Spatial Network Databases (SNDB)/1

Definition (Spatial network databases)
In a spatial network database objects can move only on pre-defined trajectories as specified by the underlying network (representing e.g., roads, railways, rivers, etc.)

- The distance between two objects is the shortest trajectory between the two rather than the Euclidean distance

Example
- Query “Find the hotels within a 15km range” returns \{a, b, c\}
- Query “Find the closest hotel” returns \{b\}
 - Euclidean nearest neighbor is \(d\) (which is the farthest in the network)

Spatial Network Databases (SNDB)/2

Definition (Network distance)
- For each edge connecting \(n_i\) and \(n_j\), the network distance, \(d_N(n_i, n_j)\), is stored with the edge.
- For nodes \(n_i\) and \(n_j\) that are not directly connected, the network distance, \(d_N(n_i, n_j)\), is the length of the shortest path from \(n_i\) to \(n_j\).

Euclidean Lower-Bound Property: For any two nodes, the Euclidean distance, \(d_E(n_i, n_j)\), lower bounds the network distance, \(d_N(n_i, n_j)\), i.e.,
\[
d_E(n_i, n_j) \leq d_N(n_i, n_j)
\]

Shortest Path
- Much of the work on spatial network databases is on shortest path, nearest neighbor and range search.
- Dijkstra’s incremental network expansion is a greedy algorithm and the most basic solution to the shortest path problem.
- Dijkstra’s algorithm influenced much of the later work in spatial network databases.

- Starting point: directed weighted graph
 - \(G = (V, E)\) with weight function \(W : E \to \mathbb{R}\)
 - Weight of path \(p = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k\) is
 \[
 w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})
 \]
- Shortest path = a path of minimum weight (cost)
Shortest Path Problems

- **Single-source**
 Find a shortest path from a given source vertex s to all other vertices.

- **Single-pair**
 Given two vertices, find a shortest path between them. Solution to single-source problem solves this problem efficiently, too.

- **All-pairs**
 Find shortest-paths for every pair of vertices. Dynamic programming algorithm.

- **Unweighted shortest-paths**
 BFS.

Optimal Substructure

- **Theorem:**
 Subpaths of shortest paths are shortest paths

- **Proof:** if some subpath were not the shortest path, one could substitute the shorter subpath and create a shorter total path

Shortest Path Tree

- The result of the algorithms is a shortest path tree. For each vertex v it
 - records a shortest path from the start vertex s to v
 - v.pred is the predecessor of v in this shortest path
 - v.dist is the shortest path length from s to v

Relaxation

- For each vertex v in the graph, we maintain v.dist, the estimate of the shortest path from s. It is initialized to ∞ at the start.

- Relaxing an edge (u,v) means testing whether we can improve the shortest path to v found so far by going through u.
Dijkstra's Algorithm

- **Basic idea of Dijkstra’s algorithm:**
 - maintains a set S of solved vertices
 - at each step select closest vertex u, add it to S, and relax all edges from u
- **Greedy algorithm that gives optimal solution**
- **Similar to breadth-first search (if all weights = 1 then one can simply use BFS)**
- **Use a priority queue Q with keys v.dist, which is re-organized whenever some dist decreases**

```plaintext
foreach $u \in G.V$ do
  $u$.dist := $\infty$;
  $u$.pred := NIL;

$s$.dist := 0;
init($Q$, G.V) // priority queue $Q$

while ¬isEmpty($Q$) do
  $u$ := extractMin($Q$);
  foreach $v \in u$.adj do
    Relax($u$, $v$, $G$);
    modifyKey($Q$, $v$);
```

Diagram Examples

1. $Q = \{s(0, −), u(\infty, −), u(\infty, −), u(\infty, −), u(\infty, −)\}$
2. $Q = \{s(0, −), u(10, s), v(\infty, −), y(\infty, −)\}$
3. $Q = \{s(0, −), u(10, s), v(\infty, −), y(\infty, −)\}$
4. $Q = \{y(9, u)\}$
5. $Q = \{s(0, −), u(10, s), v(\infty, −), y(\infty, −)\}$
6. $Q = \{s(0, −), u(10, s), v(\infty, −), y(\infty, −)\}$
7. $Q = \{y(9, u)\}$
8. $Q = \{s(0, −), u(10, s), v(\infty, −), y(\infty, −)\}$
9. $Q = \{s(0, −), u(10, s), v(\infty, −), y(\infty, −)\}$
10. $Q = \{y(9, u)\}$

