Query Processing in Spatial Network Databases

- Spatial network databases
- Shortest Path
- Incremental Euclidean Restriction
- Incremental Network Expansion
Spatial Network Databases (SNDB) /1

Definition (Spatial network databases)
In a spatial network database objects can move only on pre-defined trajectories as specified by the underlying network (representing e.g., roads, railways, rivers, etc.)

- The distance between two objects is the shortest trajectory between the two rather than the Euclidean distance

Example

- Query “Find the hotels within a 15km range” returns \{a, b, c\}
- Query “Find the closest hotel” returns \{b\}
 - Euclidean nearest neighbor is \(d\) (which is the farthest in the network)
Definition (Network distance)

- For each edge connecting n_i and n_j, the network distance, $d_N(n_i, n_j)$, is stored with the edge.
- For nodes n_i and n_j that are not directly connected, the network distance, $d_N(n_i, n_j)$, is the length of the shortest path from n_i to n_j.

Euclidean Lower-Bound Property: For any two nodes, the Euclidean distance, $d_E(n_i, n_j)$, lower bounds the network distance, $d_N(n_i, n_j)$, i.e.,

$$d_E(n_i, n_j) \leq d_N(n_i, n_j)$$
Shortest Path

▶ Much of the work on spatial network databases is on shortest path, nearest neighbor and range search.

▶ Dijkstra’s incremental network expansion is a greedy algorithm and the most basic solution to the shortest path problem.

▶ Dijkstra’s algorithm influenced much of the later work in spatial network databases.

▶ Starting point: directed weighted graph

▶ $G = (V, E)$ with weight function $W : E \rightarrow \mathbb{R}$

▶ Weight of path $p = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

▶ Shortest path = a path of minimum weight (cost)
Shortest Path Problems

▶ **Single-source**
Find a shortest path from a given source vertex s to all other vertices.

▶ **Single-pair**
Given two vertices, find a shortest path between them. Solution to single-source problem solves this problem efficiently, too.

▶ **All-pairs**
Find shortest-paths for every pair of vertices. Dynamic programming algorithm.

▶ **Unweighted shortest-paths**
BFS.
Optimal Substructure

- **Theorem:**
 Subpaths of shortest paths are shortest paths

- **Proof:** if some subpath were not the shortest path, one could substitute the shorter subpath and create a shorter total path
The result of the algorithms is a **shortest path tree**. For each vertex \(v \) it

- records a shortest path from the start vertex \(s \) to \(v \)
- \(v.\text{pred} \) is the predecessor of \(v \) in this shortest path
- \(v.\text{dist} \) is the shortest path length from \(s \) to \(v \)
Relaxation

- For each vertex v in the graph, we maintain v.dist, the estimate of the shortest path from s. It is initialized to ∞ at the start.
- Relaxing an edge (u,v) means testing whether we can improve the shortest path to v found so far by going through u.

![Diagram showing relaxation process](attachment://diagram.png)
Dijkstra’s Algorithm

- Basic idea of Dijkstra’s algorithm:
 - maintains a set S of solved vertices
 - at each step select closest vertex u, add it to S, and relax all edges from u

- Greedy algorithm that gives optimal solution

- Similar to breadth-first search (if all weights $= 1$ then one can simply use BFS)

- Use a priority queue Q with keys v.dist, which is re-organized whenever some dist decreases
Dijkstra’s Algorithm

```plaintext
foreach u ∈ G.V do
    u.dist := ∞;
    u.pred := NIL;

s.dist := 0;
init(Q, G.V) // priority queue Q;
while ¬isEmpty(Q) do
    u := extractMin(Q);
    foreach v ∈ u.adj do
        Relax(u, v, G);
        modifyKey(Q, v);
```

TSDM17, SL06 10/19 M. Böhlen, ifi@uzh
\[Q = \{s(0, -), u(\infty, -), u(\infty, -), u(\infty, -)\} \]

\[Q = \{x(5, s), u(10, s), v(\infty, -), y(\infty, -)\} \]

\[Q = \{y(7, x), u(8, x), v(14, x)\} \]

\[Q = \{u(8, x), v(13, x)\} \]
\[Q = \{ y(9, u) \} \]

\[Q = \{ \} \]
Nearest Neighbors in SNDB

Definition
Given a source point \(q \) and an entity dataset \(S \), a \(k \)-nearest neighbor (kNN) query retrieves the \(k \) (\(\geq 1 \)) objects of \(S \) closest to \(q \) according to the network distance.

