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In recent years the processing of continuous queries over potentially infinite data streams has

attracted a lot of research attention. We observed that the majority of work addresses individual

stream operations and system-related issues rather than the development of a general-purpose

basis for stream processing systems. Furthermore, example continuous queries are often formu-

lated in some declarative query language without specifying the underlying semantics precisely

enough. To overcome these deficiencies, this article presents a consistent and powerful operator

algebra for data streams which ensures that continuous queries have well-defined, deterministic

results. In analogy to traditional database systems, we distinguish between a logical and a physi-

cal operator algebra. While the logical algebra specifies the semantics of the individual operators

in a descriptive but concrete way over temporal multisets, the physical algebra provides efficient

implementations in the form of stream-to-stream operators. By adapting and enhancing research

from temporal databases to meet the challenging requirements in streaming applications, we are

able to carry over the conventional transformation rules from relational databases to stream pro-

cessing. For this reason, our approach not only makes it possible to express continuous queries with

a sound semantics, but also provides a solid foundation for query optimization, one of the major re-

search topics in the stream community. Since this article seamlessly explains the steps from query

formulation to query execution, it outlines the innovative features and operational functionality

implemented in our state-of-the-art stream processing infrastructure.
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1. INTRODUCTION

Continuous queries over unbounded data streams have emerged as an impor-
tant query type in a variety of applications, for example, financial analysis,
network and traffic monitoring, sensor networks, and complex event process-
ing [Babcock et al. 2002; Golab and Özsu 2003; Abadi et al. 2003; Cranor et al.
2003; Wang et al. 2003; Demers et al. 2007]. Traditional database manage-
ment systems are not designed to provide efficient support for the continuous
queries posed in these data-intensive applications [Babcock et al. 2002]. For
this reason, novel techniques and systems dedicated to the challenging require-
ments in stream processing have been developed. There has been a great deal
of work on system-related topics such as adaptive resource management [Babu
et al. 2005; Tatbul et al. 2003], scheduling [Babcock et al. 2003; Carney et al.
2003], query optimization [Viglas and Naughton 2002; Zhu et al. 2004], and
on individual stream operations, such as user-defined aggregates [Wang et al.
2003], windowed stream joins [Kang et al. 2003; Golab and Öszu 2003a], and
windowed aggregation [Yang and Widom 2001; Li et al. 2005]. However, an op-
erative data stream management system needs to unify all this functionality.
This constitutes a serious problem because most of the approaches rely on dif-
ferent semantics, which makes it hard to merge them. The problem gets even
worse if the underlying semantics is not specified properly but only motivated
through illustrative examples, for instance, in some informal, declarative query
language. Moreover, such queries tend to be simple and the semantics of more
complex queries often remains unclear.

To develop a complete Data Stream Management System (DSMS), it is cru-
cial to identify and define a basic set of operators to formulate continuous
queries. The resulting stream operator algebra must have a precisely defined
and reasonable semantics so that at any point in time, the query result is
clear and unambiguous. The algebra must be expressive enough to support a
wide range of streaming applications, for example, the ones sketched in SQR
[2003]. Therefore, the algebra should support windowing constructs and stream
analogs of the relational operators. As DSMSs are designed to run thousands of
continuous queries concurrently, a precise semantics is also required to enable
subquery sharing in order to improve system scalability, that is, common sub-
plans are shared and thus computed only once [Chen et al. 2000]. Furthermore,
it has to be clarified whether query optimization is possible and to what extent.
The relevance of this research topic is also confirmed in the survey Babcock
et al. [2002]:

[P]erhaps the most interesting open question is that of defining extensions of
relational operators to handle stream constructs, and to study the resulting
“stream algebra” and other properties of these extensions. Such a foundation
is surely key to developing a general-purpose well-understood query processor
for data streams.

Besides the semantic aspects, it is equally important for realizing a DSMS
to have an efficient implementation that is consistent with the semantics. To
date, little work has been published that combines semantic findings with ex-
ecution details in a transparent manner. Therefore, this article specifies our
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general-purpose stream algebra not only from the logical but also from the
physical perspective. In addition, it reveals how to adapt the processing steps
for one-time queries, common in conventional DBMSs, to continuous queries.

The notion of time plays an important role in the majority of streaming appli-
cations [Babcock et al. 2002; Golab and Özsu 2003; SQR 2003]. Usually, stream
tuples are tagged with a timestamp. Any stream algebra should consequently
incorporate operators that exploit the additionally available temporal informa-
tion. Extending the relational algebra towards a temporal algebra over data
streams is nontrivial for a number of reasons, including the following.

—Timestamps. It is not apparent how timestamps are assigned to the operator
results. Assume we want to compute a join over two streams whose elements
are integer-timestamp pairs. Is a join result tagged with the minimum or
maximum timestamp of the qualifying elements, or both? What happens in
the case of cascading joins? While some approaches prefer to choose a single
timestamp, such as Babcock et al. [2003] and Ghanem et al. [2007], others
suggest keeping all timestamps to preserve the full information [Golab and
Öszu 2003a; Zhu et al. 2004]. To the best of our knowledge, currently there
exists no consensus.

—Resource Limitations. It is not always possible to compute exact answers
for continuous queries because streams may be unbounded, whereas system
resources are limited [Babcock et al. 2002; Golab and Özsu 2003]. Since high-
quality approximate answers are acceptable in lieu of exact answers in the
majority of applications, we employ sliding windows as approximation tech-
nique. By imposing this technique on data streams, the range of a continuous
queries is restricted to finite sliding windows capturing the most recent data
from the streams, rather than the entire past history. For this reason, it is
essential to analyze the use and impact of these windowing constructs on
logical and physical query plans. Be aware that things can become complex
quickly, especially if continuous queries include subqueries that are possibly
windowed.

—Language Extensions. In DBMSs it is common to formulate queries via SQL
rather than directly composing query plans at operator level. However, the
novel constructs specific to stream processing necessitate extensions to SQL.
An appropriate syntax with an intuitive meaning plus the language grammar
modifications have to be identified. Eventually, queries should be compact
and easy to write.

While all operators of our logical algebra can handle infinite streams, those
operators of the physical algebra keeping state information such as the join
and aggregation usually cannot produce exact answers for unbounded input
streams with a finite amount of memory [Arasu et al. 2002]. According to our
continuous sliding window query semantics, we are able to provide practical
implementations to restrict resource usage. We prefer a query semantics that
considers sliding windows over data streams for two reasons. First, the most
recent data is emphasized, which is viewed to be more relevant than the older
data in the majority of real-world applications. Second, the query answer is
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exact with regard to the window specifications. Our approach differs in this
quality from other approximation techniques maintaining compact synopses
as summarizations of the entire operator state [Babcock et al. 2002; Golab and
Özsu 2003]. Unfortunately, it is often not possible to give reliable guarantees for
the results of approximate queries, in particular for sampling-based methods,
which prevents query optimization [Chaudhuri et al. 1999]. Approaches based
on synopses are altogether complementary to the work presented here.

As only a few papers published so far address the design and implementation
issues of a general-purpose algebra for continuous query processing, we focus
on continuous sliding window queries, their semantics, implementation, and
optimization potential in this work. We next summarize our contributions.

—We define a concrete logical operator algebra for data streams with precise
query semantics (Section 4). The semantics are derived from the well-known
semantics of the extended relational algebra [Dayal et al. 1982; Garcia-
Molina et al. 2000] and its temporal enhancement [Slivinskas et al. 2001].
To the best of our knowledge, such a semantic representation over multisets
does not exist, neither in the stream community nor in the field of temporal
databases.

—We discuss the basic implementation concepts and algorithms of our phys-
ical operator algebra (Section 7). Our novel stream-to-stream operators are
designed for push-based, incremental data processing. Our approach is the
first that uses time intervals to represent the validity of stream elements ac-
cording to the window specifications in a query. We show how time intervals
are initialized and adjusted by the individual operators to produce correct
query results. Although it was not possible to apply research results from
temporal databases to stream processing directly, our approach profits from
the findings in Slivinskas et al. [2001].

—We illustrate query formulation (Section 3) and reveal plan generation
(Section 5) in our stream processing infrastructure PIPES [Krämer and
Seeger 2004]. Altogether, this article surveys our practical approach and
makes the successive tasks from query formulation to query execution seam-
lessly transparent, an aspect missing in related papers. Moreover, we discuss
the expressive power of our approach and compare it to the Continuous Query
Language (CQL).

—We adapted the temporal concept of snapshot-equivalence for the definition
of equivalences at data stream and query plan level. These equivalences do
not only validate the concordance between our physical and logical opera-
tor algebra, but also establish a solid basis for logical and physical query
optimization, as we were able to carry over most transformation rules from
conventional and temporal databases to stream processing (Sections 6 and 8).

—A discussion, along with experimental studies, confirms the superiority of our
unique time-interval approach over the positive-negative approach [Arasu
et al. 2006; Ghanem et al. 2007] for time-based sliding window queries, the
predominant type of continuous queries (Appendix C).
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2. PRELIMINARIES

This section defines a formal model of data streams. We first introduce the terms
time and tuple, then we formalize our different types of streams, namely, raw
streams, logical streams, and physical streams. After that, we define equiva-
lence relations for streams and stream transformations. Section 2.7 briefly out-
lines the processes involved in optimizing and evaluating a continuous query.
Eventually, we introduce our running example in Section 2.8.

2.1 Time

Let T = (T, ≤) be a discrete time domain with a total order ≤. A time instant
is any value from T . We use T to model the notion of application time, not
system time. Note that our semantics and the corresponding implementation
only require any discrete, ordered domain. For the sake of simplicity, let T be
the non-negative integers {0, 1, 2, 3, . . . }.

2.2 Tuples

We use the term tuple to describe the data portion of a stream element. In a
mathematical sense, a tuple is a finite sequence of objects, each of a specified
type. Let T be the composite type of a tuple. Let �T be the set of all possible
tuples of type T . This general definition allows a tuple to be a relational tuple, an
event, a record of sensor data, etc. We do not want to restrict our stream algebra
to the relational model, as done in Arasu et al. [2006], because our operations are
parameterized with functions and predicates that can be tailored to arbitrary
types. For the case of the relational model, the type would be a relational schema
and the tuples would be relational tuples over this schema. As we want to show
that our approach is expressive enough to cover CQL, we point out how our
operations can be adapted to the relational model whenever necessary.

2.3 Stream Representations

Throughout the article, we use different representations for data streams. Raw
streams denote input streams registered at the system. Hence, these streams
provide the system with data. In our internal representation, we use differ-
ent stream formats. We distinguish between a logical and a physical algebra
in analogy to traditional DBMSs. The logical operator algebra relies on log-
ical streams, whereas its physical counterpart is based on physical streams.
Figure 1 gives an overview of the different stream representations and the for-
mats of stream elements. Figure 2 shows the conceptual schema of our running
example drawn from the NEXMark benchmark.

2.3.1 Raw Streams. Raw streams constitute external streams provided to
our DSMS. In the majority of real-world streams, tuples are tagged with a
timestamp [Golab and Özsu 2003; Arasu et al. 2006; Abadi et al. 2003; SQR
2003].

Definition 2.1 (Raw Stream). A raw stream Sr of type T is a potentially
infinite sequence of elements (e, t), where e ∈ �T is a tuple of type T and t ∈
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Fig. 1. Overview of stream representations.

Fig. 2. Conceptual schema of NEXMark data.

T is the associated timestamp. A raw stream is nondecreasingly ordered by
timestamps. In the following, let S

r
T be the set of all raw streams of type T .

A stream element (e, t) can be viewed as an event, that is, as an instantaneous
fact capturing information that occurred at time instant t [Jensen et al. 1994].
A measurement obtained from a sensor is an example for such an event. Note
that the timestamp is not part of the tuple, and hence does not contribute to the
stream type. There can be zero or multiple tuples with the same timestamp in a
raw stream. We only require the number of tuples having the same timestamp
to be finite. This weak condition generally holds for real-world data streams.
For cases in which raw streams do not satisfy our ordering requirement, that is,
some elements may arrive out of order by timestamp, we also provide techniques
to cope with bounded disorder. See Section 7.2.3 and Krämer [2007] for further
details.

—Base Streams and Derived Streams. Raw streams can be converted to
logical and physical streams using the transformations given in Section 2.5.
We use the terms base streams or source streams for the resultant streams
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because these streams represent the actual inputs of the logical and physical
plans, respectively. In contrast, we term the output streams produced by logical
and physical operators derived streams.

—System Timestamps. If the tuples arriving at the system are not equipped
with a timestamp, the system assigns a timestamp to each tuple, by default us-
ing the system’s local clock. While this process generates a raw stream with
system timestamps that can be processed like a regular raw stream with appli-
cation timestamps, the user should be aware that application time and system
time are not necessarily synchronized.

