the query is evaluated by means of default conditions: PUBLICA-
TION CONTAINED-IN PERIOD(�0000-01-01�, �UC�) selecting every version with respect to
publication time, TRANSACTION CONTAINS �NOW� selecting the current versions with respect
to transaction time, and VALIDITY CONTAINED-IN PERIOD(�0000-01-01�, �UC�) selecting
every version with respect to validity time. If a selection condition involving efficacy time is not
specified, the same condition used for valid time is also used for efficacy time selection.

Example 2. The following query asks for the current (w.r.t. transaction time) version(s), whose
validity contains the date 1999/1/1, of the normative acts published before 2001/1/1 and
containing the word �sailing� in their paragraphs:

FOR $a IN //article/paragraph

WHERE contains ($a, "sailing")

344 F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354
RETURN const-tree(document($a),

VALID CONTAINS "1999-01-01" and
PUBLICATION PRECEDES "2001-01-01")

In this case default values are used for efficacy and transaction time: EFFICACY CONTAINS

�1999-01-01� and TRANSACTION CONTAINS �NOW�.

The ‘‘const-tree()’’ operator takes as input document($a), that is all the XML doc-
uments containing a qualifying node, and the temporal specifications. Hence, it reconstructs
the documents by selecting –at each level of the hierarchy– the portions whose temporal per-
tinence satisfies the specifications. The result is in general a time-varying document (i.e. a
‘‘thick’’ timeslice) as it may contain several qualifying versions for the same elements. Notice
that, in some cases depending on the temporal selection predicates, since nodes are visited in a
depth-first order, the inheritance semantics allows us to prune out portions of the XML trees
which surely are ‘‘non interesting’’. For instance, if the temporal specification is VALIDITY

OVERLAPS PERIOD(‘2000-01-01’, ‘2000-12-31’), when the query engine comes across
a node whose temporal pertinence does not satisfy the temporal specifications (e.g. its validity
starts from 2002), then the sub-tree rooted at such a node can be pruned out as the temporal
pertinence of all its nodes is contained in that of the root and, thus, cannot satisfy the
specification.
5. Prototype implementation and evaluation

The model described in the previous section has been implemented in a prototype system for the
management and maintenance of a collection of time-varying norms. The system is able to store
norms encoded as XML documents and efficiently access them by answering queries which can
involve both temporal constraints and search keywords. In its current implementation, the proto-
type manages large collections of XML documents with the aid of the XML document manage-
ment facilities offered by Oracle 9i [37].

In the following, we will illustrate the details of the prototype system, describe the XML doc-
ument collections and sample queries used in our experiments and, finally, assess the results of the
experiments we conducted.
5.1. The prototype system

Our prototype system has been implemented by means of a stratum approach, in which a stra-
tum accepts:

• time-varying normative texts to be stored, which must be represented as XML documents com-
plying with the XML schema defined in our model;

• modifications on the stored normative texts expressed by means of the operators described in
Section 3;

F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354 345
• query expressions which can involve both temporal constraints and search keywords as speci-
fied in Section 4.

The stratum then maps each request to a semantically equivalent expression to be passed to an
XQuery engine. Once the XQuery engine performs the required task and delivers its results, the
stratum can also perform some additional processing before returning the results to the users.
The advantage of this approach is that we can fully exploit the capabilities of an off-the-shelf
XQuery engine, including its query optimization features. Moreover, the adoption of a DBMS
with XML document management facilities as XQuery engine, allows us to efficiently manage
large collections of normative texts and to ensure full compatibility with already existing applica-
tions in the legal field which usually employ a relational database. On the other hand, existing
XQuery engines do not know anything about the temporal semantics. The stratum is thus devoted
to the management of the temporal aspects of our model, in order to provide a complete support
to the manipulation of time-varying normative acts.

The overall architecture is depicted in Fig. 8. The stratum consists of the three components
shown as Preprocessing, Query Processor and Update Processor modules, whereas the temporal
XML documents are stored in the XML repository. More precisely, they are maintained as
CLOBs into a table having the following schema:

tnorms(ID, XML-DOC, TYPE, PUBLICATION, VT-START, VT-END, ET-START, ET-

END, TT-START, TT-END)

Every tuple in this relation represents a temporal XML document whose textual contents are
stored in the XML-DOC column. The table also contains additional columns storing timestamp-
ing metadata: PUBLICATION, VT-START, VT-END, ET-START, ET-END, TT-START, and
XML Documents

XML
repository

Update ProcessorPre processing

XML Document
Textual or Temporal
Change

Query

Inverted Index

Query Processor

XML Documents

Fig. 8. The overall system architecture.

