Query Processing and Query Optimization

SL08

- Query Processing
 - Sorting, Partitioning
 - Selection, Join

- Query Optimization
 - Cost estimation
 - Rewriting of relational algebra expressions
 - Rule- and cost-based query optimization
Literature and Acknowledgments

Reading List for SL08:

These slides were developed by:

▶ Michael Böhlen, University of Zürich, Switzerland
▶ Johann Gamper, Free University of Bozen-Bolzano, Italy

The slides are based on the following text books and associated material:

```
SELECT COUNT(*)
FROM r1 r, r2 s
WHERE r.unique1 = s.unique1
AND r.unique1 > 700000;
```
SELECT COUNT(*)
FROM r1 r, r2 s
WHERE r.unique1 = s.unique1
AND r.unique1 > 7000000;
Query Processing and Optimization

- One of the most important tasks of a DBMS is to figure out an efficient **evaluation plan** (also termed **execution plan** or **access plan**) for high level statements.
 - It is particularly important to have evaluation strategies for:
 - Selections (search conditions)
 - Joins (combining information in relational database)

- Query processing is a 3-step process:
 1. Parsing and translation (from SQL to RA)
 2. Optimization (refine RA expression)
 3. Evaluation (exec RA operators)
Query Processing

- Measuring the query costs
- Sorting
- Optimizing selections
- Optimizing joins
Query cost is generally measured as the total elapsed time for answering a query.

Many factors contribute to time cost and are considered in real DBMS, including:

- CPU cost and network communication
- Disk access
 - Difference between sequential and random I/O
- Buffer Size
 - Having more memory reduces need for disk access
 - Amount of real memory available for buffers depends on other concurrent OS processes, and is difficult to determine ahead of actual execution.
 - We often use worst case estimates, assuming only the minimum amount of memory needed for the operation is available.
Typically **disk access is the predominant cost**, which is relatively easy to estimate. The cost of disk accesses is measured by taking into account:

- Number of seeks * average-seek-cost
- Number of blocks read * average-block-read-cost
- Number of blocks written * average-block-write-cost

Cost to write a block is greater than cost to read a block, since data is read back after being written to ensure that the write was successful.

For simplicity:

- we just use **number of block transfers from disk** as the cost measure, and
- we do not include cost of **writing output to disk**
Sorting

- **Sorting** is important for several reasons:
 - SQL queries can specify that the output is sorted
 - Several relational operations can be implemented efficiently if the input relations are first sorted, e.g., joins
 - Often sorting is a crucial first step for efficient algorithms
- We may build an index on the relation, and then use the index to read the relation in sorted order.
 - With an index sorting is only logical and not physical. This might lead to one disk block access for each tuple (can be very expensive)
 - It may be desirable/necessary to order the records physically.
- Relation fits in memory: Use techniques like **quicksort**
- Relation does not fit in main memory: Use external sorting, e.g., **external sort-merge** is a good choice
External Sort-Merge/1

▶ Step 1: Create N sorted runs (M is # blocks in buffer)

1. Let i be 0 initially.
2. Repeatedly do the following until the end of the relation
 2.1 Read M blocks of the relation (or the rest) into memory
 2.2 Sort the in-memory blocks
 2.3 Write sorted data to run file R_i;
 2.4 Increment i.

▶ Step 2: Merge runs (N-way merge) (assume $N < M$)
(Use N blocks in memory to buffer input runs, and 1 block to buffer output)

1. Read the first block of each run R_i into its buffer page
2. Repeat until all input buffer pages are empty
 2.1 Select the first record (in sort order) among all buffer pages
 2.2 Write the record to the output buffer. If the output buffer is full write it to disk.
 2.3 Delete the record from its input buffer page.
 2.4 If the buffer page becomes empty then
 read the next block (if any) of the run into the buffer
If $N \geq M$, **several merge passes** (step 2) are required:

- In each pass, contiguous groups of $M - 1$ runs are merged.
- A pass reduces the number of runs by a factor of $M - 1$, and creates runs longer by the same factor.
 - E.g. If $M = 11$, and there are 90 runs, one pass reduces the number of runs to 9, each run being 10 times the size of the initial runs.
- Repeated passes are performed until all runs have been merged into one.
External Sort-Merge/3

Example: $M = 3$, 1 block = 1 tuple
Cost analysis

- \(b_r = \) number of blocks in \(r \)
- Initial number of runs: \(b_r / M \)
- Total number of merge passes required: \(\lceil \log_{M-1}(b_r/M) \rceil \)
 - The number of runs decreases by a factor of \(M-1 \) in each merge pass
- Disk accesses for initial run creation and in each pass is \(2b_r \)
 - Exception: For final pass there is no write cost
- Thus total number of disk accesses for external sorting:
 \[
 \text{Cost} = b_r (2 \lceil \log_{M-1}(b_r/M) \rceil + 1)
 \]

Example: Cost analysis of previous example

- \(12 (2 * 2 + 1) = 60 \) disk block transfers
The selection operator:

- \(\text{select } * \text{ from } r \text{ where } \theta \)
- \(\sigma_\theta(r) \)

is used to retrieve those records that satisfy the selection condition.