2.3.2 Logical Streams. A logical stream is the order-agnostic multiset rep-
resentation of a raw or physical stream used in our logical algebra. It shows
the validity of tuples at time-instant level. Logical and physical streams are
sensitive to duplicates, that is, tuples valid at the same point in time, because:
(i) raw streams may already deliver duplicates, and (ii) some operators like
projection or join may produce duplicates during runtime, even if all elements
in the input streams are unique.

Definition 2.2 (Logical Stream). A logical stream Sl of type T is a poten-
tially infinite multiset (bag) of elements (e, t, n), where e ∈ �T is a tuple of type
T , t ∈ T is the associated timestamp, and n ∈ N, n > 0, denotes the multiplicity
of the tuple. Let S

l
T be the set of all logical streams of type T .

A stream element has the following meaning: Tuple e is valid at time instant
t and occurs n times at t. A logical stream Sl satisfies the following condition.

∀(e, t, n), (ê, t̂, n̂) ∈ Sl . (e = ê ∧ t = t̂) ⇒ (n = n̂)

The condition prevents a logical stream from containing multiple elements with
identical tuple and timestamp components.

—Relational Multisets. We enhanced the well-known multiset notation for
the extended relational algebra proposed by Dayal et al. [1982] for logical
streams by incorporating the notion of time. We use this novel representation
to convey our query semantics in an elegant yet concrete way. The snapshot per-
spective facilitates the understanding of the temporal properties of our stream
operators.

—Abstraction. Many of the physical aspects like infinite stream sizes, block-
ing operators, out-of order processing, and temporal stream synchronization
that are indispensable for the implementation of physical stream operators
can be ignored at the logical level. Similar to the logical view of operators in
relational DBMS, such an abstraction is valuable for: (i) presenting the mean-
ing of a continuous query in a clear and precise fashion and (ii) discovering and
reasoning about equivalences as a rationale for query optimization, without
dealing with specific implementation details.

2.3.3 Physical Streams. Operators in the physical algebra process so-
called physical streams. Instead of sending positive and negative tuples through
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a query pipeline as done in Arasu et al. [2006] and Ghanem et al. [2007], we pro-
pose a novel approach that assigns a time interval to every tuple representing
its validity. To the best of our knowledge, we are the first in the stream com-
munity to pursue such an approach [Krämer and Seeger 2005]. Conceptually,
a physical stream can be viewed as a more compact representation of its logi-
cal counterpart that: (i) coalesces identical tuples with consecutive timestamps
into a single tuple with a time interval and (ii) brings the resulting stream
elements into ascending order by start timestamps.

Definition 2.3 (Physical Stream). A physical stream S p of type T is a po-
tentially infinite, ordered multiset of elements (e, [tS , tE )), where e ∈ �T is a
tuple of type T , and [tS , tE ) is a half-open time interval with tS , tE ∈ T . A phys-
ical stream is nondecreasingly ordered by start timestamps. Let S

p
T be the set

of all physical streams of type T .

The meaning is as follows: Tuple e is valid during the time period given by
[tS , tE ), where tS denotes the start and tE the end timestamp. According to our
definition, a physical stream may contain duplicate elements, and the ordering
of elements is significant. Note that we do not enforce any order for stream
elements with identical start timestamps.

Definition 2.4 (Chronon Stream). A chronon stream of type T is a specific
physical stream of the same type whose time intervals are chronons, namely,
nondecomposable time intervals of fixed, minimal duration determined by the
time domain T.1

Throughout this article, the terms time instant or simply instant denote sin-
gle points in time, whereas the terms chronon and time unit denote the time
period between consecutive points in time (at finest time granularity).

Example 1. Figure 3 gives an example of two physical streams that map
to the same logical stream. The physical stream at the top is a chronon stream.
The x-axis shows the time line. The letters indicate tuples. The numbers in
the drawing of the logical stream denote the multiplicity of the corresponding
tuples shown on the y-axis.

2.4 Value-Equivalence

Value-equivalence is a property that characterizes two stream elements inde-
pendent of the stream representation. Informally, we denote two stream ele-
ments to be value-equivalent if their tuples are equal.

Definition 2.5 (Value Equivalence). Let Sx
1 ∈ S

x
T , Sx

2 ∈ S
x
T , where x ∈

{r, p, l }, be two streams whose tuples have a common supertype T . Let s1 and
s2 be two stream elements from Sx

1 and Sx
2 , respectively, with tuples e1 and e2.

We denote both elements to be value-equivalent iff e1 = e2.

We use the term value-equivalence instead of tuple-equivalence to be compatible
with the consensus glossary of temporal database concepts [Jensen et al. 1994].

1see Jensen et al. [1994] for the definition of the term chronon.
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Fig. 3. An example for logical and physical streams.

2.5 Stream Transformations

To make streams available in either the logical or physical algebra, raw streams
have to be converted into the respective stream model first. In addition to these
input stream transformations, we specify the conversion from a physical stream
into its logical analog. The latter transformation is required to prove the seman-
tic equivalence of query answers returned by logical and physical plans.

2.5.1 Raw Stream To Physical Stream. Let Sr be a raw stream of type T .
The function ϕr �→p : S

r
T → S

p
T takes a raw stream as argument and returns a

physical stream of the same type. The conversion is achieved by mapping every
stream element of the raw stream into a physical stream element as follows.

(e, t) �→ (e, [t, t + 1))

The time instant t assigned to a tuple e is converted into a chronon. There-
fore, the resultant physical stream is a chronon stream. Since a raw stream is
ordered by timestamps, the resultant physical stream is properly ordered by
start timestamps. The number of elements in a physical stream having identi-
cal start timestamps is finite because only a finite number of elements in a raw
stream are allowed to have the same timestamp.

2.5.2 Raw Stream to Logical Stream. The function ϕr �→l : S
r
T → S

l
T trans-

forms a raw stream Sr into its logical counterpart.

ϕr �→l (Sr ) := {(e, t, n) ∈ �T × T × N | n = |{(e, t) ∈ Sr}| ∧ n > 0} (1)

The logical stream subsumes value-equivalent elements of the raw stream.
Hence, the multiplicity n corresponds to the number of duplicate tuples e oc-
curring in Sr at time instant t.
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Fig. 4. Steps from query formulation to query execution.

2.6 Physical Stream To Logical Stream

The function ϕ p�→l : S
p
T → S

l
T transforms a physical stream S p into its logical

counterpart.

ϕ p�→l (S p) := {(e, t, n) ∈ �T × T × N |
n = |{(e, [tS , tE )) ∈ S p | t ∈ [tS , tE )}| ∧ n > 0} (2)

Recall that a logical stream describes the validity of a tuple e at time-instant
level. For this reason, the time intervals assigned to tuples in the physical
stream need to be split into single time instants. The multiplicity n of a tuple
e at a time instant t corresponds to the number of elements in the physical
stream whose tuple is equal to e and whose time interval intersects with t.

Remark 2.6. Often when there is no ambiguity we omit the superscript of a
stream variable indicating the stream representation. For instance, throughout
our logical and physical algebra, we label streams with S instead of Sl and S p,
respectively.

2.7 Query Processing Steps

The structure of this article follows the processes involved in optimizing and
evaluating a query. Figure 4 shows this series of actions, which resembles the
well-approved steps being applied in traditional database management sys-
tems. Nonetheless, notice the following differences. (1) Due to the long-running
queries, the optimizer also takes subplans of running queries into account dur-
ing plan enumeration to benefit from subquery sharing. (2) When the physical
plan is registered at the execution engine, the execution engine integrates the
plan into the system’s global query graph, which consists of all operative query
plans, and initiates data processing. (3) Alternatively, we permit the user to
pose queries directly by constructing operator plans from either the logical or
physical algebra via a graphical user interface.

2.8 Running Example

Examples throughout this work are drawn from the NEXMark benchmark for
data stream systems developed in the Niagara project [Chen et al. 2000]. The
benchmark provides schema and query specifications from an online auctions
system such as eBay (see Figure 2). At any point in time, hundreds of auctions
for individual items are open in such a system. The following actions occur
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continuously over time: (i) New people register, (ii) new items are submitted for
auction, and (iii) bids arrive for items.

We use the schema and continuous queries published at the Stream Query
Repository [SQR 2003] in the following; full details can be found in the original
specification of the benchmark [Tucker et al. 2002]. The schema consists of three
relations (i.e., Category, Item, and Person) and three streams (OpenAuction,
ClosedAuction, and Bid). Figure 2 shows the abbreviated conceptual schema
of NEXMark. It illustrates the different types of tuples, their structure, and
dependencies. The NEXMark benchmark generator provides the data in a data-
centric XML format. In our implementation, we utilized a standard data binding
framework for converting the tuples from XML format into objects. As this work
deals with continuous queries over data streams, we refer the interested reader
to Krämer [2007] to obtain information about how we incorporate relations into
query processing. In our terminology, all streams in the NEXMark benchmark
are raw streams since tuples are associated with timestamps. For example, the
Bid stream provides tuples of the form (itemI D, bid price, bidder I D) tagged
with a timestamp.

Remark 2.7. Some applications may already provide physical streams as
inputs to the system, that is, they associate a tuple with a time period rather
than a timestamp [Madden et al. 2002; Demers et al. 2007]. In this case,
we omit the transformation from the raw to the physical stream and con-
nect the input streams directly with the physical operator plans. The logi-
cal source streams are obtained from converting every physical input stream
into a logical one. Even in the NEXMark scenario, it would be possible and
meaningful to use a physical stream as input if a single auction stream is
used instead of two separate streams indicating auction starts and endings
(OpenAuction and ClosedAuction). As a result, the time interval associated to
an auction would correspond to the auction duration. For compliance reasons,
however, we stick firmly to the suggested conceptual schema of the NEXMark
benchmark.

3. QUERY FORMULATION

Query formulation is a minor aspect in this article. Instead, we put emphasis
on our query semantics and the efficient implementation of stream-to-stream
operators. Our DSMS prototype called PIPES [Krämer and Seeger 2004] sup-
ports two different ways for formulating a continuous query: (i) via a graphical
interface or (ii) via a query language. The graphical interface allows users to
build query plans from our operator algebra manually, by connecting the indi-
vidual operators in an appropriate manner. In this article, we want to present
our declarative query language, which is a slight extension of standard SQL
with a subset of the window constructs definable in SQL:2003. A thorough dis-
cussion of similarities and differences between CQL [Arasu et al. 2006] and our
language is given in Krämer [2007]. Appendix D proves that our language is at
least as expressive as CQL.
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3.1 Registration of Source Streams

Recall that a source stream is obtained from mapping a raw stream into our
internal stream representation. To register a source stream in the system, it
is important to declare its name and schema first. This can be done with the
CREATE STREAM clause (see Example 3.1). Registering a source stream adds an
entry to the input stream catalog of the system. In analogy to the CREATE TABLE
command in SQL, the name declaration is followed by the schema definition.
The SOURCE clause is a new feature of our query language and consists of two
parts. The first part is a user-defined function that establishes the connection to
the actual underlying data source, for example, a raw stream obtained through a
network connection. The second part indicates the attribute according to which
the stream is ordered. It starts with the keywords ORDERED BY and expects a
single attribute name.

Example 2. Let us consider the following statement for the registration of
a raw stream.

CREATE STREAM OpenAuction(itemID INT, sellerID INT,

start_price REAL, timestamp TIMESTAMP)

SOURCE establishConnection(’port34100’, ’converter’)

ORDERED BY timestamp;

The user-defined function establishConnection takes a port number and a
converter as arguments. The converter transforms the sequence of bytes arriv-
ing at port 34100 into a raw stream.

Remark 3.1 (Timestamp Attribute). Be aware that, although the times-
tamp attribute is explicitly defined, it is not part of the stream schema. As
a consequence, it cannot be referenced in queries. However, it is required in the
stream definition to identify input streams with explicit timestamps. As some
streams might provide multiple timestamp attributes, the ORDERED BY clause
determines the attribute according to which the stream is ordered. If no ORDERED
BY clause is specified, the system assigns an implicit timestamp upon arrival of
an element using the system’s internal clock.

3.2 Continuous Queries

The specification of a continuous query in our language resembles the formula-
tion of one-time queries in native SQL using the common SELECT, FROM, WHERE,
and GROUP BY clauses. While being as close to SQL as possible, our query lan-
guage supports most of the powerful query specification functionality provided
by standard SQL (SQL:1992), for instance, control over duplicates, nested sub-
queries, aggregates, quantifiers, and disjunctions [Dayal 1987].