346 F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354
TT-END. The timestamp attributes have the same values as the timestamping tags associated with
the contents tag. The inheritance semantics of our model guarantees that they represent the
summary time values of the whole norm text (i.e. a minimal bounding box for all the timestamps
contained in the document). The addition of such metadata is aimed at improving the efficiency of
query execution by introducing a preliminary document filtering phase based on the temporal
predicates specified in the query. Moreover, all the timestamps which are not present in the input
documents but which can be implicitly derived, owing to the semantics of inheritance, are explic-
ited at every level of the document hierarchy before storage. In this way, by fully exploiting the
potentialities of the XML query engine provided by Oracle 9i, we further speed up the processing
of queries when conditions on temporal values are specified at different levels of the document tree
structure. The extraction of document metadata and the explicitation of timestamps are per-
formed once by the Preprocessing module shown in Fig. 8 when new documents are inserted in
the system.

Moreover, in order to speed up the retrieval by keywords, an inverted index has been built on
the contents of selected XML elements (heading and paragraph).

When a query having the form shown in Section 4 is issued to the system, the Query processor
module first maps the request onto a SQL query to be submitted to the Oracle query engine. When
it receives back the results, the module eventually performs a temporal slicing of the qualifying
XML documents in order to publish the only versions which are consistent with the conditions
expressed in the temporal specifications of the query.

In the first phase, the ‘‘static’’ part of the query (i.e. the FOR. . .WHERE. . . part) is translated into
SQL calls in a straightforward way. Moreover, in this phase, we also exploit the fact that the tem-
poral slicing process produces empty results for all the documents containing no version which
satisfies the temporal conditions. In fact, the temporal metadata columns of the tnorms table
saves us from accessing such normative acts, which otherwise should undergo a quite useless post-
processing phase to be eliminated. The temporal conditions are thus translated into SQL calls,
which cause a quick elimination of all the tuples of the tnorms table representing normative doc-
uments which cannot qualify for the temporal selection.

Example 3. In the first phase, the query shown in Example 2 is translated into the following
XML/SQL query complying with the Oracle query language syntax and where the $cur_date
variable corresponds to the date the query is issued to the system:

SELECT L.XML-DOC.extract(�//article�).getStringVal()
FROM tnorms L

WHERE (VT-START <= �01-JAN-1999�)
AND (VT-END is null OR VT-END >= �01-JAN-1999�)
AND (ET-START <= �01-JAN-1999�)
AND (ET-END is null OR ET-END > �01-JAN-1999�)
AND (TT-START <= $cur_date)
AND (TT-END is null OR VT-END >= $cur_date)
AND (PUBLICATION <= �01-JAN-2001�)
AND CONTAINS (L.XML-DOC, �sailing WITHIN paragraph�) > 0

F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354 347
Finally, whenever the query issued to the system contains temporal specifications, the query
processor module takes each qualifying tuple and performs a temporal slicing on it by means
of the const-tree operator.

The last element of the stratum is the Update Processor module which is devoted to the man-
agement of changes that normative texts undergo during their life-cycle. Modification requests
can be submitted to such a module where the maintenance of the XML repository is performed
by programs implementing the changeText and changeTime algorithms.

For portability purposes, the stratum has been implemented in Java. In particular, we used
JDOM for the navigation of the XML documents as required by the implementation of the
const-tree operator and of the changeText and changeTime algorithms.

5.2. Document collections and queries

For our performance evaluation experiments, we used different document collections of increas-
ing size: 24 MB (1000 documents), 50 MB (2000 documents) and 120 MB (5000 documents) hav-
ing an average, minimum and maximum document size of 24 KB, 2 KB and 125 KB, respectively.
The document collections are syntectic and have been created with a document generator we
developed to deeply test the system performance. In particular, the generator creates one temporal
XML document at a time by taking as inputs the width of the document tree, the number of ver-
sions, and a list of words. On the basis of such parameters, it generates an XML document con-
sistent with our XML schema and, in particular, conforming to the inheritance semantics, by
randomly inserting the required number of versions in the document tree and by randomly choos-
ing words from the submitted list to fill the paragraph contents.