The strategy/algorithm for the evaluation of the selection operator depends

- on the type of the selection condition
- on the available index structures
Assume a B+ tree index on (BrName, BrCity). What would be the best way to evaluate the query:

$$\sigma_{BrCity < 'Brighton'} \land Assets < 5000 \land BrName = 'Downtown'(branch)$$
Types of selection conditions:

- **Equality queries**: \(\sigma_{a=v}(r) \)

- **Range queries**: \(\sigma_{a \leq v}(r) \) or \(\sigma_{a \geq v}(r) \)
 - Can be implemented by using
 - linear file scan
 - binary search
 - using indices

- **Conjunctive selection**: \(\sigma_{\theta_1 \land \theta_2 \ldots \land \theta_n}(r) \)

- **Disjunctive selection**: \(\sigma_{\theta_1 \lor \theta_2 \ldots \lor \theta_n}(r) \)
Basic search methods for selection operator:

- **File scan**
 - Class of search algorithms that **read the file line by line** to locate and retrieve records that fulfill a selection condition, i.e., $\sigma_\theta(r)$
 - Lowest-level operator to access data

- **Index scan**
 - Class of search algorithms that **use an index**
 - Assume B+ tree index and equality conditions, i.e., $\sigma_{a=v}(r)$
Selection Evaluation Strategies/4

- **A1 Linear search**: Scan each file block and test all records to see whether they satisfy the selection condition.
 - Fairly expensive, but always applicable (regardless of indexes, ordering, selection condition, etc)
 - Fetching a contiguous range of blocks from disk has been optimized by disk manufacturers and is cheap in terms of seek time and rotational delay (pre-fetching)
 - Cost estimate ($b_r = \text{number of blocks in file}$):
 - Worst case: $Cost = b_r$
 - If the selection is on a key attribute: $Average \: cost = b_r/2$ (stop when finding record)
A2 Binary search: Apply binary search to locate records that satisfy selection condition.

- Only applicable if
 - the blocks of a relation are stored contiguously (very rare), and
 - the selection condition is a comparison on the attribute on which the file is ordered

- Cost estimate for $\sigma_{a=v}(r)$:
 - $\lceil \log_2(b_r) \rceil$ — cost of locating the first tuple by a binary search on the blocks
 - Plus number of blocks containing records that satisfy selection condition
Selection Evaluation Strategies/6

- **A3 Primary index + equality on candidate key**
 - Retrieve a single record that satisfies the equality condition
 - \(\text{Cost} = HT_{i} + 1 \) (height of B+ tree + 1 data block)

- **A4 Primary index + equality on non-candidate key**
 - Retrieve multiple records, where records are on consecutive blocks
 - \(\text{Cost} = HT_{i} + \# \text{ blocks with records with given search key} \)

- **A5 Secondary index + equality on search-key**
 - Retrieve a single record if the search-key is a candidate key
 - \(\text{Cost} = HT_{i} + 1 \)
 - Retrieve multiple records if search-key is not a candidate key
 - \(\text{Cost} = HT_{i} + \# \text{ buckets with search-key value} + \# \text{ retrieved records} \)
 - Can be very expensive, since each record may be on a different block
 - Linear file scan may be cheaper if many records have to be fetched
Selection Evaluation Strategies/7

- **A6 Primary index on A + comparison condition**
 - \(\sigma_{a \geq v} \): Use index to find first tuple \(\geq v \); then scan relation sequentially.
 - \(\sigma_{a \leq v} \): Scan relation sequentially until first tuple \(> v \); do not use index.

- **A7 Secondary index on A + comparison cond.**
 - \(\sigma_{a \geq v} \): Use index to find first index entry \(\geq v \); scan index sequentially from there, to find pointers to records.
 - \(\sigma_{a \leq v} \): Scan leaf pages of index finding record pointers until first entry \(> v \)
 - Requires in the worst case one I/O for each record; linear file scan may be cheaper if many records are to be fetched.
Review 8.2

Consider relations $r_1(A, B, C)$, $r_2(C, D, E)$, $r_3(E, F)$ with keys underlined and cardinalities $|r_1| = 1000$, $|r_2| = 1500$, $|r_3| = 750$.

- Estimate the size of $r_1 \Join r_2 \Join r_3$
- Give an efficient strategy for computing the result and compute its cost
Join Evaluation Strategies

- There exist several different algorithms for the evaluation of join operations:
 - Nested loop join
 - Block nested loop join
 - Indexed nested loop join
 - Merge join
 - Hash join

- Choice based on cost estimate

- Examples use the following relations:
 - `customer = (CustName, CustStreet, CustCity)`
 - Number of records: $n_c = 10'000$
 - Number of blocks: $b_c = 400$
 - `depositor = (CustName, AccNumber)`
 - Number of records: $n_d = 5'000$
 - Number of blocks: $b_d = 100$
Nested Loop Join/1

- Compute the theta join: \(r \bowtie_{\theta} s \)

```plaintext
for each tuple \( t_r \) in \( r \) do
  for each tuple \( t_s \) in \( s \) do
    if pair \((t_r, t_s)\) satisfies join condition \( \theta \) then
      add \( t_r \odot t_s \) to result
```

- \(r \) is called the outer relation, \(s \) the inner relation of the join.
- Always applicable. Requires no indices and can be used with any kind of join condition.
- Expensive since it examines every pair of tuples.
Nested Loop Join/2

- Order of r and s important: Relation r is read once, relation s is read up to $|r|$ times
 - **Worst case:** Only one block of each relation fits in main memory
 \[\text{Cost} = n_r \times b_s + b_r \]
 - If the smaller relation fits entirely in memory, use that as the inner relation.
 \[\text{Cost} = b_s + b_r \]

- **Example:**
 - Depositor as outer relation:
 \[5'000 \times 400 + 100 = 2'000'100 \text{ block accesses} \]
 - Customer as outer relation:
 \[10'000 \times 100 + 400 = 1'000'400 \text{ block accesses} \]
 - Smaller relation (*depositor*) fits into memory:
 \[400 + 100 = 500 \text{ blocks} \]
Simple nested loop algorithm is not used directly since it is not block-based.

