
Probabilistic Context Free Grammars

Simon Clematide
Institute of Computational Linguistics

University of Zurich

http://www.cl.unizh.ch/siclemat/talks/pcfg/

PCFG – 2

Synopsis

Program
CFG grammars, rewriting, derivations, parse trees

Shift-reduce parsing CFGs

PCFG grammars
Probability of rules, derivations, parse trees

Tasks for PCFGs

One Task: Most probable parse tree
Naive solution

Viterbi chart parsing

Pseudocode for viterbi

Assumptions, features and use of PCFGs

PCFG – 3

NP → astronomers
NP → telescopes
NP → saw
NP → ears
NP → stars

Context Free Grammars

S → NP VP
PP → P NP
VP → V NP
VP → VP PP
NP → NP PP

P → with
V → saw

Symbols

Nonterminals
'syntactic categories'

Rules

VP

V NP
N

S

Start Symbol

P starssaw
astronomers

ears
telescopes

with

Terminals
'words'

'Syntactic' Rules 'Lexical' Rules

PCFG – 4

Formal Definition

A context-free grammar G is a quadrupel (N, T, S, R) where

N is a finite set of non-terminal symbols

T is a finite set of terminal symbols (T ∩ N =∅)
V is the set of symbols; short cut for N ∪ T

S is a distinguished start symbol (S ∈ N)

R is a finite set of production rules (R ⊆ N × V*)

Arrow notation for rule: B → β where
B ∈ N and β ∈ V*

PCFG – 5

From Rewriting to Derivation

One rewriting step
The string αBγ ∈ V* can be rewritten as αβγ iff B → β is in R.

α γ αβγB ⇒

Finite number of steps
If a string φ ∈ V* can be rewritten
as ψ in a finite number of steps,
this is denoted φ ⇒* ψ.

Language of a grammar G

L G W T S W() { *: * }= ∈ ⇒

S
⇒ NP VP
⇒ astronomers VP
⇒ astronomers V NP
⇒ astronomers saw NP
⇒ astronomers saw stars

Example Derivation:
S ⇒* astronomers saw stars

PCFG – 6

Derivations and Parse Trees

A leftmost derivation
of a terminal sequence W ∈ T* is the sequence

 S W⇒ ⇒ ⇒ … ⇒α α1 2
where the leftmost non-terminal symbol is rewritten in each step.

A parse tree
of W is the tree representation of a (leftmost) derivation.

Root is labelled S.

Leafs are labelled in the order they appear in W.

Inner nodes are labelled according
to the rewritten symbols.

B

b1 bnb2 …

Labelling closeup of one derivation step
involving rule B → β (β=b1,b2,…,bn)

PCFG – 7

Bottom Up CFG Recognizing in Prolog

s ---> np, vp.
pp ---> p, np.
vp ---> v, np.
vp ---> vp, pp.
np ---> np, pp.

p ---> [with].
v ---> [saw].
np ---> [saw].
np ---> [astronomers].
np ---> [ears].
np ---> [stars].
np ---> [telescopes].

Syntactic Rules

Lexical Rules

:- op(1150, xfx, '--->').

% sr_parse(Words, Startsymbol)
sr_parse(W, S):-
 sr_parse([], W, S).

% Ok, if no more words
% and startsymbol on stack
sr_parse([S], [], S).

% Reduce Stack by one rule
sr_parse([V2,V1|Stack], W, S):-
 (LHS ---> (V1,V2)),
 sr_parse([LHS|Stack], W, S).

% Consume word and shift its cat on stack
sr_parse(Stack,[W1|W],S):-
 (LHS ---> [W1]),
 sr_parse([LHS|Stack], W, S).

Shift-Reduce Parser for Grammars in
Chomsky Normal Form

PCFG – 8

Bottom Up CFG Parsing in Prolog

Syntactic Rules

Lexical Rules

Allow complex grammar symbols
for storing the partial trees of each rule.

s(s(NP,VP)) ---> np(NP), vp(VP).
pp(pp(P,NP)) ---> p(P), np(NP).
vp(vp(V,NP)) ---> v(V), np(NP).
vp(vp(VP,PP)) ---> vp(VP), pp(PP).
np(np(NP,PP)) ---> np(NP), pp(PP).

p(p(with)) ---> [with].
v(v(saw)) ---> [saw].
np(np(saw)) ---> [saw].
np(np(astronomers)) --->
 [astronomers].
np(np(ears)) ---> [ears].
np(np(stars)) ---> [stars].
np(np(telescopes)) --->
 [telescopes].

s(mmmmmmmm)mm--->mnp(mmm),mvp(mmm).s

np vp
bn

np vp

?- sr_parse([astronomers,saw,stars], s(Tree)).

PCFG – 9

PCFG: Formal Definition

A Probabilistic CFG is a quintupel G=(N, T, S, R, P) where
(N,T,S,R) build up a normal CFG.

Let V again denote N ∪ T.

P is a conditional probabilistic function (N × V*) → [0,1].

Remarks
P(B,β) is normally notated as P(B→β) which means P(B→β|B). The
probability of rewriting with β given B.

for all B ∈ N,

P B

V

()
*

→ =
∈

∑ β
β

1

P(VP → V NP) = 0.7
P(VP → VP PP) = 0.3

PCFG – 10

Probability of Trees and Strings

The probability of a parse tree of a string W
is the probability of its leftmost derivation P(S ⇒* W).

Or the probability of some other derivation strategy ...

The probability of a derivation
is the product of the rules' probabilities that are used in the
derivation.