Query processing experiments were conducted by submitting six types of queries:

• query types q1 and q2 represent searches by a variable number of keywords. In particular, in q1
keywords are only specified on the contents subtree, whereas in q2 keywords are specified
both on the type attribute and on the contents subtree;

• query type q3 contains temporal conditions on the four dimensions, transaction, validity, effi-
cacy and publication time;

• query types q4, q5, and q6 mix the previous ones and contain both keywords and temporal con-
ditions involving different document parts and temporal dimensions.

5.3. Experiments

In order to evaluate the effectiveness of the system, we conducted a number of exploratory
experiments by running the prototype described above on a 600 MHz Intel Pentium III processor
with 256 MB of main memory and a SCSI disk. In this paper, we report and discuss the most
meaningful tests performed on the three XML document sets.

We first tested the system performance in query processing by separately evaluating the follow-
ing two phases: the retrieval of the qualifying normative texts and the temporal reconstruction of
their contents (corresponding to a temporal slicing operation). In the first phase, only those nor-
mative texts satisfying the static part and the temporal constraints specified in the submitted query

348 F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354
are selected. Fig. 9(a) shows (with logarithmic scale) the average computing time in milliseconds
required to process four queries for each of the six types on the three document sets. For the
smallest document set, the computing time ranges form 343 ms up to 1.096 s, whereas, for the big-
gest document set, the computing time ranges from 1.432 s up to 4.064 s. From our experiments
we can state that the presence of temporal constraints does not disrupt the system performance,
even when a large number of documents is selected, as it happens for the queries of type q3 where
the average number of selected documents is 1568 (over 5000). Moreover, the computing time
grows sub-linearly with the number of documents, thus, showing the scalability of the system.
In order to evaluate the improvement given by the temporal metadata columns of the tnorm ta-
ble, we compared our approach with a ‘‘naive’’ approach consisting in the direct access to the
XML documents. To this end, we recorded the normative documents into a simpler table without
metadata columns Ptnorm(ID, XML-DOC) and we fully relied for the selection of the normative
texts on the Oracle XML engine, by translating the temporal conditions into XPath conditions on
the temporal attributes in the contents element. The average computing time in this case is
shown in Fig. 9(b). As we expected, the computing time for the first two query types, which do
not involve temporal attributes, is the same, which means that the addition of the metadata col-
umns does not affect the system efficiency. On the other hand, efficiency improvement given by the
exploitation of the metadata columns is evident for the other four query types, where our ap-
proach is even 127 times faster than the naive approach for the two smallest collections, whereas
the naive approach fails in processing queries involving temporal constraints on the biggest col-
lection (types q3, q4, and q5). This is due to the fact that, in processing pure temporal queries
(type q3) or mixed queries involving keywords non very selective (types q4 and q5), the relational
query engine works better than the XML query engine and the inverted indexes built on the XML
column are very little useful or even useless. On the other hand, we also evaluated the time taken
to insert XML documents in the two tables tnorm and Ptnorm and to update the related in-
dexes. The evaluation concerns the insertion of 1, 10 and 30 documents (average document size
24 KB) into the two tables and the consequent update of the inverted index. The overhead re-
quired for the extraction of the information to be inserted in the metadata columns of the table
tnorm is about 35% in the worst case corresponding to the insertion of one document at a time
(from 278 s to 376 ms) and it decreases as the number of inserted documents increases up to 12%
for the insertion of about 30 documents (from 6376 s to 7163 s).
1

10

100

1000

10000

100000

1000000

Q1 Q2 Q3 Q4 Q5 Q6

ti
m

es
 (

in
 m

ill
is

ec
o

n
d

s)

24MB 50MB 120MB

1

10

100

1000

10000

100000

1000000

Q1 Q2 Q3 Q4 Q5 Q6

ti
m

es
 (

in
 m

ill
is

ec
o

n
d

s)

o
u

t
o

f
m

em
o

ry

o
u

t
o

f
m

em
o

ry

o
u

t
o

f
m

em
o

ry

24MB 50MB 120MB

(a) (b)

Fig. 9. Selection of normative acts (logarithmic scale). Computing time using the tnorm table (a) and using the Pnorm

table (b).