3.2.1 Window Specification in FROM clause. As windowing constructs
play an important role in stream processing, we slightly enhanced the FROM
clause with a WINDOW specification. The BNF grammar for this specification is
shown in Figure 5. To define a window over a stream, the window specification
has to follow the stream reference in the FROM clause. A window specification
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Fig. 5. BNF grammar excerpt for extended FROM clause and window specification.

restricts the scope of a query to a finite, sliding subset of elements from the
underlying stream. Rather than defining an entirely new syntax for windows
from scratch, we reused the WINDOW specification of SQL:2003. Windows in
SQL:2003 are restricted to built-in OLAP functions and thus are only permitted
in the SELECT clause. Conversely, we aimed to let windows slide directly over any
stream, base, and derived streams, for example, to express windowed stream
joins. For this reason, we needed to extend the FROM clause. A detailed com-
parison with the window expression in SQL:2003 reveals two further changes.
First, we solely consider preceding windows, as only these window types make
sense in stream processing. The keyword PRECEDING then becomes superfluous
and, therefore, we dropped it. Second, we added an optional SLIDE clause to
specify the window advance, which, for instance, is required to express tum-
bling windows [Patroumpas and Sellis 2006].

3.2.2 Default Window. The BNF grammar for the extended FROM clause al-
lows the user to omit the window specification. In this case, the default window
is a time-based window of size 1, which covers all elements of the referenced
input stream valid at the current time instant. We call this special type now-
window. The following sections will show that now-windows can be omitted in
the query formulation and also in query plans because evaluating now-windows
produces the identity.

Example 3. Let us consider some examples of continuous queries formu-
lated in our enriched SQL language.

Currency Conversion Query. Convert the prices of incoming bids from U.S.
dollars into euros.

SELECT itemID, DolToEuro(bid_price), bidderID

FROM Bid;

DolToEuro is a user-defined function to convert a dollar price to euros.
The function is invoked on every incoming bid. The query does not specify a
windowing construct, hence a now-window is applied by default.

Selection Query. Select all bids on a specified set of 5 items.
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SELECT Bid.*

FROM Bid

WHERE itemID = 1007 OR itemID = 1020

OR itemID = 2001 OR itemID = 2019

OR itemID = 1087;

The filter condition is expressed in the WHERE clause listing the item identi-
fiers of interest.

Short Auctions Query. Report all auctions that closed within 5 hours of their
opening.

SELECT OpenAuction.*

FROM OpenAuction O WINDOW(RANGE 5 HOURS),

ClosedAuction C

WHERE O.itemID = C.itemID;

This query is an example for a windowed stream join. It takes two streams
as input, namely the OpenAuction and ClosedAuction stream. A time-based
window of range 5 hours is defined over the OpenAuction stream, and a now-
window is applied to the ClosedAuction stream by default. The join condition
checks equality on item identifiers.

3.3 Registration of Derived Streams

The result of a continuous query is a data stream. Depending on the operator
algebra used, this derived stream is either a logical or physical stream. Besides
the functionality to register a source stream, it also possible to make derived
streams available as inputs for other continuous queries. Like the CREATE VIEW
mechanism in SQL, a derived stream can be defined by

CREATE STREAM <stream name> AS

<query expression>.

Example 4. Closing Price Query. Report the closing price and seller of each
auction.

CREATE STREAM CurrentPrice AS

SELECT P.itemID, P.price, O.sellerID AS sellerID

FROM ((SELECT itemID, bid_price AS price

FROM Bid WINDOW(RANGE 2 DAYS))

UNION ALL

(SELECT itemID, start_price AS price

FROM OpenAuction WINDOW(RANGE 2 DAYS))) P,

ClosedAuction C,

OpenAuction O WINDOW(RANGE 2 DAYS)

WHERE P.itemID = C.itemID AND C.itemID = O.itemID;

CREATE STREAM ClosingPriceStream AS

SELECT itemID, sellerID, MAX(P.price) AS price
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FROM CurrentPrice P,

GROUP BY P.itemID, P.sellerID;

The NEXMark benchmark generator sets the maximum auction duration
to two days; hence, we use this timespan in the windowing constructs. Fur-
thermore, it is assumed that the closing price in an auction is the price of
the maximum bid, or the starting price of the auction in cases there were no
bids [SQR 2003]. We choose this continuous query to demonstrate the following
language features: the use of derived streams, time-based sliding window joins,
and windowed grouping with aggregation. Furthermore, the query is relatively
complex and offers optimization potential.

Remark 3.2. If we modeled the online auction application with a single
auction stream using time intervals to express an auction’s duration, the clos-
ing price would be much easier to compute (see also remark in Section 2.8).
This approach makes sense since the auction duration is usually known in ad-
vance. In this case, it would be satisfactory to define a now-window on the Bid
stream.

3.4 Nested Queries

It is obvious that our query language supports the formulation of nested queries
because derived streams are allowed as inputs for continuous queries. The
declaration and use of derived streams makes the language more appealing,
as it is easier and more intuitive to express complex queries. However, the
query result would be unchanged if all names of derived streams were replaced
by the corresponding query specification.

Besides the simple type of subqueries standing for derived streams, our query
language also supports the more complicated types of subqueries in SQL, like
nested queries with aggregates or quantifiers [Dayal 1987].

Example 5. Highest Bid Query. Return the highest bid(s) in the last 10
minutes.

SELECT itemID, bid_price

FROM Bid WINDOW(RANGE 10 MINUTES),

WHERE bid_price = (SELECT MAX(bid_price)

FROM BID WINDOW(RANGE 10 MINUTES));

We choose this query as an example for a subquery with aggregation. The
nested query in the WHERE clause determines the maximum bid price over a slid-
ing window of ten minutes. The outer query applies the same window (identical
FROM clause) and checks whether the price associated to a bid is equal to the
maximum.

Hot Item Query. Select the item(s) with the most bids in the past hour.

SELECT itemID

FROM (SELECT B1.itemID AS itemID, COUNT(*) AS num

FROM Bid WINDOW(RANGE 60 MINUTES) B1

GROUP BY B1.itemID)
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Table I. Examples of Logical Streams

(a) Stream S1

T Multiset

1 〈c〉
2 〈a, a, a〉
3 〈a, a, a, b〉
4 〈a, a, a, b, c〉
5 〈b, b〉
6 〈b, b〉

(b) Stream S2

T Multiset

1 〈〉
2 〈b, b〉
3 〈b, b〉
4 〈a, b, c〉
5 〈a, a, b〉
6 〈a, c, c〉

WHERE num >= ALL(SELECT COUNT(*)

FROM Bid WINDOW(RANGE 60 MINUTES) B2

GROUP BY B2.itemID);

The example demonstrates a query with universal quantification. The nested
query in the WHERE clause computes the number of bids received for each item
over the last hour. The subquery in the FROM clause computes the same ag-
gregate but assigns it to the corresponding item identifier. The outer query
eventually checks whether the number of bids associated to an item identifier
by the subquery in the FROM clause is equal to or greater than all values returned
by the subquery in the WHERE clause.

4. LOGICAL OPERATOR ALGEBRA

This section presents some operators of our logical algebra. Due to space restric-
tions, we were not able to discuss the full operator set. For details, the interested
reader is referred to Krämer [2007]. Section 4.1 discusses the standard opera-
tors, namely, those stream operators that have an analog in the extended rela-
tional algebra, whereas Section 4.2 defines the window operators. Rather than
integrating windows into standard operators as done, for instance, in Kang et al.
[2003] and Golab and Öszu [2003a], we separated the functionalities. This is an
important step towards identifying a basic set of stream operators. It avoids the
redundant specification of windowing constructs in the various operators and
facilitates exchanging window types. In our case, the combination of window
operators with standard operators creates their windowed analogs.

Example 6. The examples throughout this section illustrating the seman-
tics of our operators are based on the two following logical streams.

S1 :={(c, 1, 1), (a, 2, 3), (a, 3, 3), (b, 3, 1), (a, 4, 3), (b, 4, 1), (c, 4, 1), (b, 5, 2), (b, 6, 2)}
and

S2 :={(b, 2, 2), (b, 3, 2), (a, 4, 1), (b, 4, 1), (c, 4, 1), (a, 5, 2), (b, 5, 1), (a, 6, 1), (c, 6, 2)}
Table I shows the two logical streams from the snapshot (time instant) per-

spective in tabular form. A table row indicates that the multiset of tuples listed
in the second column is valid at the time instant specified in the first column.
For ease of presentation, we denote a multiset by listing the tuples including
duplicates in 〈〉 brackets, instead of using a set notation with tuple-multiplicity
pairs.
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Table II. Cartesian Product of Logical

Streams S1 and S2

S1 × S2

T Multiset

1 〈〉
2 〈a ◦ b, a ◦ b, a ◦ b, a ◦ b, a ◦ b, a ◦ b〉
3 〈a ◦ b, a ◦ b, a ◦ b, a ◦ b,

a ◦ b, a ◦ b, b ◦ b, b ◦ b〉
4 〈a ◦ a, a ◦ b, a ◦ c, a ◦ a, a ◦ b,

a ◦ c, a ◦ a, a ◦ b, a ◦ c, b ◦ a,

b ◦ b, b ◦ c, c ◦ a, c ◦ b, c ◦ c〉
5 〈b ◦ a, b ◦ a, b ◦ b, b ◦ a, b ◦ a, b ◦ b〉
6 〈b ◦ a, b ◦ c, b ◦ c, b ◦ a, b ◦ c, b ◦ c〉

4.1 Standard Operators

As examples for standard operators, we choose the Cartesian product (×) and
the scalar aggregation (α). See Krämer [2007] for further operators, including
derived ones such as the join or grouping with aggregation.

4.1.1 Cartesian Product. The Cartesian product × : S
l
T1

× S
l
T2

→ S
l
T3

of two
logical streams combines elements of both input streams whose tuples are valid
at the same time instant. Let T3 denote the output type. The auxiliary function
◦ : �T1

× �T2
→ �T3

creates an output tuple by concatenating the contributing
tuples, denoted in infix notation. The product of their multiplicities determines
the multiplicity of the output tuple.

×(S1, S2) := {(e1 ◦ e2, t, n1 · n2) | (e1, t, n1) ∈ S1 ∧ (e2, t, n2) ∈ S2} (3)

Example 7. Table II demonstrates the output stream of the Cartesian prod-
uct over input streams S1 and S2 which, in turn, is the Cartesian product on
the corresponding multisets at each time instant.

4.1.2 Scalar Aggregation. Let Fagg be the set of all aggregate functions over
type T1. An aggregate function fagg ∈ Fagg with fagg : ℘(�T1

×N) → �T2
computes

an aggregate of type T2 from a set of elements of the form (tuple, multiplicity).
The aggregate function is specified as subscript. ℘ denotes the power set. The
aggregation α : S

l
T1

×Fagg → S
l
T2

evaluates the given aggregate function for every
time instant on the nontemporal multiset of all tuples from the input stream
being valid at this instant.

α fagg(S) := {(agg, t, 1) | ∃X ⊆ S. X �= ∅ ∧
X = {(e, n) | (e, t, n) ∈ S} ∧ agg = fagg(X )} (4)

The aggregation implicitly eliminates duplicates for every time instant as it
computes an aggregate value for all tuples valid at the same time instant
weighted by the corresponding multiplicities. Note that the aggregate func-
tion can be a higher-order function. As a result, it is also possible to evaluate
multiple aggregate functions over the input stream in parallel. The output type
T2 describes the aggregates returned by the aggregate function. An aggregate
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Table III. Scalar

Aggregation

αSUM(S1)

T Multiset

1 〈c〉
2 〈a + a + a〉
3 〈a + a + a + b〉
4 〈a + a + a + b + c〉
5 〈b + b〉
6 〈b + b〉

consists of: (i) the aggregate value(s), and (ii) grouping information. The latter
is important if a grouping is performed prior to the aggregation. An aggre-
gate function should retain the portion of the tuples relevant to identify their
group. For the relational case, this portion would correspond to the grouping
attributes. Recall that the scalar aggregation treats its input stream as a single
group.

Example 8. Table III illustrates the scalar aggregation for the sum. The
tuples in the output stream are actually aggregate values, here denoted as
sums. The aggregate value belonging to a time instant t is the sum of all tuples
from S1 being valid at t.

4.2 Window Operators

In this article, we focus on our time-based sliding window operator because
this type of windows is the most common in continuous queries. Nevertheless,
we also provide count-based and partitioned windows for compliance with the
window specifications in SQL:2003 and CQL (see Krämer [2007]).