Variant of nested loop join in which every block of the inner relation is paired with every block of the outer relation.

```plaintext
for each block \( B_r \) in \( r \) do
  for each block \( B_s \) in \( r \) do
    for each tuple \( t_r \) in \( r \) do
      for each tuple \( t_s \) in \( s \) do
        if pair \( (t_r,t_s) \) satisfies join condition \( \theta \) then
          add \( t_r \circ t_s \) to result
```

DBS14, SL08 26/82 M. Böhlen, ifi@uzh
Worst case: $Cost = b_r \times b_s + b_r$
 - Each block in the inner relation s is read once for each block in the outer relation (instead of once for each tuple in the outer relation)

Best case: $Cost = b_s + b_r$

Example: Compute depositor \bowtie customer, with depositor as the outer relation.
 - Block nested loop join:
 $Cost = 100 \times 400 + 100 = 40'100$ blocks (worst case)
Improvements to nested loop and block nested loop algorithms (M is the number of main memory blocks):

- Block nested loop: Use M-2 disk blocks for outer relation and two blocks to buffer inner relation and output; join each block of the inner relation with M-2 blocks of the outer relation.
 - Cost = $\lceil b_r/(M - 2) \rceil \times b_s + b_r$
- If equi-join attribute forms a key on inner relation, stop inner loop on first match.
- Scan inner loop forward and backward alternately, to make use of the blocks remaining in buffer (with LRU replacement).
Indexed Nested Loop Join/1

- Index lookups can replace file scans if
 - join is an equi-join or natural join and
 - index is available on the inner relation’s join attribute
 - index can be constructed just to compute a join

- For each tuple t_r in the outer relation r, use the index to look up tuples in s that satisfy the join condition with tuple t_r.

- Worst case: Buffer has space for only one page of r, and, for each tuple in r perform an index lookup on s.
 - $Cost = n_r \times c + b_r$
 - c is the cost of traversing the index and fetching all matching s tuples for one tuple of r
 - c can be estimated as cost of a single selection on s using the join condition.

- If indexes are available on join attributes of both r and s, use relation with fewer tuples as the outer relation.
Example: Compute depositor x customer, with depositor as the outer relation.

- Let customer have a primary B+ tree index on the join attribute CustName, which contains 20 entries in each index node.
- Since customer has 10,000 tuples, the height of the tree is 4, and one more access is needed to find the actual data.
- depositor has 5,000 tuples and 100 blocks.
- Indexed nested loops join:
 Cost = 5'000 * 5 + 100 = 25'100 disk accesses.
Review 8.3

Consider $E \bowtie_{SSN=MgrSSN} D$ with $r_D = 50$ (number of tuples in relation D), $r_E = 5000$, $b_D = 10$ (number of blocks for relation D), $b_E = 2000$, $n_B = 6$ (number of available buffer blocks).

Compute the number of IOs for the following evaluation strategies:

1. Block NL, $E \bowtie D$, 4 blocks for E (1 block for D, 1 block for result)

2. Block NL, $E \bowtie D$, 4 blocks for D
Review 8.3

3. Block NL, $D \boxtimes E$, 4 blocks for D

4. Indexed NL, $E \boxtimes D$

5. Indexed NL, $D \boxtimes E$
Basic idea of **merge join**: Use two pointers pr and ps that are initialized to the first tuple in r and s and move in a synchronized way through the sorted relations.

Algorithm

1. Sort both relations on their join attributes (if not already sorted on the join attribute).
2. Scan r and s in sort order and return matching tuples.
3. Move the tuple pointer of the relation that is less far advanced in sort order (more complicated if the join attributes are not unique - every pair with same value on join attribute must be matched).
Merge Join/2

- Applicable for equi-joins and natural joins only
- If all tuples for any given value of the join attributes fit in memory
 - One file scan of \(r \) and \(s \) is enough
 - Cost = \(b_r + b_s \) (+ the cost of sorting if relations are not sorted)
- Otherwise, a block nested loop join must be performed between the tuples with the same attributes
- If the relation are not sorted appropriately we first have to sort them. The combined operator is called a sort-merge join.
Hash Join/1

- Applicable for equi-joins and natural joins only.
- Partition tuples of \(r \) and \(s \) using the same hash function \(h \), which maps the values of the join attributes to the set \(0, 1, ..., n \)

 - Partitions of \(r \)-tuples: \(r_0, r_1, ..., r_n \)

 - All \(t_r \in r \) with \(h(t_r[JoinAttrs]) = i \) are put in \(r_i \)