F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354 349
As far as the temporal reconstruction of normative texts is concerned, we evaluated the com-
puting time required to process 30 normative texts of different sizes (from 2 KB to 140 KB) and
containing a different number of versions (from 3 to over 50). For these documents, cons-tree
takes 1 s on an average. Such an outcome is also due to the fact that the temporal pertinence is
represented by temporal elements. If we adopted temporal intervals, any version whose pertinence
is the union of intervals would be substituted by different redundant versions with the same con-
tent, timestamped with a single interval. In such a case, documents would be larger and the time
taken for the temporal reconstruction would obviously increase. We also implemented such an
alternative approach and compared it with the temporal element-based approach. We noticed that
any normative text undergoing modifications (about 3) at different levels is three times larger on
average when temporal intervals are adopted in place of temporal elements. In such a way, the
average size of the documents managed by the system reaches 250 KB. The difference between
the two alternatives for the temporal reconstruction is not particularly remarkable (passing from
1 s to 1.2 s). The most important aspect to be considered is the main memory space the cons-

tree function needs during its execution: it is even 3.5–4 times the dimension of the document
(we use JDOM to navigate XML documents) and thus processing one 250 KB XML document
requires about 1 MB. It follows that in order to process many requests, the system might recur
to virtual memory, with an unavoidable dramatic performance degradation. As far as modifica-
tions are concerned, the changeText and changeTime operations take more or less the same com-
puting time as cons-tree. This is due to the fact that most of the time is used for the XML tree
navigation which is approximately the same in the two cases.
6. Related work and discussion

In recent years, a crop of research work addressed temporal and versioning aspects in the Web
and, in particular, in the management of XML documents. Actually, about 240 of the papers
listed in the bibliography [18] could be considered related work. Therefore, we will just briefly re-
call some of the aspects which are somehow related with our work (and cite a couple of papers
which are chosen as representatives of the field) and discuss more in detail only the few papers
which are more strictly related with our approach.

In a broad literature, the main focus of some approaches is on the representation and manage-
ment of changes, where different versions of data are produced by updates. In these approaches,
temporal attributes are often used to timestamp stored versions (e.g. [5,1]). They represent the time
the updates were applied and, thus, have the (implicit) semantics of transaction time with respect to
the system where the changes are effected. On the other hand, several works also considered man-
agement of changes and versioning without taking into account temporal aspects (e.g. [39,6]).

Other approaches considered the classical notion of valid time (e.g. [20,44]). For example, the
‘‘Valid Web’’ approach [20] is an infrastructure designed to represent and manage temporal Web
documents (i.e. documents containing historical information, with timestamps explicitly encoded
by the document authors to assign validity to information contents). Temporal documents can
then be selectively browsed, in accordance with a user-supplied temporal period of interest. Some
approaches also considered a bitemporal data model, that is supporting both valid and transac-
tion time (e.g. [13,26]).

350 F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354
Other papers also considered a Web usage specific temporal dimension: navigation time, which
concerns the interaction of users during their browsing of Web sites (e.g. [2,12]). Temporal aspects
were also considered in the context of Web warehouses (e.g. [4,30]), mainly with reference to the
time the source Web sites were navigated in order to build the warehouse and, thus, representing a
sort of ‘‘validity’’ for the collected Web pages.

Some authors also considered multidimensional XML documents, where time can be included
in the adopted versioning dimensions (e.g. [27,45]), presenting general data models, query lan-
guages and implementation solutions. However, the specificity of the four time dimensions and
of the manipulation operations involved in the legal domain, prevented us from an adoption or
an attempt to a simple extension of such solutions.

In addition to the definition of temporal XML data models and query languages, some works
also took into account physical organization and efficient implementation issues (e.g. [45,7,31]).
Proposed query languages and implementation solutions can also consider updates, but consis-
tency of the outcomes with respect to a DTD or XML Schema is not usually considered in such
approaches.

On the other hand, the paper [24] deals with the problem of consistently updating XML doc-
uments with respect to an XML Schema. The proposed solution is based on techniques, imple-
mented as a light-weight middleware system, for rewriting generic XQuery updates into safe
ones by embedding constraint-checking subqueries. A somehow ‘‘dual’’ approach is presented
in [3], where DTDs are incrementally changed in order to keep pace with the independent evolu-
tion of XML documents. Obviously, such an approach could not be used in a context where the
available schema corresponds to important application-dependent integrity constraints, as in our
case.

