1 Physical Database Design

Consider a relation \(r \) with relation schema \(R(A, B, C) \) and the following additional information:

- \(|r| = 3,000,000 \)
- Relation \(r \) is stored unsorted on disk.
- The domain of attribute \(A \) are integers with range between 1 and 12,000,000
- There are 70\% as many distinct values for attribute \(A \) as there are tuples, i.e., \(|\pi_A(r)| = 0.7 \cdot |r| \). These values are spread uniformly throughout the entire range.
- Size of attribute \(A \): 4 bytes
- Size of a tuple: 32 bytes
- Size of a disk block: 4096 bytes
- Size of a B+-tree pointer: 8 bytes
- The size of a B+-tree node corresponds to the size of a disk block
- The B+-tree fits entirely into main memory (no block transfer cost).

The following two queries are evaluated on relation \(r \):

(a) \(Q_1 : \sigma_{4,000,000 \leq A \land A < 7,000,000}(r) \)
(b) \(Q_2 : \sigma_{A=5,000,000}(r) \)

Tasks:

1. Determine the minimum and maximum path length in a B+-tree on attribute \(A \) and relation \(r \). Explain your approach.

 - Each node in a B+-tree contains \(m - 1 \) search keys and \(m \) pointers. The search key value has the size of a value of attribute \(A \). Then,
 \[
 m \times 8 \text{ bytes} + (m - 1) \times 4 \text{ bytes} = 4096 \text{ bytes}
 \]
 Then,
 \[
 m = \frac{4096 \text{ bytes} + 4 \text{ bytes}}{8 \text{ bytes} + 4 \text{ bytes}} = 341
 \]
 - The internal nodes of a B+-Tree have between \(\left\lceil \frac{m}{2} \right\rceil \) and \(m \) children.
• Thus, the minimum path length occurs when all internal nodes are completely filled and the maximum path length occurs when the internal nodes are half filled.

In relation \(r \), there are 70\% distinct values for attribute \(A \). Thus, there exist \(K = \text{distinctPercentage} \times |r| \) search key values, i.e., \(K = 0.7 \times 3,000,000 \).

Minimum path length:

\[
\lceil \log_m(K) \rceil = \lceil \log_{341}(0.7 \times 3,000,000) \rceil = 3
\]

Maximum path length:

\[
\lceil \log_{\left\lceil \frac{m}{2} \right\rceil}(K) \rceil = \lceil \log_{\left\lceil \frac{341}{2} \right\rceil}(0.7 \times 3,000,000) \rceil = 3
\]

2. Determine the number of nodes that are traversed in the worst case in the B+-tree on attribute \(A \) in order to fetch all tuples for query \(Q_1 \). Explain your approach.

• In the worst case, every leaf node is only half filled, i.e., it contains \(\lceil \frac{m-1}{2} \rceil = 170 \) search key values.
• Then, there exist \(\left\lfloor \frac{K}{170} \right\rfloor = 12352 \) leaf nodes.
• The predicate of query \(Q_1 \) covers 25\% of the range of attribute \(A \). Tuples must be fetched for 25\% of the search key values and thus, 25\% of the leaf nodes:

\[
12,352 \times 0.25 = 3088 \text{ leaf nodes}
\]

• As the beginning and the end of the predicate’s search range can be partially contained in two leaf nodes, the worst case of traversed leaf nodes is

\[3088 + 2 = 3090 \text{ leaf nodes} \]

• As the maximum path length of the B+-Tree is 3, 2 internal nodes must be traversed. Thus, the total number of traversed nodes in the worst case is

\[
\# \text{ internalNodes} + \# \text{ leafNodes} = 2 + 3090 = 3092
\]

3. Determine the average number of blocks fetched for query \(Q_1 \) using the B+-tree index on attribute \(A \). Explain your approach.

• As the B+-tree fits entirely into main memory, there are no block fetching costs when traversing it.
• The values of attribute \(A \) are uniformly distributed on the range.
• Thus, each tuple has a 25\% chance that its value for attribute \(A \) is within the search range (as the search range covers 25\% of the range of attribute \(A \)).
• Each tuple of the relation is referenced in the B+-tree either by a
direct pointer to the tuple’s block or via a pointer to a bucket (if
more than one tuple refers to the same search key).
• Then, 25% of tuples must be fetched on average and thus, a total of

\[0.25 \times 3,000,000 = 750,000\] blocks

are fetched on average.

4. Determine the number of blocks fetched for query \(Q_1 \) without using the
B+-tree index on attribute \(A \). Explain your approach.

• One disk block contains \(\frac{4096 \text{ bytes}}{32 \text{ bytes}} = 128 \) tuples.
• Then, relation \(r \) is stored in \(\lceil \frac{3,000,000}{128} \rceil = 23,438 \) blocks.
• As the B+-tree index on attribute \(A \) is not used, the entire relation
and thus, all blocks must be fetched.
• A total of 23,438 blocks must be fetched.

5. Determine the average number of blocks fetched for query \(Q_2 \) using the
B+-tree index on attribute \(A \). Explain your approach.

• As the B+-tree fits entirely into main memory, there are no block
fetching costs when traversing it.
• The values of attribute \(A \) are uniformly distributed on the range.
• Thus, each tuple has a 1 to 12,000,000 chance that its value for
attribute \(A \) is 5,000,000.
• Each tuple of the relation is referenced in the B+-tree either by a
direct pointer to the tuple’s block or via a pointer to a bucket (if
more than one tuple refers to the same search key).
• Then, \(\frac{1}{12,000,000} \) of the tuples must be fetched on average and thus, a
total of

\[\frac{3,000,000}{12,000,000} = 0.25\] blocks

are fetched on average.

6. Determine the number of blocks fetched for query \(Q_2 \) without using the
B+-tree index on attribute \(A \). Explain your approach.

• One disk block contains \(\frac{4096 \text{ bytes}}{32 \text{ bytes}} = 128 \) tuples.
• Then, relation \(r \) is stored in \(\lceil \frac{3,000,000}{128} \rceil = 23,438 \) blocks.
• As the B+-tree index on attribute \(A \) is not used, the entire relation
and thus, all blocks must be fetched.
• A total of 23,438 blocks must be fetched.

Note, the number of fetched blocks is independent of the query when the
relation is unsorted and the tuples are retrieved with a sequential scan.
2 Hash Index

Consider the 4 bit hash function \(h(x) = \text{bin}((x + 2) \mod 15) \) and the following extendable hashing scheme with bucket size 3:

Determine the extendable hashing scheme after each of the following insertions:

(a) Insert 61, 51, 75

- \(h(61) = \text{bin}(3) = 0011 \)
- \(h(51) = \text{bin}(8) = 1000 \)
- \(h(75) = \text{bin}(2) = 0010 \)

(b) Insert 69

- \(h(69) = \text{bin}(11) = 1011 \)

(c) Insert 9

- \(h(9) = \text{bin}(11) = 1011 \)
(d) Insert 28

- $h(28) = \text{bin}(0) = 0000$

In the hash function, $\text{bin}(y)$ returns the binary value of y and mod indicates the modulo operation. For instance, the values 12, 14, and 23, which are contained in the hashing scheme, are hashed as follows:

- $h(12) = \text{bin}(14 \mod 15) = \text{bin}(14) = 1110$
- $h(14) = \text{bin}(16 \mod 15) = \text{bin}(1) = 0001$
- $h(23) = \text{bin}(25 \mod 15) = \text{bin}(10) = 1010$