 - Partitions of \(s \)-tuples: \(s_0, s_1, ..., s_n \)

 - All \(t_s \in s \) with \(h(t_s[JoinAttrs]) = i \) are put in \(s_i \)

- \(r \)-tuples in \(r_i \) need only to be compared with \(s \)-tuples in \(s_i \)

 - an \(r \)-tuples and \(s \)-tuples that satisfy the join condition have the same hash value \(i \), and are mapped to \(r_i \) and \(s_i \), respectively.
Algorithm for the hash join of r and s

1. Partition the relation s using hash function h. (When partitioning a relation, one block of memory is reserved as the output buffer for each partition.)
2. Partition r similarly.
3. For each i:
 3.1 Load s_i into memory and build an in-memory hash index on it using the join attribute. This hash index uses a different hash function than the earlier one h.
 3.2 Read the tuples in r_i from the disk (block by block). For each tuple t_r probe (locate) each matching tuple t_s in s_i using the in-memory hash index. Output the concatenation of their attributes as result tuple.

Relation s is called the **build input** and r is called the **probe input**.
Cost analysis of hash join

- Partitioning of the two relations: $2 \times (b_r + b_s)$
 - Complete reading of the two relations plus writing back
- The build and probe phases read each of the partitions once: $b_r + b_s$
- Cost = $3 \times (b_r + b_s)$

Example: customer \Join depositor

- Assume that memory size is 20 blocks
- $b_d = 100$ and $b_c = 400$.
- depositor is to be used as build input. Partition it into five partitions, each of size 20 blocks. This partitioning can be done in one pass.
- Similarly, partition customer into five partitions, each of size 80. This is also done in one pass.
 - Partition size of probe relation needs not to fit into main memory!
- Therefore total cost = $3 \times (100 + 400) = 1500$ block transfers
 - Ignores cost of writing partially filled blocks
Consider \(b_C = 400, n_C = 10'000, b_D = 100, n_D = 5'000 \), disk IO time = 10 msec, memory access time = 60 nsec. Compare the execution times for NL (best case) and sort merge.
Query Optimization

- Cost estimation
- Transformation of relational algebra expressions (rewrite rules)
- Rule-based (aka heuristic) query optimization
- Cost-based query optimization
Alternative ways of evaluating a query because of
 - Equivalent expressions
 - Different algorithms for each operation

A **query evaluation plan** (query plan) is an annotated RA expression that specifies for each operator how to evaluate it.

The cost difference between a good and a bad query evaluation plan can be enormous
 - e.g., performing \(r \times s \) followed by a selection \(r.A = s.B \) is much slower than performing a join on the same condition

The query optimizer needs to estimate the cost of operations
 - Depends critically on statistical information about relations
 - Estimates statistics for intermediate results to compute cost of complex expressions
Step 1: Parsing and translation

- Translate the query into its internal form (query tree)
- The query tree corresponds to a relational algebra (RA) expression
- Each RA expression can be written as a tree where the algebra operator is the root and the argument relations are the children.

Example:

- SQL query: `select balance from account where balance < 2500`
- RA expression: \(\sigma_{balance < 2500}(\pi_{balance}(account)) \)
- Tree:
 \[
 \begin{array}{c}
 \sigma_{balance < 2500} \\
 \pi_{balance} \\
 account
 \end{array}
 \]
Step 2: Optimization

- An RA expression may have many (semantically) equivalent expressions.
- The following two RA expressions are equivalent:
 - $\sigma_{balance < 2500}(\pi_{balance}(account))$
 - $\pi_{balance}(\sigma_{balance < 2500}(account))$
- Each RA operation can be evaluated using one of several different algorithms.
- Thus, an RA expression can be evaluated in many ways.
Query Optimization/4

▶ Step 2: Optimization

▶ Evaluation plan: Annotated RA expression that specifies for each operator detailed instructions on how to evaluate it.

▶ use index on balance to find accounts with balance < 2500

▶ can perform complete relation scan and discard accounts with balance ≥ 2500

▶ Goal of query optimization: Among all equivalent evaluation plans choose the one with lowest cost.

▶ Cost is estimated using statistical information from the database catalog, e.g., number of tuples in each relation, size of tuples, etc.

▶ Step 3: Evaluation

▶ The query-execution engine takes an evaluation plan, executes that plan, and returns the answers.
Review 8.5

Display the trees that correspond to the following algebra expressions:

- $RA_1 = \pi_A(R_1 \bowtie \sigma_{X=Y}(R_2 \bowtie \pi_{B,C}(R_3 - R_4) \bowtie R_5))$
- $RA_2 = \pi_A(R_1) \cup \sigma_{X>5}(R_2)$
Example: Find the names of all customers who have an account at any branch located in Brooklyn.

\[\pi_{\text{CustName}}(\sigma_{\text{BranchCity} = 'Brooklyn'}(\text{branch} \bowtie (\text{account} \bowtie \text{depositor}))) \]

- Produces a large intermediate relation
- Transformation into a more efficient expression

\[\pi_{\text{CustName}}(\sigma_{\text{BranchCity} = 'Brooklyn'}(\text{branch} \bowtie (\text{account} \bowtie \text{depositor}))) \]
Goal of query optimizer: Find the most efficient query evaluation plan for a given query.