Palmirani and Brighi present in [33] a legal document management system, called Norma-Sys-
tem, with limited temporal support. The core of Norma-System is an editor for drafting normative
texts, which supports implicit document versioning on the basis of the modifications applied via
the editor. The user-defined markup also involves temporal information, including publication,
validity and efficacy time. Temporal query support is basically provided though a consolidation
module, which helps the user to reconstruct consistent norm versions with respect to validity time.
The other time dimensions can be used, at query level, as additional search fields in full-text
search.

The paper [17] presents a temporal XML query language, sXQuery, with which the authors add
temporal support to XQuery by extending its syntax and semantics. The temporal support con-
cerns the valid time dimension and three kinds of temporal queries are considered: current, se-
quenced, and representational. The authors also suggest an implementation based on a stratum
approach to exploit the availability of XQuery implementations. With respect to their query clas-
sification, in our work we support current and sequenced temporal queries. Furthermore, we not
only implemented our temporal query processor by leveraging existing XQuery engines, as sug-
gested in [17], but also by exploiting the potentialities of a relational DBMS query engine. As
shown in Section z5, such an approach allows us to improve the performance of our system in
the query processing phase and to cope with a very large collection of XML documents.

In [11], the authors study the problem of consistently deriving a scheme for managing the tem-
poral counterpart of non-temporal XML documents, starting from the definition of their schema.
In particular, they introduce a data model and an architecture, called XSchema, which derives

F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354 351
from a non-temporal schema: a temporal schema, a temporal annotation and a physical annota-
tion. The annotations specify which portion(s) of the XML documents can vary over time, how
the documents can change and where timestamps should be placed. In our work, we use an XML
schema to encode the hierarchical organization of normative texts. Such an encoding is enriched
with timestamping metatadata complying with an inheritance semantics. The derivation of our
XML schema could also be thought as the outcome of a design process similar to the one de-
scribed in [11], if we started from a snapshot XML schema corresponding to the base structure
of a non-temporal (non-versioned) norm text and, then, we augmented it with versioning and
timestamping metadata in order to accommodate time-varying data. As to the involved annota-
tion, using the terminology of [11], our XML Schema supports, at each level of the document hier-
archy, elements varying over transaction time and valid time, whose lifetime is described as a
continuous state, and whose content can change over time. On the other hand, our data model
also support a temporal element which is not included in the options of the temporal annotation
in [11], and we have two different temporal dimensions, validity time and efficacy time, which both
have the same semantics as valid time in [11] but need independent management.
7. Conclusions

The management of norms and their dynamics requires the adoption of temporally enhanced
data models and systems. In this paper, we introduced a temporal XML data model which is able
to capture the semantics of norms evolving in time and represent their multiple versions with
respect to publication, validity, efficacy and transaction times. The model is based on an XML
schema which allows the introduction of timestamping metadata at each level of the hierarchical
structure of normative documents which are subject to change, up to the granularity of a single
paragraph. A well-defined inheritance semantics rules the interaction between the different levels
of the norm structural hierarchy and the temporal pertinence of the versions. Norm text modifi-
cations are dealt with by means of two basic operators which implement lossless changes through
a careful management of versions and timestamps. Moreover, the model extends conventional
searches by keyword with the possibility of specifying additional temporal constraints the re-
trieved normative documents must satisfy. Finally, a prototype supporting the model has been
implemented and evaluated. The preliminary experimental results on query performance which
have been reported in the paper are encouraging.

Out of this context, our work covers a broader interest as we developed a temporal and text-
centric application system with IR capabilities, which gave us the opportunity of studying the
interaction of (multiple) temporal aspects having a well founded semantics with the structural
properties of XML documents. Hence, our approach can provide useful solutions also for other
web-based advanced applications with similar requirements (e.g. temporal management of clinical
data [9,10]).

In future investigations, in order to improve the performance of our system, we plan to move
from the stratum approach described in this paper, that is an implementation on-top of an exist-
ing XML-enabled system, to the design and development of a specific XML engine. In particular,
we are interested in considering alternative highly optimized solutions for physical storage of tem-
poral XML documents, indexing and query processing. For instance, solutions based on XML

352 F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354
document decomposition and execution of structural joins seem promising starting points for fu-
ture extensions of our approach. Our future plans also include the possibility to test the effective-
ness of our solutions against a real legal text repository, rather than against collections of syntectic
documents as it was for the prototype. Gathering the feedback from real users would also be very
interesting in such a context. Moreover, we will explore the possibility to adapt our approach to
other application domains too.
Acknowledgment

The authors want to thank Marco Bergonzini, who helped in implementing the system and run
the experiments.
References

[1] T. Amagasa, M. Yoshikawa, S. Uemura, A data model for temporal XML documents, in: Proc. of DEXA 2000,

Lecture Notes in Computer Science, vol. 1873, Springer, Berlin, 2000, pp. 334–344.