4.2.1 Time-Based Sliding Window. The time-based sliding window ωtime :
S

l
T × T → S

l
T takes a logical stream S and the window size as arguments. The

window size w ∈ T , w > 0, represents a period of (application) time and is
expressed as subscript.2 The operator shifts a time interval of size w time units
over its input stream to define the output stream.

ωtime
w (S) :={(e, t̂, n̂) | ∃X ⊆ S. X �= ∅ ∧

X = {(e, t, n) ∈ S | max{t̂ − w + 1, 0} ≤ t ≤ t̂} ∧ n̂ =
∑

(e,t,n)∈X

n} (5)

At a time instant t̂, the output stream contains all tuples of S whose timestamp
intersects with the time interval [max{t̂ − w + 1, 0}, t̂]. In other words, a tuple
appears in the output stream at t̂ if it occurred in the input stream within the
last w time instants ≤ t̂.

There are two special cases of windows supported by CQL: the now-window
and the unbounded window. The now-window captures only the current time

2Our notation w ∈ T indicates the number of time units captured by the window. The window size

is given by the duration of the time interval [0, w).

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 4, Publication date: April 2009.



Continuous Sliding Window Queries over Data Streams • 4:19

Table IV. Time-Based

Sliding Window

ωtime
2

(S1)

T Multiset

1 〈c〉
2 〈a, a, a, c〉
3 〈a, a, a, a, a, a, b〉
4 〈a, a, a, a, a, a, b, b, c〉
5 〈a, a, a, b, b, b, c〉
6 〈b, b, b, b〉
7 〈b, b〉

instant of the input stream, hence, w = 1. We cover the semantics of the un-
bounded window, w = ∞, by defining that ∀t̂ ∈ T : max{t̂ − ∞, 0} = 0. This
means that all elements of S with timestamps ≤ t̂ belong to the window.

Example 9. Table IV specifies the logical output stream of the time-based
sliding window operator applied to stream S1 with a window size of 2 time
units. A tuple occurs in the output stream at time instant t if it occurs in the
input stream at time instants t or t − 1 for t − 1 ≥ 0.

5. LOGICAL PLAN GENERATION

While query formulation with a graphical interface directly produces a query
plan, queries expressed in a query language need to be compiled into a logical
query plan. Parsing and translating a query from its textual representation
into a logical plan closely resembles query plan construction in conventional
database systems. In comparison with native SQL, we only extended the FROM
clause with window specifications. Therefore, we need to clarify how the plan
generator positions the window operators inside the plan.

5.1 Window Placement

Whenever the parser identifies a window expression following a stream refer-
ence, the corresponding window operator is installed in the query plan down-
stream of the node standing for the stream reference. There are two cases.

(1) If the stream reference represents a source stream, then the plan contains a
leaf node as proxy for this stream reference. In this case, the plan generator
installs the corresponding window operator downstream of the leaf node.

(2) If the stream reference represents a derived stream (subquery), then the
query plan has been built partially and consists of the sources and operators
computing the derived stream. In this case, the plan generator installs the
corresponding window operator as topmost operator of the partial plan.

The rest of the plan generation process is equal to that in conventional
DBMSs, that is, the plan generator constructs the plan downstream of the
window operators as if these were not present.
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Fig. 6. Logical plans for NEXMark queries.

5.2 Default Windows

Window placement is only performed for windows explicitly specified in the
query language statement. The user may have omitted the specification of de-
fault windows for the sake of simplicity. The corresponding now-windows do
thus not occur in the logical query plan. Here, we have already applied an opti-
mization, namely that now-windows do not have any impact on a logical stream
(see also Section 6.3.2). Plan generation can hence ignore any now-windows that
are explicitly defined in the query statement. Omitting default windows in log-
ical plans eventually saves computational resources because the corresponding
operators also disappear in the physical plans generated afterwards.

5.3 Examples

After the definition of our logical operators and the explanation of window
operator placement, we want to show the logical plans for the example queries
given in Section 3 (see Figures 6 and 7). The logical plans display the now-
windows for the sake of better comprehension.3

The plans for the currency conversion (Q1) and selection query (Q2) are
straightforward. A now-window is simply placed upstream of the map (μ) and
filter (σ ), respectively. The short auctions query (Q3) uses time-based windows
of different sizes. The window defined over the OpenAuction stream has a size of
5 hours, whereas the one over the ClosedAuction stream is a now-window. The
subscript of the join symbol indicates that the join is defined on item identifiers.
The projection to the attributes of the OpenAuction stream is performed by the
function creating the join results. We omitted an extra symbol for that function.
The plan for the highest bid query (Q4) is more complicated, since it contains
a subquery. Originally, each query is compiled into an operator plan that is a
tree of operators. Because of subquery sharing, the operator plan diverges to a
directed, acyclic operator graph. Subplans falling away due to subquery sharing
appear in a lighter tone in our figures. In query Q4, the time-based window

3Note that other approaches like the positive-negative approach require the now-windows [Arasu

et al. 2006; Ghanem et al. 2007].
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Fig. 7. Logical Plans for NEXMark queries (continued).

over the Bid stream can be shared since it is a commonality of the outer query
and the nested query. The nested query performs a projection to the bid price
attribute and computes the maximum afterwards. The outer query returns
those elements in the window that match the maximum bid price computed by
the nested query, that is, a semi-equijoin is placed as topmost operator. Hence,
the subquery with aggregation is resolved using a semijoin (�) [Dayal 1987].

Figure 7 illustrates the logical plans for the more complex queries of the
NEXMark scenario. In the closing price query (Q5), we first compute the derived
CurrentPrice stream. To obtain the current price of an auction, we merge the
Bid and OpenAuction streams. Next, we compute an equijoin on item identifiers
over the merged streams with the ClosedAuction stream. Since the time-based
window of size two days captures all bids relevant for an item, we obtain a
join result for each bid plus a join result for the initiation of the auction. The
following equijoin with the OpenAuction stream associates the sellerID to each
resultant tuple of the first join, which is a pair of item identifier and bid price.
Recall that the seller identifier was projected out before the union to make
the schema compatible. Finally, a grouping with aggregation (γ ) applied to the
CurrentPrice stream computes the maximum price for each item identifier,
which corresponds to the closing price.

The logical plan for the hot item query (Q6) resolves the nested query with
universal quantification by means of an antijoin (�) [Dayal 1987]. First, the
number of bids issued for the individual items within the recent ten minutes is
computed by grouping on item identifiers combined with a count aggregate. The
count attribute is renamed to num for the first input of the join. The itemID
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attribute is projected out for the second input. The predicate of the antijoin
verifies whether the num attribute of the first input is less than the count
attribute of the second input. At every time instant, the antijoin outputs only
those elements from the first input stream that do not satisfy the join predicate
for any element in the second input stream. Consequently, at any time instant
t, a result is only produced if a tuple exists in the first stream at t whose num
value is equal to or greater than the count value of all tuples in the second
stream at instant t.

6. ALGEBRAIC QUERY OPTIMIZATION

The foundation for any query optimization is a well-defined semantics. Our
logical algebra not only precisely specifies the output of our stream operators
but is also expressive enough to support state-of-the-art continuous queries.
This section explains why our approach permits query optimization and clari-
fies to which extent. Section 6.1 introduces snapshot-reducibility [Jensen et al.
1994], an important property fulfilled by our standard operators. Section 6.2 de-
fines equivalences for logical streams and operator plans. Section 6.3 reports on
transformation rules holding in our logical algebra, while Section 6.4 discusses
their applicability.

6.1 Snapshot-Reducibility

In order to define snapshot-reducibility, we first introduce the timeslice opera-
tion that allows us to extract snapshots from a logical stream.

Definition 6.1 (Timeslice). The timeslice operator τ : (Sl
T × T ) → ℘(�T ×N)

takes a logical stream Sl and a time instant t as arguments, where t is expressed
as subscript. It computes the snapshot of Sl at t, that is, the nontemporal
multiset of all tuples being valid at time instant t.

τt(Sl ) := {(e, n) ∈ �T × N | (e, t, n) ∈ Sl } (6)

For the relational case, a snapshot can be considered as an instantaneous re-
lation since it represents the bag of all tuples valid at a certain time instant
(compare to Arasu et al. [2006]). Hence, the timeslice operator is a tool for
obtaining an instantaneous relation from a logical stream.

Definition 6.2 (Snapshot-Reducibility). We denote a stream-to-stream op-
erator opS with inputs S1, . . . , Sn as snapshot-reducible iff for any time instant
t ∈ T , the snapshot at t of the results of opS is equal to the results of applying
its relational counterpart opR to the snapshots of S1, . . . , Sn at time instant t.

Figure 8 shows a commuting diagram that illustrates the previous defini-
tion. Snapshot-reducibility is a well-known concept in the temporal database
community [Slivinskas et al. 2001; Jensen et al. 1994]. It guarantees that the
semantics of a relational, nontemporal operator is preserved in its more com-
plex, temporal counterpart. As time is an essential concept in stream processing
as well, we decided to adopt the snapshot-reducibility property for our stream
operators to the extent possible, with the aim to profit from the great deal of
work done in temporal databases.
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Fig. 8. Snapshot-reducibility.

LEMMA 6.3. Let the tuples be relational tuples and operator functions and
predicates adhere to the semantics of the extended relational algebra. It follows
that the standard operators of our stream algebra are snapshot-reducible.

PROOF. There exists a nontemporal analog in the extended relational alge-
bra for every standard operator in our logical algebra. Moreover, we defined the
semantics of standard operators such that it satisfies the snapshot-reducibility
property.

For example, the duplicate elimination over logical streams is snapshot-
reducible to the duplicate elimination over relations. However, the class of stan-
dard operators represents only a subset of our logical algebra. This class consid-
ered alone would not be expressive enough for our purpose because windowing
constructs are missing. Our window operators are not snapshot-reducible.

6.2 Equivalences

Let us first derive an equivalence relation for logical streams, and thereafter
for logical query plans.

Definition 6.4 (Logical Stream Equivalence). We define two logical
streams Sl

1, Sl
2 ∈ S

l
T to be equivalent iff their snapshots are equal.

Sl
1

.= Sl
2 :⇔ ∀t ∈ T. τt(Sl

1) = τt(Sl
2) (7)

Definition 6.5 (Logical Plan Equivalence). Given two query plans Q1 and
Q2 over the same set of logical input streams. Let each query plan represent a
tree composed of operators from our logical operator algebra. Let Sl

1 and Sl
2 be

the output streams of the plans, respectively. We denote both plans as equivalent
iff their logical output streams are equivalent, that is, if for any time instant t
the snapshots obtained from their output streams at t are equal.

Q1
.= Q2 :⇔ Sl

1

.= Sl
2 (8)

6.3 Transformation Rules

Due to defining our standard operations in semantic compliance with
Slivinskas et al. [2001], the plethora of transformation rules listed in Slivin-
skas et al. [2001] carries over from temporal databases to stream processing.
Here, semantic compliance means that our stream operators generate snapshot-
multiset-equivalent results to the temporal operators presented in Slivinskas
et al. [2001]. The transfer of this rich foundation for conventional and temporal
query optimization enables us to algebraically optimize logical query plans over
data streams.
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6.3.1 Conventional Rules. Logical stream equivalence, which represents
snapshot-equivalence over temporal multisets, causes the relational transfor-
mation rules to be applicable to our stream algebra.

Definition 6.6 (Snapshot-Reducible Plans). We define a snapshot-reducible
plan as a query plan that involves exclusively snapshot-reducible operators.

LEMMA 6.7. Given a snapshot-reducible plan, any optimizations with con-
ventional transformation rules lead to an equivalent plan.

PROOF. Let Sl
1 and Sl

2 be the output streams of the original and optimized
plan, respectively. We have to show that for any time instant t, τt(Sl

1) = τt(Sl
2).

This condition follows directly from the snapshot-reducibility property of all
operators involved and the correctness of the conventional transformation rules
for the relational algebra.

Lemma 6.7 states that all conventional transformation rules apply equally
to plans built with standard operations of our stream algebra. This includes,
for example, the well-known rules for join reordering, predicate pushdown, and
subquery flattening [Garcia-Molina et al. 2000; Dayal 1987]. Transformed into
our notation, examples for transformation rules are

(Sl
1 × Sl

2) × Sl
3

.= Sl
1 × (Sl

2 × Sl
3). (9)

σp(Sl
1 ∪ Sl

2)
.= σp(Sl

1) ∪ σp(Sl
2). (10)

δ(Sl
1 × Sl

2)
.= δ(Sl

1) × δ(Sl
2). (11)

The interested reader is referred to Slivinskas et al. [2001] for a complete list
of applicable transformation rules.

