Advice

- Please check the completeness of your exam (14 numbered pages).
- Put your name and student id on the top of each page you hand in.
- Do not use pencil.
- Do not use a red pen.
- Stick to the notations and solutions used in the lecture.
- If you make any assumption for a solution, declare it clearly.
- Exercises with more than one solution will not be considered.
- Make sure to hand in all sheets at the end of your exam.
- You are allowed to use one A4 sheet with your personal notes and a pocket calculator.
- Time for the exam: 90 minutes.

Signature:

Correction slot

Please do not fill out the part below

<table>
<thead>
<tr>
<th>Exercise</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Points</td>
<td>16</td>
<td>24</td>
<td>20</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>Points Achieved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise 1

1.1 Map the following ER diagram, including keys, to a corresponding relational database schema. Avoid NULL values and redundancy as much as possible (7 points).
1.2 Use SQL to create the relation schemas that map entity and relationship types B and X. The definitions shall include primary and foreign keys. Assume that all attributes are Integer and all referenced relations have been defined accordingly. (2 points)
1.3 Assume the following ER diagram:

Tasks:
Modify the above ER diagram to satisfy the following new or changed requirements (7 points):

- A movie may have many genres.
- A spouse must be an artist.
- A movie may be shot in many countries.
- An artist must be an actor or a director or both of them in a movie.
- For each actor the character name (Character) that he/she plays in a movie (for example: the character Tony Stark by actor Robert Downey Jr. in the movie Iron Man) should be modeled.
- For each actor the set of awards (Awards) shall be stored.
- A director may direct movies.
A database stores the nutritive content of food. Here follows an extract.

Nutrient

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vit. C</td>
<td>Vitamine</td>
</tr>
<tr>
<td>2</td>
<td>Omega 3</td>
<td>Fat</td>
</tr>
</tbody>
</table>

Food

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tofu</td>
<td>Vegi-Cheese</td>
</tr>
<tr>
<td>2</td>
<td>Strawberry</td>
<td>Fruit</td>
</tr>
<tr>
<td>3</td>
<td>Focaccia</td>
<td>Bread</td>
</tr>
</tbody>
</table>

Content

<table>
<thead>
<tr>
<th>NID</th>
<th>FID</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>58.8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Tasks:

2.1 Write a **relational algebra expression** that returns, for each food type, the average content of the nutrient “Vit. A”. (8 points)
2.2 Write an **SQL query** that returns the name of the foods having no value of "Vit. A" or a value of "Vit. A" smaller than 0.01 (8 points).

2.3 Give a **domain relational calculus expression** that, for each food type, returns the name of the food with the highest "Vit. A" value (8 points).
Exercise 3

Use the following notation for the following exercises:

<table>
<thead>
<tr>
<th>Operation example</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1(A))</td>
<td>transaction (T_1) reads data item (A)</td>
</tr>
<tr>
<td>(w_2(B))</td>
<td>transaction (T_2) writes data item (B)</td>
</tr>
<tr>
<td>(sl_1(A))</td>
<td>transaction (T_1) shared locks data item (A)</td>
</tr>
<tr>
<td>(xl_2(B))</td>
<td>transaction (T_2) exclusive locks data item (B)</td>
</tr>
<tr>
<td>(u_1(C))</td>
<td>transaction (T_1) unlocks data item (C)</td>
</tr>
<tr>
<td>(c_1)</td>
<td>transaction (T_1) commits</td>
</tr>
<tr>
<td>(a_2)</td>
<td>transaction (T_2) aborts</td>
</tr>
</tbody>
</table>

3.1 Construct schedules for the following tasks:

a) A schedule for two transactions \(T_1 \) and \(T_2 \) that leads to a deadlock. Make sure to add the necessary lock operations. (3 points)

b) A schedule for two transactions \(T_1 \) and \(T_2 \) that is not recoverable. Make sure to add the necessary commit and abort operations. (3 points)
3.2 Consider the following schedule S_1:

$$S_1 = \langle r_4(A), r_1(A), r_2(A), r_3(A), w_1(A), w_2(B),$$
$$r_3(B), w_3(B), r_2(C), w_2(C), r_4(C), w_4(C) \rangle$$

Tasks:

a) Show the precedence graph (conflict graph) of schedule S_1. (2 points)

b) State if S_1 is conflict serializable. If yes give all serializability orders; If not give the first conflict. (2 points)
3.3 Consider the following schedule S_2:

$$S_2 = \langle r_1(A), r_1(B), r_2(A), r_3(A), w_3(A), r_1(C), w_1(C), c_1, w_2(B), c_2, r_3(E), c_3 \rangle$$

Tasks:

a) State if S_2 is a valid strict two-phase locking (S2PL) schedule. If yes add all required lock and unlock instruction (sl, xl and u). If no explain why. (6 points)
b) Assume $r_2(A)$ is moved immediately after $w_3(A)$ in S_2. Is it a valid S2PL schedule? If yes add all required lock and unlock instruction (sl, xl and u). If no explain why. (4 points)
4.1 Consider a relation R (A, B, C, D, E, F) for which the functional dependencies
\[ACD \rightarrow A, \ C \rightarrow A, \ C \rightarrow E, \ CD \rightarrow F, \ F \rightarrow B \] hold.

4.1.1 Prove that DC is a candidate key of R. Write the necessary conditions
and elaborate them. (5 points)

4.1.2 Assume R is in 1NF. For each normal form that R does not satisfy, iden-
tify all functional dependencies that violate it. (3 points)
4.1.3 Compute the Boyce-Codd Normal Form (BCNF) decomposition of R. Indicate each step of the algorithm, by showing the schema and the violation of BCNF on which you focus during that step. Also, indicate clearly your final result: the relations and their attributes. (3 points)

Note: While applying the algorithm, use the violating functional dependencies in the order listed above.
4.2 In the following figure, you see an instance of relation R (B,C,D,E).

\[
\begin{array}{|c|c|c|c|c|}
\hline
 & B & C & D & E \\
\hline
r_1 & 1 & 4 & 1 & 2 \\
r_2 & 5 & 4 & 2 & 4 \\
r_3 & 3 & 8 & 1 & 2 \\
r_4 & 3 & 1 & 2 & \\
r_5 & 1 & 8 & 1 & 2 \\
r_6 & 5 & 6 & 2 & \\
r_7 & 8 & 4 & 2 & 4 \\
\hline
\end{array}
\]

4.2.1 Fill in the missing values for attributes C and E in the above instance of relation R so that the multivalued dependency DE \rightarrow C holds. (4 points)