[2] J. Andersen, A. Giversen, A.H. Jensen, R.S. Larsen, T.B. Pedersen, J. Skyt, Analyzing clickstreams using

subsessions, in: Proc. of DOLAP 2000, ACM, New York, 2000, pp. 25–32.

[3] E. Bertino, G. Guerrini, M. Mesiti, L. Tosetto, Evolving a set of DTDs according to a dynamic set of XML

documents, in: Proc. of XMLDM�02, Lecture Notes in Computer Science, vol. 2490, Springer, Berlin, 2002, pp. 45–

66.

[4] Y. Cao, E.-P. Lim, W. Ng, On warehousing historical Web information, in: Proc. of ER 2000, Lecture Notes in

Computer Science, vol. 1921, Springer, Berlin, 2000, pp. 253–266.

[5] S.S. Chawathe, S. Abiteboul, J. Widom, Managing historical semistructured data, Theory and Practice of Object

Systems 5 (3) (1999) 143–162.

[6] S.-Y. Chien, V. Tsotras, C. Zaniolo, Version management of XML documents, in: The World Wide Web and

Databases, Third International Workshop—Selected Papers, Lecture Notes in Computer Science, vol. 1997,

Springer, Berlin, 1997, pp. 184–200.

[7] S.-Y. Chien, V. Tsotras, C. Zaniolo, Efficient management of multiversion XML documents, VLDB Journal 11 (4)

(2002) 332–353.

[8] C. Ciampi, R. Nannucci (Eds.), ITLaw—Information technology and the law, An International Bibliography

(1958–2001)—2002 Edition, CD-rom (2002).

[9] C. Combi, A. Montanari, Data models with multiple temporal dimensions: completing the picture, in: Proc.

CAiSE 2001, Lecture Notes in Computer Science, vol. 2068, Springer, Berlin, 2001, pp. 187–202.

[10] C. Combi, L. Portoni, F. Pinciroli, Visualizing temporal clinical data on the WWW, in: Proc. of the Joint European

Conf. on Artificial Intelligence in Medicine and Medical Decision Making (AIMDM�99), Aalborg, 1999, pp. 301–

314.

[11] F. Currim, S. Currim, C.E. Dyreson, R. Snodgrass, A tale of two schemas: creating a temporal schema from a

snapshot schema with sXSchema, in: Proc. EDBT 2004, Lecture Notes in Computer Science, vol. 2992, Springer,

Berlin, 2004, pp. 348–365.

[12] E. Damiani, B. Oliboni, E. Quintarelli, L. Tanca, Modeling users� navigation history, in: Proc. of Int. Workshop on

Intelligent Techniques for Web Personalisation (in Conj. with IJCAI-01), Seattle, WA, 2001.

[13] Dyreson C.E., M.H. Böhlen, C.S. Jensen, Capturing and querying multiple aspects of semistructured data, in:

Proc. VLDB �99, Morgan Kaufmann, San Francisco, 1999, pp. 290–301.

[14] O. Etzion, S. Jajodia, S.M. Sripada (Eds.), Temporal Databases—Research and practice, Lecture Notes in

Computer Science, vol. 1399, Springer, Berlin, 1998.

F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354 353
[15] European Commission e-Government home page, <http://europa.eu.int/information_society/eeurope/2005/all_

about/egovernment/index_en.htm>.

[16] S. Gadia, A homogeneous relational model and query languages for temporal databases, ACM Transactions on

Database Systems 13 (3) (1988) 418–448.

[17] D. Gao, R.T. Snodgrass, Temporal slicing in the evaluation of XML queries, in: Proc. of VLDB 2003, Morgan

Kaufmann, San Francisco, 1999, pp. 632–643.

[18] F. Grandi, An annotated bibliography on temporal and evolution aspects in the World Wide Web, Tech. Rep. TR-

75, TIMEIMECENTERENTER, <http://www.cs.auc.dk/TimeCenter/> (2003).

[19] F. Grandi, Introducing an annotated bibliography on temporal and evolution aspects in the World Wide Web,

ACM Sigmod Record 33 (2) (2004) 84–86.