6.3.2 Window Rules. We can add some novel rules for window operators to
the previous transformation rules. Our first rule says that default windows can
be omitted. Recall that a default window is a now-window, namely, a time-based
window of size 1.

ωtime
1 (Sl )

.= Sl (12)

The correctness of this transformation rule directly derives from the definition
of the time-based sliding window (see Section 4.2.1).

Furthermore, the time-based sliding window commutes with all stateless
operators: filter, map, and union. For logical streams Sl , Sl

1, and Sl
2, we thus

define the following transformation rules.

σp(ωtime
w (Sl ))

.= ωtime
w (σp(Sl )) (13)

μ f (ωtime
w (Sl ))

.= ωtime
w (μ f (Sl )) (14)

∪(ωtime
w (Sl

1), ωtime
w (Sl

2))
.= ωtime

w (∪(Sl
1, Sl

2)) (15)

We actually would have to prove the correctness of each individual rule, but the
proofs are quite similar and straightforward. The reason for the commutativity
is that filter, map, and union do not manipulate the validity of tuples. A look at
the physical algebra might improve the understanding of this argumentation
(see Section 7). The filter predicates and mapping functions are only invoked on
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the tuple component of a stream element. From the perspective of the physical
algebra, filter, map, and union satisfy the interval-preserving property formu-
lated in Slivinskas et al. [2001].

A system can profit from the preceding window rules for the following rea-
sons. If a queue is placed between the filter and the window operator, pushing
the filter below the window (rule (13)) will reduce the queue size. In addition,
this transformation saves processing costs for the window operator because
the filtering is likely to decrease the input stream rate of the window operator.
Altogether, the transformations can be useful for subquery sharing. For ex-
ample, if a time-based window is applied after a union, and a new query is
posed which could share the window functionality over one input stream, it is
preferable to apply rule (15) and push the window operator down the union.
See Krämer [2007] for transformation rules referring to count-based and par-
titioned windows.

6.4 Applicability of Transformation Rules

Assume an arbitrary logical query plan to be given in the form of an operator
tree. We first divide the plan into snapshot-reducible and nonsnapshot-reducible
subplans. The use of these properties enables us to decide where and which
transformation rules can be applied properly.

6.4.1 Snapshot-Reducible Subplans. Conventional transformation rules
can only be applied to snapshot-reducible subplans. Hence, these have to be
identified first. This can be achieved by a bottom-up traversal. A new subplan
starts: (i) at the first snapshot-reducible operator downstream of a source or (ii)
at the first snapshot-reducible operator downstream of a nonsnapshot-reducible
operator, for example, a window operator. As long as snapshot-reducible op-
erators are passed, these are added to the current subplan. Maximizing the
subplans increases the number of transformation rules applicable.

A query optimizer should consider the property of whether a subplan is
snapshot-reducible or not in its plan enumeration process to apply the transfor-
mation rules correctly. Such a property can be handled similarly to the property
whether duplicates are relevant or not, applied in Slivinskas et al. [2001] for
optimization purposes.

Example 10. Figure 9 shows a possible algebraic optimization for the clos-
ing price query. The grey highlighted areas denote snapshot-reducible subplans.
In this example, there exists only a single snapshot-reducible subplan that com-
prises all operators downstream of the window operators. We choose an opti-
mization that is not obvious, namely, we push the grouping with aggregation
below the join. This is possible because the attribute itemID is used for join-
ing and grouping. The secondary grouping attribute sellerID specified for the
grouping in the left plan just retains the seller information but does not affect
the query answer in terms of additional results. The reason is an invariant of
the auction scenario, namely, that every item can be sold only once.

Join reordering would be a further transformation rule applicable to the
left plan. In this case, the output of the union would be joined with the
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Fig. 9. Algebraic optimization of a logical query plan.

windowed OpenAuction stream first, followed by the join with the windowed
ClosedAuction stream.

During plan enumeration the optimizer will have to decide based on a cost
model whether one of the proposed optimizations actually leads to an improved
query execution plan. Note that for all considered query plans of the NEXMark
benchmark, the snapshot-reducible portion is defined by the subplan down-
stream of the window operators. Nonetheless, our approach is more general and
allows plans to have multiple window operators on a path. When this occurs, a
snapshot-reducible subplan ends at the last operator upstream of the window.

6.4.2 Nonsnapshot-Reducible Subplans. Nonsnapshot-reducible subplans
consist of window operators and standard operators whose functionality is be-
yond that of their relational analogs. For instance, our map operator is more
powerful than its relational counterpart as it permits arbitrary functions to
be invoked on tuples. Furthermore, it is possible to enhance our algebra with
nonsnapshot-reducible operators like temporal joins [Gao et al. 2005] to in-
crease expressiveness. The downside of this approach is that query optimiza-
tion becomes more difficult. Apart from our window transformation rules, novel
transformation rules have to be identified. The optimizer should consider these
in addition to the conventional transformation rules during plan enumeration.
For our window transformation rules, the optimizer has to check each window
operator along with adjacent operators in the given query plan.

Example 11. By applying window transformation rule (14), it would be pos-
sible to push the map operators down the window operators for the plans shown
in Figure 9. A further optimization would be to pull the window operator up
the union because the window is identical for both inputs (rule (15)). However,
these optimizations would conflict with the subquery sharing performed on the
window over the OpenAuction stream.
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6.4.3 Extensions to Multiple Queries. Due to the long-running queries and
the large number of queries executed concurrently by a DSMS, the stand-alone
optimization of individual query plans is not appropriate. The optimizer should
rather take other running queries into account to identify common subexpres-
sions. To profit from subquery sharing, DSMSs unify all query plans into a
global, directed, acyclic query graph. Therefore, one objective during plan enu-
meration is whether transformation rules can be applied to enable sharing
of common subqueries. DSMSs should consequently exploit multiquery opti-
mization techniques [Sellis 1988; Roy et al. 2000], but this is not enough. As
queries are long-running, their efficiency may degrade over time because of
changing stream characteristics such as value distributions and stream rates.
Overcoming the resultant inefficiencies necessitates reoptimizations of contin-
uous queries at runtime, called dynamic query optimization [Zhu et al. 2004;
Yang et al. 2007], in addition to the static optimization prior to execution.

7. PHYSICAL OPERATOR ALGEBRA

This section presents our physical operator algebra. Section 7.1 shows the mo-
tivation behind our time-interval approach, while Section 7.2 characterizes
important properties of our physical operators. Our data structure for state
maintenance is explained in Section 7.3. Prior to the presentation of the stan-
dard operators in Section 7.5, Section 7.4 spends some words on the notation
used in our algorithms. Section 7.6 reveals our implementation for the window
operators.

7.1 Basic Idea

From the implementation point of view, it is not satisfactory to process logical
streams directly because evaluating the operator output separately for every
time instant would cause a tremendous computational overhead. Hence, we de-
veloped operators that process physical streams. Recall that a physical stream
is a more compact representation of its logical counterpart that describes the
validity of tuples by time intervals. Any physical stream can be transformed
into a logical stream with the function ϕ p�→l defined in Section 2.6. The transfor-
mation splits the time intervals into chronons and summarizes the multiplic-
ity of value-equivalent tuples being valid at identical chronons. This semantic
equivalence is the sole requirement between a logical stream and its physi-
cal counterpart for algebraic query optimization. The inverse transformation,
namely from a logical stream to a semantically equivalent physical stream, is
not needed in practice because query execution does not make use of the logical
algebra. Moreover, multiple physical streams may represent the same logical
stream. The reason is that multiple value-equivalent elements with consecutive
timestamps from a logical stream can be merged into elements of a physical
stream in different ways because coalescing timestamps to time intervals is
nondeterministic. The example in Figure 3 already demonstrated that a logical
stream can have several physical counterparts.

The basic idea of our physical algebra is to use novel window operators for
adjusting the validity of tuples, namely, the time intervals, according to the
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4:28 • J. Krämer and B. Seeger

window specifications, along with appropriately defined standard operators, so
that the results of a physical query plan are snapshot-equivalent to its logi-
cal counterpart. While stateless operators do not consider the associated time
intervals and thus can cope with potentially infinite windows, time intervals
affect stateful operators as follows. Elements are relevant to a stateful operator
as long as their time interval may overlap with the time interval of any future
stream element. This also means that a stateful operator can purge those ele-
ments from its state whose time interval cannot intersect with the time interval
of any incoming stream element in the future. The latter explains how window
specifications restrict the resource usage of stateful operators in our physical
algebra.

To the best of our knowledge, our time-interval approach [Krämer and Seeger
2005, 2004] is unique in the stream community. Related work embracing similar
semantics substantially differs from our approach (see Appendix C).

7.2 Operator Properties

Our physical algebra provides at least a single implementation for each oper-
ation of the logical algebra. A physical operator takes one or multiple physical
streams as input and produces a physical stream as output. These physical
stream-to-stream operators are implemented in a data-driven manner, assum-
ing that stream elements are pushed through the query plan. Physical operators
are connected directly when composing query plans. This implies that a physical
operator has to process the incoming elements instantly on arrival without the
ability to select the input from which the next element should be consumed.
The push-based processing methodology is another important distinction be-
tween our implementation and related ones using pull-based techniques and
interoperator queues for communication [Arasu et al. 2006; Abadi et al. 2003;
Ghanem et al. 2007].

Remark 7.1. PIPES [Krämer and Seeger 2004] relies on a multithreaded
query execution framework that permits the concurrent arrival of stream el-
ements at an operator with multiple input streams. Since we do not want to
discuss synchronization and scheduling issues here, we assume the processing
of a single stream element to be atomic.

7.2.1 Operator State. The operators of our physical algebra can be classi-
fied into two categories.

—Stateless operators produce a result based on the evaluation of a single in-
coming element. As no other stream elements need to be considered, stateless
operators do not need to maintain internal data structures keeping an extract
of their input streams. Examples are filter, map, or time-based window.

—Stateful operators need to access an internal data structure to generate a
result. The internal data structure maintaining the operator state has to
hold all elements that may contribute to any future query results. Examples
are Cartesian product/join, duplicate elimination, or scalar aggregation.
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7.2.2 Nonblocking Behavior. According to Babcock et al. [2002], “[a] block-
ing operator is a query operator that is unable to produce the first tuple of the
output until it has seen the entire input.” Blocking operators are not suitable for
stream processing due to the potentially unbounded input streams. Therefore,
all stream-to-stream operators of our physical algebra have to be nonblocking.
However, it is generally known that some relational operators are blocking, for
example, the aggregation or difference. The reason why we can provide stream
variants of these operators is that we exploit windowing and incremental eval-
uation in our algorithms [Golab and Özsu 2003]. If a query plan contains any
stateful operators downstream of the window operators, we require the win-
dow sizes to be finite. As a result, the window operators restrict the scope of
stateful operators to finite, sliding windows. As a consequence, the stateful op-
erators downstream of the window operators do not block. With regard to time
intervals, the following happens. Due to the finite window sizes, the length of
time intervals in any physical stream downstream of the window operators is
finite. As only a finite number of stream elements are allowed to have iden-
tical start timestamps (see Section 2), only a finite number of elements may
overlap at an arbitrary time instant. Due to the fact that a stateful operator
needs to keep only those elements in the state whose time interval may overlap
with that of incoming elements in the future in order to generate the correct
results, the total size of the operator state is limited. Any relational operator,
except for sorting which is inherently blocking, can be unblocked by windowing
techniques.

Stateless operators can even cope with unbounded streams, as they do not re-
quire to maintain a state. We thus allow the user to specify unbounded windows
in those queries that do not contain stateful operations.

7.2.3 Ordering Requirement. Each physical operator assumes that every
input stream is correctly ordered. Moreover, each physical operator has to en-
sure that its output stream is properly ordered, that is, elements are emitted
in nondecreasing order by start timestamps (see Section 2.3.3). The ordering
requirement is crucial to correctness because the decision which elements an
operator can purge from its state depends on the progression of (application)
time obtained from the start timestamps of the operator’s input streams. Recall
that for the majority of streaming applications, the elements provided by raw
streams already arrive in ascending order by start timestamps [Babcock et al.
2002; Golab and Özsu 2003]. Consequently, the ordering requirement is implic-
itly satisfied for the physical base streams of a query plan (see Section 2.5.1).
If raw streams may receive out-of-order elements, for example, due to network
latencies, mechanisms like heartbeats and slack parameters can be applied in
our approach as well for correcting stream order [Srivastava and Widom 2004;
Abadi et al. 2003]. How PIPES deals with liveness and disorder is an orthog-
onal problem and, thus, not the scope of this article. For detailed information,
see Krämer [2007].