Cost-based optimization:
1. Generate logically equivalent expressions by using equivalence rules to rewrite an expression into an equivalent one
2. Annotate resulting expressions with information about algorithms/indexes for each operator
3. Choose the cheapest plan based on estimated cost

Rule-based/heuristic optimization:
1. Generate logically equivalent expressions, controlled by a set of heuristic query optimization rules

In general, it is not possible to identify the optimal query tree since there are too many. Instead, a reasonably efficient one is chosen.
The cost of an operation depends on the size and other statistics of its inputs, which is partially stored in the database catalog and can be used to estimate statistics on the results of various operations.

- n_r: number of tuples in a relation r.
- b_r: number of blocks containing tuples of r.
- s_r: size of a tuple of r.
- f_r: blocking factor of r, i.e., the number of tuples of r that fit into one block.
- $V(A, r)$: number of distinct values that appear in r for attribute A; same as the size of $\pi_A(r)$.
- $SC(A, r)$: selection cardinality of attribute A of relation r; average number of records that satisfy equality on A.
Statistical Information/2

- f_i: average fan-out of internal nodes of index i, for tree-structured indexes such as B+ trees.
- HT_i: number of levels in index i, i.e., the height of i.
 - For a B^+-tree on attribute A of relation r, $HT_i = \lceil \log_{f_i}(V(A, r)) \rceil$
 - For a hash index, HT_i is 1.
- LB_i: number of lowest-level index blocks in i, i.e., the number of blocks at the leaf level of the index.

For accurate statistics, the catalog information has to be updated every time a relation is modified.

- Many systems update statistics only during periods of light system load (or when requested explicitly), thus statistics is not completely accurate.
- Plan with lowest estimated cost might not be the cheapest
- PostgreSQL: run ANALYZE once a day
Two relational algebra expressions are equivalent if on every legal database instance the two expressions generate the same set of tuples.

- Note: order of tuples is irrelevant.

Two expressions in the multiset version of the relational algebra are said to be equivalent if on every legal database instance the two expressions generate the same multiset of tuples.

An equivalence rule states that two different expressions are equivalent and can replace each other.
Equivalence Rules/1

- $E, E_1, \ldots = RA$ expressions
- $\theta, \theta_1, \ldots = predicates/conditions$

- **ER1** Conjunctive selection operations can be deconstructed into a sequence of individual selections.
 $$\sigma_{\theta_1 \land \theta_2}(E) = \sigma_{\theta_1}(\sigma_{\theta_2}(E))$$

- **ER2** Selection operations are commutative.
 $$\sigma_{\theta_1}(\sigma_{\theta_2}(E)) = \sigma_{\theta_2}(\sigma_{\theta_1}(E))$$

- **ER3** Only the last in a sequence of projections is needed, the others can be omitted (L_i are lists of attributes).
 $$\pi_{L_1}(\pi_{L_2}(\ldots(\pi_{L_n}(E))\ldots)) = \pi_{L_1}(E)$$

- **ER4** Selections can be combined with Cartesian product and theta joins
 (a) $\sigma_{\theta}(E_1 \times E_2) = E_1 \bowtie_{\theta} E_2$
 (b) $\sigma_{\theta_1}(E_1 \bowtie_{\theta_2} E_2) = E_1 \bowtie_{\theta_1 \land \theta_2} E_2$
Equivalence Rules/2

▶ **ER5** Theta joins (and natural joins) are commutative.

\[E_1 \bowtie_{\theta} E_2 = E_2 \bowtie_{\theta} E_1 \]

▶ **ER6** Associativity

(a) Natural join operations are associative:

\[(E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3) \]

(b) Theta joins are associative in the following way:

\[(E_1 \bowtie_{\theta_1} E_2) \bowtie_{\theta_2 \land \theta_3} E_3 = E_1 \bowtie_{\theta_1 \land \theta_3} (E_2 \bowtie_{\theta_2} E_3) \]

where \(\theta_2 \) involves attributes from only \(E_2 \) and \(E_3 \).

Any of these conditions might be empty, hence, the Cartesian product operation is also associative.

▶ Commutativity and associativity of join operations are important for join reordering.
ER7 The selection operation distributes over the theta join operation under the following conditions:

- (a) When all attributes in θ_o involve only the attributes of one of the expressions (E_1) being joined:

\[\sigma_{\theta_o}(E_1 \bowtie_{\theta} E_2) = \sigma_{\theta_o}(E_1) \bowtie_{\theta} E_2 \]

- (b) When θ_1 involves only the attributes of E_1 and θ_2 involves only the attributes of E_2:

\[\sigma_{\theta_1 \land \theta_2}(E_1 \bowtie_{\theta} E_2) = \sigma_{\theta_1}(E_1) \bowtie_{\theta} \sigma_{\theta_2}(E_2) \]
Equivalence Rules/4