[20] F. Grandi, F. Mandreoli, The Valid Web: an XML/XSL infrastructure for temporal management of Web

documents, in: Proc. ADVIS�, 2000, Lecture Notes in Computer Science, vol. 1909, Springer, Berlin, 2000, pp. 294–

303.

[21] F. Grandi, F. Mandreoli, P. Tiberio, M. Bergonzini, A temporal data model and system architecture for the

management of normative texts, in: Proc. of the 11th National Conf. on Advanced Database Systems (SEBD),

Cetraro, Italy, 2003, pp. 169–178.

[22] C.S. Jensen, C.E. Dyreson, et al., The consensus glossary of temporal database concepts—February 1998 version,

in: O. Etzion, S. Jajodia, S. Sripada (Eds.), Temporal Databases—Research and Practice, Lecture Notes in

Computer Science, vol. 1399, Springer, Berlin, 1998, pp. 367–405.

[23] S. Jones, P. Mason, R. Stamper, Legol 2.0: A relational specification language for complex rules, Information

Systems 4 (4) (1979) 293–305.

[24] B. Kane, H. Su, E. Rundensteiner, Consistently updating XML documents using a incremental constraint check

queries, in: Proc. ECDM 2002, Lecture Notes in Computer Science, vol. 2784, Springer, Berlin, 2003, pp. 39–50.

[25] S.-K. Kim, S. Chakravarthy, Modeling time: adequacy of three distinct time concepts for temporal data, in: Proc.

ER�93, Lecture Notes in Computer Science, vol. 823, Springer, Berlin, 1993, pp. 475–491.

[26] M. Manukyan, L. Kalinichenko, Temporal XML, in: Proc. of 5th East European Conf. on Advances in Databases

and Information Systems (ADBIS �01), vol. 1, Research Communications, Vilnius, Lithuania, 2001, pp. 143–155.

[27] T. Mitakos, M. Gergatsoulis, Y. Stavrakas, E. Ioannidis, Representing time-dependent information in

multidimensional XML, in: Proc. of 23rd Int. Conf. on Information Technology Interfaces (ITI 2001), Pula,

Croatia, 2001, pp. 111–116.

[28] M.A. Nascimento, M. Eich, Decision time for temporal databases, in: Proc. of the 2nd Int. Workshop on Temporal

Representation and Reasoning (TIME�95), Melbourne Beach, FL, 1995, pp. 157–162.

[29] Norma in rete (Norm on network), <http://www.normainrete.it>.

[30] K. Nørvåg, Temporal XML data warehouses: Challenges and solutions, in: Proc. of Workshop on Knowledge

Foraging for Dynamic Networking of Communities and Economies, Shiraz, Iran, 2002.

[31] K. Nørvåg, Supporting temporal text-containment queries in temporal document databases, Data & Knowledge

Engineering 49 (1) (2004) 105–125.

[32] F. Ost, M. Van Hoecke (Eds.), Time and Law. Is the Nature of Law to Last, Bruylant, Bruxelles, 1998.

[33] M. Palmirani, R. Brighi, Norma-system: a legal document system for managing consolidated acts, in: Proc. of

DEXA 2002, Lecture Notes in Computer Science, vol. 2453, Springer, Berlin, 2002, pp. 310–320.

[34] A. Pizzorusso, The Maintenance of the Book of Laws and Other Studies on Legislation, Giappichelli, Torino, 1999

(in Italian).

[35] I. Ahn, G. Ariav, D. Batory, J. Clifford, C.E. Dyreson, R. Elmasri, F. Grandi, C. Jensen, W. Käfer, N. Kline, K.

Kulkarni, T.C. Leung, N. Lorentzos, J.F. Roddick, A. Segev, M. Soo, S.M. Sripada, in: R.T. Snodgrass (Ed.),

The TSQL2 Temporal Query Language, Kluwer, New York, 1995.

[36] A.U. Tansel, J. Clifford, V. Gadia, S. Jajodia, A. Segev, R.T. Snodgrass (Eds.), Temporal Databases: Theory,

Design and Implementation, Benjamin/Cummings, Redwood City, 1993.

[37] The Oracle 9i database, <http://otn.oracle.com/products/oracle9i/content.html>.

[38] US President�s e-government initiatives, <http://www.whitehouse.gov/omb/egov/>.

