Exam information:
▶ Date: January 8, 2018
▶ Time: 14:00 - 15:00
▶ Location: 2.A.01
▶ Form: written, closed book

Solve examples (use exercises for preparation)
Understand principles (multiple choice, analyze solutions)

Coalescing, Time Domain, Time Granularity

▶ Coalescing
 ▶ SQL, procedural, analytic functions

▶ Time domain:
 ▶ Time domain: set of instants with a total order
 ▶ Structure of time: linear versus branching
 ▶ Density of time: discrete, dense, continuous
 ▶ Boundness of time: bound versus unbound
 ▶ Relative (unanchored) versus absolute (anchored) time

▶ Time granularity and calendars
 ▶ A granularity partitions the time line (chronons) into a set of granules
 ▶ The granules are labeled with their distance from the anchor point.
 ▶ A granularity maps a label to the corresponding set of chronons.
 ▶ A calendar is generated from a single bottom granularity through granularity operations.

Temporal Data Models

▶ Modeling temporal model: \(M = (DS, QL) \)
 ▶ Dimensions of time: valid time, transaction time, ...
 ▶ Types of timestamps: points, periods, elements
 ▶ Semantics of timestamps: point versus interval semantics
 ▶ Scope of timestamps: tuple versus attribute timestamping

▶ Temporal data models
 ▶ Snodgrass’s tuple timestamped data model
 ▶ Jensen’s backlog data model
 ▶ Ben-Zvi tuple timestamped data model
 ▶ Gadia’s attribute value timestamped data model

▶ Temporal query languages:
 ▶ SQL + ADT, IXSQL, SQL/TP, TSQL2, ATSQL

Sequenced Semantics

▶ Snapshot equivalence: \(\tau^V_{\delta_1}(\rho^B_{\delta_1}(r)) = \tau^V_{\delta_1}(\rho^B_{\delta_1}(s)) \)

▶ Snapshot reducibility: \(\tau^V_{\delta}(r \times^V s) \equiv \tau^V_{\delta}(r) \times \tau^V_{\delta}(s) \)

▶ Sequenced semantics: properties and implementation
 ▶ alignment of time intervals
 ▶ two new algebraic primitives:
 ▶ normalize
 ▶ align
 ▶ Temporal extension of PostgreSQL
Spatial Database Systems

- A *spatial database system* is a database system with principled support for handling spatial data

- **Key Components of a Spatial Database System**
 - Representations for the data types (points, lines, regions) of a spatial algebra
 - Spatial index structures (z-order, kD tree, space transformation, R tree)
 - Filter and refine techniques

Spatial Network Databases

 - Dijkstra’s single source shortest path
 - Incremental Euclidean Restriction (IER)
 - Incremental Network Expansion (INE)

Thanks

- All the best for the exam!

- Thanks for course evaluation. Any other comments about course, project, literature, etc is welcome.

- I am happy to discuss BSc and MSc theses, PhDs, internships, tutoring, summer jobs, projects with external companies, etc.

- DBTG is a good match if you like
 - to be precise,
 - algorithms,
 - a healthy mix of implementation and analysis,
 - real world data and problems.