- **ER8** The projection operation distributes over the theta join operation as follows:
 - Let \(L_1 \) and \(L_2 \) be sets of attributes from \(E_1 \) and \(E_2 \), respectively.
 - (a) if \(\theta \) involves only attributes from \(L_1 \cup L_2 \):
 \[
 \pi_{L_1 \cup L_2}(E_1 \bowtie_{\theta} E_2) = \pi_{L_1}(E_1) \bowtie_{\theta} \pi_{L_2}(E_2)
 \]
 - (b) Consider a join \(E_1 \bowtie_{\theta} E_2 \).
 - Let \(L_3 \) be attributes of \(E_1 \) that are involved in join condition \(\theta \), but are not in \(L_1 \cup L_2 \), and
 - Let \(L_4 \) be attributes of \(E_2 \) that are involved in join condition \(\theta \), but are not in \(L_1 \cup L_2 \), and
 \[
 \pi_{L_1 \cup L_2}(E_1 \bowtie_{\theta} E_2) = \pi_{L_1 \cup L_2}(\pi_{L_1 \cup L_3}(E_1) \bowtie_{\theta} \pi_{L_2 \cup L_4}(E_2))
 \]
Equivalence Rules/5

- **ER9** The set operations union and intersection are commutative.
 \[
 E_1 \cup E_2 = E_2 \cup E_1 \\
 E_1 \cap E_2 = E_2 \cap E_1
 \]
 Set difference is not commutative

- **ER10** Set union and intersection are associative.
 \[
 (E_1 \cup E_2) \cup E_3 = E_1 \cup (E_2 \cup E_3) \\
 (E_1 \cap E_2) \cap E_3 = E_1 \cap (E_2 \cap E_3)
 \]
The selection operation distributes over \cup, \cap and $-$.

\[
\sigma_\theta(E_1 - E_2) = \sigma_\theta(E_1) - \sigma_\theta(E_2)
\]

\[
\sigma_\theta(E_1 \cup E_2) = \sigma_\theta(E_1) \cup \sigma_\theta(E_2)
\]

\[
\sigma_\theta(E_1 \cap E_2) = \sigma_\theta(E_1) \cap \sigma_\theta(E_2)
\]

Also

\[
\sigma_\theta(E_1 - E_2) = \sigma_\theta(E_1) \setminus E_2
\]

and similarly for \cap in place of $-$, but not for \cup.

The projection operation distributes over union

\[
\pi_L(E_1 \cup E_2) = \pi_L(E) \cup \pi_L(E_2)
\]
Review 8.6

Determine the equivalences that hold. Give counterexamples for the false ones.

1. \(\sigma_\theta(X \upsilon_F(A)) = X \upsilon_F(\sigma_\theta(A)), \text{attr}(\theta) \subseteq \text{attr}(X) \)

2. \(\pi_X(A - B) = \pi_X(A) - \pi_X(B) \)

3. \(A \Join (B \Join C) = (A \Join B) \Join C \)

4. \(A \cap B = A \cup B - (A - B) - (B - A) \)
Example 1: Bank database

- `branch = (BranchName, BranchCity, Assets)`
- `account = (AccNumber, BranchName, Balance)`
- `depositor = (CustName, AccNumber)`

Query: Find the names of all customers who have an account at some branch located in Brooklyn.

\[
\pi_{\text{CustName}} \left(\sigma_{\text{BranchCity} = 'Brooklyn'} \left(\text{branch} \Join (\text{account} \Join \text{depositor}) \right) \right)
\]

Transformation using rule ER7(a):

\[
\pi_{\text{CustName}} \left((\sigma_{\text{BranchCity} = 'Brooklyn'} (\text{branch}) \Join (\text{account} \Join \text{depositor})) \right)
\]

- Performing the selection as early as possible reduces the size of the intermediate relation to be joined.
Example 2: Multiple transformations are often needed

Query: Find the names of all customers with an account at Brooklyn whose balance is below $1000.

\[\pi \text{CustName}(\sigma \text{BranchCity} = 'Brooklyn' \land \text{balance} < 1000 (\text{branch} \Join (\text{account} \Join \text{depositor}))) \]

Rewrite using rule ER6(a) (join associativity):

\[\pi \text{CustName}(\sigma \text{BranchCity} = 'Brooklyn' \land \text{balance} < 1000 (\text{branch} \Join \text{account}) \Join \text{depositor}) \]

Rewrite using rule ER7(b) (perform selection early)

\[\sigma \text{BranchCity} = 'Brooklyn' (\text{branch}) \Join \sigma \text{balance} < 1000 (\text{account}) \]
Example 2 (continued)

Tree representation after multiple transformations
Example 3: Projection operation
 Query:
 \[\pi_{\text{CustName}} \left(\sigma_{\text{BranchCity}=\text{Brooklyn}} \left(\text{branch} \bowtie \text{account} \right) \bowtie \text{depositor} \right) \]

When we compute \[\sigma_{\text{BranchCity}=\text{Brooklyn}} \left(\text{branch} \bowtie \text{account} \right) \] we obtain an intermediate relation with schema \((\text{BranchName}, \text{BranchCity}, \text{Assets}, \text{AccNumber}, \text{Balance})\)

Push projections using equivalence rules \(\text{ER8}(a)\) and \(\text{ER8}(b)\); thus, eliminate unneeded attributes from intermediate results:

\[\pi_{\text{CustName}} \left(\pi_{\text{AccNumber}} \left(\sigma_{\text{BranchCity}=\text{Brooklyn}} \left(\text{branch} \bowtie \text{account} \right) \bowtie \text{depositor} \right) \right) \]
Example 4: Join ordering

For all relations r_1, r_2, and r_3:

$$(r_1 \bowtie r_2) \bowtie r_3 = r_1 \bowtie (r_2 \bowtie r_3)$$

If $r_2 \bowtie r_3$ is quite large and $r_1 \bowtie r_2$ is small, we choose

$$(r_1 \bowtie r_2) \bowtie r_3$$

so that we compute and store a smaller temporary relation.
Example 5: Join ordering

Consider the expression

\[\pi_{\text{CustName}}(\sigma_{\text{BranchCity}=\text{Brooklyn}}(\text{branch} \Join \text{account} \Join \text{depositor})) \]

Could compute \(\text{account} \Join \text{depositor} \) first, and join result with

\[\sigma_{\text{BranchCity}=\text{Brooklyn}}(\text{branch}) \]

but \(\text{account} \Join \text{depositor} \) is likely to be a large relation.