[39] F. Vitali, D. Durand, Using versioning to support collaboration on the WWW, World Wide Web Journal 1 (1)

(1996) 37–50.

http://europta.eu.int/information_society/eeurope/2005/all_about/egovernment/index_en.htm
http://europta.eu.int/information_society/eeurope/2005/all_about/egovernment/index_en.htm
http://www.cs.auc.dk/TimeCenter/
http://www.normainrete.it
http://otn.oracle.com/products/oracle9i/content.html
http://www.whitehouse.gov/omb/egov/

354 F. Grandi et al. / Data & Knowledge Engineering 54 (2005) 327–354
[40] W3C, XML path language (XPath) 2.0, <http://www.w3.org/tr/xpath20/>.

[41] W3C, XQuery 1.0: an XML query language, <http://www.w3c.org/TR/xquery/>.

[42] W3C, XML Schema, <http://www.w3.org/xml/schema>.

[43] W3C, XQuery 1.0 and XPath 2.0 functions and operators, <http://www.w3.org/TR/xquery-operators/>.

[44] F. Wang, C. Zaniolo, Preserving and querying histories of XML-published relational databases, in: Proc. ECDM

2002, Lecture Notes in Computer Science, vol. 2784, Springer, Berlin, 2003, pp. 26–38.

[45] R.K. Wong, F. Lam, M. Orgun, Modelling and manipulating multidimensional data in semistructured databases,

World Wide Web 4 (1–2) (2001) 79–99.

Fabio Grandi is currently an Associate Professor in the Faculty of Engineering of the University

of Bologna, Italy. Since 1989 he has worked at the CSITE center of the Italian National Research

Council (CNR) in Bologna in the field of neural networks and temporal databases, initially

supported by a CNR fellowship. In 1993 and 1994 he was an Adjunct Professor at the Univer-

sities of Ferrara, Italy, and Bologna. He joined his current department (Department of Elec-

tronics, Computer Science and Systems) as a Research Associate in 1994. His scientific interests

include temporal databases, storage structures, access cost models, WWW extensions. He

received a Laurea degree in Electronics Engineering and a Ph.D. in Electronics Engineering and

Computer Science from the University of Bologna. Further information can be found at http://

www-db.deis.unibo.it/~fgrandi/.
Federica Mandreoli is currently a Research Associate at the Department of Information Engi-

neering of the University of Modena and Reggio Emilia, Italy. Her research interests include

information retrieval, multi-database systems, semantic web, object-oriented databases and

schema versioning. She holds a Laurea degree in Computer Science and a Ph.D. in Electronics

Engineering and Computer Science from the University of Bologna. She is member of the

Association for Computer Machinery (ACM). Further information can be found at http://

www.isgroup.unimo.it/federica.asp.
Paolo Tiberio is currently Full Professor of Computer Science in the Engineering Faculty of the

University of Modena and Reggio Emilia, Italy. He was also Research Associate from 1970 and

Professor from 1976 to 1998 with the Department of Electronics, Computer Science and Systems

of the University of Bologna, visiting scientist at the University of Michigan, Ann Arbor, in 1971

and with ‘‘System R’’ and related projects of the IBM Research Center, S. Jose, California, in

1978, 1981 and 1984. His present research interests are temporal and multimedia databases and

digital libraries. He received his Laurea degree in Electronic Engineering from the University of

Pisa, Italy. Further information can be found at http://www.isgroup.unimo.it/tiberio.asp.

http://www.w3.org/tr/xpath20/
http://www.w3c.org/TR/xquery/
http://www.w3.org/xml/schema
http://www.w3.org/TR/xquery-operators/
http://www-db.deis.unibo.it/~fgrandi/
http://www-db.deis.unibo.it/~fgrandi/
http://www.isgroup.unimo.it/federica.asp
http://www.isgroup.unimo.it/federica.asp
http://www.isgroup.unimo.it/tiberio.asp

	Temporal modelling and management of normative documents in XML format z.star This work has been partially supported by the MIUR-40% Project: "La dinamica della norma nel tempo: aspetti giuridici ed infor
	Introduction
	The temporal data model
	Representation of time and multiversion norms

	Managing the dynamics of norms
	Notation
	Modification algorithms

	Querying normative documents
	Prototype implementation and evaluation
	The prototype system
	Document collections and queries
	Experiments

	Related work and discussion
	Conclusions
	Acknowledgment
	References