The probability of a string
is the sum of the probabilities of its parse trees.

The probability of a language
is the sum of the probabilities of its strings.

May be improper...

PCFG – 11

Toy Grammar with Silly Sentence

P(t1) = …

PCFG – 12

Toy Grammar in Prolog

Also allow probabilities in symbols…

vp(vp(V,NP)@0.7*(PV*PNP)) --->
v(V@PV),
np(NP@PNP).

vp(vp(VP,PP)@0.3*(PVP*PPP)) --->
vp(VP@PVP),
pp(PP@PPP).

...

vp(mmmmmmmm)mm--->mvp(mmm),mpp(mmm).s

vp pp
bn

vp pp

p(p(with)@1) ---> [with].
v(v(saw)@1) ---> [saw].
np(np(astronomers)@0.1) ---> [astronomers].

?- sr_parse([astronomers,saw,stars],
 s(Tree-Prob)).

PCFG – 13

Three Tasks for PCFGs

Language modelling
Give the probability for each string generated by a grammar!

 P w w Gm(|)1…

Best parse tree
Select the most probable parse tree for a given string!

argmax (| ,)

tree
mP tree w w G1…

Grammar learning
Optimize the rule probabilities of a given grammar for some
sentences!

argmax (|)

G
mP w w G1…

PCFG – 14

Most Probable Parse Tree

Which is the most probable parse tree for a given
sentence?

Straight-forward solution
Enumerate all possible parse trees and take the maximum!

?- findall(P-T, sr_parse([stars,saw,ears],s(T@P), Pairs),
 max_key(Pairs,MaxP-MaxTree).

This is naive for longer sentences with decently ambiguous
grammars!

Exponentional complexity: O(n|sentence length|)

Solution: Use a caching algorithm!
Saying probabilistic chart parsing, Viterbi algorithm for PCFG or inside algorithm!

PCFG – 15

First: Building CFG Charts

1 2 3

1 np

2

3 np

(Passive) Chart as Matrix:
Lexical Information

v
np

1 2 3

1 np

2 vp

3 np

First Syntactic Edge

v
np

1 2 3

1 np s

2 vp

3 np

Second syntactic
edge

v
np

1 32
astronomers saw stars

Draw edges!

Fundamental Rule
of Chart Parsing

PCFG – 16

Viterbi for CFG in Chomsky Normal F.

Delta, the caching data structure

The Viterbi Algorithm
initializes the delta matrix diagonally in δ1 with lexical rules.

fills delta diagonally to the right upper corner with syntactic rules.
computes the most probable tree back from the upper right cell δT.

1 2 … T
1
2
…
T

Start Positions of Edges
Maximum Probabilities
Sofar for Every Non-
Terminal of G

Emitted Word Sequence W=(w1,w2,…,wT)
=End Positions of Edges

…

P represents the most probable d
symbols (w1,w2).

δ1

δ2

δT
P(ni)
P(nj)
…

PCFG – 17

Induction of Delta

V1 Initialization: For each word in W=w1,…,wT ∈ T*

 δt t i i t iX P X w t T X N, () ()= → ≤ ≤ ∈for and 1

V2 Induction
δ δ δr t i

X X
r s t

i j k r s j s t k iX P X X X X X r s t T X N
j k

,
,

, ,

, ,() max () () ()= → ≤ ≤ < ≤ ∈+1 1for and

ψ δ δr t i

X X s
i j k r s j s t kX P X X X X X

j k

,
, ,

, ,() argmax () () ()= → +1

V3 Termination

 P W G STmax ,(|) ()= δ1

Construct parse tree by working backwards through ψ.

PCFG – 18

Pseudo Code for CYK Algorithm

Given
Sentence: Array w
Nonterminals: NT
Terminals: T
Lexical rule probability:
Matrix lex[NT][T] -> Prob
Syntactic rule probability:
Matrix syn [NT][NT][NT]-> Prob
Delta: Matrix delta[int][int][NT] -> Prob
Chart (Psi):
Matrix chart[int][int][NT] -> <int,NT,NT>
Returns
Total probability: p

V1: Lexical level
for i := 1 to length(w) do
 foreach a in NT do
 delta[i][i][a] := lex[a][w[i]]
 done
done

V2 Syntactic levels
for span := 2 to length(w) do
 for from := 1 to length(w) - span - 1
 end := from + span - 1
 for middle := begin to end - 1
 foreach a in keys(syn) do
 foreach b in keys(syn[a]) do
 foreach c in keys(syn[a][b]) do
 p:= syn[a][b][c]*delta[begin][middle][b]
 *delta[middle+1][end][c]
 if (p > delta[begin][end][a] then
 delta[begin][end][a] := p
 chart[begin][end][a] := <middle,b,c>
 done
 done
 done
 done
 done
done

PCFG – 19

Assumptions of PCFG

Place invariance
Identical subtrees have the same probability wherever they appear
in a syntax tree.

Context-free
The probability of a subtree does not take into account the words
before or after.

Ancestor-free
The dominating nodes of a subtree have no influence on its
probability.

PCFG – 20

Usefullness of PCFGs

PCFG as language models
Probabilistic language models of raw PCFGs are (too) simple. Raw
trigram models are better.

Independence assumptions are too strong.

Lexicalization and contextualization is needed.

This can be added in various fashions. (see M&S Ch. 12)

PCFG for parsing
Good robustness if you allows everything with low probability.
May help in some cases to make the right desambiguation
decision.

But certain biases are typical, e.g. preference for smaller trees.

PCFG is apted for grammar induction