Since it is more likely that only a small fraction of the bank's customers have accounts in branches located in Brooklyn, it is better to compute first

\[\sigma_{\text{BranchCity}=\text{Brooklyn}}(\text{branch}) \Join \text{account} \]
Show how to rewrite and optimize the following SQL query:

```
SELECT  e.LName
FROM    employee e, worksOn w, project p
WHERE   p.PName = 'A'
AND     p.PNum = w.PNo
AND     w.ESSN = e.SSN
AND     e.BDate = '31.12.1957'
```
Enumeration of Equivalent Expressions

- **Query optimizers** use the equivalence rules to systematically generate expressions that are equivalent to the given expression.

- **repeat**
 - For each expression found so far, use all applicable equivalence rules, and add newly generated expressions to the set of expressions found so far.
 - until no more expressions can be found.

- This approach is very expensive in space and time.

- Reduce space requirements by sharing common subexpressions:
 - When E1 is generated from E2 by an equivalence rule, usually only the top level of the two are different, subtrees below are the same and can be shared (e.g. when applying join associativity).

- Time requirements are reduced by not generating all expressions (e.g. take cost estimates into account).
Evaluation Plan

- Evaluation plan (query plan/query tree): Defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated.

```
Π_{customer-name} (sort to remove duplicates)
  ┌─────────┐
  │    (hash-join)    │
  │                ▼  │
  │ (merge-join)     ▼
  │                (depositor)
  │                ┌─┬─┐
  │                │ │
  │                │ ▼
  │                (Pipeline)
  │                │
  │                │ (σ balance < 1000 (use linear scan))
  │                │
  │                │
  │                │ (Pipeline)
  │                │
  │                │ (σ branch-city = Brooklyn (use index 1))
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  │                │
  ├───┴───┐    │
  │        │    │
  │        │    │
  │        │    │
  │        │    │
  │        │    │
  │        │    │
  │        │    │
  │        │    │
  │        │    │
  │        │    │
  │        │    │
  │        │    │
  │        │    │
  │        │    │
  │        │    │
  └───────┴─────┘
  branch

```
Choosing Evaluation Plans

- When choosing the best evaluation plan, the query optimizer must consider the interaction of evaluation techniques:
 - Choosing the cheapest algorithm for each operation independently may not yield best overall algorithm, e.g.
 - merge join may be costlier than hash join, but may provide a sorted output which reduces the cost for an outer level aggregation.
 - nested loop join may provide opportunity for pipelining.
 - Practical query optimizers combine elements of the following two broad approaches:
 1. **Cost-based optimization**: Search all plans and choose the best plan in a cost-based fashion.
 2. **Rule-based optimization**: Uses heuristics to choose a plan.
Heuristic Optimization/1

- Heuristic optimization transforms the query-tree by using a set of heuristic rules that typically (but not in all cases) improve execution performance.

- Overall goal of heuristic rules:
 - Try to **reduce the size of (intermediate) relations** as early as possible

- Heuristic rules
 - Perform selection early (reduces the number of tuples)
 - Perform projection early (reduces the number of attributes)
 - Perform most restrictive selection and join operations before other similar operations.

- Some (old) systems use only heuristics

- Modern database systems combine heuristics (consider some plans only) with cost-based optimization (determine database specific cost of each plan).
Example: Consider the expression $\sigma_\theta(r \bowtie s)$, where θ is on attributes in s only.

- Selection early rule would push down the selection operator, producing $r \bowtie \sigma_\theta(s)$.
- This is not necessarily the best plan if
 - relation r is extremely small compared to s,
 - and there is an index on the join attributes of s,
 - but there is no index on the attributes used by θ.
- The early select would require a scan of all tuples in s, which is probably more expensive than the join
Heuristic Optimization/3

Steps in typical heuristic optimization

1. Break up conjunctive selections into a sequence of single selection operations (rule ER1).
2. Move selection operations down the query tree for the earliest possible execution (rules ER2, ER7(a), ER7(b), ER11).
3. Execute first those selection and join operations that will produce the smallest relations (rule ER6).
4. Replace Cartesian product operations that are followed by a selection condition by join operations (rule ER4(a)).
5. Deconstruct and move as far down the tree as possible lists of projection attributes, creating new projections where needed (rules ER3, ER8(a), ER8(b), ER12).
6. Identify those subtrees whose operations can be pipelined, and execute them using pipelining.
Cost-Based Optimization/1

Basic working of a cost-based query optimizer:

Algorithm

1. Use transformations (equivalence rules) to generate multiple candidate evaluation plans from the original evaluation plan.
2. Cost formulas estimate the cost of executing each operation in each candidate evaluation plan.
 - Cost formulas are parameterized by
 - statistics of the input relations;
 - dependent on the specific algorithm used by the operator;
 - CPU time, I/O time, communication time, main memory usage, or a combination.
3. The candidate evaluation plan with the least total cost is selected for execution.
Cost-based optimization can be used to determine the best join order.