Notes:
- TSDM17, SL06 9/19 M. Böhlen, ifi@uzh
- TSDM17, SL06 10/19 M. Böhlen, ifi@uzh
- TSDM17, SL06 11/19 M. Böhlen, ifi@uzh
- TSDM17, SL06 12/19 M. Böhlen, ifi@uzh
Nearest Neighbors in SNDB

Definition
Given a source point \(q \) and an entity dataset \(S \), a \(k \)-nearest neighbor (kNN) query retrieves the \(k \) (\(k \geq 1 \)) objects of \(S \) closest to \(q \) according to the network distance.

Example
▶ \(S = \{ a, b, c, d \} \)
▶ 1-NN is \(\{ b \} \)
▶ 2-NN is \(\{ b, a \} \)

Incremental Euclidean Restriction (IER)/1
▶ Applies the Euclidean distance to reduce the search space in combination with the Euclidean lower bound
▶ Basic idea for 1-NN search
 ▶ Retrieve the Euclidean NN \(p_{E1} \) using an incremental kNN algorithm on the R-tree built on \(S \)
 ▶ Compute the network distance \(d_N(q, p_{E1}) \)
 ▶ Due to the lower-bound property, objects closer to \(q \) should be within Euclidean distance \(d_{Emax} = d_N(q, p_{E1}) \) (shaded area in figure below).
 ▶ The second Euclidean NN, \(p_{E2} \), is retrieved with \(d_N(q, p_{E2}) < d_N(q, p_{E1}) \); thus \(p_{E2} \) becomes the new NN and \(d_{Emax} = d_N(q, p_{E2}) \).
 ▶ Repeat last step until no more Euclidean NN is found in search region.

Incremental Euclidean Restriction (IER)/2

\[
\{p_1, \ldots, p_k\} = \text{Euclidean}__\text{NN}(q, k);
\]

\[
\text{foreach entity } p_i \text{ do}
\]

\[
d_N(q, p_i) = \text{compute}__\text{ND}(q, p_i);
\]

Sort \(\{p_1, \ldots, p_k\} \) in ascending order of \(d_N(q, p_i) \);

\[
d_{Emax} = d_N(q, p_k);
\]

repeat

\[
(p, d_E(q, p)) = \text{next}__\text{Euclidean}__\text{NN}(q);
\]

\[
\text{if } d_N(q, p) < d_N(q, p_k) \text{ then}
\]

 ▶ Insert \(p \) in \(\{p_1, \ldots, p_k\} \);
 ▶ \(d_{Emax} = d_N(q, p_k) \);

until \(d_N(q, p) > d_{Emax} \);

Incremental Euclidean Restriction (IER)/3
▶ IER performs well if Euclidean distance is similar to network distance; otherwise, many Euclidean NNs are inspected before the network NN.

Example
▶ The nearest entity to query point \(q \) is the entity \(p_5 \)
▶ The subscripts in \(p_1, \ldots, p_5 \) are in ascending order of \(d(q, p_i) \)
▶ \(p_5 \) will be examined after \(p_1, \ldots, p_4 \), since it has the largest Euclidean distance
Incremental Network Expansion (INE)/1

- Performs network expansion starting from query point q and examines entities in the order they arrive.
- Nodes not yet explored are stored in a queue Q which is sorted according to the network distance from q.

Example

- Locate the edge (n_1, n_2) that covers q and add n_1 and n_2 to the queue; $Q = \{(n_1, 3), (n_2, 5)\}$.
- No entity is on (n_1, n_2), and the closest node n_1 is expanded; $Q = \{(n_2, 5), (n_7, 12)\}$.
- No entity is on (n_1, n_7) and n_2 is expanded; $Q = \{(n_4, 8), (n_3, 9), (n_7, 12)\}$.
- p_5 is discovered on (n_2, n_4).
- $d_N(q, p_5) = 7$ provides a bound to restrict the search space.

Summary

- Network databases consider the street network, which constrains the positions and movements of objects.
- The Euclidean distance lower bounds the network distance.
- Most network expansion algorithms are based on Dijkstra’s shortest path algorithm.
- Incremental Euclidean Restriction (IER)
- Incremental Network Expansion (INE)
- The addition of schedules (start and end times, multimodal networks) complicates network algorithms significantly.