Example

- \(S = \{a, b, c, d\} \)
- 1-NN is \(\{b\} \)
- 2-NN is \(\{b, a\} \)
Incremental Euclidean Restriction (IER) / 1

▶ Applies the Euclidean distance to reduce the search space in combination with the Euclidean lower bound
▶ Basic idea for 1-NN search
 ▶ Retrieve the Euclidean NN \(p_{E1} \) using an incremental kNN algorithm on the R-tree built on \(S \)
 ▶ Compute the network distance \(d_N(q, p_{E1}) \)
 ▶ Due to the lower-bound property, objects closer to \(q \) should be within Euclidean distance \(d_{Emax} = d_N(q, p_{E1}) \) (shaded area in figure below).
 ▶ The second Euclidean NN, \(p_{E2} \), is retrieved with \(d_N(q, p_{E2}) < d_N(q, p_{E1}) \); thus \(p_{E2} \) becomes the new NN and \(d_{Emax} = d_N(q, p_{E2}) \).
 ▶ Repeat last step until no more Euclidean NN is found in search region.

![Diagram of Euclidean NNs](image)
Incremental Euclidean Restriction (IER)/2

\[
\{p_1, \ldots, p_k\} = \text{Euclidean_NN}(q, k);
\]

\begin{verbatim}
foreach entity \(p_i\) do
 \(d_N(q, p_i) = \text{compute_ND}(q, p_i)\);
Sort \(\{p_1, \ldots, p_k\}\) in ascending order of \(d_N(q, p_i)\);
\(d_{E_{\text{max}}} = d_N(q, p_k)\);
repeat
 \((p, d_E(q, p)) = \text{next_Euclidean_NN}(q)\);
 if \(d_N(q, p) < d_N(q, p_k)\) then
 Insert \(p\) in \(\{p_1, \ldots, p_k\}\);
 \(d_{E_{\text{max}}} = d_N(q, p_k)\);
until \(d_N(q, p) > d_{E_{\text{max}}}\);
\end{verbatim}
Incremental Euclidean Restriction (IER)/3

- IER performs well if Euclidean distance is similar to network distance; otherwise, many Euclidean NNs are inspected before the network NN.

Example

- The nearest entity to query point q is the entity p_5
- The subscripts in p_1, \ldots, p_5 are in ascending order of $d(q, p_i)$
- p_5 will be examined after p_1, \ldots, p_4, since it has the largest Euclidean distance
Incremental Network Expansion (INE)/1

- Performs network expansion starting from query point q and examines entities in the order they arrive.
- Nodes not yet explored are stored in a queue Q which is sorted according to the network distance from q.

Example

- Locate the edge (n_1, n_2) that covers q and add n_1 and n_2 to the queue; $Q = \{(n_1, 3), (n_2, 5)\}$.
- No entity is on (n_1, n_2), and the closest node n_1 is expanded; $Q = \{(n_2, 5), (n_7, 12)\}$.
- No entity is on (n_1, n_7) and n_2 is expanded; $Q = \{(n_4, 8), (n_3, 9), (n_7, 12)\}$.
- p_5 is discovered on (n_2, n_4).
- $d_N(q, p_5) = 7$ provides a bound to restrict the search space.

TSDM17, SL06
Incremental Network Expansion (INE)/2

Algorithm: \(\text{INE}(q, k) \)

\(n_i n_j = \text{find_segment}(q); \)

\(S_{\text{cover}} = \text{find_entities}(n_i n_j); \)

\(\{p_1, \ldots, p_k\} = \text{the } k \text{ network nearest entities in } S_{\text{cover}}; \)

Sort \(\{p_1, \ldots, p_k\} \) in ascending order of \(d_N(q, p_i); \)

if \(p_k \neq \emptyset \) then \(d_{N_{\text{max}}} = d_N(q, p_k); \)

else \(d_{N_{\text{max}}} = \infty; \)

\(Q = \langle (n_i, d_N(q, n_i)), (n_j, d_N(q, n_j)) \rangle; \)

De-queue the node \(n \) in \(Q \) with the smallest \(d_N(q, n); \)

\begin{align*}
\text{while } d_N(q, n) &< d_{N_{\text{max}}} \text{ do} \\
\text{foreach non-visited adjacent node } n_x \text{ of } n \text{ do} & \\
& S_{\text{cover}} = \text{find_entities}(n_x n); \\
& \text{Update } \{p_1, \ldots, p_k\} \text{ from } \{p_1, \ldots, p_k\} \cup S_{\text{cover}}; \\
& d_{N_{\text{max}}} = d_N(q, p_k); \\
& \text{En-queue } (n_x, d_N(q, n_x)); \\
& \text{De-queue next node } n \text{ in } Q;
\end{align*}
Summary

- Network databases consider the street network, which constrains the positions and movements of objects.
- The Euclidean distance lower bounds the network distance.
- Most network expansion algorithms are based on Dijkstra’s shortest path algorithm.
- Incremental Euclidean Restriction (IER)
- Incremental Network Expansion (INE)
- The addition of schedules (start and end times, multimodal networks) complicates network algorithms significantly.