7.2.4 Temporal Expiration. Windowing constructs: (i) restrict resource us-
age and (ii) unblock otherwise blocking operators over infinite streams. In
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stateful operators, elements in the state expire due to the validity set by the
window operators. A stateful operator considers an element (e, [tS , tE )) in its
state as expired if it is guaranteed that no element in one of its input streams
will arrive in the future whose time interval will overlap with [tS , tE ). Accord-
ing to the total order claimed for streams, this condition holds if the minimum
of all start timestamps of the latest incoming element from each input stream
is greater than tE . A stateful operator can delete all expired elements from its
state. We will show that some operators such as the aggregation emit these
expired elements as results prior to their removal.

7.3 SweepAreas

Since our algorithms for stateful operators utilize specific data structures for
state maintenance, we first want to introduce the abstract data type SweepArea
(SA) and outline possible implementations. Furthermore, we utilize itera-
tors [Graefe 1993] for traversing data structures.

7.3.1 Abstract Data Type SweepArea. The Abstract Data Type (ADT)
SweepArea models a dynamic data structure to manage a collection of elements
having the same type T . Besides functionality to insert and replace elements
and to determine the size, a SweepArea provides in particular generic methods
for probing and eviction. Our development of this data structure was originally
inspired by the sweepline paradigm [Nievergelt and Preparata 1982].

ADT SweepArea

SweepArea (total order relation ≤, binary predicate pquery, binary predicate premove)

Procedure insert(element s)

Procedure replace(element ŝ, element s)

Iterator iterator()

Iterator query(element s, j ∈ {1, 2})
Iterator extractElements(element s, j ∈ {1, 2})
Procedure purgeElements(element s, j ∈ {1, 2})
int Size()

The behavior of a SweepArea is controlled by three parameters passed to the
constructor.

(1) The total order relation ≤ determines the order in which elements are re-
turned by the methods iterator and extractElements.

(2) The binary query predicate pquery is used in the method query to check
whether the elements in the SweepArea qualify.

(3) The binary remove predicate premove is used in the methods extractElements
and purgeElements to identify elements that can be removed from the
SweepArea.

—Probing. The function query probes the SweepArea with a reference el-
ement s given as parameter. It delivers an iterator over all elements ŝ of the
SweepArea that satisfy pquery(s, ŝ) for j = 1, or pquery(ŝ, s) for j = 2. Parameter
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j determines whether s becomes the first or second argument of the query pred-
icate. This argument swapping is required to cope with: (i) asymmetric query
predicates and (ii) query predicates over different argument types.

In contrast to the function query, where the order in which qualifying ele-
ments are delivered depends on the actual implementation of the SweepArea,
the iterator returned by a call to the function iterator delivers all elements of
the SweepArea in ascending order by ≤.

—Eviction. The methods extractElements and purgeElements share a com-
mon attribute in that they purge unnecessary elements from the SweepArea.
While the function extractElements permits access to the unnecessary elements
via the returned iterator prior to their removal, the method purgeElements
instantly deletes them. We have defined two separate methods because the
method purgeElements can often be implemented more efficiently than con-
suming the entire iterator returned by a call to the method extractElements.
For example, the method purgeElements is superior to extractElements when-
ever the SweepArea is based on data structures that support bulk deletions.
Both methods make use of the remove predicate premove and have a reference
element s as parameter. An element ŝ from the SweepArea is considered as
unnecessary if premove(s, ŝ) evaluates to true. Analogously to the method query,
parameter j is used to deal with asymmetric remove predicates and remove
predicates over different argument types.

Note that it is also possible to remove elements from the SweepArea via the
iterator returned by the method query. Whenever the method remove is called
on this iterator, the last element returned by the iterator is removed from the
underlying SweepArea.

7.3.2 Use of SweepAreas. Dittrich et al. [2002] nicely shows how to define
the order relation and query and remove predicates to implement a plethora of
join algorithms, such as, band-, temporal-, spatial-, and similarity-joins. Due to
the generic design, SweepAreas can be adapted easily to multiway joins [Viglas
et al. 2003; Golab and Öszu 2003a]. The ADT SweepArea presented here is an
extension to meet the requirements of our physical stream operator algebra.
In the corresponding algorithms, SweepAreas are used to efficiently manage
the state of operators. A SweepArea is maintained for each input of a stateful
operator. From a top-level point of view, SweepAreas can be compared with
synopses [Arasu et al. 2006] or state machine modules [Raman et al. 2003]
used in other DSMSs for state maintenance.

We decided to use SweepAreas inside our operators because a SweepArea
gracefully combines functionality for efficient probing and purging on different
criteria in a single generic data structure.

(1) Probing is primarily based on the tuple component of stream elements.
Hence, a data structure for state maintenance should arrange stream ele-
ments in an appropriate manner to ensure efficient retrieval.

(2) Purging depends on the time interval component of stream elements. Due to
temporal expiration, elements in the state become unnecessary over time.
Keeping the state information small is important to save system resources.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 4, Publication date: April 2009.
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The smaller the state of an operator, the lower its memory usage and
processing costs. Thus, it is essential to get rid of unnecessary elements,
namely, the expired ones. Therefore, a data structure for state maintenance
should not only provide efficient access to the tuples, but also to the time
intervals.

7.3.3 Implementation Considerations. Up to this point we defined the se-
mantics of the methods for the ADT SweepArea without discussing any partic-
ular implementation issues. Logically, a SweepArea can be viewed as a single
data structure storing a collection of elements. In our case, however, a single
data structure is often not adequate to ensure both efficient probing and purg-
ing. Because of this, we usually construct a SweepArea by combining two data
structures. The primary data structure contains the elements and arranges
them for probing, whereas the secondary data structure keeps references to
these elements and arranges the references to facilitate purging. The down-
side of this dual approach is the increased cost of operations that have to be
performed on both data structures to ensure consistency.

7.4 Notation

7.4.1 Algorithm Structure. Our algorithms obey the following basic struc-
ture, which consists of three successive parts. The different parts in the algo-
rithms are separated by blank lines.

(1) Initialization. The required variables and data structures are initialized.

(2) Processing. A foreach-loop processes the elements that arrive from the input
streams of an operator.

(3) Termination. For the case of finite input streams, additional steps might be
necessary to produce the correct result, although all stream elements have
already been processed. After executing the termination part, an operator
can delete all internal data structures and variables to release the allocated
memory resources.

The termination case results from our input-triggered state maintenance
concept which updates the operator state only at arrival of new stream
elements.

7.4.2 Specific Syntax and Symbols. s ←↩ Sin denotes element s being deliv-
ered from input stream Sin. s ↪→ Sout indicates that element s is appended to the
output stream Sout. � denotes the empty stream. The syntax s := (e, [tS , tE ))
means that s is a shortcut for the physical stream element (e, [tS , tE )). A ←
stands for variable assignments. We distinguish elements retrieved from a
SweepArea from those being provided by the input stream by attaching a hat
symbol, namely, ŝ := (ê, [t̂S , t̂E )) signals that ŝ belongs to a SweepArea.

7.5 Standard Operators

Despite the different representations, the stream types for a logical oper-
ator and its physical counterpart are identical since these depend on the
tuple components. Unless explicitly specified, operator predicates and functions
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Table V. Overview of Parameters Used to Tailor the ADT SweepArea to Specific Operators.

Order Query Remove

Operations Relation Predicate Predicate

Theta-Join ≤tE θ (e, ê) ∧ tS ≥ t̂E
[tS , tE ) ∩ [t̂S , t̂E ) �= ∅

Duplicate Elimination ≤tE e = ê ∧ tS ≥ t̂E
[tS , tE ) ∩ [t̂S , t̂E ) �= ∅

Difference ≤tS e = ê ∧ tS ≥ t̂E
[tS , tE ) ∩ [t̂S , t̂E ) �= ∅

Scalar Aggregation ≤tS [tS , tE ) ∩ [t̂S , t̂E ) �= ∅ tS ≥ t̂E

Grouping with Aggregation ≤tS [tS , tE ) ∩ [t̂S , t̂E ) �= ∅ tS ≥ t̂E

Count-based Window ≤tS – S A. ∗ ∗∗ = N
Partitioned Window ≤tS S A. ∗ ∗ ∗ ∗ = N –

Split ≤tE true tS ≥ t̂E

Coalesce ≤tS e = ê ∧ t̂E = tS tS > t̂E ∨ t̂E − t̂S ≥ lmax

Let (e, [tS , tE )) and (ê, [t̂S , t̂E )) be the first and second argument of the predicates respectively.

comply with the definitions given in Section 4. Due to space constraints, we can
only present the most essential operators. Krämer [2007] presents our complete
operator set in detail.

7.5.1 Cartesian Product/Theta-Join. Algorithm 2 computes a theta-join
over two physical streams by adapting the ripple join technique [Haas and
Hellerstein 1999] to data-driven query processing [Graefe 1993]. The join state
consists of two SweepAreas, one for each input stream, and a min-priority queue
at the output to order the join results. We summarized the Cartesian product
and theta-join in a single algorithm as the sole difference is the parameteriza-
tion of the SweepAreas, in particular the query predicate.

—SweepArea Parameters. The initialization fragment of the algorithm de-
fines the parameters for the SweepAreas (see Table V). The internal order rela-
tion of both SweepAreas is set to ≤tE . The order relations ≤tS and ≤tE on physical
stream elements are the less-than-or-equal-to relations on start and end times-
tamps, respectively, which are a total order. The query predicate (see Table V)
is evaluated in the method query. The choice of the SweepArea implementa-
tion and the definition of the query predicate have to ensure that the method
query returns an iterator over all elements in the SweepArea qualifying for the
join result. It checks that: (i) their tuples qualify the join predicate θ , and (ii)
their time intervals overlap. The method purgeElements removes all elements
from the SweepArea that fulfill the remove predicate premove (see Table V). The
remove predicate guarantees that only those elements are dropped that will
not participate in any future join results. Here, the condition checks a time
interval overlap. If the start timestamp of s is equal to or greater than the end
timestamp of ŝ, the respective time intervals of both elements cannot overlap.
Hence, this pair of elements does not qualify as join result. For all other cases,
an overlap in terms of time intervals is still possible. As a consequence, these
elements need to be retained.

—Choice of SweepArea Implementation. The SweepArea implementation
has to be chosen according to the join predicate. Using an inappropri-
ate SweepArea implementation might produce incorrect join results. While
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list-based SweepArea implementations (nested-loops join) are suitable for ar-
bitrary join predicates, hash-based variants are restricted to equijoins. The
Cartesian product can be expressed as a special nested-loops join where join
predicate θ always returns true. Note that even for the Cartesian product the
query predicate still has to verify time interval overlap.

—Symmetric Hash Join (SHJ). Each SweepArea is implemented as a hash ta-
ble (primary data structure). The elements in the hash table are additionally
linked in ascending order by their end timestamps (priority queue as sec-
ondary data structure). Inserting a stream element into a SweepArea means:
(i) to put it into the hash table based on a hash function, and (ii) to adjust
the linkage. The hash function must map value-equivalent elements into the
same bucket. Whenever a SweepArea is probed, the hash function determines
the bucket containing the qualifying elements. The linkage is used for purg-
ing elements effectively from the SweepArea. The method purgeElements
follows the linkage and discards elements as long as their end timestamp is
less than or equal to the start timestamp of the incoming element.

—Symmetric Nested-Loops Join (SNJ). Each SweepArea is implemented as
an ordered list that links elements in ascending order by end timestamps.
Insertion has to preserve the order. Probing the SweepArea is a sequential
scan of the linked list. Expired elements are removed from the SweepArea by
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Table VI. Example Input Streams

(a) Stream S1

Tuple tS tE

c 1 8

a 5 11

d 6 14

a 9 10

b 12 17

(b) Stream S2

Tuple tS tE

b 1 7

d 3 9

a 4 5

b 7 15

e 10 18

Table VII. Equijoin of Physical

Streams S1 and S2

S1�=S2

Tuple tS tE

d 6 9

b 12 15

a traversal of the list that stops at the first element with an end timestamp
greater than the start timestamp of the incoming element.

—Asymmetric Variants. With our SweepArea framework it is also possible
to construct and take advantage of the asymmetric join variants described
in Kang et al. [2003]. In this case, the two previous implementation alterna-
tives for SweepAreas are combined for state maintenance. This means the
join utilizes one SHJ and one SNJ SweepArea.

Remark 7.2. Recall that the operators in our physical operator algebra rely
on a multithreaded, push-based processing paradigm. Operators can be con-
nected directly, that is, without an interoperator queue. Hence, it is not possible
to consume elements across multiple operator input queues in a sorted manner
as done in other DSMSs [Arasu et al. 2006; Abadi et al. 2003; Ghanem et al.
2007]. Instead of performing a sort-merge step at the input of an n-ary opera-
tor, we employ a priority queue at the operator’s output to satisfy the ordering
requirement of the output stream.