A good ordering of joins is important for reducing the size of temporary results ($|r_1|, \ldots, |r_n|$).

Consider finding the best join-order for $r_1 \bowtie r_2 \bowtie \ldots r_m$

There are $(2(m-1))!/(m-1)!$ different join orders for above expression.

- With $m = 3$, the number is 12
- With $m = 7$, the number is 665,280
- With $m = 10$, the number is greater than 17.6 billion
Cost-based optimization is expensive, but worthwhile for queries on large datasets.

Typical queries have a small number m of operations; generally $m < 10$.

With dynamic programming time complexity of optimization with bushy trees is $O(3^m)$.
 - With $m = 10$, this number is 59000 instead of 17.6 billion!

Space complexity is $O(2^m)$.
Consider a DB with the following characteristics:

- $|r_1(A, B, C)| = 1000$, $V(C, r_1) = 900$
- $|r_2(c, D, E)| = 1500$, $V(C, r_2) = 1100$, $V(E, r_2) = 50$
- $|r_3(E, F)| = 750$, $V(E, r_3) = 100$

Estimate the size of $r_1 \bowtie r_2 \bowtie r_3$ and determine an efficient evaluation strategy.
Cost-Based Optimization Example/1

Example: $\sigma_{SSN=0810643773}(Emp)$

Statistics:
- $|Emp| = 10'000$ tuples
- 5 tuples per block
- Secondary B^+-tree index of depth 4 on SSN
- SSN is primary key

Plan p1: full table scan
- $\text{cost}(p1) = (10'000/5)/2 = 1'000$ blocks

Plan p2: B^+-tree lookup
- $\text{cost}(p2) = 4 + 1 = 5$ blocks
Cost-Based Optimization Example/2

- Example: $\sigma_{DNo>15}(Emp)$
- Statistics:
 - $|Emp| = 10'000$ tuples
 - 5 tuples per block
 - Primary index on DNo of depth 2
 - 50 different departments
- Plan p1: full table scan
 - cost (p1) = $10'000/5 = 2'000$ blocks
- Plan p2: index search
 - cost(p2) = $2 + (50-15)/50*(10'000/5) = 1'400$ blocks
Cost-Based Optimization Example/3

- **Emp \(\times_{DNo=DNum} \) Dept**
- **Statistics:**
 - \(|Emp| = 10'000\) tuples ; 5 Emp tuples per block
 - \(|Dept| = 125\); 10 Dept tuples per block
 - Hash index on Emp(DNo)
 - 4 EmpDept result tuples per block
- **Plan p1: Block nested loop with Emp as outer loop**
 - \(\text{cost}(p1) = \left(\frac{10'000}{5} \right) + \left(\frac{10'000}{5} \right) \times \left(\frac{125}{10} \right) + \left(\frac{10'000}{4} \right)\)
 - \(= 30'500\) IOs
 - \(\left(\frac{10'000}{4} \right)\) is the cost of writing final output
- **Plan p2: Indexed nested loop with Dept as outer loop and hashed lookup in Emp**
 - \(\text{cost}(p2) = \left(\frac{125}{10} \right) + 125 \times \left(\frac{10'000}{125}/5 \right) + \left(\frac{10'000}{4} \right)\)
 - \(= 4'513\) IOs
 - \(10'000/125/5\) is the average number of blocks/department
SELECT COUNT(*)
FROM r1 r, r2 s
WHERE r.unique1 = s.unique1
AND r.unique1 > 70000;
PostgreSQL Query Optimization/2

```
SELECT COUNT(*)
FROM r1 r, r2 s
WHERE r.unique1 = s.unique1
AND r.unique1 > 70000;
```
SELECT COUNT(*)
FROM r1 r, r2 s
WHERE r.unique1 = s.unique1
AND r.unique1 > 700000;

Output pane
Data Output Explain Messages History

i1 → r1 → Hash → Hash Join → Aggregate

OK. Unix Ln 4 Col 22 Ch 84 9 rows. 8 ms
```
SELECT COUNT(*)
FROM r1 r, r2 s
WHERE r.unique1 = s.unique1
AND r.unique1 > 700000;
```
Query evaluation techniques:

- Physical sorting:
 - Physical sorting is a basic and important technique
 - The same sort order should be useful to many operators and not just one (global optimization versus local optimization)

- Evaluation techniques for selections:
 - Use primary index if available; secondary index is much worse
 - Equality conditions are selective and should be optimized
 - Linear scan with sequential IO is the base line for selections

- Evaluation techniques for joins:
 - nested loop: base line; avoid whenever possible
 - sort merge: robust and fast
 - hash join: fastest; only for equality
Query optimization techniques

- **Equivalence rules** for relational algebra expressions (must hold for multisets)

- **Rule-based query optimization** is based on heuristics (usually the goal is to keep intermediate results as small as possible)

- **Cost-based query optimization** uses statistical information to find the cheapest (or reasonably cheap) plan