Example 12. Table VI shows example input streams. The results of an equi-
join over streams S1 and S2 are listed in Table VII. Two stream elements qual-
ify if their tuples are equal and their time intervals overlap. The join result
is composed of the tuple and the intersection of the time intervals. Here, the
concatenation function ◦ is a projection to the first argument.

7.5.2 Scalar Aggregation. Algorithm 3 shows the implementation of the
scalar aggregation. Stream processing demands a continuous output of aggre-
gates [Hellerstein et al. 1997]. In our case, an aggregate is a physical stream
element, that is, it is composed of a tuple containing the aggregate value and a
time interval. The state of the scalar aggregation consists of a SweepArea which
maintains so-called partial aggregates. A partial aggregate is also a physical
stream element, but the tuple component stores state information required to
compute the final aggregate value. Partial aggregates are updated whenever
their time interval intersects with that of an incoming stream element. The
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computation of a partial aggregate is finished if it is guaranteed that it will not
be affected by any future stream elements. Then, the final aggregate value is
computed from the tuple of the corresponding partial aggregate. The aggregate
appended to the output stream is composed of the final aggregate value and the
time interval of the corresponding partial aggregate.

—Aggregate Computation. Algorithm 3 takes three functions as input pa-
rameters to compute the results of an aggregate function ( fagg). Types T1 and T2

match the ones of the corresponding logical operator and specify the input and
output type, respectively. The new type T3 defines the type of partial aggregates,
namely, the type of tuples in the SweepArea.

—The initializer finit : �T1
→ �T3

is applied to a tuple of an incoming stream
element to instantiate the tuple of a partial aggregate.

—The merger fmerge : �T3
×�T1

→ �T3
updates the state information of a partial

aggregate. This is accomplished by merging the tuple of an incoming element
with the tuple of a partial aggregate in the SweepArea. The result is a new
tuple which contains the updated state information.

—The evaluator feval : �T3
→ �T2

takes the tuple of a partial aggregate and
computes the final aggregate value.

Property 7.3 (Expressiveness). “These three functions can easily be derived
for the basic SQL aggregates; in general, any operation that can be expressed
as commutative applications of a binary function is expressible.” [Madden et al.
2002].

Remark 7.4. Although our approach to manage tuples of partial aggregates
in the SweepArea resembles the basic aggregation concept proposed for sensor
networks in Madden et al. [2002], we extended it towards the temporal seman-
tics addressed in this work. Bear in mind that our aggregates not only consist
of an aggregate value but are also equipped with a time interval. User-defined
aggregates [Law et al. 2004] follow a similar pattern for aggregate computation.
A user-defined aggregate is a procedure written in SQL, which is grouped into
three blocks labeled: INITIALIZE, ITERATE, and TERMINATE. The state of the ag-
gregate is stored in local tables. Like our three functions, these blocks are used
to initialize and update the state of the aggregate, and to compute its final value.

—State of Partial Aggregates. Aggregate functions can be classified into
three basic categories [Gray et al. 1997; Madden et al. 2002]: distributive, al-
gebraic, and holistic. Depending on the category, the size requirements to store
the internal state of partial aggregates varies. Recall that the tuple of a par-
tial aggregate encapsulates the required state information. In the following, we
discuss how to represent tuples of partial aggregates to meet the requirements
of the different categories of aggregate functions.

—For distributive aggregate functions like MIN, MAX, SUM, and COUNT, a tuple of
an element in the SweepArea is either a single tuple from the input stream
or a natural number. The tuple corresponds to the aggregate value. Hence,
type �T3

is equal to �T2
and function feval is the identity.
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—For algebraic aggregate functions such as AVERAGE, STANDARD DEVIATION,
VARIANCE, and TOP-K, a tuple in the SweepArea needs to contain more in-
formation than a single value. However, the total state information stored in
a tuple of a partial aggregate is of constant size. For instance, it is necessary
to keep the sum and the count for the average. The final aggregate value
results from dividing the sum by the count.

—For holistic aggregate functions like MEDIAN and COUNT DISTINCT, the state
cannot be restricted to a constant size. As a consequence, the tuple of an
element in the SweepArea is a data structure, for example, a list, set, or even
histogram, built over tuples from the input stream. For COUNT DISTINCT, the
tuple could be a hash set, which implicitly eliminates duplicates. The size of
this set would be the final aggregate value.

Example 13 (Average). Let us consider the SQL aggregate function AVG.
The tuples for partial aggregates are pairs (sum, count) with schema (DOUBLE,
INTEGER). Let e be the tuple of an incoming stream element, and let (s, c) be
the tuple of a partial aggregate. Then, the three functions used to compute the
aggregate value would be defined as follows: finit(e) := (e, 1), fmerge((s, c), e) :=
(s + e, c + 1), feval((s, c)) := s/c.

—SweepArea Parameters and Implementation. While the remove predicate
is equal to that of the previous operator, the query predicate merely checks
time interval overlap (see Table V). Algorithm 3 requires the iterators returned
by the methods query and extractElements to be sorted in ascending order by
start timestamps. Hence, the order relation of the SweepArea is ≤tS . The im-
plementation of the SweepArea is an ordered list, such as a randomized skip
list. Because the method query does not need to check value-equivalence but
only interval overlap, further implementations supporting range queries over
interval data might be preferable, for example, a dynamic variant of the priority
search tree [Cormen et al. 2001].

—Construction of Partial Aggregates. Whenever the interval of a partial ag-
gregate (ê, [t̂S , t̂E )) in the SweepArea intersects with the time interval [tS , tE )
of the incoming element, an update on the SweepArea has to be performed.
Thereby, the interval [t̂S , t̂E ) is partitioned into contiguous subintervals of max-
imum length that either do not overlap with [tS , tE ) or entirely overlap with
[tS , tE ). Each of these new time intervals is assigned with a tuple. Both to-
gether form a new partial aggregate. Figure 10 shows the different cases of
overlap and the respective computation of partial aggregates. We distinguish
between two top-level cases.

—For the case t̂S < tS , [tS , tE ) is either contained in [t̂S , t̂E ) or exceeds it at the
right border.

—For the case t̂S ≥ tS , [tS , tE ) contains [t̂S , t̂E ) or exceeds it at the left border.

The latter case has to be considered, as our algorithm may generate time
intervals with a start timestamp greater than the start timestamp tS of the
latest incoming element.
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Depending on the preceding two cases, we create disjoint time intervals by
separating the overlapping parts from the unique ones. Conceptually, tuples
are built as follows.

(1) The tuple ê is kept for the new partial aggregate if the generated time
interval is a subinterval of [t̂S , t̂E ) and does not overlap with [tS , tE ).

(2) The tuple of the new partial aggregate is computed by finit(e) if the gen-
erated time interval is a subinterval of [tS , tE ) and does not overlap with
[t̂S , t̂E ).

(3) The tuple of the new partial aggregate is computed by invoking the aggre-
gate function fmerge on the old tuple ê and the new tuple e if the generated
time interval is the intersection of both time intervals.
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Fig. 10. Incremental computation of aggregates from a partial aggregate (ê, [t̂S , t̂E )) and an in-

coming element (e, [tS , tE )).

Table VIII. Scalar

Aggregation Over

Physical Stream S1

αSUM(S1)

Tuple tS tE

c 1 5

c + a 5 6

c + a + d 6 8

a + d 8 9

a + d + a 9 10

a + d 10 11

d 11 12

d + b 12 14

b 14 17

For the special cases, t̂S = tS , and t̂E = tE some intervals shown in Figure 10
may reduce to empty intervals. Although Figure 10 allows these cases for ease
of concise presentation, the design of Algorithm 3 prevents any (partial) ag-
gregates with empty intervals entering the state. The interval construction for
partial aggregates satisfies the following property.

Property 7.5 (Interval Construction). The scalar aggregation eliminates
any time interval overlap. As a consequence, the time intervals of aggregates
in the output stream are disjoint. If a SweepArea contains multiple partial ag-
gregates, their time intervals are consecutive, that is, they do not overlap and
there is no gap between them.

Example 14. Table VIII contains the output stream of the scalar aggre-
gation applied to stream S1 computing the sum. Because the aggregation
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eliminates any time interval overlap, the time intervals of the results are the
disjoint segments of all intervals from the input stream. The aggregate value
(tuple) of a result is the sum over all tuples from the input stream whose time
interval intersects with the interval assigned to the result.

7.6 Window Operators

The window operators in our physical operator algebra take a chronon stream
as input. Hence, the time intervals of incoming elements have to be chronons.
The split operator is able to convert an arbitrary physical stream into a chronon
stream (see Krämer [2007]). Every window operator assigns a new time interval
to the tuple of an incoming element. The window type determines how interval
starts and endings are set.

7.6.1 Time-Based Sliding Window. The time-based sliding window is a
stateless operator that sets the validity of incoming elements to the window
size w (see Algorithm 4). Recall that the window size represents a period in
(application) time, w ∈ T , w > 0.

—Impact. The implementation nicely illustrates the effect of the time-based
sliding window operator on a query plan. To comply with the semantics specified
in Section 4.2.1, the time-based sliding window operator should slide a temporal
window of size w over its input stream. This means, for a chronon stream Sin,
at a time instant t ∈ T all elements of Sin with a start timestamp tS , where
t − w + 1 ≤ tS ≤ t, should be in the window. The physical time-based window
achieves this effect by adjusting the validity of each incoming element according
to the window size. Whenever the time-based window is installed in a query
plan, downstream operators implicitly consider the new validities, namely, the
new time intervals. As stateful operators have to keep elements in their state
as long as these are not expired, there is an apparent correlation between the
window size and the size of the state. Be aware that the time-based window
operator does not affect stateless operators such as filter and map because these
do not regard time intervals.

Property 7.6 (Now-Window). Applying a time-based window with size w =
1 to a chronon stream has no effects because the output stream will be identical
to the input stream.

Example 15. Table IX(a) defines chronon stream S3. Table IX(b) shows the
results of the time-based sliding window applied to S3 with window size 50 time
units. While the tuples and start timestamps of the input stream are retained
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Table IX. Chronon Stream S3 and Time-Based

Window of Size 50 Time Units Over S3

(a) S3

Tuple tS tE

b 1 2

a 3 4

c 4 5

a 7 8

b 10 11

(b) ωtime
50 (S3)

Tuple tS tE

b 1 51

a 3 53

c 4 54

a 7 57

b 10 60

in the output stream, the time-based sliding window sets the end timestamps
according to the window size. Each end timestamp has an offset of w chronons
relative to its corresponding start timestamp.

8. PHYSICAL QUERY OPTIMIZATION

This section discusses the basics for physical query optimization. First, Sec-
tion 8.1 defines equivalences for physical streams and physical plans. Then,
Section 8.2 describes how to generate a physical plan from its logical coun-
terpart. Appendix B presents physical optimizations, addressing the impact of
expiration patterns as well as our specific split and coalesce operators.

8.1 Equivalences

Physical stream and plan equivalence derive from the corresponding logical
equivalences.

Definition 8.1 (Physical Stream Equivalence). We define two physical
streams S p

1 , S p
2 ∈ S

p
T to be equivalent iff their corresponding logical streams

are equivalent.

S p
1

.= S p
2 :⇔ ϕ p�→l (S p

1 )
.= ϕ p�→l (S p

2 ) (16)

The function ϕ p�→l transforms the given physical stream S p into its logical
counterpart (see Section 2.6). Be aware that physical stream equivalence nei-
ther implies that elements in both streams occur in the same order nor that the
time intervals associated to tuples are built in the same way. We already con-
sider two physical streams as equivalent if their snapshots are equal at every
time instant.

Definition 8.2 (Physical Plan Equivalence). Two physical query plans over
the same set of physical input streams are denoted equivalent if their results
are snapshot-equivalent, namely, iff for every time instant t the snapshots of
their output streams at t are equal.

The definition reduces physical plan equivalence to a pure semantic equiva-
lence. If S p

1 and S p
2 are the physical output streams of two query plans respec-

tively, physical plan equivalence enforces that S p
1

.= S p
2 . Physical optimizations

do not conflict with the correctness of query results as long as plan equivalence
is preserved.
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8.2 Physical Plan Generation

During physical plan generation the operators in the logical plan are replaced
with their physical counterparts.

8.2.1 Standard Operators. In order to choose a suitable implementation
for a standard operator, the common techniques known from conventional
database systems can be applied. For example, which type of join implementa-
tion is used highly depends on the join predicate. In the case of an equijoin, a
hash-based implementation is adequate, whereas a similarity join requires a
nested-loops implementation in general.

Section 7 presented an abstract implementation for every standard opera-
tor. Various implementations of the same physical operator can be derived from
exchanging the SweepAreas. With regard to our join example, Algorithm 2 can
be used with hash-based or a list-based SweepAreas, or a mixture [Kang et al.
2003]. Hence, the concrete implementation of a physical operator depends on
the choice and parameterization of its SweepAreas. In addition, a DSMS may
provide further specializations of these operators optimized for a particular
purpose, for example, one-to-one or one-to-many joins. Based on the available
metadata, the optimizer determines the best operator implementation and in-
stalls the corresponding physical operator in the query plan.

8.2.2 Window Operators. With regard to window operators, we distinguish
between two cases.

(1) If the window operator in the logical plan refers to a source stream being a
chronon stream, it can be replaced directly with its physical counterpart.

(2) If the window operator in the logical plan refers to a derived stream (sub-
query) or a source stream that already provides time intervals, then the
logical window operator is replaced with a split operator having output in-
terval length 1 followed by the corresponding physical window operator.

The first case occurs whenever a raw stream is converted into a physical
stream (see Section 2.5.1). The time intervals in such a stream are chronons
because they cover only a single time instant. According to our semantics, the
logical time-based sliding window operator expands the validity of every tuple
at every time instant. A tuple being valid at time instant t in the input becomes
valid during all instants in [t, t+w) in the output. If the physical input stream is
a chronon stream, the physical time-based sliding window preserves the desired
semantics. In the second case, the time interval length exceeds 1 and the time-
based sliding window would not produce correct results because it would simply
adjust the time intervals to a new length. As a consequence, the physical plan
would not generate results snapshot-equivalent to those of the corresponding
logical plan. The same argumentation applies to count-based and partitioned
windows. To ensure consistent results with our logical algebra, we solely permit
chronon streams as inputs for window operators. Any physical stream which
is not a chronon stream has to be transformed into a chronon stream first.
This can be achieved by placing a split operator with output interval length 1
upstream of the window operator.
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The split operator is therefore not only an instrument for physical optimiza-
tion but actually required in our physical algebra to deal with windows over: (i)
subqueries and also (ii) source streams whose tuples are already tagged with a
time interval instead of a timestamp.

9. RELATED WORK

In the following, we focus on closely related approaches. For more details on
stream processing, we refer the interested reader to the comprehensive surveys
presented in Babcock et al. [2002], Golab and Özsu [2003], and Krämer [2007].

9.1 Use of Timestamps

Timestamps are used in todays DSMSs to define windows or control expira-
tion [Babcock et al. 2002; Golab and Özsu 2003]. In recent years we have ob-
served a substantial divergence in the use and creation of timestamps among
the various stream processing approaches. Babcock et al. [2002] and Abadi
et al. [2003] propose that the user should specify a function for creating the
timestamp assigned to a result of an operator. Such a flexible technique has the
drawback that query semantics depends on user-defined functions, as down-
stream operators are sensitive to timestamps. Consequently, query optimiza-
tion becomes nearly impossible. Babcock et al. suggest the join result to be
associated with the maximum timestamp of the two contributing join elements
[Babcock et al. 2003], while Chandrasekaran and Franklin [2002] takes the
minimal timestamp. The proposals in Golab and Öszu [2003a] and Zhu et al.
[2004] keep all timestamps of qualifying elements in the resultant tuples. This
leads to serve deficiencies for operators like aggregation and duplicate elimina-
tion, as the number of timestamps associated to a result in the output stream
is no longer constant.

This lack of consensus in the use of timestamps inspired us to develop an
operator algebra that: (i) consistently deals with timestamps and (ii) provides a
precisely defined, sound semantics as a foundation for query optimization. Our
physical algebra shows that it is sufficient to tag tuples with time intervals to
accomplish a cohesive operator model [Krämer and Seeger 2005; Krämer 2007].

9.2 Stream Algebras

A lot of papers focus on individual stream operators rather than on a complete
stream algebra. As a consequence, these approaches often rely on specific se-
mantics and operator properties. Due to their restricted scope, they disregard
aspects of the larger system picture such as operator plans and operator inter-
action. Unlike these approaches, we strive to establish a powerful algebra for
stream processing that consistently unifies the various stream operators along
with an appropriate stream model. Despite the high relevance of a general-
purpose algebra for continuous queries over data streams, only a few papers
have addressed this complex and broad topic so far.

9.2.1 STREAM. Arasu et al. [2006] propose the abstract semantics of CQL.
Although our work is closely related to Arasu et al. [2006], there are important
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distinctions. (i) Our focus is not on the query language but rather on the op-
erator semantics and implementation. (ii) Our logical algebra defines our op-
erator and query semantics in a concrete and formal manner, rather than in
an abstract manner. (iii) Although Arasu et al. sketch query execution, they do
not discuss important implementation aspects such as algorithms. However,
the implementation of these algorithms is nontrivial for stateful operators.
Conversely, we proposed a novel and unique physical algebra that illustrates
the implementation of our time-interval approach. (iv) We also implemented
the positive-negative approach of CQL, which is explained in more detail by
another research group [Ghanem et al. 2007], and compared it with our ap-
proach. (v) We proved that our query language is at least as expressive as CQL
(see Appendix D). Due to our generic and flexible operator design based on func-
tions and predicates and the fact that our streams are not limited to relational
tuples, our approach can easily be enhanced with more powerful operators.
(vi) We explicitly discussed logical and physical query optimization issues, in-
cluding novel transformation rules and the effects of coalesce and expiration
patterns.

9.2.2 Nile. Just like STREAM, Nile [Ghanem et al. 2007] is based on the
positive-negative approach (PNA). In contrast to our time-interval approach
(TIA), PNA propagates different types of elements, namely positive and nega-
tive ones tagged with a timestamp, through an operator plan to control expira-
tion. As a consequence, stream rates are doubled, which means that twice as
many elements as for TIA have to be processed by operators in general. How-
ever, for queries with aggregation, difference, or count-based windows, PNA
profits from reduced latency. A more detailed comparison is given in Appendix C
and Krämer [2007].

9.2.3 Punctuations. Tucker et al. [2003] propose an interesting, alterna-
tive approach to dealing with unbounded stateful and blocking operators. In-
stead of using windowing constructs, a priori knowledge of a data stream is
used to embed punctuations in the stream with the aim to permit the use of
the aforementioned class of operators. A punctuation can be considered as a
predicate on stream elements that must evaluate to false for all elements fol-
lowing the punctuation. Operators are stream iterators that access the input
stream elements incrementally and make use of the embedded punctuations.
Operators output a punctuated stream and manage a state. Enhancing our op-
erators for punctuated streams would be a general concept for optimizing state
maintenance.

9.2.4 Aurora. It is somewhat difficult to compare the query semantics of
Aurora [Abadi et al. 2003] with our semantics. Because stream elements are
tagged with system timestamps, the semantics depends on element arrival and
scheduling. Furthermore, the majority of operators are not snapshot-reducible.
As a consequence, query optimizations are nearly impossible. Our work has
opposed objectives, namely: (i) the definition of an unambiguous query seman-
tics to establish a foundation for query optimization and (ii) the development
of a physical operator algebra that produces query answers invariant under
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scheduling and allowed optimizations. Aurora mainly aims at satisfying user-
defined QoS specifications.

9.2.5 Other Approaches. TelegraphCQ [Chandrasekaran et al. 2003] has
been among the first system proposals for data streams. While highly flex-
ible query processing techniques provide interesting optimization poten-
tial for conjunctive queries, their extension to arbitrary query plans that
may contain grouping or difference is nontrivial. The declarative query lan-
guage of TelegraphCQ is StreaQuel, a stream-only query language. Accord-
ing to Arasu et al. [2006], a stream-only query language derived from CQL
would be quite similar to the purely stream-based approach implemented in
TelegraphCQ.

Gigascope [Cranor et al. 2003] is a high-performance stream database
for network monitoring applications with its own SQL-style query language
termed GSQL, being mostly a restriction of SQL. In Gigascope, windows
are strictly tied to the operators. Because any primary operation in GSQL
is expressible in CQL [Arasu et al. 2006], it can also be expressed in our
language.

The StreamMill system [Bai et al. 2006] effectively applies user-defined ag-
gregate functions on a wide range of applications, including data stream mining,
streaming XML processing, and RFID event processing. Queries are expressed
through ESL, the Expressive Stream Language, which extends the current
SQL:2003 standards. ESL supports the incremental computation of UDAs as
proposed in ATLaS [Wang et al. 2003] and provides additional support for win-
dow aggregates.

The general-purpose event monitoring system Cayuga [Demers et al. 2007]
extends traditional content-based publish-subscribe systems to handle stateful
subscriptions. The implementation of Cayuga differs totally from our approach,
as it is based on Nondeterministic Finite State Automata (NFA).

The event streaming system CEDR [Barga et al. 2007] relies on an operator
semantics that derives from view update compliance. A view can be considered
as a time-varying relation [Arasu et al. 2006] that is updated on arrival of
positive and negative elements, which correspond to insertions and deletions,
respectively. A snapshot at time instant t covers all elements being in the view
at time t. Hence, the CEDR semantics follows the update semantics presented
in Arasu et al. [2006] and Ghanem et al. [2007]. Based on a tritemporal stream
model, the CEDR query language supports features such as event sequencing,
negation, and temporal slicing.

9.3 Temporal Algebra

Our work exploits the well-understood relational semantics and its temporal
extensions to establish a sound semantic foundation for continuous queries
over data streams. Hence, our work is closely related to the area of temporal
databases [Tansel et al. 1993]. In fact, we found the temporal algebra with sup-
port for duplicates and ordering proposed in Slivinskas et al. [2001] to be an
appropriate starting point for our research. We extended this work towards con-
tinuous query processing over data streams as follows. (1) Slivinskas et al. do
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not provide a logical algebra as an abstraction of their semantics. They rather
specify the semantics of their operations from an implementation point of view,
using the λ-calculus. However, the separation of the logical from the physical
algebra entails several advantages. Our logical stream algebra defines operator
semantics in an explicit, precise, and descriptive manner. Since a logical stream
can be viewed as a potentially infinite, temporal multiset, such an algebra is
beneficial to the temporal database community as well. It clearly illustrates
the snapshot semantics because our logical algebra addresses time instants.
Moreover, the logical algebra can be leveraged to prove semantic equivalences
of operator plans, independent from any specific implementations. (2) Despite
the similarity of using time intervals to denote validity, the temporal operator
algebra in Slivinskas et al. [2001] does not satisfy the demanding requirements
of stream processing applications like the support of continuous queries on un-
bounded streams. In particular, the algebra does not provide any windowing
constructs nor data-driven operator implementations. Nonetheless, this tem-
poral algebra is a fruitful and suitable basis which can be enhanced for stream
processing. Because of this, we have introduced the notion of physical streams
and have developed an appropriate physical stream algebra.

10. CONCLUSIONS

Despite the surge in stream processing publications in recent years, the devel-
opment of a sound semantic foundation for a general-purpose stream algebra
has attracted only little research attention. While this article addressed this
challenge, it also gave seamless insight into our query processing engine, illus-
trating the coherence between the individual query processing steps ranging
from query formulation to query execution. Hence, this article has fostered the
fusion between theoretical results and practical considerations in the streaming
context. Our logical algebra precisely defines the semantics of each operation in
a direct way over temporal multisets. We are convinced that the logical algebra
is extremely valuable, as it separates semantics from implementation. By as-
signing an exact meaning to any query at any point in time, our logical algebra
describes what results to expect from a continuous query, independent of how
the system operates internally. Moreover, it represents a tool for exploring and
proving equivalences. Our stream-oriented physical algebra relies on a novel
stream representation that tags tuples with time intervals to indicate tuple va-
lidity. It provides push-based, nonblocking algorithms that harness sweepline
techniques and input stream order for the efficient eviction of elements expir-
ing in the operator state due to windowing constructs. From a theoretical point
of view, this article carried over the well-known transformation rules from con-
ventional and temporal databases to stream processing, based on the concept
of snapshot-equivalence. We enhanced this large set of rules with novel ones for
the window operators. Furthermore, we defined equivalences for streams and
query plans, pointed out plan generation, as well as algebraic and physical opti-
mizations. We proved that our query language has at least the same expressive
power as CQL, while our language stays closer to SQL:2003 standards. From
the implementation side, our unique time-interval approach is superior to the
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semantically equivalent positive-negative approach for the majority of time-
based sliding window queries because it does not suffer from doubling stream
rates to signal tuple expiration. In summary, this work established a semanti-
cally sound and powerful foundation for data stream management.
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